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this talk is based on:

Matilde Marcolli, Richard K. Larson, Riny Huijbregts,
Extension Condition “violations” and Merge optimality
constraints, preprint (...ok not really but almost there)

The Goals:

1 show how linguistics constraints can be theoretically derived
from the mathematical structure
(what does it mean to derive a constraint? think Emmy Noether’s theorem in

physics: symmetry ⇒ conservation law)

2 specific case: use mathematical formulation of Minimalism to
investigate linguistic phenomena that apparently violate the
Extension Condition

no linguists were harmed in the making of this work (...hopefully)
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Thinking about constraints

Linguistics: many constraints are empirically observed and then
theoretically generalized (argued to be natural from a theoretical
perspective): for example

constraints on movement

constraints on phrase structure (eg final-over-final condition)

constraints on agreement

How does one think about constraints in a physical theory?

Physics: hard and soft constraints

hard constraints: dictated by the “kinematics” (the geometric
or algebraic structure underlying the physical model)

soft constraints: dictated by optimization (of an action
functional, energy, cost function) over a geometric space (or
algebraic structure) defined by the hard constraints

violation of hard constraints invalidates the model; violation of soft
constraints should occur rarely
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hard constraints: are dictated by the intrinsic geometric or
algebraic structure of the model, solutions of the equation of
motion necessarily satisfy these constraints
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soft constraints: optimization over an energy landscape,
equilibrium positions are favored, small oscillations around an
equilibrium positions are likely, positions very far from equilibrium
are very unlikely (quantifiable in terms of estimating distance from
equilibrium positions)
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Questions

which constraints in linguistics are hard constraints and which
are soft constraints?

in physics the intrinsic algebraic and geometric structure of
the model dictates the constraints: can one also derive
linguistics constraints from the algebraic structure rather than
abstract them from empirical observation and analysis?

quantification of violations to soft constraints predicts
frequency/likelihood of occurrence of corresponding
phenomena: does mathematical prediction meet linguistic
observation?

for syntactic phenomena mathematical prediction is possible
through the mathematical formulation of Merge and Minimalism
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Summary of Mathematical Minimalism

M. Marcolli, N. Chomsky, R.C. Berwick, Mathematical
Structure of Syntactic Merge. An Algebraic Model for
Generative Linguistics, MIT Press, 2025 (in print)

Main aspects of the model:

magma of syntactic objects

Hopf algebra of workspaces

Merge action on workspaces (Hopf algebra Markov chain)

optimality constraints on Merge action

head, complement, phases, labeling

Externalization (Parameters & Projections)

syntax–semantics interface (Birkhoff factorization)
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syntactic objects and workspaces

SO0 finite set of lexical items and syntactic features

SO countable set of syntactic objects, with the algebraic
structure of free commutative nonassociative magma
generated by SO0

SO = Magmac,na(SO0,M) ∼= TSO0

canonically isomorphic set of (non-planar) binary rooted trees
with leaves labelled in SO0

countable set FSO0 of workspaces: binary rooted forests
F = T1 t · · · t Tn with components Ti in TSO0

accessible terms Tv ⊂ T , non-root vertex v
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Merge and action on workspaces

Hopf algebra of workspaces: vector space V(FSO0) with
product F ⊗ F ′ 7→ F t F ′ and coproduct ∆(F ) = ti∆(Ti )

∆(T ) =
∑
v

Fv ⊗ T/Fv

extraction of accessible terms + cancellation of deeper copies

action of Merge on workspaces: S , S ′ ∈ TSO0

MS,S ′ = t ◦ (B⊗ id) ◦ δS,S ′ ◦∆

all possible Merge transformations K = t◦ (B⊗ id) ◦Π(2) ◦∆

B grafting at the root

include S ′ = 1 (unit, formal empty object) so Mβ,S/β ◦Mβ,1

for Internal Merge

combined K is a Hopf algebra Markov chain (more later)
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Optimality constraints on Merge

cost function weighting terms of the coproduct (cost of
extraction, cost of cancellation): Minimal Search δS ,S ′ in
MS ,S ′ picks zero-cost terms (as leading order)

effect of the Merge MS,S ′ on different size measures of
workspace: Resource Restriction, select optimal terms

Note: here also clear difference between structural constraints
(dictated by algebraic structure) and soft constraints (dictated by
optimality); first type admit no violations within the model, second
type admits possible violations, but increasingly rare with the
amount of violation (how far from equilibrium)

different proposed forms of Merge

Internal/External Merge satisfy optimality

Sideward Merge: violate optimality

Countercyclic movement: violate structural constraints
(EC violations)
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Extension Condition

structure formation (Merge) only grows structures at the root

Why?

