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Abstract

In this paper, we study the identification and estimation of a dynamic discrete

game allowing for discrete or continuous state variables. We first provide a general

nonparametric identification result under the imposition of an exclusion restrictions on

agents payoffs. Next we analyze large sample statistical properties of nonparametric

and semiparametric estimators for the econometric dynamic game model. Numerical

simulations are used to demonstrate the finite sample properties of the dynamic game

estimators.
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1 Introduction

In this paper, we study the identification and estimation of a dynamic discrete game. A

dynamic discrete game is a generalization of a dynamic discrete choice model as in Rust

(1987), Hotz and Miller (1993). As in these earlier papers, agents in the model are assumed

to solve a dynamic programing problem. Payoffs in each time period depend on the agent’s

actions, the state variables and random preference shocks. Given current choices, the

state variables evolve according to a law of motion which can depend on an agent’s actions.

A dynamic game generalizes this single agent model to allow the payoffs of one agent to

depend on the actions of other agents. Dynamic game models are applicable in many

areas such as industrial organization dynamic oligopoly with collusions, e.g. Fershtman

and Pakes (2009). Recently, a number of papers have proposed methods to estimate

dynamic games including Aguirregabiria and Mira (2007), Berry, Pakes, and Ostrovsky

(2003), Pesendorfer and Schmidt-Dengler (2003), Bajari, Benkard, and Levin (2007) and

Jenkins, Liu, McFadden, and Matzkin (2004).

The first goal of this paper is to study nonparametric identification of dynamic discrete

games. As in Aguirregabiria and Mira (2007), Berry, Pakes, and Ostrovsky (2003) and

Pesendorfer and Schmidt-Dengler (2003), we assume that agents move simultaneously in

each time period and that the random preference shocks are private information. However,

our framework is more general since we allow the state variables to be discrete or continuous.

This is attractive for empirical work since in many applications state variables are naturally

modeled as continuous. We show that our model parameters are identified if the researcher

is willing to make exclusion restrictions, that is, not all state variables can enter the payoffs

of all agents. Such restrictions are commonly imposed in empirical research. For example,

cost and demand shifters for one firm are frequently excluded from the payoffs of other

firms.

Second, we analyze semiparametric and non-parametric estimation procedures. We be-

gin with the analysis of a semiparametric setup, where we only use non-parametric identifica-

tion assumptions and parameterize the identifiable payoffs of the players without additional

restrictions on the state transition law. We find the semiparametric efficiency bound for the

payoff parameters, which is the minimum variance of the parameter estimates without para-

1



metric assumptions regarding the state transition. Moreover, we show that obtaining the

semiparametrically efficient estimates does not require solving for equilibria of the game and

computing the corresponding likelihood function. We demonstrate that the treatment of

the player’s decision problem as a moment equation, generated by her first-order condition

allows use to estimate the payoff parameters in one step. We also show that the estimation

procedure that allows one to achieve the semiparametric efficiency bound belongs to our

class of one-step estimation methods. This is a new approach to the analysis of dynamic

games and it generalizes the existing two-step estimation techniques such as those proposed

by Aguirregabiria and Mira (2007), Berry, Pakes, and Ostrovsky (2003) and Pesendorfer

and Schmidt-Dengler (2003).

An additional advantage of our approach is that it does not rely on the discreteness of

the state space which is in particular achieved by using an estimation approach that does

not need preliminary estimation of the continuation values of the players. In applied work,

many researchers choose to discretize a continuous state variable. Increasing the number of

grid points in a two step estimator reduces the bias of the first stage. However, this comes

at the cost of increasing the variance of the first stage estimates. In fact, when there are four

or more continuous state variables, it can be shown that it is not possible to obtain through

discretization
√
T consistent and asymptotically normal parameter estimates in the second

stage, where T is the sample size. Therefore, discretizing the state space does not provide

a solution to continuous state variables. The estimation approach of Bajari, Benkard, and

Levin (2007) allows for continuous state variables. However, it requires a parametric first

stage and the resulting estimates will be biased if the first stage is misspecified.

Third, we find that the reduction of the estimation procedure to one stage allows us to

estimate payoffs of players fully non-parametrically. The structure of the non-parametric

estimator is based on the player’s first-order condition similarly to the semiparametric case.

The estimates of the payoff function have a slower than parametric convergence rate. This

rate depends on the smoothness of the distribution of the state transition as well as on the

support condition on the policy functions of the players. We analyze the non-parametric

estimator from the perspective of the mean-square optimality and offer a choice of trimming

for the sieve representation of the payoff functions as well as the value functions that provides
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the procedure with the minimum mean squared error while converging at an optimal non-

parametric rate. For the non-parametric estimator we develop a unified large sample theory

that nests both continuous and discrete state variables as special cases.

Section 2 discusses identification in a static discrete game model. Section 3 extends

the identification analysis to a dynamic game. Section 4 develops nonparametric and semi-

parametric estimation methods which follow the lines of the identification conditions to

construct estimates for the payoffs based on the non-parametric estimates of the condi-

tional choice probabilities. Section 5 demonstrates how the multi-stage estimation strategy

can be improved by representing the decision problem of a player in a dynamic game as

a conditional moment equation. Moreover, it demonstrates how to obtain the estimates

for the payoff parameters with the minimum variance over the class of models without

parametric assumptions regarding the choice probabilities. It also derives the asymptotic

distribution for the estimates of the payoff parameters. Section 8 concludes.

2 Nonparametric identification of static games

We begin by describing the model for the case of static games. This serves two purposes.

First, this will allow us to discuss our modeling assumptions in a simpler setting. Second,

we prove the identification for the static model. This will highlight some key ideas in our

identification of the full dynamic model and also will be used as a step in the identification

of the more general dynamic model.

In the model, there are a finite number of players i = 1, ..., n. Each player simultaneously

chooses an action ai ∈ {0, 1, . . . ,K} out of a finite set. We assume that the set of actions

are identical across players. This assumption is for notational convenience only and could

easily be relaxed. Let A = {0, 1, . . . ,K}n denote the set of possible actions for all players

and a = (a1, ..., an) denote a generic element of A. Also, let a−i = (a1, ...ai−1, ai+1, ..., an)

denote a vector of strategies for all players excluding i. The vector si ∈ Si denotes the

state variable for player i. The set Si can be discrete, continuous or both. Also, define

S = ΠiSi and let s = (s1, ..., sn) ∈ S denote a vector of state variables for all n players.

We assume that s is common knowledge to all players in the game and is observable to the

econometrician.
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For each agent, there are K + 1 private shocks ǫi(ai) indexed by the actions ai. Let

εi = (εi(0), ..., εi(K)) have a density f (ǫi) and assume that the shocks ǫi are i.i.d across

agents and actions ai. We shall assume that ǫi(ai) is distributed extreme value.

Assumption 1 The error terms ǫi(ai) are distributed i.i.d. across actions and agents.

Furthermore, the error term has an extreme value distribution with density

f (ǫi) = exp(−ǫi) exp(− exp(−ǫi)).

We could easily weaken this assumption. However, it is commonly used in the applied

literature and will allow us to write a number of formulas in closed form which will simply

our study of identification. The vNM utility function for player i is:

ui(a, s, ǫi) = Πi(ai, a−i, s) + ǫi(ai).

In the above, Πi(ai, a−i, s) is a scalar which depends on i’s own actions, the actions of all

other agents a−i and the entire vector of state variables s. We assume that the iid preference

shocks ǫi(ai) are private information for player i. The assumption that the error term ǫi(ai)

is private information is not universal in the literature. For example, Bresnahan and Reiss

(1991) assume that the error terms are common knowledge. However, this model requires

quite different econometric methods which account for the presence of multiple equilibrium

and the possibility of mixed strategies.

A strategy for agent i is a function ai = δi (s, ǫi) which maps the state s and agent i’s

private information ǫi to an action ai. Note that agent i’s strategy does not depend on ǫ−i

since this is assumed to be private information to the other agents in the game. Define

σi(ai = k|s) =

∫
1 {δi(s, ǫi) = k} f(ǫi)dǫi.

This is the probability that agent i will play strategy k after we margin out ǫi.

In equilibrium, player i’s belief is that j will play strategy k is σj(aj = k|s). Therefore,

i’s expected utility from choosing the strategy ai is
∑

a−i
Πi(ai, a−i, s)σ−i(a−i|s) + ǫi(ai).

Moving forward, it will be useful to define the choice specific value function as

Πi(ai, s) =
∑

a−i

Πi(ai, a−i, s)σ−i(a−i|s). (1)
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Note that we can write the expected utility from choosing ai as

Πi(ai, s) + ǫi(ai). (2)

Recall that the error terms are distributed extreme value. Standard results about the

logit model plus the definition of the choice specific value function imply that

σi(ai = k|s) =
exp(Πi(ai, s))∑

a′i∈Ai
exp(Πi(a′i, s))

.

Definition 1 Fix the state s. A Bayes-Nash equilibrium is a collection of probabilities,

σ∗i (ai = k|s) for i = 1, ..., n and k = 0, ...,K such that for all i and all k

σ∗i (ai = k|s) =
exp(Πi(ai, s))∑

a′i∈Ai
exp(Πi(a′i, s))

and

Πi(ai, s) =
∑

a−i

Πi(ai, a−i, s)σ
∗
−i(a−i|s).

An equilibrium requires the actions of all players to be a best response to the actions of

all other players. Moving forward, it is convenient to define an equilibrium in terms of

σi(ai = k|s) instead of δi (s, ǫi).

2.1 Identification of the static model

An important question is whether it is possible for us to identify the parameters of our

model. One approach to identification is to impose parametric restrictions on Πi(a, s).

In what follows, we allow Πi(a, s) to be a general function of s and a do not specify the

payoffs Πi(ai, s) parametrically. We identify Πi(ai, a−i, si) nonparametrically by imposing

exclusion restrictions on this function.

Definition 2 Let Πi(ai, a−i, si) and Π̃i(ai, a−i, si) be two different specifications of the pay-

offs that are not identical, i.e. Πi(ai, a−i, si) 6= Π̃i(ai, a−i, si). Also let σi(ai = k|s) and

σ̃i(ai = k|s) be the corresponding equilibrium choice probabilities for i = 1, ..., n. We say

that our model is identified if Πi(ai, a−i, si) 6= Π̃i(ai, a−i, si) for a subset of si with positive

probability implies that σi(ai = k|s) 6= σ̃i(ai = k|s) for a subset of s with positive probability.
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Our proof of identification is constructive. Assuming that the population probabilities

σi(ai = k|s) for all k, i and s are known, we reverse engineer the Πi(ai, a−i, si) that

rationalize the data. Simple algebra implies that

σi(ai = k|s) =
exp(Πi(ai, s))∑

a′i∈Ai
exp(Πi(a

′
i, s))

(3)

log(σi(ai = k|s)) − log(σi(ai = 0|s)) = Πi(ai = k, s) − Πi(ai = 0, s) (4)

Equation (4) is the well known Hotz-Miller inversion. This equation implies that it is

possible to learn the choice specific payoff functions, Πi(ai = k, s) up to a first difference

from knowledge of the choice probabilities σi(ai = k|s). Since these choice-specific payoff

functions can only be learned up to a first difference, we need to impose the normalization

that an “outside good” action always yields zero utility:

Πi(ai = 0, a−i, s) = 0. (5)

Assumption 2 For all i, all a−i and all s, Πi(ai = 0, a−i, s) = 0.

Having identified the choice specific payoff functions Πi(a, s), we next turn to the prob-

lem of identifying primitive mean utilities Πi(ai, a−i, s). The definition of the choice specific

payoff function implies that these two objects are related by the following equation:

Πi(ai, s) =
∑

a−i

σ−i(a−i|s)Πi(ai, a−i, s), ∀i = 1, . . . , n, ai = 1, . . . ,K. (6)

Given s, this is a system of n × K equations, because there are n agents and for each

agent, there are K + 1 choices. Then Πi(ai, a−i, s) are n×K× (K+ 1)n−1 free parameters

in equation (6). Recall that for each agent, we have normalized the utility for the action

ai = 0 to zero regardless of the actions of the other players. Therefore, for each agent i,

there are K × (K + 1)n−1 free parameters corresponding to the actions K actions available

to i which yield nonzero utility and the (K + 1)n−1 actions of the other agents. Clearly,

n×K × (K + 1)n−1 > n×K, which implies that the model is underidentified.

In order to identify the model, we will impose exclusion restrictions on i’s payoffs.

Partition s = (si, s−i), and assume that

Πi(ai, a−i, s) = Πi(ai, a−i, si) (7)
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depends only on the subvector si. In other words, we are excluding some component of s

from i’s payoffs. Such assumptions are commonly used in applied work. For example,

many oligopoly models predict that after we control for −i’s strategies, i’s profits are not

influenced by certain cost or demand shifters for −i.
If we impose these exclusion restrictions, we can rewrite (6) as

Πi(ai, s−i, si) =
∑

a−i

σ−i(a−i|s−i, si)Πi(ai, a−i, si), (8)

If there are (K + 1)n−1 points in the support of the conditional distribution of s−i given si,

we will have more equations than unknowns.

Theorem 1 Suppose that Assumptions 1 and 2 hold. Also suppose that for each si , there

exist (K+1)n−1 points in the support of the conditional distribution of s−i given si. Assume

that the (K + 1)n−1 equations defined by (8) are linearly independent almost surely. Then

the latent utilities Πi(ai, s−i, si) are identified for almost every si and s−i.

We can alternatively state a rank condition, similar to the linear least squares regression

model, that is sufficient for identification. This rank condition requires that given each si,

the second moment matrix of the “regressors” σ−i(a−i|s−i, si),

Eσ−i(a−i|s−i, si)σ−i(a−i|s−i, si)′ (9)

is nonsingular. Intuitively, we interpret Πi(ai, s−i, si) as the dependent variable in an ols

regression and σ−i(a−i|s−i, si) as a regressor.

