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Abstract We consider two different data sets of syntactic parameters and we discuss how to detect relations
between parameters through a heat kernel method developed by Belkin—-Niyogi, which produces low dimensional
representations of the data, based on Laplace eigenfunctions, that preserve neighborhood information. We analyze
the different connectivity and clustering structures that arise in the two datasets, and the regions of maximal variance
in the two-parameter space of the Belkin—Niyogi construction, which identify preferable choices of independent
variables. We compute clustering coefficients and their variance.

Keywords Generative linguistics - Syntactic parameters - Heat kernel - Dimensional reduction - Clustering
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1 Introduction: the Geometry of Syntactic Features

The Chomskian Generative Linguistics approach represented the first serious program aimed at a mathematical
study of natural languages. The development of the mathematical theory of formal languages, for instance, can
be seen as having partly arisen as a spinoff of this program. The aspect of this broad viewpoint that we are more
directly interested in here is the concept of syntactic parameters, namely the idea that syntactic structures of natural

A. Ortegaray - M. Marcolli ()
California Institute of Technology, Pasadena, USA
e-mail: matilde @caltech.edu

A. Ortegaray
e-mail: aortegar @caltech.edu

R. C. Berwick
Massachusetts Institute of Technology, Cambridge, USA
e-mail: berwick@csail.mit.edu

M. Marcolli
Perimeter Institute for Theoretical Physics, Waterloo, Canada

M. Marcolli
University of Toronto, Toronto, Canada

W Birkhiuser


http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-021-00498-0&domain=pdf

644 A. Ortegaray et al.

languages can be “coordinatized” by a set of binary variables. This part of the broader “Principles and Parameters”
model of syntax in essence postulates that syntactic structures of natural languages can be fully encoded in a vector
of binary variables, which are usually syntactic parameters. The idea goes back to Chomsky’s seminal work [7,8],
and has since played a crucial role in Generative Linguistics. A broad survey of the concept of syntactic parameters
is given in [1].

Among the shortcomings of the model is the fact that it has not been possible, so far, to identify a complete set of
such syntactic parameters and, even though extensive lists of syntactic features are recorded for a reasonably large
number of world languages, it is unclear what relations exist between these binary variables and whether there is
a natural choice of a set of “independent coordinates” among them. In other words, the question can be broadly
formulated as understanding the geometry of the space of languages, viewed at the syntactic level.

It is in general very difficult for linguists to collect extensive data about syntactic structures for a large number
of languages. There are presently some sources of data that we have been using for our investigation. A first source
we consider is the “Syntactic Structures of the World’s Languages” (SSWL) database [19], which is freely available
as an online resource. The SSWL database has the advantage of being very extensive (presently, it includes 116
parameters and a set of 253 world languages). However, there are issues with these data that need to be taken
into account carefully. One problem is linguistic in nature, namely the fact that some of the choices of binary
variable recorded in the SSWL database do not reflect what linguists typically consider to be the “true” syntactic
parameters, due to conflations of deep and surface structure. The other issue stems from the fact that the parameters
in the SSWL database are very non-uniformly mapped across the languages recorded of the database, with some
languages 100% mapped with all 116 parameters and others for which only very few of the parameters are recorded.
Thus, our data analysis has to take into consideration how to handle the incomplete data. We discuss this issue in
Sect. 2.1.1. A second recent source of data is given by a list of 83 syntactic parameters for a set of 62 languages
(mostly Indo-European) collected by Giuseppe Longobardi, [14], which extends the previously available list of
Longobardi and Guardiano [12]. This second list of parameters has several advantages with respect to the SSWL
data: the syntactic features considered can be regarded as genuine syntactic parameters; the data are much more
uniformly mapped across the set of languages considered, even though some lacunae in the data are still present;
some relations between parameters are taken into consideration in the data. The type of relations considered in the
Longobardi data are certain forms of entailment according to which some parameters in a language may become
undefined by effect of the value of other parameters. This type of relation is recorded in the data using ternary
instead of binary values, with 1 values corresponding to the usual binary on/off values of a given parameter, and
an additional value O to denote the case where a parameter is undefined by effect of the values of one or more
of the other parameters. In first approximation, we treat the syntactic features recorded in the data of [14] as an
independent set of data with respect to the features recorded in the SSWL database [19].

It should be noted that a new large syntactic dataset has recently become available, [6]. While this was not used
in the analysis we discuss in the present paper, the same methods discussed here can be applied to the new dataset.
A comparative analysis will be carried out in future work.

We will use the term “parameters” in this paper, for simplicity, to denote quite broadly various sets of binary (or
ternary, if an “undefined” value is included) variables encoding syntactic features, both in the case of the SSWL
data [19] and in the case of the Longobardi data [14].

