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Classical codes

@ alphabet finite set 2 of cardinality g > 2

o classical (unstructured) code: subset C C A"

@ elements of C are code words: x = (a1,...,a,) in C C A"
k = k(C) = log, #C with | k| integer part of k

transmission rate: ratio R = k/n

Hamming distance between code words x = (a;) and y = (b;)

d(x,y) = #{i|a; # b}

e relative minimum distance: ratio § = d/n with
d(C) = min{d(x,y)[x,y € C, x # y}
o classical code C with these parameters: [n, k, d], code
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Classical linear codes
o finite field A = F4 of cardinality g = p" characteristic p > 0
e code is linear if C C Fg is an Fg-linear subspace of vector
space Fg
e k = | k] is an integer for linear codes = dim C as vector space

o given Fy-bilinear form (-,-) on Fg, self-orthogonal code C if
all code words x,y € C have (x,y) =0

e dual code C*: vectors v in Fg with (v,x) =0 for all x € C

e self-orthogonal: C C C*
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Central extensions: groups from linear codes
@ ilnear code C C Fg with dim C = g~ so C ~ IFS
@ cocycle §: C x C = [y

O(v,w) —0(u+ v,w)+0(u,v+w) —0(u,v) =
@ central extension

0—+F;—=Gp—C—0

multiplication

(v, x) - (w,y) = (v +w,x+y +0(v,w))

associativity from cocycle condition

@ when Fy = > view 0 : C x C — F> as “QR code diagram”
0 :F5k x Tk — T,
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Example

@ quaternion units group Qg = {1, £/, +j, £k} relations
P=j?=k?’=—1andij=k

o C =T?%, extension 0 — Fy — Qg — C — 0 with cocycle 6

v\w |00 10 01 11
00 [0 0 0 0
0 /0 1 1 0
oo [0 0 1 1
1 (o 1 0 1

Matilde Marcolli From Classical to Quantum Codes



Quantum codes
@ gbit = a vector in finite dimensional Hilbert space C?
e binary gbit spaces (C?)®"
@ g-ary gbit = a vector in C9 and g-ary gbit spaces (C9)®"
o

g-ary quantum code of length n and size k = a k-dimensional
C-linear subspace of C9" = (C9)®"

quantum error: a linear map E € End¢c(C9")

o for quantum errors of the form E = E; ® - - - ® E,,, the weight
is w(E) = #{i| E # id)

@ quantum error E is detectable by a quantum code Q if
Pq E Pg = AePq

with Pg orthogonal projection onto @ C C9" and \g € C
constant depending only on E
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e for g = p™ consider field F; as an F-vector space, F[J

o for x € Fg, x = (a1,...,an) write each coefficient a; € F, as
vectors a; = (aj1, - .., aim) with aj; in Fp,

e elements of Z/pZ, integer numbers 0 < a; < p—1

@ given a linear operator L € Endc(CP) with LP = id, can
consider integer powers L%
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Fundamental error operators

@ T and R on CP given by matrices

010 00

0 01 00
T=|:

0 0O 01

1 00 0
10 0 0 0
0 ¢ 0 0 0
0 0 & 0 0

R = )

00 0 2
0 0 O 0 ¢pt

where £ = exp(27i/p)
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Relations and basis

@ power and commutation relations
TP=RP=id and TR=¢&RT
@ these imply composition relations
TKRE = ekt RUTH
(THRY)(TTR®) = £~ TrkRs+t — ¢sk—rt(TrRS)(TRY)

o the operators TR’ form an orthonormal basis of
M,(C) = End¢(CP) with respect to the inner product
(A, B) = Tr(A*B)
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Composite error operators
@ x and y are elements in Fy, written as vectors
x=(a1,...,am), y = (b1,..., bm) with coeffs a;, b; € I,
e linear maps £ = £; ® --- ® E, in Endc(C9"), with g = p™,
where the factors E; are of the form E; = T(R,