3 Nonparametric identification of dynamic games

3.1 Dynamic game of incomplete information

In this section, we extend our model to allow for non-trivial dynamics. Our model is

similar to the framework proposed by Aguirregabiria and Mira (2007), Berry, Pakes, and

Ostrovsky (2003) and Pesendorfer and Schmidt-Dengler (2003). Period returns are defined

using a static logit model. The current actions a and state influence the future evolution
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of the state variable. We shall restrict attention to Markov perfect equilibrium. The

methods that we propose here could be applied to other dynamic games, such as a finite

horizon where payoffs and the low of motion are time dependent. These extensions require

considerable additional notational complexity.

3.2 The Environment

3.2.1 Payoffs

In the model, there are t = 1, ...,∞ time periods. At each time t, we let ait ∈ {0, 1, . . . ,K}
denote the choice for agent i. We shall assume that the choice set is identical for all agents

and does not depend on the state variable. Both assumptions could be dropped at the cost

of notational complexity. Let si,t ∈ Si denote the state variable for agent i at time t. As

in the previous section, Si is a collection of real valued vectors and the state can either be

continuous or discrete.

Let εit = (εit(0), ..., εit(K)) denote a vector of iid shocks to agent i’s payoffs at time t.

As in the previous section, we shall assume that the error terms are distributed extreme

value. Player i’s period utility function is

ui(ait, a−it, st, ǫit) = Πi(ait, a−it, st) + ǫit(ait).

As in the previous section, we shall develop the model assuming that Πi(ait, a−it, st) is a

general function of the state variables rather than a member of a particular parametric

family. Let σi(ai|s) denote the probability that i plays ai given that the state is s. As in

the previous section, we define Πi(ait, s) as Πi(ai, s) =
∑

a−i
Πi(ai, a−i, s)σ−i(a−i|s).

3.3 Value Functions

In the model, the evolution of the state variable depends on the current state and the

actions of all players. We assume that the state variable evolves according to a first order

Markov process g(s′|s, ai, a−i). As before, s is perfectly observed by the agent and the

econometrician. Player i maximizes expected discounted utility using a discount factor β.

Let Wi(s, ǫi;σ) be player i’s value function given s and ǫi. The value function holds

fixed the strategies of the other agents σ−i. The value function then satisfies the following
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recursive relationship:

Wi(s, ǫi;σ−i) = max
ai∈Ai

{
Πi(ai, s) + ǫi(ai) (10)

+ β

∫ ∑

a−i

Wi(s
′, ǫ′i;σ−i)g(s

′|s, ai, a−i)σ−i(a−i|s)f(ǫ′i)dǫ
′
ids

′
}
.

At each state, agents choose an action ai ∈ Ai to maximize expected discounted utility.

The term Πi(ai, s) + ǫi(ai) is the current period return from choosing ai. The second term

captures i’s utility from future time periods. In our model, agents choose their actions

simultaneously. Therefore, agent i’s beliefs about the evolution of the state given his current

information will be
∑

a−i
g(s′|s, ai, a−i)σ−i(a−i|s). This integrates out agent i’s uncertain

about the actions of −i. The agent also needs to take into account expectations about next

periods preference shocks, ǫ′i, by integrating out their distribution using the density f(ǫ′i).

Definition 3 A Markov perfect equilibrium is a collection of policy functions, δi(s, ǫi) and

corresponding conditional choice probabilities σi(ai|s) such that for all i, all s and all ǫi,

δi(s, ǫi) maximizes the value function Wi(s, ǫi;σ−i)

Wi(s, ǫi;σ−i) = max
ai∈Ai

{
Πi(ai, s;σ−i) + ǫi(ai)

+ β

∫ ∑

a−i

Wi(s
′, ǫ′i;σ−i)g(s

′|s, ai, a−i)σ−i(a−i|s)f(ǫ′i)dǫ
′
ids

′
}
.

In a Markov perfect equilibrium, an agent’s strategy δi(s, ǫi) is restricted to be a function

of the state (s, ǫi). This solution concepts restricts equilibrium behavior by not allowing

for time dependent punishment strategies, such as trigger strategies or tit-for-tat which

do not depend on payoff relevant state variables. While the Markov perfect equilibrium

assumption restricts behavior considerably, it has the advantage that equilibrium behavior

can be expressed using familiar techniques from dynamic programming. Since the focus of

this paper is on nonparametric identification and estimation, existence of equilibrium will

be taken as given in the following analysis.
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3.4 Nonparametric identification

Next, we turn to the problem of identification of the model. The strategy for identifying

the model will be similar to the static model. We begin with some preliminaries by first

defining the choice specific value function and deriving some key equations that must hold

in our dynamic model.

The starting point of our analysis is to define the choice specific value function

Vi(ai, s) = Πi(ai, s) + β

∫ ∑

a−i

Wi(s
′, ǫ′i;σ)g(s′

∣∣s, ai, a−i)σ−i(a−i|s)f(ǫ′i)dǫ
′
ids

′. (11)

Similar to (1), the choice specific value function is the expected utility from choosing the

action ai, excluding the current period error term ǫi(ai). As in the static setting, the term

Πi(ai, s) integrates out player i’s expectations about the actions of the other players. In a

dynamic setting, however, we have to include the utility from future time periods. We do

this by integrating out the value function Wi(s
′, ǫ′i;σ) with respect to next periods private

information, ǫ′i, and state s′. In words, we can interpret the choice specific value function

as the returns, excluding ǫi(ai), from choosing ai today and then reverting to the solution

to the dynamic programming problem (10) in all future time periods. Next, we define the

ex ante value function, or social surplus function, as

Vi(s) =

∫
Wi(s, ǫi;σ)f(ǫi)dǫi (12)

The ex ante value function is the expected value of Wi tomorrow given that the state today

is s. In order to compute this expectation, we integrate over the distribution of s and ǫi

given that the current state is s.

Using equations (11) and (12), the ex ante and choice specific value functions are related

to each other through the following equation

Vi(ai, s) = Πi(ai, s) + βE
[
Vi(s

′)|s, ai
]
. (13)

Analogous to (2), in the dynamic model, if the state is equal to s, the ex ante value function

is related to the choice specific value function by:

Vi(s) = Eǫi max
ai

[Vi(ai, s) + ǫi(ai)] . (14)
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That is, the utility maximizing action maximizes the sum of the choice specific value function

plus the private information ǫi(ai). As in the static model, the equilibrium probabilities

and the choice specific value functions are relate through the following equation

σi(ai|s) =
exp(Vi(ai, s))∑
a′i

exp(Vi(a′i, s))
. (15)

3.5 Constructive Proof of Identification

As in the static model, we prove the identification of our model constructively. Our strategy

is to assume that the econometrician has knowledge of the population choice probabilities

σi(ai|s). We then show that it is possible to uniquely recover Πi(ai, a−i, s) after making

appropriate normalizations and checking a rank condition.

As in the static model, we begin by taking the log of both sides of (15). Straightforward

algebra implies that

log(σi(ai = k|s)) − log(σi(ai = 0|s)) = Vi(ai = k, s) − Vi(ai = 0, s) (16)

This equation demonstrates that it is possible to recover the choice specific value functions

up to a first difference, if we know the population choice probabilities.

Next, it follows from (14) and the properties of the extreme value distribution that:

Vi(s) = Eǫi max
ai

Vi(ai, s) + ǫi(ai) = log
K∑

k=0

exp(Vi(k, s))

= log

K∑

k=0

exp(Vi(k, s) − Vi(0, s)) + Vi(0, s).

(17)

We now combine (17) with equation (13) to yield:

Vi(0, s) = Πi(ai = 0, s) + βE [Vi(s
′)|s, ai = 0]

= Πi(ai = 0, s) + βE
[
log
(∑K

k=0 exp (Vi(k, s
′) − Vi(0, s

′))
)

+ Vi(0, s)|s, ai = 0
]

= Πi(ai = 0, s) + βE
[
log
(∑K

k=0 exp (Vi(k, s
′) − Vi(0, s

′))
)
|s, ai = 0

]

+βE [Vi(0, s
′)|s, ai = 0]

(18)
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Next, suppose that we are willing to make the “outside good” assumption as in equation

(5). Then equation (16) implies that:

Vi(0, s) = βE

[
log

(
K∑

k=0

exp (Vi(k, s
′) − Vi(0, s

′))

)
+ Vi(0, s)|s, ai = 0

]

= βE

[
log

(
K∑

k=0

exp ( log(σi(ai = k|s′) − log(σi(ai = 0|s′)))
)
|s, ai = 0

]

+ βE [Vi(0, s)|s, ai = 0]

Since the population probabilities σi(ai = k|s) are assumed to be known for the purposes

of our identification argument, the term

βE

[
log

K∑

k=0

exp
(
log(σi(ai = k|s′)) − log(σi(ai = 0|s′))

)
|s, ai = 0

]

can be treated as a known constant. Then, equation (18) is a functional equation involving

the unknown function Vi(0, s). Blackwell’s sufficient conditions imply that for fixed σi (ai|s),
(18) is a contraction mapping and therefore there is a unique solution for Vi(0, s). As a

result, we have shown that Vi(0, s) is identified. Moreover, Vi(k, s) is identified for all k by

substituting Vi(0, s) into (16) . Finally, we note that the ex ante value functions can be

identified by (17) given that we have identified the Vi(k, s).

Next, note that (13) implies that

Πi(ai = k, s) = Vi(ai = k, s) − βE
[
Vi(s

′)|s, ai = k
]
. (19)

Our identification arguments imply that both terms on the right hand side of (19) are known.

This implies that Πi(ai = k, s) is identified. The rest of identification proof can then follow

exactly as in equations (6)-(8). We simply need to construction the Πi(ai, a−i, si) from the

static choice specific value functions Πi(ai, s) by imposing exclusion restrictions.

Theorem 2 Suppose that Assumptions 1-2 hold. Also suppose that for each si , there exist

(K+1)n−1 points in the support of the conditional distribution of s−i given si. Assume that

the (K + 1)n−1 equations defined by (8) are linearly independent. Then the latent utilities

Πi(ai, a−i, si) are identified.
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4 Identification-based estimation procedures

In this section, we describe a set of nonparametric and semiparametric estimators for our

dynamic game of incomplete information. We begin with the analysis of the two-step es-

timator, which generalizes the two-step estimation procedures that have been used in the

literature for estimating the player payoffs in discrete dynamic games. The two-step esti-

mator is constructed by using the empirical analogue of our identification strategy. The

translation from identification arguments to the nonparametric estimator essentially only

requires replacing the appropriate conditional expectations with analog sample projections.

While there are many possible local and global nonparametric smoothing techniques to esti-

mate conditional expectations, for the clarity of presentation we describe the nonparametric

procedure using series expansions as in most of the recent literature (e.g. Newey (1994) and

Chen, Linton, and Van Keilegom (2003)).

4.1 A two-step estimator

In the rest of paper we will maintain the assumption that one has access to a data set from

a collection of independent markets m = 1, . . . ,M with at least two periods of observations

each. Players i = 1, ..., n are observed to play the game in each of these markets. There

are t = 1, ..., T (m) plays of the game in market m. We use ai,m,t to denote agent i’s

actions in market m at time period t and si,m,t the state variable. The set up of our

estimator can be changed to allow for different data structures, such as different players in

different markets or varying numbers of players across markets. However, this would come

at the cost of greater notational complexity. Our goal will be to estimate Πi(ai, a−i, s),

the nonparametric mean utility parameters at a single point s. While the nonparametric

procedure we propose is extremely flexible, it suffers from the standard problem of the

curse of dimensionality. However, this method is very useful to exposit how estimation

can be constructed analogously to our nonparametric identification arguments. We shall

propose a somewhat more practical semiparametric estimator in the next subsection. For

expositional reasons, it is useful to exposit the nonparametric case first so that the principals

of the semiparametric estimator will be clearer to the reader. The nonparametric estimator

is implemented in four steps.

13



Step 1: Estimate V̂i(k, s) − V̂i(0, s) using (16) Suppose that we “flexibly” construct

an estimator σ̂i(ai|s) of the equilibrium choice probabilities σi(ai|s). Then equation (16)

shows that we can estimate Vi(k, s) − Vi(0, s) as

V̂i(k, s) − V̂i(0, s) = log(σ̂i(k|s)) − log(σ̂i(0|s)).

One method for estimating the choice probabilities flexibly is by using a “sieve logit”.

Let ql (s) for l = 1, 2, ... denote a sequence of known basis functions that can approximate

any square-integrable function of the state variable s arbitrarily well. It is well known

in series estimation that the number of basis terms must go to infinity at a rate that is

appropriately slower than the sample size, otherwise the estimator will be inconsistent.

How to choose the number of basis terms depends on the data configuration. If the number

of observations T (m) increases to infinity at least as fast as the number of total markets

M , then the number of basis terms can be a function k of the number of obervations

T (m) in market m. In this case the model can be estimated market by market to allow

for substantial unobserved heterogeneity across markets. On the other hand, if T (m) is

bounded from above, then the number of basis terms should depend on the total number

of markets M .

To simplify notation in the following we shall focus on the case when T (m) is finite and

denote the number of basis terms as k(M). Our asymptotic theory section shall derive how

k depends on the sample size. We will denote the column vector of k(M) basis terms by

qk(M) (s) =
(
q1 (s) , ..., qk(M) (s)

)′
.

The sieve logit estimator is simply the standard multinomial logit where the independent

variables are qk(M) (s) . We will estimate the choice probabilities σ̂i(k|s) separately for each

agent. Obviously, pooling observations across agents is possible if we are willing to assume

that agents will play the same strategies if they have the same state variables. We opt for

a specification in which strategies vary across agents since this approach is more general.