We regard our choice of terminology, with respect to syntactic “parameters” and “features”, as justified, in view
of the fact that modern syntactic theory has moved toward generalizing the notion of parameter to a descriptive term
that relates to syntactic features. In particular, the Borer—Chomsky conjecture [2] was an important step away from
the notion of UG-specific parameters, as formulated within the original universal grammar (UG) hypothesis, toward
a notion of parameters that are “constructed” on the basis of morphophonological and syntactic patterns a child is
exposed to during language acquisition: for example, the presence of ordering rules, the presence of morphemes that
grammaticalize a semantic feature like definiteness or gender, etc. The more recent work of Longobardi [14] takes
this further by introducing the notion of “schemata”, where it is not individual parameters that are UG-specified,
but more general operations such as movement, morphological agreement, grammaticalization of morphemes.
The problem of what one should consider as “syntactic parameters” is still very much an object of investigation
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in syntactic theory. In view of this current state of the theory, it seems justified, for our purposes, to consider
as “parameters” all the syntactic features collected in both the SSWL database and in the data of Longobardi’s
LanGeLin collaboration.

A natural approach, in order to investigate relations between syntactic parameters at the computational level, is
to apply dimensional reduction algorithms to the data and identify possible connectivity and clustering structures.
In this paper we focus on a technique developed in [3-5] based on the differential geometry of Laplacians and heat
kernels.

A similar goal of identifying clustering structures in the LanGeLin syntactic parameters was pursued, with differ-
ent methods, in [9, 10]. The approach followed in this work is based on a machine learning approach (implemented
on the open source software WEKA), which infers relations between syntactic parameters on the basis of the data
of these parameters for the available set of languages in the database. A direct comparison of the results of [9,10]
and the results of the present paper, in relation to a different clustering analysis based on the persistent connected
components of the data set, is carried out in Section 5.2 and Section 5.3 of [16], which continues the investigation
of syntactic structures using persistent topology initiated in [17]. The results of this comparative analysis show
that the clusters we identify here with our hear kernel analysis are also detectable by the persistent connected
components, in both the SSWL and the LanGeLin data. On the other hand, it is shown in Section 5.3 of [16] that
the clusters detected by the machine learning algorithm of [9, 10] are not reflected in the ones seen by the persistent
connected components (or by our heat kernel method). This suggests that the method we introduce here (and the
different methods developed in [16,17]) detect different kinds of relations from those identified in [9,10], so these
methods should be regarded as complementing each other. To summarize, the kind of relations detected by the
machine learning technique of [9,10] can be modelled by directed graphs where, if a parameter p can be predicted
by knowing all values of another parameter p’ then there is a directed edge from p’ to p. On the other hand, the
kind of relations we identify here does not see this kind of “entailment relation” and focuses instead on parameters
that tend to align on submanifolds of the data set.

2 Heat Kernel and Dimensional Reduction

We recall briefly the dimensional reduction technique developed in [3-5]. The problem addressed by this approach is
generating efficient low dimensional representations of data sampled from a probability distribution on a manifold.
What one aims for is a method that is generally more efficient at identifying connectivity structures in the data
than typical dimensional reduction methods like Principal Component Analysis (PCA). The main idea is to build
a graph associated to the data points that encodes neighborhood information, and use the Laplacian of the graph
to obtain low dimensional representations that maintain the local neighborhood information, constructed using the
eigenfunctions and eigenvalues of the Laplacian.

The main reason why the Belkin—Niyogi algorithm we consider here is regarded as better than PCA for dimen-
sional reduction lies in the fact that methods like PCA are entirely linear algebra based and do not take into
consideration the geometry of the manifold the data may be sampled from. The method of Belkin—Niyogi is based
on an underlying mathematical result: if a set of points is sampled from a uniform distribution on a compact smooth
manifold isometrically embedded in some ambient space, then the graph Laplacians associated to the set of data
points converge in the limit of a large set to the geometric Laplace—Beltrami operator on the underlying manifold.
This implies that the resulting eigenfunction decomposition and lower dimensional projections are optimized to
maintain the information on the metric structure of the manifold the data are supported on.

2.1 The Belkin—Niyogi Algorithm

The general setting is the following. Consider a collection of data points p1, ..., px which lie on a manifold M
embedded in a Euclidean space R¢. One wants to find a set of points yi, . .., yx in a significantly lower dimensional
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Euclidean space R” (with m << £) that suitably represent the data points p;, in the sense that relevant proximity
relations are preserved. We assume that the data points p; are binary vectors of syntactic parameters embedded in
RY. Thus, in particular, we can consider the Hamming distance d (p;, p;j) between data points.

One may rightly worry here about the use of the Hamming distance. For instance, it is well known that in
reconstructions of phylogenetic trees the Hamming distance (in combination, usually, with neighborhood joining
algorithms) delivers poor results, compared to better uses of distances and tree reconstruction algorithms. This
was already observed, in the setting of phylogenetic trees of language families constructed from syntactic data, in
[12,13] and also in [18]. In this setting, however, the resulting cluster analysis appears to be more robust than in
the case of phylogenetic tree reconstruction. The fact mentioned above, that different clustering analysis methods
based on persistent topology in [16] are able to detect the same clusters we obtain here is a good indication that
these represent robust linguistic information and are not an artifact of a particular choice of metric structure. A more
detailed analysis of the role of metric information in the analysis of clustering structures of syntactic parameters is
ongoing.