Ti=T"®Q - --@T™
R =R ®...@ R

o for v=(x1,...,xp) and w = (y1,...,yn) vectors in Fg,
corresponding error operator

Evw=TqR, ®- - ® TRy,
@ T and R relations imply commutation relation
EvwEy o = g(v,wl>_<W,v’>Ev,’W/ Eyw

o for v,w € g, the bilinear form (v, w)

(v,w) =D ajby

i=1 j=1
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Group laws

@ also get composition relation
_ /
EV,WEV’,W’ = 5 {w,v >Ev—l—v’,w+w’

o & subgroup of Autc(C9") given by invertible linear maps of
the form

E={ Ew|v,weFL0<k<p—1}
o finite group of order p?™+1
o center Z of & is the subgroup {¢ id} isomorphic to Z/pZ

@ We'll see this is related to Heisenberg groups and symplectic
spaces over finite fields
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Quantum stabilizer codes

@ quantum stabilizer code is a quantum code is obtained as
joint eigenspace of all the linear transformations in a
commutative subgroup of £

e S C £ commutative subgroup with #S = p"*!
@ x : S — U(1) character trivial on Z

@ quantum stabilizer code Q = Qs is linear subspace of ca”

Qs = {¥ € CT' | Ap = x(A)¢, VA € S}

@ dimension p™"~"
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CRSS algorithm: classical-quantum correspondence
@ given classical linear self-orthogonal code C C IF?,”, with
#C=p"
o linear maps E, ), for (v, w) an Fy-basis of C, together
with elements £Xid, generate a subgroup S C €

@ composition relation and self-orthogonality imply subgroup S
is abelian

@ by construction of order #S = pt!

o this determines a quantum stabilizer codes Qs , with
parameters [[n,n — r/m, d*]]q

@ minimum distance dg of the quantum stabilizer code Qs
satisfies
do =d" =dci ¢

deic=min#{i|vi#0 or w; #0, (v,w) € F?"

q

(v,w) € CtC}
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CRSS algorithm: classical-quantum correspondence

conversely given quantum stabilizer code Q = Qs y
o given [F;-linear automorphism ¢ € Autr, (F}')
o get [F-linear code of length 2n, with #C = p" for #S = p+1

C=Cop={(v,p (W) | Evw € S}

@ C is self-orthogonal with respect to bilinear form
<Va QO(W,» - <V,7 SD(W»

with (v,w) =37 jrll ajjbjj

@ role of automorphism ¢: field extension IF, of IF,, is identified
with the vector space I’ (loose track of field structure); can
use field automorphism ¢ to remember the remaining
structure
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Symplectic vector spaces and Heisenberg groups
@ Symplectic vector space (V,w) over a finite field Fg

(char# 2):

e w closed: cocycle condition
dw(u,v,w) = w(v,w)—w(u+v,w)+w(u,v+w)—w(u,v) =0

e w non-degenerate: given u € V find v with w(u,v) # 0

@ Heisenberg group central extension determined by cocycle w

0 — Fy — Heis(V,w) =V =0

(v,x)-(w,y)=(v+w,x+y+ %w(v, w))
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o H(F2") = Heis(F2", w) with w standard Darboux form

@ Darboux form: sum IE‘?," = @,-IE‘?, on each IE% symplectic form

w((x1, 1), (x2,¥2)) = y1xo0 — yoxa

@ the error operators E;, = T,R), give the explicit
representation matrices of the Heisenberg group H(IF%,”) with
respect to the central character specified by £ with £P =1

@ Darboux basis for (V,w) direct sum of 2-dim symplectic
spaces over [

e using w non-degen can find a first F2 = span{u, v} with
w(u,v)=1

e using closed can decompose V = ]Ff] @® W with
W={we V]|w(uw)=uw(v,w) =0}

e then repeat
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Heisenberg groups and CRSS quantum codes

@ unique irreducible complex representation H = #H,(V,w) of
Heis(V,w) with central character x : Fq — C*