We will let γi,k denote the parameters for agent i for a particular choice k = 0, 1, ...,K

and γi = (γi,0, γi,1, ..., γi,K) a vector which collects all the γi,k.We let γ
k(M)
i,k denote the first

k (M) parameters corresponding to the basis vector qk(M) (s)′ . We estimate our model

14



parameters as

γ̂i = argmaxγi

M∑

m=1

K∑

k=0

T (m)∑

t=1

1(ai,m,t = k) log
exp(qk(M) (si,m,t)

′
γ
k(M)
i,k )

∑K
k′=0 exp(qk(M) (si,m,t)

′ γ
k(M)
i,k′ )

.

Our estimate of σ̂i(k|s) and V̂i(k, s) − V̂i(0, s) are then

σ̂i(k|s) =
exp(qk(M) (si,m,t)

′
γ̂
k(M)
i,k )

∑K
k′=0 exp(qk(M) (si,m,t)

′ γ̂
k(M)
i,k′ )

,

V̂i(k, s) − V̂i(0, s) = log (σ̂i(k|s)) − log (σ̂i(0|s)) .

We also need to construct an estimate of g(s′|s, ai, a−i). The details of estimating

g(s′|s, ai, a−i) will vary with the application. In many problems, the law of motion for

the state variable is deterministic and therefore does not need to be directly estimated.

Another common case is when g(s′|s, ai, a−i) is defined by a density. Let g(s′|s, ai, a−i, α)

be a flexible parametric density with parameter α. In this case, one could use maximum

likelihood or other appropriate methods to form an estimate α̂ of α. Making a parametric

distributional assumption about g is used here only for expositional convenience. One can

also nonparametrically estimate g, in which case we only need to make a slight modification

to the estimator.

Step 2: Estimate the choice specific value function for k=0, V̂i(0, s). Step 1 only

identifies the choice specific value functions up to a first difference. As in our identification

arguments, we next construct an estimate of V̂i(0, s) by iterating on the empirical analogue

of equation (18). In order to do this, we first need to construct an estimate the density

of next periods state s′ given that the current periods state is s and the action chosen by

player i is ai = 0. We will denote this density as ĝ(s′|s, ai = 0). Using the results from step

1, we can construct this density as:

ĝ(s′|s, ai = 0) =
∑

a−i

g(s′|s, ai = 0, a−i, α̂)σ̂−i(k|s)
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The empirical analogue of (18) is then

V̂i(0, s) = β

∫

ds′
log

(
K∑

k=0

exp(V̂i(k, s
′) − V̂i(0, s

′))

)
ĝ(s′|s, ai = 0) + β

∫

ds′
V̂i(0, s)ĝ(s

′|s, ai = 0).

The term β
∫

log
(∑K

k=0 exp(V̂i(k, s
′) − V̂i(0, s

′))
)
ĝ(s′|s, ai = 0)ds′ is known from the previous

step. In practice, we imagine computing this intergral using standard methods for numerical

integration. Given that we know this term, the above equation can be viewed as a functional

equation in V̂i(0, s). Define the operation T by:

T ◦ V̂i(0, s) = β

∫

ds′
log

(
K∑

k=0

exp(V̂i(k, s
′) − V̂i(0, s

′))

)
ĝ(s′|s, ai = 0) + β

∫

ds′
V̂i(0, s)ĝ(s

′|s, ai = 0)

(20)

As in our identification section, it is easy to verify that (20) satisfies Blackwell’s sufficient

conditions for a contraction and therefore has a unique fixed point. There is a large

literature on solving functional equations defined by contraction mappings and in applied

work we imagine using standard numerical methods to solve for V̂i(0, s).

An alternative method based on series expansion can also be used to estimate Vi (0, s)

without the need of explicitly estimating ĝ (s′|s, ai = 0) nonparametrically and calculating

the fixed point to the above contraction mapping. Consider a linear series approximation

of the value function Vi (0, s): Vi (0, s) = qk(M)(s)′ θ
k(M)
i . By the law of iterated expectation

we can write

E

{
1 (ai = 0) qk(M)(s)qk(M)(s)′ θ

k(M)
i

}
=βE

{
1 (ai = 0) qk(M)(s) log

(
K∑

k=0

exp(V̂i(k, s
′) − V̂i(0, s

′))

)}

+ βE

{
1 (ai = 0) qk(M)(s)qk(M)(s′)′ θ

k(M)
i

}
.

Therefore θ̂
k(M)
i can be estimated by an empirical analog: θ̂

k(M)
i =

(
X̂ − βẐ

)−1
Ŷ , where

X̂ =
M∑

m=1

T∑

t=1

1 (ai,m,t = 0) qk(M)(sm,t)q
k(M)(sm,t)

′,

Ẑ =

M∑

m=1

T−1∑

t=1

1 (ai,m,t = 0) qk(M)(sm,t)q
k(M)(sm,t+1)

′.

and

Ŷ =

M∑

m=1

T−1∑

t=1

1 (ai,m,t = 0) qk(M)(sm,t) log

(
K∑

k=0

exp(V̂i(k, sm,t+1) − V̂i(0, sm,t+1))

)
.
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The baseline choice specific value function is then estimated by the “fitted value” from the

“linear regression”: V̂i (0, s) = qk(M)(s)θ̂
k(M)
i .

Step 3: Estimate the static choice specific payoff function Π̂i(k, s) We evaluate

the empirical analogue of (19) to estimate the static choice specific payoff function which

we denote as Π̂i(k, s). From the previous step, we have constructed an estimate of V̂i(0, s)

and from step 1 we have constructed an estimate of V̂i(k, s) − V̂i(0, s). Putting these two

steps together implies that we have an estimate of V̂i(k, s) for all i, k, s.

The empirical analogue of equation (19) is then

Π̂i(ai = k, s) = V̂i(ai = k, s) − β

∫
V̂i(s

′)ĝ(s′|s, ai = k)ds′. (21)

As a practical matter, in order to evaluate the above expression, it is useful to use the

empirical analogue of equation (17), that is,

V̂i(s) = log

K∑

k=0

exp(V̂i(k, s))) (22)

Substituting (22) into (21) yields:

Π̂i(ai = k, s) = V̂i(ai = k, s) − β

∫ (
log

K∑

k=0

exp(V̂i(k, s)))

)
ĝ(s′|s, ai = k)ds′. (23)

As in the previous steps, Π̂i(ai = k, s) can be evaluated using standard methods from

numerical integration.

Step 4: Estimate the nonparametric mean utilities Π̂i(ai, a−i, si). The final step of

our analysis is to perform the empirical analogue of inverting the linear system (8). Recall

that in order to identify the system we needed to make an exclusion restriction. That is,

the state has to be partitioned as s = (si, s−i) and the variables s−i are assumed not to

enter into i’s mean utilities. This allows us to write i’s utility as Πi(ai, a−i, si).

One approach to inverting this system will be to run a local linear regression (see Fan and

Gijbels (1992)). Local linear regression is essentially a weighted least squares regressions

where the weights are defined using a kernel distance between the observations. Formally,
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our estimator for Πi(ai, a−i, si) is defined as the solution to the following minimization

problem:

Π̂i(ai, a−i, si) = arg min
Πi(ai,a−i,si)

M∑

m=1

T (m)∑

t=1

(Π̂i(ai, sm,t) −
∑

a−i

σ̂−i(a−i|sm,t)Πi(ai, a−i, si))
2w(m, t),

w(m, t) = K(
simt − si

h
).

(24)

In the above, smt is the state variable in market m at time t, and simt is the component

of smt that enters i’s mean utilities. The term K(simt−si

h ) is the distance, as measured by

the kernel function K, between simt and si. Our weighting scheme overweighs observations

near si and underweighs observations that are farther away. The term h is the bandwidth.

The minimization problem (24) can be interpreted as a regression in which the static choice

specific value function, Π̂i(ai, sm,t), is the dependent variable and σ̂−i(a−i|sm,t) are the

regressors. The regression coefficients are Πi(ai, a−i, si), the structural mean utility pa-

rameters. The exclusion restrictions guarantee that standard the rank condition from the

theory of regression is satisfied.

Choosing the bandwidth involves a variance-bias trade off. A smaller h reduces the

bias by increasing the weight on nearby observations, but increases the variance of our

estimator. In practice, cross validation, rules of thumb or simply “eyeballing” the bandwidth

are commonly used in applied work. The theory of local linear regression establishes that

if we shrink the bandwidth h at an appropriate rate, we will have a consistent estimate of

Πi(ai, a−i, si).

4.2 Semiparametric payoff function

While the nonparametric estimator in the previous section is very flexible, it is not very

practical for samples of small and intermediate sizes. Without a sufficiently large sam-

ple, nonparametric estimators suffer from a curse of dimensionality and may be poorly

estimated. Also, the final estimates may be quite sensitive to ad hoc assumptions about

the bandwidth or choice of the kernel. Therefore, it is desirable to have a semiparamet-

ric approach to the problem. We will specify Πi(a, si, θ) to depend on a finite number of

parameters. Parametric specifications are almost universal in the empirical literature. Fre-

quently, applied researchers will assume that utility is linear in the strucutral parameters.
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In what follows, we shall assume that the mean utilities take the form

Πi(a, si) = Φi(a, si)
′θi,a. (25)

Here, Φi(a, si) is a known vector valued function and θ is used to weight the elements of

the basis function.

In our semiparametric model, steps 1-3 of the nonparametric section are left unchanged.

In step one, we estimate the choice probabilities σ̂i(k|s) flexibly using a sieve multinomial

logit. We then apply the Hotz-Miller inversion to learn V̂i(k, s) − V̂i(0, s). Steps 2 and

3 allow us to estimate Π̂i(ai, smt), the static choice specific value function given that the

action is ai and the state is smt. Note that all of these steps are nonparametric and do not

impose ad hoc functional form restrictions.

In our semiparametric estimator, we simply modify (24) in step 4 to include the para-

metric restrictions in (25).

θ̂i,a = arg min
Πi(ai,a−i,si)

M∑

m=1

T (m)∑

t=1

(Π̂i(ai, sm,t) −
∑

a−i

σ̂−i(a−i|sm,t)Φi(a, si)
′θi,a)

2

An advantage of the semiparametric estimator is that it can be shown that θ̂ converges to

the true parameter value at a rate proportional to the square root of the sample size and has

a normal asymptotic distribution. This is a common result in semiparametric estimation.

Even though the nonparametric part of our model, σ̂−i(a−i|sm,t) and Π̂i(ai, sm,t), the payoff

parameters θ converge at the slower rates.

4.3 Limit distribution of the semiparametric estimator

Given the ease of the estimation procedure discussed in the previous sections, we suggest

that the most practical method of inference is bootstrapping. However, understanding

the derivation of the asymptotic distribution is still important for ensuring the theoretical

validity of resampling method such as bootstrap or subsampling. This section gives high

level conditions and describes the form of the asymptotic variance using a powerful set of

results developed in Newey (1994).

We will not study functional dependence among different θi,a components of the param-

eter vector θ. To simplify notation in the following we will use θ to denote a particular
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component θi,a of equation (25) in section 4.2, where ai = k. In particular, θ (short-handed

for θi,a where ai = k) is identified by the relation σi (k|s) Πi (k, s) = E
[
dkiΦ (a, si) |s

]′
θ,

where

Πi (k, s) = Vi (k, s) + βE
[
log σi

(
0|s′
)
|s, ai = k

]
− βE

[
Vi
(
0, s′

)
|s, ai = k

]
.

This suggests that a class of instrument variable estimators for θ, which includes the least

square estimator in section 4.2 as a special case, takes the form of an empirical analog of

EdkiA (s)Φ (a, si)
′ θ = EdkiA (s)Vi (k, s) + βEdkiA (s) log σi

(
0|s′
)
− βEdkiA (s)Vi

(
0, s′

)
.

Then we can write θ̂ = X̂−1Ŷ , where (
∑

τ is used to denote
∑T−1

t=1

∑M
m=1),

X̂ =
∑

τ

dkiτA (sτ )Φ (aτ , siτ ) /M (T − 1) ,

and

Ŷ =
1

M (T − 1)

∑

τ

dkiτA (sτ )

[
log

σ̂i (k|sτ )
σ̂i (0|sτ )

+ β log σ̂i (0|sm,t+1) + V̂i (0, sτ ) − βV̂i (0, sm,t+1)

]
.

The instrument matrix itself can be estimated nonparametrically as Â (s). The least square

estimator in section 4.2 effectively uses Ê [φ (a, si) |s, ai = k] as the instrument matrix Â (s).

It is well known, however, that estimation of the instruments has no effect on the asymptotic

distribution under suitable regularity conditions. Therefore with no loss of generality we

treat the instruments A (s) as known in deriving the form of the asymptotic distribution.

Furthermore, by a standard law of large number X̂ can be replaced by its population limit

X = EdkiτA (sτ )Φ (aτ , siτ ) .

Therefore the asymptotic distribution of θ̂ will solely be determined by the convergence of
√
M (T − 1)

(
Ŷ − Y

)
, where

Y =
1

M (T − 1)

∑

τ

dkiτA (sτ )

[
log

σi (k|sτ )
σi (0|sτ )

+ β log σi (0|sm,t+1) + Vi (0, sτ ) − βVi (0, sm,t+1)

]
.