External Merge and Internal Merge satisfy Extension Condition

What does the principle exclude?
Two types of mathematical operations of tree do not grow at root:

1 insertion at edges (Lie algebra)

2 grafting at leaves (operad)
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insertion Lie algebra

What linguists call countercyclic movement

structure growth that violates the Extension Condition

algebraically this operation defines a pre-Lie structure and an
associated Lie algebra
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Operad composition: output/input grafting at leaves

another structure growth that violates Extension Condition

trees as operations with several inputs and one output:
composition by plugging in output to a new input

linguistic use? interfacing syntax with morphology
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Extension Condition in Mathematical Minimalism

it is a structural constraint (hard constraints in the physics sense)

growth at the root from use of grafting B in Merge operation

combination of structures by merging at an internal
vertex/edge does not have the same algebraic properties

What is the algebraic property that characterizes the structure
growth operation B (grafting at a new root) that is not satisfied
by EC-violating growth?

Note: crucial part of the structure building operation of Merge is
the Hopf algebra structure of workspaces, so expect a
characterization of EC in terms of Hopf algebra properties
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What does physics suggest?

Note: the same grafting operator B plays role in physics

B(T1 t · · · t Tm) =
T1 T2 · · · Tm

(binary in the case of Merge, arbitrary arity in physics)

Main algebraic property of B: cocycle condition

∆ ◦ B = B ⊗ 1 + (id⊗ B) ◦∆

Hochschild cocycle in the Hopf algebra cohomology
Two main roles of this identity

1 recursive Dyson-Schwinger equations X = B(P(X )) equation
encodes generative process of the combinatorial objects

2 cocycle B gives a universal property for the Hopf algebra, with
respect to mapping to other bialgebras/Hopf.

Result: no growth that is EC-violating can satisfy cocycle condition
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Extension Condition violations in linguistics?

Four categories of proposed EC violations:

1 head-to-head movement,

2 head-to-phrase movement (including phrasal affixes and
syntactic cliticization),

3 phrase-to-head movement (like verb-particle alternation),

4 phrase-to-phrase movement (operator-variable phenomena).

There is a clear sense, on linguistics grounds, that these four are
not on the same level and that there is a hierarchy between these
phenomena, in order or increasing “difficulty”
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Apparent EC violations

all these four phenomena appear to present EC-violation, because
they can all fit a kind of derivation procedure:

X , [. . .Y . . .] (1)

[X [. . .Y . . .]] EM (2)

[X − Y [. . .Y . . .]] “EC violation” (3)

with X − Y representing adjunction of Y to X
this fits the “insertion at internal edges” EC-violating growth
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Head-to-Head Movement

as above with X and Y syntactic atoms (heads):

X , [YP . . .Y . . .]

[X [YP . . .Y . . .]] EM

[X − Y [YP . . .Y . . .]] “EC violation”

Examples: English “subject auxiliary inversion” (a), French V-to-T
movement (b), Germanic “verb second” (c), verb-initial word order
in VSO languages like Welsh (d), incorporations in Malayalam (e)
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Head-to-Phrase Movement

as above but X is a phrase and Y is an atom:

XP, [YP . . .Y . . .]

[XP [YP . . .Y . . .]] EM

[XP − Y [YP . . .Y . . .]] “EC violation”

Examples: phrasal affixes or syntactic clitics (English genitive
morpheme –’s)
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Phrase-to-Head Movement

as above but now X is a head and Y is phrase:

X , [ZP . . .YP . . .]

[X [ZP . . .Y . . .]] EM

[X − YP [ZP . . .YP . . .]] “EC violation”

Examples: verb-particle alternation
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Phrase-to-Phrase Movement

as above but X and Y are both phrases:

XP, [ZP . . .YP . . .]