The first step is the construction of an adjacency graph, with vertices given by the data points p; in the ambient
space R¢. There are several possible methods for assigning edges in the adjacency graph:

(1) e-neighborhood: an edge e¢;; is assigned between the data points p; and p; iff the distance satisfies

du(pi, pj) <e,
(2) n-nearest neighborhood connectivity: an egde ¢;; is assigned between p; and p; iff p; is among the n nearest

neighbors of p; or viceversa,
(3) farthest distance connectivity: a node p; is connected to the n farthest nodes.

The third method has less immediately obvious physical interpretation, but it can be used to isolate highly
independent syntactic parameters.

Once an adjacency graph is assigned by one of the methods listed above to the data set, the next step in the
Belkin—Niyogi algorithm consists of assigning weights to the edges of the adjacency graph. The weights used in
[3-5] are based on a heat kernel

]2
W= enp (100 @

assigned to an edge ¢;;, with W;; = 0if no edge is present between p; and p;. The weights depend on a heat kernel
parameter t > 0.
The Laplacian of the graph is defined as the matrix L = D — W, where W = (W;;) is the k x k matrix of weights

and D is the diagonal matrix with diagonal entries D;; = Y j Wji. One considers the eigenvalue problem
Ly = ADyr (2.2)
where the eigenvalues are listed in increasing order, 0 = A9 < A1 < --- < A;_1 and ¥; are the corresponding

eigenvectors, viewed as fuctions
v {l,...,k} > R

defined on set of vertices of the graph. One assumes here that the graph is connected, otherwise the same procedure
is performed on each connected component.
The following step then consists of mapping the data set via these Laplace eigenfuctions,

REDOMaxi—> i), ..., Um() € R™. (2.3)

A mapping of the data set to a lower dimensional R™ is obtained in this way by using the first m eigenfunctions.
That is, the first m eigenvectors v, ordered by increasing associated eigvenvalues, form the columns of a k x m
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Fig. 1 e-neighborhood Epsilon-Neighbourhood,epsilon =8.000000
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transformation matrix 7 that transforms the parameter vectors p = (p;) € R’ to dimensionally reduced vectors

p'=(p))eR™ with p=> Tip:. (2.4)
i

Belkin and Niyogi discussed in [5] the optimality of these embeddings by Laplace eigenfunctions.
2.1.1 Dealing with Incomplete Syntactic Parameter Data

To account for the incomplete mapping of languages in both the SSWL database and, to a lesser extent, in the
Longobardi data, the data sets used have been filtered. For the SSWL data we considered only those languages for
which at least 55% of the parameters are mapped, and for the Longobardi data we only used the languages that are
completely recorded (100% of the parameters mapped). For the graphical methods, we have replaced the remaining
missing values in the SSWL data with 0.5 values, so as not to assume a specific state of the parameter, and so that
the frequency of parameter expression is not changed.

3 Connectivity Structures of Syntactic Features

For each data set over 300 graphs were generated and analyzed. These graphs were used for the clustering and
connectivity analysis that we discuss in the next section, to determine structure in the parameter space.

We discuss here a sample of the graphs obtained with the e-neighborhood method and with the n-nearest
neighborhood method and the possible linguistic implications of the clusters and cliques structures detected.

3.1 Relatedness Structures in Longobardi’s Syntactic Data

We first consider the Longobardi dataset. We construct graphs with the e-neighborhood method for different values
of €. The cases shown in Figs. 1, 4, 6 show the resulting graphs for ¢ = 8, ¢ = 15, and € = 22, respectively.

In this graph one sees five relatedness structures. The two largest structures involve, respectively, 9 and 7 vertices,
while three smaller relatedness structures involve 5 vertices and two sets of 2 vertices. The largest structure consists
of the graph shown in Fig. 2. The syntactic parameters related by this structure are those listed as DMG (def. matching
genitives), GCO (gramm. collective number), GST (grammaticalised Genitive), along with other parameters: BAT,
CCN, GBC, IBC, NTD, TCL (see [9, 14]).
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The second largest structure in the graph of Fig. 1 is the graph shown in Fig. 3, which involves the syntactic
parameters labelled EZ2 (non-clausal linker), FGC (gramm. classifier), FGT (gramm. temporality), GSI (grammat-
icalised inalienability), HMP (NP-heading modifier), along with other parameters: NOC, NOO. Note that these
two structures appear quite different. If we use the vertex degree (valence) as a simple measure of centrality in a
network, then we see that in the graph of Fig. 2 the parameters TCL, GST, and IBC have valence 6, GBC and GCO
have valence 4, and BAT, DMG, and NTD have valence 3, while only CCN has valence one. Thus, nodes in this
network tend to have a higher degree of centrality than in the graph of Fig. 3, where only the FGT and the NOC
parameters have valence 4, while all the other vertices have valence either one or two. This signals a higher degree
of interconnectedness between the first group of syntactic parameters than within the second (Fig. 4).