This asymptotic distribution is given in the following theorem.
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Theorem 3 Under suitable regularity conditions,

√
M (T − 1)

(
Ŷ − Y

)
=

1√
M (T − 1)

∑

τ

4∑

j=1

φj (aiτ , sτ ) + op (1) .

where

φ1 (aiτ , sτ ) = A (sτ )
(
dkiτ − σi (k|sτ )

)
− σi(k|sτ)

σi(0|sτ )A (sτ )
(
d0
iτ − σi (0|sτ )

)
,

φ2 (aiτ , sτ ) = E
[
dki(m,t−1)A (sm,t−1) |sτ

]
1

σi(0|sτ )

(
d0
i − σi (0|sτ )

)
,

φ3 (aiτ , sτ ) = βδ (sτ )

[
−
(
d0
iτ log σi (0|sm,t+1) − E

(
d0
iτ log σi (0|sm,t+1) |sm,t

))

+
(
d0
iτVi (0, sm,t+1) − E

(
d0
iτVi (0, sm,t+1) |sm,t

))
− 1

βVi (0|sm,t)
(
d0
it − σi (0|sm,t)

)

+
d0iτd

0
i,m,t+1

σi(0|sm,t+1)
− E

(
d0iτ d

0
i,m,t+1

σi(0|sm,t+1)
|sm,t

)
+ d0

iτ − σi (0|sτ )
]

In the above, δ (sτ ) is defined as the solution to the following functional relation:

δ (st) σi (0|st) − βE
(
δ (st−1) d

0
i,t−1|st

)
= σi (k|st)A (st) .

φ4 (aiτ , sτ ) is defined similarly to φ3 (aiτ , sτ ), with βδ (sτ ) replaced by −β2δ̄ (sτ ), where

δ̄ (sτ ) is now defined as the solution to the functional relation of

δ (st)σi (0|st) − βE
(
δ (st−1) d

0
i,t−1|st

)
= E

(
dki,t−1A (st−1) |st

)
.

An immediate consequence of theorem 3 is the asymptotic normality of the semipara-

metric estimator θ̂ under suitable regularity conditions

√
M (T − 1)

(
θ̂ − θ

)
d−→ N


0,X−1V ar




4∑

j=1

φj (aiτ , sτ )


X−1


 .

A few remarks are in order. First, because the second stage moment equations are ex-

act identities when evaluated at the true parameter values, if the first stage nonparametric

functions are exactly known and do not need to be estimated, the second stage parameters

will have zero asymptotic variance. In other words, all the variations in the asymptotic

variance are generated from the first stage nonparametric estimation of the conditional

choice probabilities and the transition probabilities. Secondly, as shown in Newey (1994),

21



the form of the asymptotic variance given in theorem 3 is obtained from a pathwise deriva-

tive calculation and does not depend on the exact form of the nonparametric methods that

are being used to estimated, as long as suitable regularity conditions are met. Therefore,

Theorem 3 is stated without regard to the particular nonparametric method and its reg-

ularity conditions used in the first stage analysis. Both of these will be discussed in the

following two sections. While resampling method is a clear preferable method of inference,

it is in principle possible to estimate nonparametrically each component of the asymptotic

variance in theorem 3. Alternatively, Ackerberg, Chen, and Hahn (2009) proposes a recent

approach that can also be used to estimate the asymptotic variance consistently.

4.4 Unobserved heterogeneity

Unobserved heterogeneity is an important concern for dynamic discrete choice models. A

recent insight from this literature is that it is sufficient to estimate a reduced form model of

conditional choice probabilities and transition probabilities that account for the presence of

the unobserved heterogeneity. A variety of such methods are available in the recent litera-

ture, some allowing for a fixed number of support points in the distribution of unobserved

state variables while others allowing for a continuous of unobserved state variables. For

each of the discrete and continuous support cases of the unobserved state variables, some

methods limited to only non time varying unobserved state variables while other methods

might allow for serially correlated unobserved state variables.

In the following, we will take as given the ability of estimate a first stage model of

conditional choice probabilities and conditional transition probabilities that incorporate

the presence of general (discrete and continuous, time invariant and serially correlated)

state variables. Therefore, we will assume that it is possible to use one of the methods

available in the existing literature to estimate a reduced form model of σ̂i (k|s) ,∀i, k and

ĝ (s′|s, a), where now s′ and s include both observed and unobserved state variables that

can be either discrete or continuous, either time-invariant or serially correlated.

We now note that the entire nonparametric identification process in section 3.4 and the

entire estimation procedure, both nonparametric and semiparametric, described in section

4, depend only on the first stage σ̂i (k|s) ,∀i, k and ĝ (s′|s, ai). Therefore, as long as the
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state transition process is assumed to be common across individuals, we can follow exactly

the same procedures outlined in sections 3.4 and 4 to estimate the primitive mean utility

functions Πi (a, si) and Φi (a, si)
′ θ. Perhaps the best way to understand this argument

is through simulations. Given knowledge of σ̂i (k|s) ,∀i, k and ĝ (s′|s, ai), a research can

generate a data set with as many markets and as many time periods as desired, and apply

the estimation procedures described in the previous subsections of section 4 to the simulated

data set.

5 Semiparametric efficient estimation

In the previous section we described a multi-stage semiparametric procedure which allows

us to estimate the finite-dimensional parameters of the profit function. This procedure is

very intuitive because it follows directly from the identification argument. The asymptotic

distribution of this estimator also has an explicit analytic structure. However, this approach

inherits the disadvantages of many multi-stage estimation techniques. First of all, the

standard errors are hard to compute because of propagation of errors from the previous steps

of the procedure which will depend on the degree of smoothness of the unknown functions of

the model. Second, this multistage estimation procedure is not semiparametrically efficient.

it is well known that it is difficult to design multistage estimation procedures that can achieve

semiparametric efficiency bounds, because at each subsequent step has to compensate the

estimation errors that will arise from previous estimation errors.

In this section we will propose an efficient one step estimation procedure using the

framework of conditional moment models. It has the advantage that given the choice of

instrument functions and the weighting matrix, practical inference can be performed using

standard parametric methods as if a finite dimensional linear parametric model of Vi (k, s)

and Π (a, si)
′ θ is estimated, as long as the estimation noise in the estimation of σi (k|s) is

appropriately accounted for.

By formulating the model in a conditional moment framework and making use of the sta-

tionary controlled Markov process structure, we can avoid direct estimation of the transition

density of the state variable. This simplifies the derivation of the semiparametric efficiency

bound of the model and the statement of the regularity conditions for the semiparametric

23



efficient estimator.

The conditional moment formulation is derived from the Bellman equations for individ-

ual players. Recall the Bellman equations of interest:

Vi (k, s) = Πi (k, s; γ) + β

∫ ∑

a−i∈A−i

σ−i (a−i|s) log

[
K∑

l=0

exp (Vi (l, s
′))

]
g (s′|s, ai = k, a−i) ds

′,

where

σi (ai = k|s) =
exp (Vi (k, s))
K∑
l=0

exp (Vi (l, s))

,

for i = 1, . . . , n and k = 0, . . . ,K. Denote di,l the dummy for choice l by player i. We can

use the second equation to substitute it into the first one, which leads to n×K conditional

moment equations for each (T − 1) ×M observations:

E

[
dai,k
m,t (Vi (0, sm,t) − βVi (0, sm,t+1) + β log σi (0|sm,t+1))

−dai,k
m,t

(
1 − dai,0

m,t

)
[Πi (ai, a−i, sm,t; γ) + log σi (0|sm,t) − log σi (ai|sm,t)]

∣∣∣∣ sm,t
]

= 0.
(26)

Together with the following n×K moment conditions for each T ×M observations,

E
(
dai,k
m,t |sm,t

)
= σi (k|sm,t) , (27)

(26) and (27) form a system of conditional moment restrictions that fully characterize the

implications from the structural dynamic discrete choice model. This system of conditional

moment restrictions can be used to obtain asymptotically normal semiparametric estimators

that can achieve the semiparametric efficiency bound by adapting the recipe prescribed in

Ai and Chen (2003). In their notation of E [ρ (wm,t, γ, V (·) , σ (·)) |sm,t] = 0, where wm,t are

all the random variables the model, γ are the finite dimensional parameters, V (·) and σ (·)
are the infinite dimensional unknown parameters, we can write, for h (·) = (V (·) , σ (·)):

ρ (wm,t, γ, h (·)) =
(
ρ1 (wm,t, γ, V (·) , σ (·))′ , ρ2 (wm,t, γ, V (·) , σ (·))′

)′
,

where ρ1 is the T ×m× n×K dimensional collection of dai,k
m,t − σi (k|sm,t), and

ρ2 (wm,t, γ, V (·) , σ (·)) = dai,k
m,t (Vi (0, sm,t) − βVi (0, sm,t+1) + β log σi (0|sm,t+1))

−dai,k
m,t

(
1 − dai,0

m,t

)
[Πi (ai, a−i, sm,t; γ) + log σi (0|sm,t) − log σi (ai|sm,t)] .
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The conditional moment restrictions in (26) and (27) can be transformed into unconditional

moments by forming an instrument matrix zm,t using the state variables sm,t, its lags sm,t−τ

and polynomial powers sm,t and its lags, such that the number of instruments in zm,t

increases at appropriate rates as the sample size increases to infinity. Equations (26) and

(27) implies the following moment vectors with elements

E

[
dai,p
m,t zm,t

(
Vi (0, sm,t) − βV (0, sm,t+1) + log

σi(ai|sm,t)
σi(0|sm,t)

− β log
σi(ai|sm,t+1)
σi(0|sm,t+1)

−
(
1 − dai,0

m,t

)
[Πi (ai, a−i, sm,t; γ) − β log σi (ai|sm,t+1)]

+dai,0
t β log σi (0|sm,t+1)

)]
= 0,

and Ezm,t
(
dai,p
m,t − σi (p|sm,t)

)
= 0. To estimate γ we can follow two steps.

Step 1

We approximate the conditional choice probabilities using orthogonal series:

σi (ai = p | s) = qk1(MT )′ (s) b1i,p + ∆k1(MT ),

and approximate the value function similarly

Vi (0, s) = qk2(MT )′ (s) b2i + ∆k2(MT ),

where ∆k1(M) and ∆k2(M) are numerical approximation errors that decrease to zero as

k1 (M) and k2 (M) increase to infinity with M at appropriate rates.

Step 2

Next we form an instrument zm,t by stacking an orthogonal series of functions of the state

variables sm,t,
(
q0 (sm,t) , . . . , qk3(MT ) (sm,t)

)
. This produces an over-identified empirical

moment vector with the elements, for b =
(
bi,p1 , bi2,∀i, p

)
,

ϕ̂ (γ, b) =
∑

m,t

ϕm,t (γ, b) where ϕm,t (γ, b) = ρ (wm,t, γ, b) ⊗ zm,t.

Then we introduce a weighting matrix W with both row and column dimensions dim (zm,t)×
dim (ρ). In the simplest case we can use the identity matrix in lieu of W. Using a

given weighting matrix we form a GMM objective and minimize it with respect to pa-

rameters of interest γ as well as the parameters of the expansion of the value function
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min
γ, b

ϕ̂ (γ, b)′ W ϕ̂ (γ, b) . In particular, if we let Z ≡ (zm,t,∀,m, t)′ denote the data matrix

for the instruments, the following choice of the weighting matrix

W = I ⊗
(
Z ′Z

)−1

(
∑

m,t

Ω−1
m,t ⊗ zm,tz

′
m,t

)
I ⊗

(
Z ′Z

)−1
.

yields the semiparametric minimum distance estimators of Ai and Chen (2003). In the above

Ωm,t is a candidate estimate of the conditional variance covariance matrix of ρ (wm,t, γ, h (·))
given sm,t. When Ωm,t ≡ I an identity matrix, the estimator becomes a nonlinear two stage

least square estimator. When Ωm,t = Ω is homoscedastic across observations, this becomes

a nonlinear three stage least square estimators. Semiparametric efficiency bound is achieved

when Ωm,t is a consistent estimate of V ar (ρ (wm,t, γ, h (·)) |sm,t), in which case it becomes

a heteroscedasticity weighted nonlinear three stage least square estimator. When ρ (·) is

a scalar, the semiparametric efficient minimum distance estimator is a weighted nonlinear

two stage least square estimator.

Remark 1:

By appropriate choices of the instrument functions and the weighting matrix, the conditional

moment framework also incorporates the multistage procedure in the previous section as

special cases. If the same orthogonal series is used in approximating Vi (0, sm,t), σi (p|sm,t)
and in obtaining the instruments, and if k1 (MT ) = k2 (MT ) = k3 (MT ), the instrumented

moment conditions (27) are exactly identifying, and σi (p|s) are computed from least square

regressions:

σ̂i (ai = p | s) = qk(M)′ (s)

(
∑

m,t

qk(M) (sm,t) q
k(M)′ (sm,t)

)−1∑

m,t

qk(M) (sm,t) d
ai,p
t .

Given the estimate of σ̂i (ai = p | s), the component of the instrumented moment condi-

tion ρ1 (wm,t, ·) that corresponds to k = 0 is also exactly identifying and depends only on

Vi (0, s). Hence Vi (0, s) can be estimated by a single equation two stage least square re-

gression with dependent variables β log σ̂i (0|sm,t+1), independent variables qk(M) (sm,t) −
βqk(M) (sm,t+1) and instrument matrix qkMT (sm,t). Subsequently, given estimates of V̂i (0, s)

and σ̂i (ai = p | s), the parameters

γpi =
(
γpi,a−i

,∀a−i
)
,
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for i = 1, . . . , n, p = 1, . . . ,K in a linear profit function specification Πi (p, a−i; γ) =

Φi (p, a−i)
′ γpi , can be estimated by single equation linear two stage least square regression

methods when Ω (xi) ≡ I, with dependent variables

Yi,p,m,t = V̂i (0, sm,t) − βV̂ (0, sm,t+1) + log
σ̂i (ai|sm,t)
σ̂i (0|sm,t)

− β log
1

σ̂i (0|sm,t+1)

and the vector of independent variables Xt with elements

Xi,p,m,t = −
(
1 − dai,0

m,t

)
Φi (p, a−i) ,

and instrument matrix Z = (zm,t,∀m, t)′. Efficiency can be improved by weighted 2SLS or

weighted 3SLS by choosing Ω̂ (xi) appropriately.