[XP [ZP . . .Y . . .]] EM

[XP − YP [ZP . . .YP . . .]] “EC violation”

Examples: operator-variable phenomena
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quantifier absorption for multiple wh-questions

English: Who read what?

Bulgarian: “Koj vižda kogo?” (who saw what?)
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But are these really EC-violations? ... math says no!

why no? because EC is an algebraic property of structure
formation: do not expect to see violations

What replaces EC-violating derivation then? Possible answer:
Sideward Merge

X , [. . .Y . . .] X , [. . .Y . . .]

X − Y [. . .Y . . .]] SM [X [. . .Y . . .]] EM

[X − Y [. . .Y . . .]] EM [X − Y [. . .Y . . .]] “EC violation”

Now the left column has no EC-violations
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Forms of Sideward Merge

action of Merge on workspaces: S ,S ′ ∈ TSO0

MS,S ′ = t ◦ (B⊗ id) ◦ δS,S ′ ◦∆

start with workspace F = T t T ′ with two syntactic objects:

1 S = Tv ⊂ T an accessible term of the syntactic object T , and
S ′ = T ′ other syntactic object, with resulting new workspace

MS,S ′(F ) = M(Tv ,T
′) t T/Tv .

2 S = Tv ⊂ T as above and S” = T ′w ⊂ T ′ an accessible term
of the syntactic object T ′, with resulting new workspace

MS ,S ′(F ) = M(Tv ,T
′
w ) t T/Tv t T ′/T ′w .

3 S = Tv ⊂ T and S ′ = Tw ⊂ T two disjoint accessible terms
of the same syntactic object T , with resulting new workspace

MS ,S ′(F ) = M(Tv ,Tw ) t T/(Tv t Tw ) t T ′ .
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Optimality constraints on Merge

External Merge, Internal Merge, Sideward Merge are all
represented in the action of Merge on workspaces

K =
∑
S ,S ′

MS,S ′ = t ◦ (B⊗ id) ◦ Π(2) ◦∆

Chomsky in recent Merge & SMT formulation suggested that
SM is eliminated by optimality constraints that only EM and
IM satisfy

1 Minimal Search
2 Resource Restriction (Minimal Yield)

both can be quantified in the mathematical formulation

soft constraints: optimality with respect to a cost function

deviation from optimality can be accurately measured
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Optimality violations of Sideward Merge (Minimal Search)

will focus more on Resource Restriction but quick idea about
Minimal Search

assign a cost to extraction of accessible term and to deletion
of deeper copy (coproduct operation) and to grafting

cost is proportional to either depth of location of accessible
term or size of accessible term; cost of deletion of deeper copy
is inversely proportional to cost of extraction; cost of merging
combines the two costs

EM and IM result in zero-cost operations

SM has nonzero cost
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Counting costs for Minimal Search

two main possible ways depending on viewing the structures
top-down or bottom up:

top down: cost of accessing lower terms higher the deeper they
are (dv dist Tv from root)
bottom up: first locate accessible terms that are atomic, then
of increasingly large size (`(Tv )/`(T ) relative size in # leaves)

cost of extraction and of cancellation of deeper copy
compensate each other

cost of merging depending on cost of things merged and of
operation

bottom-up case: c(Tv ) = `(Tv )/`(T ),
c(T/Tv ) = 1− `(Tv )/`(T )

c(M(A,B)) := b(A,B)− c(A)− c(B)

b(A,B) counts number of components from which A,B is
taken: b(A,B) = 1 if A and B from the same component and
b(A,B) = 2 if A and B from different components
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Minimal Search costs for forms of Merge

External and Internal Merge are zero-cost

EM : c(M(T ,T ′)) = 2− c(T )− c(T ′) = 0
IM : c(M(Tv ,T/Tv )) = 1− c(Tv )− c(T/Tv ) = 0 .