When we increase the € variable to 15, we see larger relatedness structures. In particular, we find two interesting
networks. The component of Fig. 2 has grown into a much larger component, shown in Fig. 5, which in addition to
the previous vertices BAT, CCN, DMG, GBC, GCO, GST, IBC, NTD, TCL, now includes also ACM, ADI, AER,
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Fig. 5 Largest component of G (¢ = 15) for the Longobardi dataset

AFM, AGS, DMP, FIN, HGI, GEI, GFN, NPA. Again, as in the previous case, most of the vertices in this networks
have high centrality and only few of them (AER, GFN, NPA) have lower degrees. Those vertices like CCN that
were peripheral for the lower value of ¢ = 8 in Fig. 2 have acquired greater centrality (higher valence) at the scale
€ = 151in Fig. 5. The second largest component involves the nodes DIN, EZ1, EZ2, FGC, FGT, GSI, HMP, NOC,
NOD, NOO, NPP, TDL, and includes the network of Fig. 3 but where the previous vertices have acquired higher
centrality, A third smaller component appears involving connections between the parameters AST (structured APs),
FGM (gramm. Case), FGN (gramm. number), FGP (gramm. person), FNN (number on N), FSN (feature spread to
N), TPL.

When we further increase the neighborhood size variable to € = 22, we see that the three main relatedness
structures identified above grow in size while still remaining three separate components, Fig. 6. These three structures
also now clearly differ significantly as network structures in terms of the centrality of nodes. The first component,
which grows out of the structure of Figs. 2 and 5 involves the nodes ACM, ADI, AER, AFM, AGS, BAT, CCN,
DMG, DMP, DNN, DOA, EM1, FIN, FVP, GBC, GCO, GEI, GFN, GFS, GST, HGI, IBC, NGO, NPA, NTD, TAD,
TCL. In this component again most of the nodes have a high degree of centrality, with only very few peripheral
nodes, such as GFS (valence 1), NGO, DOA, DNN, FVP (valence 2), TAD (valence 3).

The second component, which has grown from the component of Fig. 3. Unlike the previous one, this contains
a subgraph consisting of nodes with low valence, DCN, DOR, DPN, DPQ, GCN, GFO, NM1, NM2, NOA, NOE,
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Fig. 6 e-neighborhood Epsilon-Neighbourhood,epsilon =22.000000

graphs for the Longobardi
dataset with € = 22

connected through the nodes GUN and GAL to a cluster of high valence, highly interconnected nodes, DIN, EZ1,
EZ2, FGC, FGT, GAL, GSI, HMP, NOC, NOD, NOO, NPP, TDL, which contains the original part of the network
that already coalesced for smaller values of €.

The third component grows out of the third component discussed above for the ¢ = 15 graph. It involves the
nodes AST, FFS, FGG, FGM, FGN, FGP, FNN, FSN, FSP, PGO, TPL. This component also shows typical nodes
of lower degrees and a lower interconnectivity.

3.2 Relatedness Structures in the SSWL Syntactic Data

As we discuss more in detail in Sect. 4.1 below, connectivity and clustering structures in the SSWL data emerge
much more slowly as a function of the neighborhood size € than in the Longobardi dataset. We can see this for
instance in Fig. 7, which shows the structure of the SSWL data for the same value € = 22 that we used in Fig. 6 for
the Longobardi data.