Remark 2:

The semiparametric efficient minimum distance estimator of Ai and Chen (2003) can be

interpreted both in light of weighted nonlinear three stage least square estimator and the

efficient instrument method of Newey (1990) for finite dimensional parameters. The semi-

parametric minimum distance objective function can be equivalently rewritten as

∑

m,t

ρ̂ (sm,t, b, γ)
′ Ω̂−1

m,tρ̂ (sm,t, b, γ) ,

where ρ̂ (sm,t, b, γ) is an estimate of Ê (ρ (wm,t, b, γ) |sm,t),

ρ̂ (s, b, γ) = z
(
Z ′Z

)−1
∑

m,t

zm,tρ (wm,t, b, γ)
′ .

Its first order condition resembles the efficient instrument estimator of Newey (1990):

∑

m,t

∂

∂ (b, γ)
ρ̂ (sm,t, b, γ)

′ Ω̂−1
m,tρ̂ (sm,t, b, γ) .

The efficient instrument estimator of Newey (1990) only differs in using ρ (sm,t, b, γ) in place

of the second ρ̂ (sm,t, b, γ) in light of the law of iterated expectation, and instead uses the

first order condition of

∑

m,t

∂

∂ (b, γ)
ρ̂ (sm,t, b, γ)

′ Ω̂−1
m,tρ (sm,t, b, γ) .
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The following theorem adapts the semiparametric efficiency bound in Ai and Chen (2003)

to our model. In our model the unknown function V (·) enters non-linearly as a function of

the state variable in the period t and in the period t+ 1.

Using the results from Ai and Chen (2003) we can provide the semiparametric efficiency

bound for estimating the parameter γ of the payoff function. Denote

Σ0 (sm,t) = Var (ρ (wm,t, γ0, h0 (·)) |sm,t) .

The semiparametric efficiency bound expressed in theorem 4 will depend on the functional

derivatives of the moment conditions ρ1 in (26) and ρ2 in (27) on the unknown functions

hi1 (·) = Vi (0, ·) and hi,k2 (·) = σi (k|·). The functional derivative of the conditional mo-

ment functions with respect to these unknown functions can be expressed using the linear

expectation operator

Pk
i ◦ f = E

[
f (sm,t+1) | sm,t = s, aim,t = k

]
,

where expectation is defined for the conditional density

∑

a−i

g (sm,t+1|sm,t = s, ai = k, a−i) σ−i (a−i|sm,t = s) .

The operator Pk
i ◦f is assumed to have a discrete spectrum with eigenfunctions

{
Θi,k
j (s)

}∞

j=0

and eigenvalues
{
λi,kj

}∞

j=0
different from zero. Then we can find that

dE
[
ρi,k1 (wm,t, γ0, h0 (·)) |sm,t

]

dhi1
[ψ] = σi (k|s)

∞∑

j=0

ψj

(
1 − βλi,kj

)
Θi,k
j (s) ,

for all sequences of real numbers ψ which belong to H =

{
ψ
∣∣ ∞∑
j=0

|ψj|
∥∥∥Θi,k

j (s)
∥∥∥ <∞

}
,

Furthermore, we also calculate that

dE
[
ρi,k1 (wm,t, γ0, h0 (·)) |sm,t

]

dhi,02

[ψ] = βE

[
dai,k
m,t

1

σi(0|sm,t+1)
hi,02 (sm,t+1) |sm,t

]
.
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and for k 6= 0 the linear derivative of,

dE
[
ρi,k1 (wm,t, γ0, h0 (·)) |sm,t

]

dhi,k2

[ψ] = hi,k2 (sm,t) .

Finally, for all k,

dE
[
ρi,k2 (wm,t, γ0, h0 (·)) |sm,t

]

dhi,k2

[ψ] = −hi,k2 (sm,t) .

The functional derivatives in the direction of the unknown functions
dE[ρ(wm,t,γ0,h0(·))|sm,t]

d h [ψ]

are formed by stacking the above individual components together.

Then for each component of γ solve the minimization problem

min
ψ(j,0)∈H

E

{(
dE[ρ(wm,t,γ0,h0(·))|sm,t]

d γj
− dE[ρ(wm,t,γ0,h0(·))|sm,t]

d h

[
ψ(j,0)

])
Σ0 (sm,t)

−1

×
(
dE[ρ(wm,t,γ0,h0(·))|sm,t]

d γj
− dE[ρ(wm,t,γ0,h0(·))|sm,t]

d h

[
ψ(j,0)

])}
.

Form the vector

Dψ(0) (sm,t) =
dE [ρ (wm,t, γ0, h0 (·)) |sm,t]

d γ′
− dE [ρ (wm,t, γ0, h0 (·)) |sm,t]

dh

[
ψ(0)

]
.

The following theorem follow directly from the result provided in Ai and Chen (2003):

Theorem 4 The semiparametric efficiency bound for estimation of γ in equation (26) can

be found as

V (γ) = E
[
Dψ(0) (sm,t)

′ Σ0 (sm,t)
−1Dψ(0) (sm,t)

]−1
.

5.1 Asymptotic distribution for semiparametric estimator

We impose the following regularity assumptions on the functions in the model to assure that

the two-stage conditional moment-based estimation method delivers consistent estimates for

the Euclidean parameter in the per period payoff function as well as the non-parametric

estimate of the continuation value of players.

Assumption 3
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1. Parameter space Γ is a convex compact set. Profit function Πi (ai, a−i, s; γ) is continuous

in γ for each (ai, a−i) ∈ A. Moreover, for each γ ∈ Γ profit function is bounded:

sup
a∈A, s∈S

|Πi (ai, a−i, s; γ)| <∞.

2. The data
{
{a1t, . . . , ant, st, st+1}T−1

t=1

}M
m=1

are i.i.d. generated by the stationary distribu-

tion determined by Markov transition kernel for the state variable.

3. The approximating series expansion {qk(m)} forms a basis in Ck(m) (S), such that the

eigenvalues of E
[
qk(m) (st+1) q

k(m)′ (st+1) |st = s
]
are bounded away from zero for all s ∈ S.

The operator

Pi ◦ f = E [f (sm,t+1) | sm,t = s, ai] ,

where expectation is defined for the conditional density

∑

a−i

g (sm,t+1|sm,t = s, ai = k, a−i) σ−i (a−i|sm,t = s) ,

which has a discrete spectrum with eigenfunctions
{

Θi,k
j (s)

}∞

j=0
such that for each j we can

find j′ ≤ j for which 〈qk(m)
j , Θi,k

j 〉 6= 0. In addition, lim sup
m→∞

E
[
m−1/2

(
1 + βΛi,kj

)
q
k(m)
j

]
<

∞.

4. The value function Vi (st) is piece-wise continuous on S and bounded. Moreover, for each

Vi (·) ∈ V there exists a vector µ ∈ R
k(n) such that E

[(
V (st) − µ′ qk

)2]
= o (1).

5. For a given V (·) and transition density, there exists a unique solution γ ∈ Γ to the system

of equations

E [ϕi (st, st+1, a;Vi, γ) | st] = 0,

for i = 1, . . . , n.

These assumptions allow us to apply the results from Newey and Powell (2003) for each

order of approximation k(m). By the appropriate choice of basis we can guarantee that

the approximation error is negligible as compared to the estimation error. The estimation

problem is linear in parameters: expansion coefficients for V (·) and the Euclidean parameter
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γ. For each finite approximation order k(m) we can assure that the estimated parameters

are consistent estimates for the functions given the order of approximation. When m→ ∞
approximation error approaches zero and the estimated coefficients will be consistent for

the true coefficients. Given that by assumption the value function admits consecutive

approximations in the basis {qK(s)} for each K ∈ N, the fitted values b̂K′qK(s) will be

consistent for the true value function in the limit.

We can provide a similar set of assumptions that will assure the asymptotic normality

of the estimates.

Assumption 4 1. There exists a metric ‖ · ‖s such that the product space V × Γ is

compact. Moreover, the space {q∞ (s)} × Γ is dense in V × Γ for the chosen metric.

2. For the covering number in the family of the moment functions defined by consecutive

series approximations

log N
(
ε, {qk(m) (s)} × Γ, ‖ · ‖s

)
≤ Ck(m) log

(
k(m)

ǫ

)
.

3. The weighting matrix can be estimated consistently such that

∥∥∥Â (s, da) −A (s, da)
∥∥∥ = op

(
m−1/4

)
.

Moreover for each ‖µ− µ
k(m)
0 ‖ < Cm−1/4 and each ‖γ − γ0‖ < Cm−1/4

∥∥∥
(
Â (s, da) −A (s, da)

)
ϕ
(
s′, s, a;µ′qk(m)(s), γ

)∥∥∥ = op

(
m−1/4

)

4. The variance of the moment function Var

(
ϕ (s′, s, a;V0, γ0)

∣∣∣∣ s
)

is positive definite for

all s ∈ S.

5. For each direction h ∈ Ck(m) (S) we define the directional derivative of the moment func-

tion as a vector ∂hϕ =
(
∂ϕ
∂γ ,

(
∂ϕ
∂V

)
h

)
, where

∂ϕi
∂γ

=
∂Πi (ai, a−i, s; γ)

∂γ
, and

(
∂ϕi
∂Vi

)

h

=
∞∑

j=0

hj

(
1 − βλi,kj

)
Θi,k
j (s) .
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We assume that in the ball of radius Cm−1/4 around the true value (V0, γ0) in V × Γ the

directional derivative ∂hϕ is Hölder-continuous with respect to norm ‖·‖s and bounded above

by a linear functional of h, F [h] such that E [F [h]] <∞. Choose h∗ such that

E
{
∂hϕ (V0, γ0)

′E
[
A (st+1, d

a)A (st+1, d
a)′
∣∣st=s

]
∂hϕ (V0, γ0)

}

is minimized with respect to h. Then uniformly in the chosen ball

E
(
‖∂h∗ϕ (V0, γ0) − ∂h∗ϕ (V, γ)‖2

)
= o

(
m−1/4

)
,

where we use a standard Euclidean norm.

The following theorem is an immediate consequence of Ai and Chen (2003), which we

state without proof.

Theorem 5 Under assumptions 3 and 4, for γ̂ defined in steps 1 and 2 of the previous

section, γ̂
p−→ γ0, and for V (γ) given in theorem 4

√
MT (γ̂ − γ0)

d−→ N (0, V (γ)) .

6 Non-parametric two-stage estimation

The moment equation (26) in general does not depend on the dimensionality of the payoff

parameter γ. Making γ infinite-dimensional will cost us losing the parametric convergence

rate. However, given the identification assumptions we will be able to provide a fully

non-parametric estimate of the per-period payoff function. We can suggest an estimation

procedure which is equivalent to the efficient estimation procedure in the semiparametric

case.

Step 1 Estimate conditional choice probabilities non-parametrically using the orthogo-

nal series representation:

σ̂i (ai = p | s) = qk(M)′ (s)

(
∑

m,t

qk(M) (sm,t) q
k(M)′ (sm,t)

)−1∑

m,t

qk(M) (sm,t) d
ai,p
t .
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Step 2

Consider a series approximation for the value function

Vi (ai = p, s) = qk(M)′ (s) bi,p + ∆k(M),

where ∆k(M) is a numerical approximation error, and a similar expansion for the payoff

function

Πi (ai = p, a−i s) = qk(M)′ (s) γi,p,a−i + ∆′
k(M),

For implementability of the procedure at this step we need the payoff function to be con-

tinuous (or, at least, has a finite set of points of first-order discontinuity). Next we form an

instrument zm,t by stacking the state variables sm,t across the markets forming vectors st,

and then choosing the linearly independent subset of vectors from the collection

(
q0 (sm,t−τ ) , . . . , qk(M) (sm,t−τ )

)
,

for all 0 ≤ τ ≤ t − 1. Additional instruments come from other functions of am,t and and

the estimated choice probabilities σ̂i (j|sm,t+1). This produces an empirical moment vector

with 2k(M) unknown expansion coefficients with the elements

ϕ̂i,p (γ, b) = 1
T

T−1∑
t=1

dai,p
t zt

(
bi,p′

(
qk(M) (sm,t) − βqk(M) (sm,t+1)

)

−
(
1 − dai,0

t

) [
qk(M)′ (s) γi,p,a−i − β log σ̂i (ai|sm,t+1)

]

+dai,0
t β log

(
1 −

K∑
j=1

σ̂i (j|sm,t+1)

))
.

Then we introduce a weighting matrix W with dimensions nKm dim (zt)×nKm dim (zt).

In the simplest case we can use the identity matrix in lieu of W. For this weighting matrix

we form a GMM objective and minimize it with respect to parameters of interest γ as well

as the parameters of the expansion of the value function

min
γ, b

ϕ̂ (γ, b)′ W ϕ̂ (γ, b) .
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In this estimation procedure the object of interest is the entire surface of the profit function,

which can be computed as

Π̂i (ai = p, a−i s) = qk(M)′ (s) γ̂i,p,a−i.

We need to determine the conditions that assure consistency and non-degeneracy of the

asymptotic distribution of the pointwise estimate of the payoff function as well as find

the rate of convergence of the estimator. Previous we imposed conditions that assure

convergence of the semiparametric estimator. We can supplement them with additional

assumptions which will provide consistency and asymptotic normality in the non-parametric

case.