Sideward Merge is not zero-cost

SM(1) : c(M(Tv ,T
′)) = 2− c(Tv )− 1 = 1− c(Tv ) > 0

SM(2) : c(M(Tv ,T
′
w )) = 2− c(Tv )− c(Tw ) > 0

SM(3) : c(M(Tv ,Tw )) = 1− c(Tv )− c(Tw ) > 0 ,

Minimal Search gives high cost to SM involving extraction of
atomic elements (both for bottom-up and top-down search):
favors short derivations that move large pieces over long
derivations moving small pieces

Resource Restriction pulls in the opposite direction: favors
longer derivations with small extractions (also favored by
combined costs!)

in dynamics operations weight tc for t > 0 weight parameter:
t → 0 leading terms

Matilde Marcolli The Extension Condition and Merge Optimality



Optimality violations of Sideward Merge (Resource Restriction)

Φ : V(FSO0)→ V(FSO0) transformation of workspaces (in
particular Φ = MS,S ′) satisfies

no divergence if b0(Φ(F )) ≤ b0(F ), the number of
components is non-increasing, a condition that ensures that
derivations consisting of iterations of such transformations do
not diverge;

no information loss if α(Φ(F )) ≥ α(F ), the number of
accessible terms is non-decreasing, namely no amount of
syntactic information is lost in the process.

Minimal Yield: for combined size σ(F ) = α(F ) + b0(F )
minimal change is σ(Φ(F )) = σ(F ) + 1
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Type of Merge Coproduct b0 α σ

External ∆c and ∆d −1 +2 +1

Internal ∆c 0 +1 +1

Internal ∆d 0 0 0

∆d and ∆c two different forms of the coproduct (cancellation of the deeper copies at

the two interfaces: trace at CI and no trace in externalization)

Merge Coproduct b0 α σ

SM(1) ∆c 0 +1 +1

SM(1) ∆d 0 0 0

SM(2) ∆c +1 0 +1

SM(2) ∆d +1 −2 −1

SM(3) ∆c +1 0 +1

SM(3) ∆d +1 −2 −1

first form of SM is indistinguishable from IM in terms of size counting
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second look at the Extension Condition

1 syntactic composition always grows the structure resulting in
more complex components

2 this growth only happens at the root of the tree(not by
insertions at any lower vertices/edges),

second property already discussed (in terms of grafting B); first
property distinct soft constraint: no complexity loss

start with workspace F = taTa with component Ta

root vertex va of the component Ta becomes, track where it
goes under Φ

it becomes a vertex of some component T ′a′ of new workspace

no complexity loss: new component more complex (Hopf
algebra degree as proxy for tree complexity measure)

deg(T ′a′) = #L(Ta′) ≥ #L(Ta) = deg(Ta)

satisfied by EM and IM: fails for all forms of SM
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Question: relation between these constraints

different optimization constraints: Minimal Search and
Resource Restriction (incl No Complexity Loss)

are they all needed?

are they independent?

is any of them more fundamental?

this is not obvious in Merge & SMT

but can be compared precisely in math formulation of Merge:

Minimal Search and Resource Restriction are not redundant
constraints and play different roles

different SM types do not simultaneously minimize both: MS
favors shorter derivation, RR favors smaller extraction
(possibly causing longer derivations)

but in asymptotic behavior of the dynamics, both achieve the
same effect (more on this later)
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Ranking forms of Sideward Merge by distance from optimality

observed that SM(1) behaves “like IM” in RR (b0, α, σ)

but violates NCL: by how much?

F = T t T ′ 7→M(Tv ,T
′) t T/Tv , root of T ′ goes in

M(Tv ,T
′) with deg(M(Tv ,T

′)) > deg(T ′) no NCL violation,
but root of T goes to T/Tv with
deg(T/Tv ) = deg(T )− deg(Tv ) < deg(T ) (NCL violation)

smallest violation for deg(Tv ) = 1 (atomic element)

how far are SM(2) & SM(3)? both have larger NCL violations
by deg(Tv ) + deg(Tw ) ≥ 2 (and violations of optimality in the
counting b0, α, σ)
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Ranking linguistic phenomena by optimality violation

all the four classes of phenomena discussed have a proposed
SM-based derivation that involves a composition EM◦SM that
replaces an IM-type movement operation

just seen that RR & NCL select SM(1) with an atomic
Tv = α as closest to optimal: resulting composition EM◦SM

M(M(T ′, α),T/α)

then evaluate how far from IM is this EM◦SM

how to evaluate if “IM-like”?