There are only a few small components visible at this scale in the SSWL data. One component (see Fig. 8
is a complete graph on the nodes given by the syntactic features Neg06, Neg07, Neg08, Neg09, Negl0. These
features are part of a set of binary variables (NegO1 to Negl0) that describe properties of Standard Negation. It
seems interesting that connections between the Neg06 to Negl0 subset emerge earlier (in terms of e-size) than
connections with the rest of the parameters in this set. Indeed one can see by computing the graphs at € = 15 that
the subset Neg(07, Neg08, Neg09, Neg10 coalesce into a complete graph on four vertices already at this e-size, while
Neg06 becomes connected to this component at a larger size. This subset of the Standard Negation parameters is
indeed somewhat different in nature from the Neg01 to Neg05 subset. The first five Standard Negation parameters
describe the position of a standard negation particle with respect to the verb (NegO1 and Neg02), whether standard
negation is expressed by a prefix or a suffix (Neg03 and Neg04) or through a negative auxiliary verb (Neg05). The
remaining set of Standard Negation parameters, which constitute the graph component of Fig. 8, instead describe
the expression of standard negation through predicate with a subordinate clause complement (Neg06, expressed in
Polynesian languages like Tongan), or through tone (Neg07, expressed in Niger-Congo languages like Nupe and
Guébie, or in Oto-Manguean languages like Triqui), or tone together with additional modifications to verb form
and other constituents in the negated sentence (Neg08, expressed in Niger-Congo languages like Basaa, Igala), by
areduplicated verb form (Neg09, expressed in Niger-Congo languages like Eleme), or by an infix (Neg10, possibly
expressed in the Muskogean language Chickasaw). The occurrence of the graph of Fig. 8 appears to indicate that
these modes of Standard Negation more strongly correlate to one another than the other modes described by the
Neg01 to Neg05 variables.
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Atthe scale ¢ = 22 there is also a three vertex component involving N2-09, N2-10, N2-11, with one edge between
N2-11 and N2-10 and one between N2-10 and N2-09, as well as several components consisting of two vertices joined
by an edge, such as V2-01 and V2-02, N2-01 and N2-03, 04 and 06, Neg13 and Negl4, Negl1 and Negl2. The
N2-09, N2-10, N2-11 SSWL parameters describe whether the property that the definite NP (noun phrase) contains
additional markers which is absent in the indefinite NP (N2-09, expressed in Niger-Congo languages like Basaa,
or in the Eastern Armenian language), whether the Numeral has a different form in definite and indefinite contexts
(N2-10, expressed in Arabic and Hebrew, in Icelandic and in Arawakan languages like Garifuna), and whether
the noun itself has a different form in definite and indefinite contexts (N2-11, expressed for instance in Eastern
Armenian, Danish, Icelandic, Norwegian, and in the Sandawe language). The two-vertex component connecting
N2-01 and N2-03 also pertain to the same subset of SSWL variables: N2-01 is expressed if at least one numeral
can precede the noun in an indefinite NP, while N2-03 is expressed if the same occurs with definite NP.

The parameter Neg13, Distinct Negation of Existence, is expressed in a language when negation of existence
differs from Standard Negation (this is expressed in many languages including for instance Arabic and Hebrew,
Mandarin, Hungarian, Japanese), while Neg 14, Distinct Negation of Location, is expressed if the negation of pred-
ications of location differs from Standard Negation and it also tends to be expressed in the same languages in which
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Negl3 is expressed. The edge connecting Negl1 and Negl2, on the other hand, connect the Distinct Negation of
Class/Property (Negl1, expressed for example in Arabic, Burmese, Fijian, Kiswahili) where negation of predica-
tions of class inclusion and property assignments differs from Standard Negation, and Distinct Negation of identity
(Negl2, expressed for example in Arabic and Hebrew, or in Indonesian, Thai, Kiswahili) where negation used in
predications of identity differs from Standard Negation. At these e-scales these parameters in the Negation sector of
the SSWL data do not yet coalesce with the Neg07-Neg10 connected component discussed above. Another single
edge component relating V2-01 and V2-02 connects the Declarative Verb-Second property (V2-01, expressed for
instance in most Germanic languages, in Estonian, in the Austroasiatic Khasi language, or the Malayo-Polynesian
Bajau language) which is expressed when a language allows only one constituent to precede the finite verb in declar-
ative main clauses and the Interrogative Verb-Second (V2-02, expressed for instance in the Germanic languages, in
Spanish, Armenian, Georgian, in the Niger-Congo Dagaare language, or the Austroasiatic Khasi language) which is
expressed when a language allows only one wh-constituent to precede the finite verb in interrogative main clauses.
The fact that the Germanic subfamily of the Indo-European family shares both features may be a factor in driving
the connection seen at this scale in the graph. The remaining two vertex connection visible at this e-scale relates
the 04 and 06 parameters, that is, Object Verb, expressed when a verb can follow its object in a neutral context, and
Subject Object Verb (SOV), expressed when the order Subject Object Verb can be used in a neutral context. Note
that other similar pairs in the word order sector of the SSWL database, such as 01 Subject Verb and 05 Subject
Verb Object (SVO) do not yes form connected components at these scales, while Object Verb and Subject Object
Verb already do. This may reflect the fact that SOV languages are slightly more abundant (around 45% of world
languages) than SVO languages (around 42% among world languages).

3.3 Nearest Neighbor Structures in Syntactic Data

As we discuss more in detail in Sect. 4.1 below, if we use the n-nearest neighbor construction of graphs in the
Belkin—Niyogi algorithm instead of the e-neighborhood method, the two sets of data, SSWL and Longobardi’s,
tend to behave more similarly.

The nearest one and nearest two connections for the Longobardi dataset are shown in Fig. 9. It stands out very
clearly that the FGM node (gramm. Case) has a high centrality already at the n = 1 level, with nodes like AST
(structured APs), CGB (unbounded sg N), FGP (gramm. person) and others like TPL, also having high centrality
in the network at the n = 2 level.