Assumption 5 1. The payoff function Πi (ai, a−i, ·) belongs to the functional spaceCp (S)

for p > 1. Moreover, the orthocomplement of projecting the payoff function onto some

Hilbert space H, defined by the set of basis functions {qt (·)}pt=0 with the scalar product

〈·, ·〉 has a norm in C∞ (S) decreasing in p. Moreover its projection on the first p basis

vectors converge absolutely, uniformly in the argument as p→ ∞.

2. For a truncation sequence k(m) < m2r the error of approximation of Πi(·) and V (·)by
the basis function {qt (·)}k(m)

t=0 is o
(
m−2r

)
with respect to the norm implied by the scalar

product in H.

3. σ̂i(ai|ai, ·) is asymptotically normal pointwise in Ω and converges at rate q. The trun-

cation sequence k(m)′ giving the convergence rate mq is o (k(m)′). The approximation

error of hi(·) with respect to the norm in H is of order smaller than mq

This set of assumptions allows us to formulate the following theorem, which is proven in

the appendix.

Theorem 6 Given assumption 3, 4 and 5,

mmin {q,r}
(
V̂
k(m)
i (s) − Vi (s)

)
d−→ N

(
0, ω2

v

)
,

and

mmin {q,r}
(
Π̂
k(m)
i (ai, a−i, s) − Πi (ai, a−i, s)

)
d−→ N

(
0, ω2

π

)
,
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7 Simulations

To demonstrate the performance of proposed estimators in finite samples, we conduct two

sets of numerical simulations. The first set is a simple two by two entry game with discrete

state variables and the second set is a single agent dynamic discrete choice model with

continuous state variables.

In the first set of numerical simulations, each of the two players has one state variable

that takes two possible values. Each player simultaneously decides whether to enter a

market. The payoff to not entering into the market is normalized to zero regardless of the

action of the competing player. The payoff for entering the market, which is also a function

of the action of the competing player, is a draw from the uniform distribution between

-2 and 2. The distributions of the payoff are independent across both the combination of

the states and across the actions of the competing players. Therefore, we do not impose

restrictions on how the action of the competing player affects the payoff to entering into

the market, and allow the actions of both players to be either substitutes or complements.

The transition probability matrices for a new state condition on the previous state and the

actions of both players are also randomly generated from uniform distributions between 0

and 1. They are normalized so that the transition probability matrix is a proper stochastic

matrix. The discount rate is set to 0.9.

Once generated, the payoff matrix and the transition probability matrices are held

constant across the simulation runs. Following the recipe described in the estimation section,

we first estimate the entry probabilities from independently generated data on the entry

indicators, and then invert out the choice specific continuation value function and the choice

specific static expected utility function. Finally, the primitive payoffs are recovered from

the choice specific static expected utility functions.

The following tables report the results across 1000 simulation runs. The number of

markets (nmarket), reported in the following tables refer to the number of observations

(markets) generated for each combination of the state variables.

These tables show that the estimator performs well in finite sample, and that the amount

of estimation error decreases monotonically as the sample size increases.

In the second set of numerical simulations for a single agent dynamic discrete choice
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Table 1: Simulation summary for entry utilities, nmarket=100

i a−i state 1st quartile median mean 3rd quartile std true Pi

1 1 1 -0.238 -0.006885 -0.0028 0.225 0.36 -0.52

1 1 2 -0.22 0.00004 0.0071 0.2304 0.343 0.749

1 2 1 -0.33 -0.011 -0.0349 0.28 0.48 -1.023

1 2 2 -0.21 0.0038 0.017 0.24 0.34 0.81

2 1 1 -0.25 0.027 0.023 0.31 0.44 0.53

2 1 2 -0.36 -0.021 -0.005 0.35 0.57 -1.005

2 2 1 -0.31 -0.022 0.0032 0.31 0.482 1.15

2 2 2 -0.38 0.013 -0.021 0.36 0.619 -1.600

Table 2: Simulation summary for entry utilities, nmarket=500

i a−i state 1st quartile median mean 3rd quartile std true Pi

1 1 1 -0.109 -0.006 -0.002 0.102 0.161 -0.52

1 1 2 -0.095 0.0017 0.0011 0.097 0.146 0.749

1 2 1 -0.15 -0.0044 -0.0068 0.13 0.211 -1.02

1 2 2 -0.092 -0.0059 0.00004 0.1 0.146 0.812

2 2 1 -0.109 0.013 0.009 0.12 0.18 0.53

2 2 2 -0.164 0.0085 -0.0013 0.15 0.23 -1.005

2 2 1 -0.13 0.0017 0.0043 0.14 0.203 1.15

2 2 2 -0.15 0.0001 0.002 0.16 0.24 -1.60
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Table 3: Simulation summary for entry utilities, nmarket=1000

i a−i state 1st quartile median mean 3rd quartile std true Pi

1 1 1 -0.073 -0.00002 0.001 0.077 0.109 -0.52

1 1 2 -0.075 -0.0049 -0.0032 0.072 0.106 0.749

1 2 1 -0.107 -0.003 -0.005 0.092 0.14 -1.023

1 2 2 -0.066 0.0053 0.004 0.075 0.108 0.812

2 2 1 -0.078 0.0023 0.0046 0.086 0.127 0.537

2 2 2 -0.11 0.0024 -0.0033 0.107 0.166 -1.005

2 2 1 -0.098 -0.0021 -0.001 0.091 0.14 -1.60

Table 4: Simulation summary for entry utilities, nmarket=2000

i a−i state 1st quartile median mean 3rd quartile std true Pi

1 1 1 -0.05 0.005 0.0038 0.059 0.0772 -0.52

1 1 2 -0.053 -0.00017 -0.00037 0.051 0.074 0.749

1 2 1 -0.078 -0.0066 -0.0062 0.0603 0.1007 -1.023

1 2 2 -0.045 0.0018 0.0017 0.05 0.075 0.812

2 2 1 -0.055 0.0017 0.0039 0.064 0.089 0.537

2 2 2 -0.088 -0.005 -0.0049 0.07 0.119 -1.005

2 2 1 -0.066 -0.004 -0.0021 0.059 0.097 1.150

2 2 2 -0.079 0.011 0.0051 0.086 0.124 -1.600
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model, the state variable follows a continuous distribution and evolves continuously accord-

ing to a normal AR(1) process:

st = ϕ (ai) st−1 + σ εt,

where εt is a standard normal random variable and ϕ (ai) = 0.81(ai = 0) + 0.31(ai = 1).

The probability of choosing action 1 is assumed to take the following flexible functional

form:

σi (ai = k | a−i, st) = α0ik (a−i) + α1ikst + α2iks
2
t +

J∑

j=1

[β0j + β1j cos (pjst) − β2j sin (pjst)] ,

where parameters α are fixed. The goal of this empirical exercise is to compare the payoff

function estimated from the sample, generated by the state variable and the policy function

using our one-stage estimation method and the utility function that we can recover by

numerically solving the first-order condition for the player. We begin with describing the

numerical computation algorithm. For each player i the value function associated with

choice 0 can be expressed as

Vi,0 (s) = β
+∞∫
−∞

log

[
K∑
r=0

exp (Vi,r (s′))

]
1√

2πσ2
e−

(s′−ϕ(0) s)2

2σ2 ds′.

Using the relation σi (k | s) =
exp(Vi,k(s))

K
P

r=0
exp(Vi,r(s))

, this expression can be written as a functional

relation to solve for the continuation value function:

Vi,0 (s) = β
+∞∫
−∞

[Vi,0 (s′) − log σi (0 | s′)] 1√
2πσ2

e−
(s′−ϕ(0) s)2

2σ2 ds′.

The value function will be approximated on a discrete uniform grid using linear extrap-

olation and the integral will be approximated by a Gauss-Hermite Gaussian quadrature

method. The value function for the grid points will be solved from a system of linear
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equations. In particular, by a change of variables

Vi,0(s) =
β√
π

+∞∫

−∞

[
Vi,0

(√
2σ x+ ϕ (0) s

)
− log σi

(
0
∣∣√2σ x+ ϕ (0) s

)]
e−x

2
dx

≈ β√
π

N∑

n=1

ωn

[
Vi,0

(
±
√

2σ xn + ϕ (0) s
)
− log σi

(
0
∣∣ ±

√
2σ xn + ϕ (0) s

)]
,

where ωn are the weights and xn are the points of 2N -point Gauss-Hermite quadrature

approximation for the integral of interest. We aim to solve for the value function at a

uniform grid SG = {s1, s2 . . . , sG} for the state variable: Vi,0 (sg) = Vi,0,g. For numerical

computations we will use linear interpolation The intermediate values of the value function

will be approximated by linear interpolation: for instance, if s ∈ [sg, sg+1] then Vi,0 (s) ≈
Vi,0,g +

Vi,0,g+1−Vi,0,g

sg+1−sg
(s− sg). Let ξg,n,p correspond to the index of the grid point that is

not further from the point (−1)p
√

2σ xn+ϕ (0) sg than the cell length and has the smallest

absolute value. Then the discretized Bellman equation can be written as G linear equations

for the grid function:

Vi,0,g −
β√
π

N∑

n=1

1∑

p=0

[
ag,n,pV1,0,ξg,n,p

+ bg,n,pVi,0,ξg,n,p+1

]

= − β√
π

N∑
n=1

1∑
p=0

ωn log σi
(
0
∣∣ (−1)p

√
2σ xn + ϕ (0) sg

)

Denote ∆ the step of the grid. Then we can express the above coefficients as

ag,n,p = β
∆
√
π
ωn
[
sξg,n,p+1 − (−1)p

√
2σ xn − ϕ (0) sg

]
,

bg,n,p = β
∆
√
π
ωn
[
(−1)p

√
2σ xn + ϕ (0) sg − sξg,n,p

]
.

We compare the utility function that we obtain from a numerical solution of the Bellman

equation with the estimated payoff that we obtain using our method. The following table

tabulates the integrated difference between the utility function that is numerically computed

and the utility function that is estimated from a randomly generated sample. We use the

stationary density of the state variable for the comparison. Specifically, if ûT (·) is the

estimated utility from sample of size T and u(·) is the numerical solution, the reported
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criterion is

QT =
√
T

∫

S

(ûT (s) − u(s)) π(s) ds,

where π(·) is the stationary density of the state variable. We obtain this integral using

the Monte-Carlo integration technique. To do so we make the joint draws from the state

variable transition and the decision rules using a preliminary draw of the state variable. We

generate the state variable as well as the policy rule as a Markov chain until it reaches the

stationary distribution (we determine that by the behavior of the distribution mean across

the blocks of consecutive draws). Then if Ns is the number of draws from the stationary

distribution, we compute the approximate criterion

QNs

T =

√
T

Ns

Ns∑

t=1

(ûT (st) − u(st)) .

This object converges to the integral of interest as the number of draws increases. For our

purposes we use 2.5 million draws.

Table 5: Simulation summary for entry utilities

sample size mean variance median 90% quantile/10% quantile ratio

50 -0.2075 1.0898 -0.2371 0.0007

100 -0.2064 1.1111 -0.1776 0.0012

150 -0.2075 0.9341 -0.1935 0.0011

200 -0.2056 1.0461 -0.1934 0.0010

250 -0.2047 1.0346 -0.1936 0.0009

300 -0.2041 0.9111 -0.1851 0.0010

As the table shows the nonparametric procedure for recovering the primitive utilities

works well in finite samples. In particular, the following figure illustrates the median of

numerically recovered utility with top and bottom 10% quantiles for 600 Monte-Carlo draws.
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Figure 1: Median and Percentils of numerically recovered utility
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8 Conclusion

We study nonparametric identification of a dynamic discrete game model of incomplete

information, and develop nonparametric and semiparametric estimators that have flexible

computational properties and desirable statistical properties. Our identification analysis

provides a unified framework for both discrete and continuous state variables, and suggests

a natural implementation of a nonparametric estimator. In addition, we derive the semi-

parametric efficiency bound and propose a one-step semiparametric efficient estimator under

the assumptions that the transition process is nonparametrically specified while the static

payoff functions are parametric. A set of numerical simulations are used to demonstrate

the properties of the model.
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A Proof of theorem 3
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asymptotic variance. Newey (1994) shows that for a general moment condition m (z, h (·)) that is a
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function of the nonparametric functional h (s) = E (y|s), if one can find a function δ (s) such that for

all parametric path hη (·) of h (·), ∂
∂ηEm (z, hη (·)) = Eδ (s) ∂

∂ηh (s), then the asymptotic variance

of
∑
τ m

(
zτ , ĥ (·)

)
will be given by

V ar (m (zτ , h0 (·)) + δ (sτ ) (y − h (sτ ))) .

In our casem (zτ , h0 (·)) ≡ 0, therefore the asymptotic variance will be driven only by δ (sτ ) (y − h (sτ )).

In the following analysis, we derive the form of y and δ (s) for our problem. To simplify notations,

in the following we often omit the subscript i.

Part 1 corresponds to EdkτA (sτ ) (log ση (k|sτ ) − log ση (0|sτ )). The pathwise derivative is given

by ∂
∂ηEσ (k|sτ )A (sτ ) log

ση(k|sτ )
ση(0|sτ ) = Eσ (k|sτ )A (sτ )

(
1

σ(k|sτ )
∂
∂ηση (k|sτ ) − 1

σ(0|sτ )
∂
∂ηση (0|sτ )

)
. Hence

φ1 (aiτ , sτ ).

Part 2 corresponds to βEdktA (st) log ση (0|st+1). Its pathwise derivative is

βE
[
E
(
dktA (st) |st+1

)] 1

σ (0|st+1)

∂

∂η
ση (0|st+1) .

Part 3 corresponds to EdktA (st)Vη (0, st). First we derive an impression for ∂
∂ηVη (0, st), denoted

V̇η (0, st), in terms of a conditional expectation. Note that Vη (0, st) is defined by

Vη (0, st) − βEη [Vη (0, st+1) |st, 0] = −βEη [log ση (0|st+1) |st, 0] ,

which can be equivalently written as

ση (0|st)Vη (0, st) − βEη
[
d0
tVη (0, st+1) |st

]
= −βEη

[
d0
t log ση (0|st+1) |st

]
.