IM takes a T to a M(Tv ,T/Tv ) with
deg(M(Tv ,T/Tv )) = deg(T )

how far from being degree preserving?

deg(M(M(T ′, α),T/α))− deg(T ) = deg(T ′) so closest to
IM when T ′ = β is also atomic

M(M(β, α),T/α)
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resulting ranking by optimality violations (by RR, NCL, and deg)

smallest overall violations: Head-to-Head movement

M(M(β, α),T/α)

smallest RR/NCL violations, but larger deg violation:
Head-to-Phrase Movement

M(M(T ′, α),T/α)

smallest deg violation, larger RR/NCL violations:
Phrase-to-Head Movement

M(M(β,Tv ),T/Tv )

both larger deg and RR/NCL violations:
Phrase-to-Phrase Movement

M(M(T ′,Tv ),T/Tv )

same as what would be expected from linguistic considerations
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is Sideward Merge needed for structural reasons?

are (small) optimality violations structurally needed?
YES ... for Markovian property of Merge

in Merge & SMT it is assumed that “Merge is Markovian”
just qualitatively as “memoryless” process (action only
depends on current workspace)

because of the underlying Hopf algebra structure, Markovian
also has a more precise meaning

Hopf algebra Markov chains: introduced in

Persi Diaconis, C. Y. Amy Pang, and Arun Ram, “Hopf
Algebras and Markov Chains: Two Examples and a Theory.”
Journal of Algebraic Combinatorics, 39, no. 3 (2014):
527–585.

shown in MCB that Merge action on workspaces is a Hopf
algebra Markov chain in this sense

but... proof requires full MS ,S ′ that includes SM in addition
to EM and IM
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How does that work? (what role for optimality constraints?)

What is a Hopf algebra Markov chain?

Hopf algebra H with a linear map K = t ◦ Q ◦∆ (uses
coproduct and product to decompose and recompose and in
between a transformation Q acts on the pieces of the
decomposition)

H has a preferred linear basis X : matrix representation
K = (KX (x , y))x ,y∈X in that basis

KX (x , y) ≥ 0 and, for all x ∈ X there is at least one y ∈ X
such that KX (x , y) > 0
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KX has Perron–Frobenius eigenfunction η =
∑

x η(x) x with
eigenvalue λ > 0:∑

y

KX (x , y)η(y) = λ η(x) with η(x) > 0, ∀x ∈ X

x 7→ x/η(x) rescales basis to get stochastic matrix:

K̂X (x , y) =
1

λ

η(y)

η(x)
KX (x , y)

∑
y

K̂X (x , y) =
1

λ

1

η(x)

∑
y

KX (x , y)η(y) = 1

to check: Hopf algebra Markov chain need to check these
properties, tricky bit is Perron–Frobenius
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Perron–Frobenius theorem (non-negative matrices)

N × N real matrix A = (Aij) with Aij ≥ 0

irreducible: ∀i , j ∃m ≥ 1 with (Am)ij > 0

equivalent property: associate to A a graph GA with N
vertices and oriented edge from i to j iff Aij > 0, then A
irreducible means that GA is strongly connected: given any
two vertices there is an oriented path from the first to the
second

period hA of A is greatest common divisor of the m such that
(Am)ii > 0 (independent of i if A irreducible)

then...
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Perron-Frobenius:

∃ PF-eigenvalue λA > 0 simple (= spectral radius ρ(A))

∃ left/right PF-eigenvector wA, vA with positive entries

these are the only eigenvectors that are positive (up to scalar
multiples)

there are hA complex eigenvalues λ with |λ| = λA, each
λ = λAζ (ζ root of 1) and simple

So this says the key to this property is a geometric condition:
graph GA is strongly connected

to show Merge is a Hopf algebra Markov chain: need to show it
has this property

for action on workspaces (starting with a fixed set of lexical
items/features in SO0; also Merge always builds structure so only
look at action on workspaces with nontrivial set of edges: can
never return to zero edges through Merge)... SM is needed for
strong connectedness
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simplest example Merge action on deg = 3 workspaces
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KX =


0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0


Perron-Frobenius eigenvalue λ′ = 2 +

√
2 and Perron-Frobenius

eigenvector η′ = (
√

2,
√

2,
√

2, 1, 1, 1)τ (column)

K̂X =
1

λ

η(y)