A similar analysis of the SSWL data is shown in Fig. 10. The type of connectivity structures one sees with this
method differ significantly from those obtained by the e-neighborhood approach, discussed above. Atthe n = 1
stage, the SSWL data separate neatly into two different connected components. The component shown in the bottom
part of the first plot in Fig. 10 has a single node of very high centrality, consisting of the 01 Subject Verb parameter,
and the rest of the component shows very little interconnectivity. The only nodes in this component that are not
directly connected to the central node are QO8 (connected to Neg09), N2-06 and 04 (both connected to 10), 05
(connected to Neg08), Order-N3-01 and Order-N3-07 (both connected to 18), while all other nodes are directly
connected to the central 01 Subject Verb node and most of them are valence one. Most strikingly, this component
is a tree (trivial first Betti number). This structure may be interpreted as an indicator of an influence of the value of
the 01 Subject Verb parameter on the parameters located at all the adjacent nodes.

The other component, shown at the top of the first plot in Fig. 10 has a very different structure. It contains no
single node of very high centrality and it has a higher degree of interconenctivity (a nontrivial first Betti number).
The largest valence of nodes in this component is just 5 (19 Possessor Noun node); there are a few nodes of degree 4
(Order-N3-02 Demonstrative Noun Adjectve node, CO1 Complementizer Clause node, 09 Object Subject Verb) and
of degree 3 (AO3 Degree Adjective, 15 Numeral Noun, 22 Noun Pronominal Possessor). Note how the subdivision
of nodes into the two connected components in this # = 1 graph does not appear to follow any of the natural
subdivisions of the SSWL data into different sectors: for example, word order parameters like Subject Verb or
Subject Object Verb do not belong to the same component, or the Numeral parameters N2, which fall partly in
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Fig. 9 n-nearest neighbor graphs for the Longobardi dataset withn = 1 and n = 2
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Fig. 11 Plots of the Epsilon Clustering and Connectivity
connectivity and clustering 1.0 A
of graphs as a function of
the parameters € and n,
respectively, used in the
graph generation methods
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one and partly in the other component. Negation parameters all belong to the first component (at the bottom of the
figure) but they do not form any interconnected structure, unlike the complete graphs in the e-neighborhood picture.
At the n = 2 level, the two components have already merged. A second high centrality node, 03 Verb Object,

has appeared alongside 01 Subject Verb. A large number of nodes are directly connected to these two nodes and to
no others.

4 Exploring the e-¢ Space

In this section we discuss how the global clustering and a measure of connectivity for the graphs G (¢, t) generated
from the datasets vary with the parameter €. This provides some insight into how the graphs evolve within the
Belkin—Niyogi process and at what e-value the graphs stabilize to a complete graph.

4.1 Connectivity and Clustering

The measure of connectivity that we consider here is vertex-connectivity, namely the minimum number of nodes
that needs to be removed to make the graph disconnected. Clustering, on the other hand, is defined as the mean
number of triangular sub-graphs that can be generated from the neighborhood of any given node.

The behavior of clustering and connectivity, as a function of either the e-variable in the e-neighborhood construc-
tion of the graphs, or of the n-variable in the n-nearest neighborhood construction shows a significantly different
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behavior between the SSWL data and the Longobardi data in the the e-neighborhood case, with the SSWL data
exhibiting much lower connectivity and clustering than the Longobardi data. On the other hand, the behavior of
the two datasets appears much more similar in the n-nearest neighborhood case, see Fig. 11. If a higher degree
of connectivity and clustering is to be taken as an indicator of the presence of relations between the parameters,
then the different behavior of the two datasets un the e-neighborhood construction would point to more structured
relations in the Longobardi dataset than in the set of syntactic variables reported in the SSWL. As we mentioned
above (see [12,14] for a more detailed explanation), the Longobardi dataset does explicitly record certain types of
entailment relations between the listed parameters, so we know a priori that the dataset does not consist of indepen-
dent variables. Previous analysis, such as [15], also indicated the presence of relations between the SSWL variables,
although relations in the SSWL data are not explicitly formulated as the relations recorded in the Longobardi data,
and were only detected through a measure of recoverability in Kanerva networks. It is possible that the higher levels
of connectivity and clustering visible in the Longobardi data with the e-neighborhood method may reflect the more
structured type of relations present in the Longobardi data. It is interesting, though, that when the graph construction
is performed using the n-nearest neighborhood method, the two datasets tend to behave much more similarly, with
the SSWL clustering value peaking above the Longobardi value for small n and trailing slightly below for larger
values of n.

4.2 Activity Regions in the e~ Space

We investigate here the simultaneous dependence on both the e-variable of the e-neighborhood construction of the
graphs and the ¢-variable of the heat kernel.