Differentiate totally with respect to η:

σ (0|st) V̇η (0, st) − βE
[
d0
t V̇η (0, st+1) |st

]
=

βĖη
[
d0
tV (0, st+1) |st

]
− σ̇η (0|st)V (0, st) − βĖη

[
dt0 log σ (0|st+1) |st

]

− βE

[
d0
t

1

σ (0|st+1)
σ̇η (0|st+1) |st

]
.
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The last term on the right hand side can be written as

E

[
d0
t

1

σ (0|st+1)
σ̇η (0|st+1) |st

]
=

∫

d0t ,st+1

∫

d0
t+1

d0
td

0
t+1

σ (0|st+1)
ḟη
(
d0
t+1|st+1

)
f
(
d0
t , st+1|st

)

=

∫

d0t ,st+1

∫

d0
t+1

d0
td

0
t+1

σ (0|st+1)
ḟη
(
d0
t+1|st+1, d

0
t , st

)
f
(
d0
t , st+1|st

)

=

∫

d0t ,st+1

∫

d0
t+1

d0
td

0
t+1

σ (0|st+1)

[
ḟη
(
d0
t+1, st+1, d

0
t |st
)
− f

(
d0
t+1|st+1, d

0
t , st

)
ḟη
(
d0
t , st+1|st

)]

= Ėη

[
d0
td

0
t+1

σ (0|st+1)
|st
]
− Ėη

[
d0
t |st
]
.

The second equality above follows from the Markov property and the conditional independence

assumption. Therefore one can write

σ (0|st) V̇η (0, st) − βE
[
d0
t V̇η (0, st+1) |st

]
= Ėη (yt|st)

where yt = βd0
tV (0, st+1) − V (0, st) d

0
t − βd0

t log σ (0|st+1) − β
d0td

0
t+1

σ(0|st+1) + βd0
t .

In the next step we verify that the function δ (st) given in theorem 3 satisfies

EdktA (st) V̇η (0, st) = Eδ (st) Ėη (yt|st) .

The left side is Eσ (k|st)A (st) V̇η (0, st) while the right side can be written as

Eδ (st) Ėη (yt|st) = Eδ (st)
(
σ (0|st) V̇η (0, st) − βE

[
d0
t V̇η (0, st+1) |st

])

= Eδ (st)σ (0|st) V̇η (0, st) − βEd0
t−1δ (st−1) V̇η (0, st)

= E
[
δ (st)σ (0|st) − βE

(
d0
t−1δ (st−1) |st

)]
V̇η (0, st) = Eσ (k|st)A (st) V̇η (0, st) .

Part 4 is completely analogous to part 3, if we replace σk (st)A (st) by −βE
(
dkt−1A (st−1) |st

)
.

B Proof of theorem 4

First we need to characterize the tangent set of the model. The likelihood of the model will be

determined by the choice probabilities and the transition density for the state variable. Given that

choices of players are observed by the econometrician, the log-likelihood of the model can be written

as

L (s, s′, d) =
n∑

i=1

K∑

k=0

di,k log σi (ai = k | s) +
∑

a∈A

da log g (s | s′, a) + log p (s′) ,
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where g(·|s′, a) is the transition density of the state variable, da is the indicator of the action profile

a, and p(·) is the stationary density of the state variable. We choose a particular parameterization

path θ for the model and compute the score by differentiating the model along the path:

Sθ (s, s′, d) =
∑

a∈A

das1θ (s | s′, a) + s2θ (s′) +

n∑

i=1

K−1∑

k=0

(
di,k

σi (k|s)
− di,K

σi (K|s)

)
σ̇i (k|s) ,

where E [s1θ (s | s′, a) |s′, a] = 0, E [s2θ (s′)] = 0, E
[
|s1θ (s | s′, a)|2 |s′, a

]
< ∞, E |s2θ (s′)|2 < ∞,

and E |σi (k|s)|2 <∞. Then we characterize the tangent set as

T =

{
∑

a∈A

daη1 (s | s′, a) + η2 (s′) +

n∑

i=1

K−1∑

k=0

η3(s)

(
di,k

σi (k|s)
− di,K

σi (K|s)

)}
,

with E [η1 (s | s′, a) |s′, a] = 0, E [η2 (s′)] = 0, E
[
|η1 (s | s′, a)|2 |s′, a

]
< ∞, E |η2 (s′)|2 < ∞, and

E |η3(s)|2 <∞. We will derive the semiparameric efficiency bound for this model under the absence

of parametric restrictions on the state transition density. To derive the bound we find the parametric

and the non-parametric parts of the score of the model using a particular parametrization path for

the non-parametric component. For the chosen parametric path θ we denote

∂Vi (k, s)

∂θ
= ζi (k, s) and

∂Vi (k, s)

∂γ′
= ζ̃i (k, s) .

Also denote πi (k, s) = ∂Π(k,s;β)
∂γ′ . We form vectors V i = (Vi (1, s) , . . . , Vi (K, s))

′
, V =

(
V 1, . . . , V n

)′
,

σi = (σi (1|s) , . . . , σi (K|s))′ and

ζ = (ζ1 (1, s) , . . . , ζ1 (K, s) , . . . , ζn (K, s))
′
. First of all, we note that we can transform the original

moment equation. Consider the operator

Pi ◦ f = E [f (s′) | s, ai] ,

where expectation is defined for the conditional density
∑

a−i
g (s′|s, ai = k, a−i)σ−i (a−i|s). This

operator has a discrete spectrum with eigenfunctions
{
Θi,k
j (s)

}∞

j=0
and eigenvalues

{
λi,kj

}∞

j=0
dif-

ferent from zero. This follows directly from the properties of the Hibert-Schmidt operators which

can be found in Dunford and Schwarz (1958). Then we can represent the value function as

Vi (k, s) =
∞∑

j=0

ai,kj Θi,k
j (s) .
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Then we can transform the moment equation to

ϕ̃ (s, s′, a ; γ, Vi, σi) =
∞∑
j=0

ai,kj

(
1 − βλi,kj

)
Θi,k
j (s)

+
(
1 − dai,0

)
[−Πi (ai, a−i, s; γ) + β log σi (ai|s′)] + dai,0β log

(
1 −

K∑
j=1

σi (j|s′)
)
.

Then we can define a directional derivative of the moment function with respect to Vi in the direction

h as

(
∂ϕi
∂Vi

)

h

=

∞∑

j=0

hj

(
1 − βλi,kj

)
Θi,k
j (s) ,

for all h with
∞∑
j=0

|hj |
∥∥∥Θi,k

j (s)
∥∥∥ < ∞. Differentiating the unconditional moment equation with

respect to the parametrization path we obtain

E
[
A (s, da)π (s)

(
1 − da,0

)]
γ̇ − E

[
A (s, da)

(
∂ϕ
∂V

)

h

]
ḣ

= βE
[
A (s, da)

(
da6=0

σ(a|s′) − da,0

σ(0|s′)

)]
+ E [A (s′, da) ϕs1θ] .

We consider the right-hand side and try to find a function Ψ̃ such that the expression on the right-

hand side can be represented as 〈Ψ, Sθ〉. This function can be obtained as

Ψ̃ = A (s, da)

{
(ϕ− E [ϕ | s, a]) +

da6=0 − σ (a|s)
σ (a|s′) − da,0 − σ (0|s)

σ (0|s′)

}
.

We note that conditional moment equation (26) holds and we can differentiate it with respect

to the parameterization path. Then we can substitute the expression for the derivative into the

expression for the unconditional moment. This allows us to express the directional derivative of γ

and, consequently, the efficient influence function for a fixed instrument matrix:

Ψ = E
[
A (s, da)

(
π (s)

(
1 − da,0

)
−
(
∂ϕ
∂V

)

h

)]−1

Ψ̃.

The semiparametric efficiency bound as a minimum variance of the influence function. Denoting

Ω(s, a) = Var

(
ϕ+

da6=0

σ (a|s′) − da,0

σ (0|s′)

∣∣∣∣ s, a
)
.

Using standard GMM arguments, we can express the efficiency bound for fixed instrument as

Vh (β) =
((
π (s)

(
1 − da,0

)
−
(
∂ϕ
∂V

)

h

)
ζ (da, s)

′
Ω (s, a)

−1
ζ (da, s)

(
π (s)

(
1 − da,0

)
−
(
∂ϕ
∂V

)

h

))−1

.
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The efficiency bound overall can be found as Vh∗ (β) for h∗ solving

inf
h

(
π (s)

(
1 − da,0

)
−
(
∂ϕ
∂V

)

h

)
ζ (da, s)

′
Ω (s, a)

−1
ζ (da, s)

(
π (s)

(
1 − da,0

)
−
(
∂ϕ
∂V

)

h

)
.

The optimal instrument matrix can be explicitly written as

M(s) = E

[(
π (s)

(
1 − da,0

)
−

∞∑
j=0

h∗j (1 − βλj)Θj (s)

)
ζ (da, s)

′
Ω (s, a)

−1

∣∣∣∣ s
]
.

Q.E.D.

Proof of theorem 6

We can use the Bellman equation to express the estimate of the payoff function in terms of the

estimate of the value function. We use a series projection estimator to estimate Vi (k, s) − Vi (0, s).

To evaluate the elements of the Bellman equation for player i we need to analyze the right hand side

function

hi(s) = E

{
log

K∑

k=0

(Vi (k, s
′) − Vi (0, s

′))

∣∣∣∣s
}
.

Function hi(s) admits a series representation hi(s) =
k(m)∑
j=1

qj(s)λ
k(m)
i,j + o

(
‖qk(m)(s)‖

)
, where we

use the standard Sobolev norm. The coefficients for this representation can be obtained from the

coefficients for Vi(k, s) − Vi(0, s). This result can be used to find a series representation for Vi (0, s)

which needs to be estimated. To do that we proceed by analyzing the nonparametric conditional

expectation estimation component of step two, which takes the form of

Vi (s, 0) = β

∫
Vi (s

′, 0) gi (s
′|s, 0)ds′ + hi (s) = (Ki ◦ Vi) (s, 0) + hi (s) , (28)

where gi (s
′|s, 0) =

∑
a−i∈A−i

g (s′|s, 0, a−i)σ (a−i|s).

This is an integral equation for Vi (·, 0). We assume that the integral operator Ki and the term

hi (·) satisfy the standard assumptions assuring the existence of a smooth solution of this equation.

In particular s ∈ S, Vi : S 7→ R+, both the kernel function gi (·) and the function hi (·) have

derivatives up to order p ≥ k(m), which assures a high degree of smoothness of the value function.

Thus Vi ∈ Cp (S), and Ki : Cp (S) 7→ Cp (S). A standard method for solving this equation is to

represent solution by a series expansion over a particular basis in Cp (S). We will use the basis
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qk(m)(s) =
(
q1(s), . . . , qk(m)(s)

)′
for these purposes. Then the approximation for the value function

can be written as:

Vi (·, 0) = qk(m)(s)′ θ
k(m)
i .

We endow the space Cp (S) with an inner product 〈·, ·〉 and introduce matrices

Γ = (〈qt(s), qj(s)〉)k(m)
t,j=1 and Gi = (〈K qt(s), qj(s)〉)k(m)

t,j=1 .

We define the inner product for two functions f, g ∈ Cp (S) as:

〈f, g〉 =

∫

S

f(s)g(s)π (ds) = E [f(s) g(s)] ,

where π(·) is a stationary distribution measure for the state space S. In general, this measure is

not available. For this reason, we substitute it with the empirical measure πm (·), which we require

to be weekly converging to π(·). We call the space associated with the inner product generated by

πm (·) by Cpm (S). This space is only a semi-Hilbert space as the inner product in it might have a

non-empty kernel (and, thus, the associated norm is only a seminorm). We will use the same basis

in Cpm (S) as before. In general, this unfortunate property will not create additional complications

as long as the measure of the kernel of the seminorm associated with the inner product vanishes

as the number of available markets m increases. For this reason, in the further discussion we will

assume that the stationary measure in S is known, and then extend our results to the case when we

are using empirical measure instead.

We can use the expansion for hi(·) to derive the series approximation for the value function

Vi (·, 0). In this case the vector of coefficients in the series representation of the value function can

be found as:

θ
k(m)
i = (Γ − βGi)

−1
Γλ

k(m)
i .

This result is obtained from substituting series expansions for hi(·) and Vi(·, 0) into equation (28)

and projecting both sides of this equation on the basis vectors qk(m)(·).
These coefficients allow us to obtain an approximation for the value of the function Vi (·, 0) which

can be expressed as:

V
k(m)
i (s, 0) = qk(m)(s)′ (Γ − βGi)

−1 Γλ
k(m)
i

For sufficiently smooth coefficients of the original integral equation, this expression will provide an

approximation of order k(m) such that the norm of the deviation of the approximation from the
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true solution will be bounded from above by L
k(m)! sup

s,s′∈Ω
‖s− s′‖k(m)

, where Ω ⊂ S is a subset of

the state space where the value function is approximated by the series expansion. Note that all

components of this formula are exactly known, although the matrices are specific to a particular

basis. For instance, if qk(m) (·) is a system of Legendre polynomials then Γ = diag
{√

2
2k(m)+1

}
.

We estimate coefficients in the series representation of the value function from the data. To do

so, first, we estimate the state transition probability. We assume that an estimator with the rate

r ∈ (0, 1/2] is available which produces the estimate that is point-wise asymptotically normal at s′

uniformly over s in Ω:

nr (ĝi (s
′ | s, 0) − gi (s

′ | s, 0))
d−→ N

(
0, σ2

g(s
′, s)
)
.