η(x)
KX (x , y) =



0 1
2+

√
2

1
2+

√
2

0 1
2+2

√
2

1
2+2

√
2

1
2+

√
2

0 1
2+

√
2

1
2+2

√
2

0 1
2+2

√
2

1
2+

√
2

1
2+

√
2

0 1
2+2

√
2

1
2+2

√
2

0
√

2
2+

√
2

0 0 0 1
2+

√
2

1
2+

√
2

0
√

2
2+

√
2

0 1
2+

√
2

0 1
2+

√
2

0 0
√

2
2+

√
2

1
2+

√
2

1
2+

√
2

0


bistochastic so uniform distribution ξ(x) = 1 stationary distribution
of the Markov chain ξK̂X = ξ ... not so interesting... but not
accounting for optimality constraints !
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Optimality constraints in the Hopf algebra Markov chain
cost functions: Minimal Search, Minimal Yield, No Complexity Loss

K
cMS
X ,t =



0 1 1 0 t1/3 t1/3

1 0 1 t1/3 0 t1/3

1 1 0 t1/3 t1/3 0

1 0 0 0 t1/2 t1/2

0 1 0 t1/2 0 t1/2

0 0 1 t1/2 t1/2 0

 with Minimal Search costs

K
cMY
X ,t =


0 1 1 0 t−1 t−1

1 0 1 t−1 0 t−1

1 1 0 t−1 t−1 0
t 0 0 0 1 1
0 t 0 1 0 1
0 0 t 1 1 0

 with Minimal Yleld costs
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K
cCL
X ,t =


0 1 1 0 t2 t2

1 0 1 t2 0 t2

1 1 0 t2 t2 0
1 0 0 0 t t
0 1 0 t 0 t
0 0 1 t t 0

 with Complexity Loss costs

K c
X ,t =



0 1 1 0 t4/3 t4/3

1 0 1 t4/3 0 t4/3

1 1 0 t4/3 t4/3 0

t 0 0 0 t3/2 t3/2

0 t 0 t3/2 0 t3/2

0 0 t t3/2 t3/2 0

 with all costs combined
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same basic calculation for all cases

Ka,b,c (t) :=


0 1 1 0 ta ta

1 0 1 ta 0 ta

1 1 0 ta ta 0
tc 0 0 0 tb tb

0 tc 0 tb 0 tb

0 0 tc tb tb 0


Perron-Frobenius eigenvector η = (u, u, u, 1, 1, 1)τ

u = t−c(1− tb + ((1− tb)2 + 2tatb)1/2)

Perron-Frobenius eigenvalue

λ = 1 + tb + ((1− tb)2 + 2tatb)1/2

K̂abc (t) =


0 λ−1 λ−1 0 λ−1u−1ta λ−1u−1ta

λ−1 0 λ−1 λ−1u−1ta 0 λ−1u−1ta

λ−1 λ−1 0 λ−1u−1ta λ−1u−1ta 0
λ−1utc 0 0 0 λ−1tb λ−1tb

0 λ−1utc 0 λ−1tb 0 λ−1tb

0 0 λ−1utc λ−1tb λ−1tb 0


stationary distribution ξK̂abc = ξ with ξ = Z−1(v , v , v , 1, 1, 1)

with Z = 3v + 3

v =
utc

λ− 2
=

1− tb + ((1− tb)2 + 2tatb)1/2

−1 + tb + ((1− tb)2 + 2tatb)1/2
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resulting behavior for t → 0 (dominant terms)

Minimal Search case:

vMS

ZMS
∼ 1

3
− t5/6

6
− t4/3

3
+
t5/3

4
+· · · 1

ZMS
∼ t5/6

6
+
t4/3

3
− t5/3

4
+· · ·

RR, MY: vMY = 1 (bistochastic) weights t and t−1 of EM
and SM(3) cancel

NCL case:

vCL

ZCL
∼ 1

3
− 1

6
t3 − 1

3
t4 + · · · 1

ZCL
∼ 1

6
t3 +

1

3
t4 + · · ·

combined costs:

vtotal cost
Ztotal cost

∼ 1

3
− t17/6

6
− t13/3

3
+· · · 1

Ztotal cost
∼ t17/6

6
+
t13/3

3
+· · ·
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resulting behavior for t → 0 (dominant terms)