The e—t parameter space was explored to determine which values of € and ¢ give rise to high variance in
the distribution of each parameter under the mapping determined by the linear transformation 7' of (2.3), (2.4)
associated to a given weighted graph G (¢, 7). The reason for considering this high variance condition is similar to
the usual argument in the setting of principal component analysis, where high variance is used as an indicator that
the resulting variables are highly independent. Thus, the high variance regions we identify in the e~ space should
be regarded as choices of the e~ parameters that optimize the Belkin—Niyogi representation in the sense that the
Laplace eigenfunction projections provide a set of highly independent variables for the representation of syntactic
parameters. The resulting contour plot identifying high variance regions is shown in Fig. 12.

Another test aimed at identifying especially interesting regions in the e—# space was conducted using a measure
of the number of outliers produced among the set of coordinates for a given parameter. This measure indicated
similar high magnitude in the regions analyzed with the previous method.

Let £ be the set of languages in the database under consideration. We regard each ¢; € L as a binary vector
¢; € I, where n is the total number of syntactic parameters in the database, £; = ( Pi,,j)?:1 , where p;_; is the value
that the j-th parameter takes in the i-th language. Similarly, we view each parameter p; as a vector p; € ]FQ’ , where
N = #L is the number of languages in the database, p; = (p; ).

Counting the number of outliers of the set p; = {p; ; |{; € L} and averaging that measure over all the sets
of parameters gives a new measure of how the Laplacian eigenfunctions map method for dimensional reduction
improves the efficiency of the new parameters to describe the languages in £. The resulting plot of the number of
outliers is given in Fig. 13.

4.3 Clustering Coefficients

We compute clustering coefficients of the nodes of the graphs G (¢, ¢) using the NetworkX package [11].
Consider an undirected graph G; = (V, E) composed of its set of vertices V = V(G) (nodes) and set of edges

E = E(G), generated from a chosen region of the e~ parameter space identified according to the analysis described

in the previous subsections. The neighborhood, V; of any given node, v; € V(G) is the set of all nodes connected
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Fig. 12 Contour plots of SSWL Syntactic Parameter Mean Variance
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to that node. The size of V; is referred to as the degree (valence) of the vertex d; = deg(v;) = #V;. Since we are
dealing with graphs that do not have parallel edges (are not multigraphs), the valence also counts the number of
edges connected to v;. The cardinality

Ki =#{e e E(G)|d(e) NV; £ @) (4.1)

of the set all the edges connected to any of the vertices vy € V; gives a measure of the clustering in the neighborhood
of the vertex v;. The local clustering coefficient C; of a vertex v; is then given by

K;

(@
(%)
Using the NetworkX package, the values K; can be determined from the graph objects present in the environment
and the degrees d; are immediately available for any given node.

The variance of the clustering coefficients C; as a function of the e-variable in the e-neighborhood construction
of the graph are well approximated by a Gaussian law of the form

(x —H)?
f(x) =Aexp (——2> +V,
o

Ci = 4.2)
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Fig. 13 Contour plots of SSWL Syntactic Parameter Outliers
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Table 1 SSWL Gaussian-fit parameter data
Fit parameter Value lo error (%)
A 0.3359 0.3359
H 47.9530 22.99
o 33.35 43.78
14 0.0541 0.002310

with the parameters as indicated in the Tables 1, 2 see Fig. 14.

We compare this behavior with that of random graphs with a varying number of vertices, obtained by generating
random binary n x 260 matrices where n is the number of graphs vertices and using them as parameter data to
generate graphs. A plot of the values of the Gaussian parameters o, H, V, and A as a function of the number of
vertices in the graph is shown in Fig. 15. The convergence of the horizontal shift A indicates that this value only
partially depends on the number of vertices in the graph and possibly on the number of parameter values at each
vertex. The values of o and of the amplitude A appear to converge to small but non-zero values, and the vertical
shift value V appears to converge to zero.
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Table 2 Longobardi Gaussian-fit parameter data

Fit parameter Value lo error (%)
A 0.4025 0.4070
H 18.2832 15.74
o 18.5040 26.10
Vv 0.02934 0.1496
Fig. 14 A plot of the SSWL Graph Clustering Coefficient Variance
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Fig. 15 Gaussian
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The set of all clustering coefficients C; can be used further in the context of phylogenetic reconstructions of
language families, as outlined in the last section of [18]. Namely, the phylogenetic models used in [18] based
on the method of phylogenetic algebraic geometry, are based on considering individual parameters as identically
distributed independent random variables evolving according to the same Markov process on a tree. This hypothesis
is not appropriate in view of the many relations that exist between syntactic parameters (some known explicitly,
as those described in [12,14]) and others only detected statistically, as discussed in the present paper, or with a
different method in [15]. A modification of the phylogenetic model can be obtained by introducing different weights
attached to different parameters in the boundary distribution at the leaves of the tree, which gives more weight in
the model to parameters that are more likely to be “independent variables” and less weight to those that have a
high degree of dependency on others. The latter can be measured in different possible ways, for instance through a
degree of recoverability in Kanerva network as was done in [15], or through a function of the clustering coefficients
computed here. We will return to investigate this kind of application in future work.