We assume for convenience that this estimate is obtained using an estimation procedure which can

be approximated by a series expansion with the order of precision at least op (n−r). To estimate the

vector of coefficients λk(m) we use the data from the observed states and values of hi (·) to estimate

it. Note that the values of hi(·) are obtained from the Hotz-Miller-type inversion and thus contain

noise. By the nature of this inversion we can in principle evaluate ĥi(·) at any point of Ω. Although

the probabilities of actions are estimated non-parametrically, by Delta-method we can assure that

for some q ∈ (0, 1/2] we obtain a point-wise asymptotically normal estimator of hi(·) in Ω. In

particular we use a spectral representation of hi(·) to estimate it non-parametrically and obtain the

coefficients λp. Thus

nq
(
ĥi (s) − hi (s)

)
d−→ N

(
0, σ2

h(s)
)
.

We consider the properties of the pointwise approximation error for the value function:

V̂
k(m)
i (s, 0) − Vi (s, 0) = qk(m)(s)′ (Γ − βGi)

−1 〈ĥi(s) − hi(s), q
k(m)(s)〉

+βqk(m)(s)′ (Γ − βGi)
−1 〈

(
K̂i −Ki

)
qk(m)(s), qk(m)(s)′〉 (Γ − βGi)

−1′
Γλk(m) + ∆k(m).

In this expression ∆k(m) is a residual function. In the expression for the error in the estimate of

the value function the matrices only play the role of normalization while the asymptotic behavior of

the error is governed by the integrated error in the estimated components of the Bellman equation.

This normalization does not change the rate of convergence of the estimators, and the order of

polynomial expansion is determined only by the degree of smoothness of the function approximation.

Assumption 5 restricts the operator K to be bounded. Consider the transformation λ 7→ Γ1/2λ and

qk(m) (·) 7→ Γ−1/2qk(m) (·). This a rotation of the basis which does not change the asymptotic

properties. In fact, indicating the rotated variables by tildes we get:

mq

(
q̃k(m)(s)′

˜̂
λ
k(m)

i − q̃k(m)(s)′λ̃
k(m)
i

)
d−→ N

(
0, σ2

ψ

)
.
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Specifically, σ2
ψ = lim

m→∞
trace

{
m2qΩ̃λq̃

k(m)(s)q̃k(m)(s)′
}

= lim
m→∞

trace
{
m2qΩλq

k(m)(s)qk(m)(s)′
}

=

σ2
ψ(s).

Next, note that Ik(m) ≤
(
Ik(m) − βΓ−1/2GiΓ

−1/2
)−1 ≤ (1 − β)

−1
Ik(m), where inequality should

be treated as the difference between the two matrices is a positive semi-definite matrix. We can show

that the last inequality is valid in to steps. First, the matrix Γ−Gi is positive semi-definite because

the operatorK is defined by a density function. Second, the matrix (1 − β)
−1 (

Ik(m) − βΓ−1/2GiΓ
−1/2

)
−

Ik(m) is positive semi-definite. To see that, consider decomposition

Ik(m) − βΓ−1/2GiΓ
−1/2 = (1 − β) Ik(m) + βΓ−1/2 (Gi − Γ)Γ−1/2 ≥ (1 − β) Ik(m).

As a result:

trace
{
m2q (Γ − βGi)

−1
ΓΩλΓ (Γ − βGi)

−1
qk(m)(s)qk(m)(s)′

}

= trace
{
m2q

(
Ik − βΓ−1/2GΓ−1/2

)−1
Ω̃λ
(
Ik(m) − βΓ−1/2GΓ−1/2

)−1
q̃k(m)(s)q̃k(m)(s)′

}
.

This means that

ω2
1 = lim

m→∞
trace

{
m2q (Γ − βGi)

−1
ΓΩλΓ (Γ − βGi)

−1
qk(m)(s)qk(m)(s)′

}
<

σ2
ψ

(1 − β)
2 ,

and it does not vanish. This proves that the rate of convergence of the non-parametric estimate for

Vi(·, 0) is the same as the rate for hi(·).
In the analysis so far we assume that the convergence rate of the estimator for the transitional

density gi (· | s, 0) is fast enough so that we can ignore the error associated with its estimation.

We assume that we are using the same spectral representation for this conditional density. The

relevant characteristic for our analysis is matrix Gi showing how transitional density changes the

basis vectors. Then the following theorem establishes the asymptotic normality of the error in the

value function associated with the error in the estimation of matrix Gi: By our assumption, the

estimator for ϕ(·) is poitwise asymptotically normal. Consider local representation of the error in

the value function:

V̂
k(m)
i (s, 0) − V

k(m)
i (s, 0) = qk(m)(s)′Γ−1/2

(
I − βΓ−1/2ĜiΓ

−1/2
)−1

Γ1/2λ
k(m)
i − Vi(s)

= βqp(s)′Γ−1/2
(
Ik(m) − βΓ−1/2GiΓ

−1/2
)−1

Γ−1/2

×
(
Ĝi −Gi

)
Γ−1/2

(
Ik(m) − βΓ−1/2GiΓ

−1/2
)−1

Γ1/2λp + op

(∥∥∥Ĝi −Gi

∥∥∥
)
,

where
∥∥∥Ĝi −Gi

∥∥∥ is a standard matrix norm. Consider next the rotation of the basis and the

coefficients by the matrix Γ1/2 and denote the rotated variables by tildes. By the assumption, we
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know that

σϕ(s) = lim
m→∞

{
m2rVar trace

([̂̃Gi − G̃i

])}
<∞.

Then from the positive semi-definiteness of
(
Ik(m) − βΓ−1/2GΓ−1/2

)−1
we conclude that

ω2
2 ≤ (1 − β)

−4
lim
m→∞

{
m2rVar trace

([̂̃Gi − G̃i

]
Γ1/2λ

k(m)
i λ

k(m)′
i Γ1/2

)}
<∞.

In this expression Γ1/2λk(m)λk(m)′Γ1/2 is a priori finite due to the Bessel’s inequality. The normality

of the error follows from the assumption about the distribution of gi(· | s0, 0) and the fact that matrix

multiplication is a linear operation over the elements of the matrix.

The approximation for the value function can be expressed in terms of subsequent projections.

From the Bellman’s equation it follows that

V̂
k(m)
i (s, 0) − Vi(s, 0) − βE

[
V̂i(s

′, 0) − Vi(s
′, 0)

∣∣s
]

= β
(
Ê
[
Vi(s

′, 0)
∣∣s
]
− E

[
Vi(s

′, 0)
∣∣s
])

+ ∆, (29)

with the residual ∆. Using the spectral representation for the expectation in the basis qk(m)(·)
(where the coefficients of Vi (·, 0) in this basis are denoted θk(m)) we obtain that up to the error of

order smaller than ∆:

Ê [V (s′, 0) | s] − E [V (s′, 0) | s] = qk(m)(s)′Γ−1
(
Ĝi −Gi

)
θk(m),

E
[
V̂ (s′) − V (s′)

∣∣s
]

= qk(m)(s)′Γ−1Gi

(
θ̂k(m) − θk(m)

)
.

From spectral representation of the Bellman’s equation it follows that (up to the series approximation

error):

θk(m) = (Γ − βGi)
−1 Γλk(m).

Substitution of these expressions into (29) gives:

V̂
k(m)
i (s, 0) − V

k(m)
i (s, 0) = βqk(m)(s)′Γ−1/2

(
I − βΓ−1/2GiΓ

−1/2
)−1

Γ−1/2

×
(
Ĝi −Gi

)
Γ−1/2

(
I − βΓ−1/2GiΓ

−1/2
)−1

Γ1/2λ
k(m)
i .

This suggests that the method of approximating value function by consecutive conditional expecta-

tions (29) is equivalent to the spectral approach up to approximation error.

Now we will discuss the case where we substitute the stationary measure Gi (·) by its empirical

analog. In this case for the sample {sl}ml=1 the inner product for f, g ∈ Cp (S) can be defined as:

〈f, g〉m =

m∑

l=1

f (sl) g (sl) .
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We can describe the quality of approximation only outside the kernel of the seminorm in Cpm (S).

In that part of the subspace the norm of the elements of the basis is well-defined. For this reason,

we can write the same expressions for the coefficients for expansion of the value function in the basis

qk(m) (·) but in terms of matrices Γm and Gm defined by the inner product in Cpm (S). In this case,

the problem of evaluation of the difference between the estimate of the value function obtained from

Γm and Gm and the true value reduces to two separate problems. The first one is evaluation of the

error due to series approximation, which was considered above. The second one is evaluation of the

quality of approximation when using empirical measure instead of the true stationary measure. The

general results regarding these properties are given, for instance, in (Billingsley, 1968). Here we will

consider a special case when the stationary and empirical measures have densities. We can evaluate

the quality of approximation of the value function as:

V
m,k(m)
i (s) − V

k(m)
i (s) = βqp(s) (Γ − βGi)

−1 (Gmi −Gi) (Γ − βGi)
−1 Γλp

+βqk(m)(s) (Γ − βGi)
−1

(Γm − Γ)
[
I − (Γ − βGi)

−1
Γ
]
λ
k(m)
i + o (‖Γm − Γ‖, ‖Gmi −Gi‖) ,

where the norm in the residual term is a standard matrix norm. This expression has similar structure

as the expression for the errors due to estimation of hi(·). From Assumption 5 it follows that traces

of matrices Γm − Γ and Gmi − Gi approach to zero faster than mmax{q,r}. This means that in the

asymptotic expansion the corresponding term vanishes as well.

This result proves that we can, in general, substitute the matrices Gi and Γ by their sample

versions without affecting the asymptotic variance. The estimate of the value function will take the

form:

V̂
k(m)
i (s, 0) = qk(m) (s)′

(
Γ̂ − βĜi

)−1

Γ̂′λ̂
k(m)
i ,

where Γ̂ and Ĝi are sample averages for estimating Γ and G. For example:

Ĝi =
1

m

m∑

j=1

1

T

T−1∑

t=1

qk(m) (sj,t+1) q
k(m) (sj,t)

′
.

In the previous step we have estimated Vi (s, l) − Vi (s, 0) non-parametrically as qk(m)′γ
k(m)
i,l .

This means that the non-parametric estimate for the choice-specific value function is a combination

of the obtained estimate for Vi (s, 0) and this difference and:

V̂
k(m)
i (s, l) = qk(m)′

(
θ̂
k(m)
i + γ̂

k(m)
i,l

)
.

This variable will be normal as it is non-degenerate and computed as a sum of two asymptotically

normal estimates. This fact becomes straightforward if we explicitly express coefficients θ
k(m)
i in
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terms of γ
k(m)
i,l . Let γ

k(m)
i =

(
0, γ

k(m)
i,1 , . . . , γ

k(m)
i,K

)
be the stacked matrix of coefficients in the

expansions for Vi (s, l) − Vi (s, 0). We introduce the following vector of logit probabilities:

Λ =


 exp(Vi(s,l)−Vi(s,0))

K
P

j=0

exp(Vi(s,j)−Vi(s,0))




l=1,...,K

Then we can express λ
k(m)
i (up to the error of approximation) as:

λ
k(m)
i = Γ−1Giγ

k(m)
i Λ.

Therefore, the corresponding coefficients for the value function can be expressed as:

θ
k(m)
i = (Γ − βGi)

−1Giγ
k(m)
i Λ.

Value function can be explicitly estimated from coefficients γ̂
k(m)
i and matrices Gi and Γ as:

V̂
k(m)
i (s, l) = qk(m)′

(
γ̂
k(m)
i,l +

(
Γ̂ − βĜi

)−1

Ĝiγ̂
k(m)
i Λ̂

)
.

From this estimate one can see that the estimate for the value function is obtained from the esti-

mates for the choice-specific probabilities by permuting them by bounded linear transformations (as
∑

t Λt = 1 and Λt > 0, while the operator represented by the matrix I −βΓ−1/2GiΓ
−1/2 is bounded

as shown above). This motivates asymptotic normality with non-degenerate distribution for their

estimates. Estimated profit will be, again, a non-degenerate linear combination of the estimates for

the choice-specific probabilities, and pointwise normality of the estimate with the rate of conver-

gence, corresponding to the minimum of the convergence rate for the choice specific probability or

transition density.

To formalize this recall that we can compute the profit function from the value function by the

formula:

Πi (s, l) = Vi (s, l) − βE
[
Vi (s

′)
∣∣s, ai = l

]
.

Let G
(l)
i be the matrix corresponding to the state transition density gi (s

′ | s, l) such that G
(l)
i,tr =

∫ ∫
gi (s

′ | s, l) qk(m)
t (s′)q

k(m)
r (s)π(ds) ds′. We can then express the spectral representation for the

profit as:

Π
k(m)
i (s, l) = qk(m)′(s)

(
γ
k(m)
i,l +

{[
Ik(m) − Γ−1G

(l)
i

] [
(Γ − βGi)

−1Gi + Ik(m)

]
− Ik(m)

}
γ
k(m)
i Λ

)
.

Then we can transform the expression for the profit function as:

Π
k(m)
i (s, l) = qk(m)′(s)γ

k(m)
i,l + q̃k(m)′(s)

{[
Ik(m) − Γ−1/2G

(l)
i Γ−1/2

]

×
[(
Ik(m) − βΓ−1/2GiΓ

−1/2
)−1

+ Γ1/2G−1
i Γ1/2

]
Γ−1/2GiΓ

−1/2 − Γ−1/2

}
γ̃
k(m)
i Λ.
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In this expression tildes denote the rotation of the basis considered before. The matrix in the second

expression represents a bounded linear transformation due to assumption 3. Therefore the estimate

for the profit function is a bounded transformation of the estimate of the choice probabilities.
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