MS, RR/MY, and CL cost functions are different independent
soft constraints, weight different forms of SM differently, not
same SM preferable

weighting action of Merge by RR/MY has not effect on the
dynamics: convergence to uniform distribution

other cost functions MS, CL or combined give same limiting
distribution: uniform on the connected structures (completed
EM structure formation) with only remaining IM movement as
dynamics

so effect of SM becomes rare in long range dynamics
(asymptotic distribution)

additional result: for arbitrary size, the strong connectedness
(hence Perron-Frobenius) property holds also if only use first
two smallest violations

Ttβ 7→M(β, α)tT/α and TtT ′ 7→M(β, α)tT/αtT ′/β
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Alternatives to Optimality Violations? (no Sideward Merge)

so we have a coherent picture of SM as avoiding
EC-violations, with different optimality violation costs, and
necessary for structural reasons

but... what if there are other possible derivations of the same
phenomena that do not require SM and use only IM and EM ?

this may be possible (Riny Huijbregts has some possible
solutions)... but

these require additional algebraic structure

discuss an example: Amalgam in I-language or in Externalization?
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Amalgam in I-language proposal

F1 = John t
v∗ read1

t
INFL

v∗ read2

t
read3 a book

M{v∗,read1},{read3,IA}(F1) = F2 External Merge

= John t
INFL

v∗ read2

t

v∗ read1 read3 a book

MEA,v∗P(F2) = F3 External Merge

F3 =
INFL

v∗ read2

t

John

v∗ read1 read3 a book

external argument (EA), internal argument (IA)
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M{INFL,{v∗,read}},{EA,{{v∗,read},{read,IA}}}(F3) = F4 External

F4 =

INFL
v∗ read2 John

v∗ read1 read3
a book

MEA,INFL-P(F4) = F5 Internal Merge

F5 =

John

INFL
v∗ read2 John

v∗ read1 read3
a book
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then FormCopy

F5 =

John

INFL
v∗ read John

v∗ read read
a book

cancellation of deeper copies (this is the tricky bit)

F5 =

John

INFL
v∗ read John

v∗ read read
a book

externalized as John [[ read ] -s] a book
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What about implementing this in the mathematical Minimalism?

restriction to diagonals (FormCopy) is OK and coproduct only
extracts once the identified terms

but cancellation of deeper copies is only realized by the
coproduct, so it can only come together with an extraction:
so derivation cannot be performed in that order

if introduce a separate operation of cancellation this is NOT
zero-cost (higher cost than SM)... also issue of algebraic
properties of this additional operation

if pairing extraction and cancellation then it is an SM

the algebraic nature of the model puts very strong structural
constraints
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pairing of extraction and cancellation (after restriction to
diagonals) so it can be performed by a coproduct operation

F = INFL t v∗ t

John

v∗ read read
a book

coproduct extraction and cancellation (relevant coproduct term)

v∗ t read ⊗ INFL t

John

v∗ read read
a book

but now this is Sideward Merge
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Amalgamation in Externalization proposal

syntactic object generated by Merge

EA

INFL

EA

v∗

read
a book

head α locally c-commands head β if α c-commands β and no
head γ (γ 6= α, β) c-commanded by α and c-commands β
Amalg(X , {α, β}) substitutes lexical morphology {α, β} for
the syntactic head α of T ∈ SO with lexical morphology
{α, β}

v∗

read
a book

Amalg7→

v∗ read read
a book

avoids the cancellation/extraction issue ... but what is this
operation? Operad insertion at leaves + a cancellation?
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Morphology-syntax interface as operad structure

morphology also creates binary rooted tree structures

items at the leaves of syntactic trees can be thought of as
“modifiable by morphology”

operation that happens after syntactic structure formation

acting by insertion (of morphological structure) at the leaves

insertion at leaves has its own algebraic structure (operad)

interactions with syntax: word order and morphology (eg
apparent free word order) etc

but still... issue with cancellation operation that is NOT zero
cost (at least as costly as SM)

Conclusion

as in physics, just let the algebraic structure do all the work for
you: it is so highly constrained that it provides a way to navigate
and quantitatively rank different linguistic hypotheses
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