References

1. Baker, M.C.: The Atoms of Language. Basic Books, New York (2001)

2. Baker, M.C.: The macroparameter in a microparametric world. In: Biberauer, T. (ed.) The Limits of Syntactic Variation, pp.
351-373. John Benjamins Publishing Company, Amsterdam (2008)

3. Belkin, M., Niyogi, P.: Laplacian Eigenmaps and spectral techniques for embedding and clustering. Adv. Neural Inf. Process. Syst.
14, 585-591 (2001)

4. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373—
1396 (2003)

5. Belkin, M., Niyogi, P.: Towards a theoretical foundation for Laplacian-based manifold methods. J. Comput. Syst. Sci. 74(8),
1289-1308 (2008)

6. Ceolin, A., Guardiano, C., Irimia, M.A., Longobardi, G.: Formal syntax and deep history. Front. Psychol. 11, 2384 (2020)

7. Chomsky, N.: Lectures on Government and Binding. Foris, Dordrecht (1981)

8. Chomsky, N., Lasnik, H.: The theory of principles and parameters. Syntax: An international handbook of contemporary research,
pp. 506-569. De Gruter, Berlin (1993)

9. Kazakov, D., Cordoni, G., Algathani, E., Ceolin,A., Irimia, M.A., Kim, S.S., Michelioudakis, D., Radkevich, N., Guardiano,
C., Longobardi, G.: Learning implicational models of Universal Grammar parameters, In “The Evolution of Language. In: Cuskley,
C., Flaherty, M., Little, H., McCrohon, L., Ravignani, A., Verhoef, T. (eds) Proceedings of the 12th International Conference
(EVOLANGXII) 2017. Wydawnictwo Naukowe Uniwersytetu ikotaja Kopernika (2018)

10. Kazakov, D., Cordoni, G., Ceolin, A., Irimia, M.A., Kim, S.S., Michelioudakis, D., Radkevich, N., Guardiano, C., Longobardi, G.:
Machine learning models of universal grammar parameter dependencies. In Proceedings of RANLP 2017 Workshop on Knowledge
Resources for the Socio-Economic Sciences and Humanities (KnowRSH). Varna, Bulgaria, pp. 31-37, INCOMA (2017)

11. NetworkX Software for Complex Networks. https://networkx.github.io/

12. Longobardi, G., Guardiano, C.: Evidence for syntax as a signal of historical relatedness. Lingua 119, 1679-1706 (2009)

13. Longobardi, G., Guardiano, C., Silvestri, G., Boattini, A., Ceolin, A.: Toward a syntactic phylogeny of modern Indo-European
languages. J. Hist. Linguist. 3(1), 122-152 (2013)

14. Longobardi, G.: Principles, parameters, and schemata. A constructivist UG. Linguist. Anal. 41(3—4), 517-557 (2017)

15. Park, J.J., Boettcher, R., Zhao, A., Mun, A., Yuh, K., Kumar, V., Marcolli, M.: Prevalence and recoverability of syntactic parameters
in sparse distributed memories, In “Geometric Science of Information. In: Third International Conference GSI 2017, pp. 265-272,
Lecture Notes in Computer Science, vol. 10589. Springer (2017)

16. Port, A., Karidi, T., Marcolli, M.: Topological analysis of syntactic structures. arXiv:1903.05181

17. Port, A., Gheorghita, I., Guth, D., Clark, J.M., Liang, C., Dasu, S., Marcolli, M.: Persistent topology of syntax. Math. Comput. Sci.
12(1), 33-50 (2018)

18. Shu, K., Ortegaray, A., Berwick, R.C., Marcolli, M.: Phylogenetics of Indo-European language families via an algebro-geometric
analysis of their syntactic structures. arXiv:1712.01719 [cs.CL]

19. Syntactic Structures of World Languages (SSWL). http://sswl.railsplayground.net/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://networkx.github.io/
http://arxiv.org/abs/1903.05181
http://arxiv.org/abs/1712.01719
http://sswl.railsplayground.net/

	Heat Kernel Analysis of Syntactic Structures
	Abstract
	1 Introduction: the Geometry of Syntactic Features
	2 Heat Kernel and Dimensional Reduction
	2.1 The Belkin–Niyogi Algorithm
	2.1.1 Dealing with Incomplete Syntactic Parameter Data


	3 Connectivity Structures of Syntactic Features
	3.1 Relatedness Structures in Longobardi's Syntactic Data
	3.2 Relatedness Structures in the SSWL Syntactic Data
	3.3 Nearest Neighbor Structures in Syntactic Data

	4 Exploring the ε–t Space
	4.1 Connectivity and Clustering
	4.2 Activity Regions in the ε–t Space
	4.3 Clustering Coefficients

	References