@ functorial geometric quantization over finite fields
(Gurevich—Hadani) = decomposition of H = (C9)®" as
tensor product of g-ary gbits C9

@ representation matrices E,, = TR}, of Heis(V,w) additive
basis of End(#)

@ isotropic subspace C C V = abelian subgroup of Heis(V,w)
= mutually diagonalizable, H sum of #C = g* eigenspaces
of dimension "k

o Each such joint eigenspace of C of dimension ¢" ¥ is a

quantum code Q¢ ~ (C9)®("=k) that encodes n — k gbits to
n gbits (CRSS quantum code associated to classical code C)
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Algebro-geometric codes
e algebraic points X(Fg) of a curve X over a finite field Fq
e set A C X(Fg) and divisor D on X with supp(D)NA =10

@ code C = Cx(A, D) by evaluation at A of rational functions
f € Fq(X) with poles at D

@ bound on order of pole of f at D determines dimension of the
linear code
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Reed-Solomon codes case X(Fq) = P1(F,)
o C={(f(x1), - ,f(xn)) : f €Fg[x], deg(f) < k} gives an
[n,k,n—k +1]qg with n < g

e or homogeneous polynomials at points x; = (u; : v;) € P1(F,)
C ={(f(ur,v1),...,f(tn,vn)) : f € Fglu,v], homog. deg(f) < k}
o generalized Reed-Solomon codes: w = (w1, ..., w,) € Fa
Cuk = {(maf(xa), - waf(xn)) : f € Fglx], deg(f) < k}

(.A'W’k ={(waf(u1,v1), ..., Waf(up,vp)) : f € Fglu, v], homog. deg(f) < k}
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CRSS of Reed-Solomon codes
o Hermitian self-dual case: (v,w)y = >"7_; viw?, with
v,w € ng
@ Hermitian-self-dual length n over F . gives self-dual code C
length 2n over Fg then CRSS
@ Hermitian self-duality conditions for generalized
Reed-Solomon codes with w = (w1, ..., wy) € (F,)"

e For w; =1 and n = ¢° with k = g, Hermitian-self-dual
Reed-Solomon code C = (; 4 and associated
[[g° +1,¢% — 29 + 1, g + 1]]4-quantum Reed-Solomon code C
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Symplectic vector spaces and perfect tensors (p > 2)

e perfect tensor: T € V®™ (V with inner prod to identify with
dual, here gbit V = C9) such that all splittings (tensor/Hom)
for j < m/2 are isometries

Ve _y pye(m—j)

@ when isometric injection of the (n — k)-gbits code space Q¢
inside the n-gbit space H is obtained from a partition of the
indices of a (2n — k)-index tensor into (n — k)-gbits (to be
encoded), together with n-gbits (encoding space)

@ even number of indices of perfect tensor when dim C = k even

@ procedure to produce directly perfect tensors via a version of
CRSS algorithm and quantization of symplectic vector spaces
over finite fields
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Lagrangians

@ Symplectic vector space (V,w) of dim 2n over [Fq; Lagrangian
subspace L C V (of dim n)

o Irreducible rep of Heis(V,w) can be realized through a choice
of Lagrangian L C V (in classical construction of quantum
mechanical Hilbert space that identifies position vs momentum
repres L, LY) H; =H,(V,L w) (invariants under L")

@ L chosen in “general position” means that intersection with
Darboux decomposition as small as possible, so a basis of H;
is as far as possible from being a tensor-product basis in the
Darboux decomposition

(dmV =4n) V=9g;Vi=> ((Cq)®2n =H=H =x;CY
V = W @ W’ splitting of 2n indices k < n and 2n — k
dim(LN W) >2(k —n), dim(LNW')>2(n— k)

for k = n general position if both zero-dimensional
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Lagrangians and perfect tensors

@ geometrically maximal rank of perfect tensors with respect to
decomposition into groups of gbits corresponds to a “general
position” of the Lagrangian (with respect to a given
symplectic splitting of V into 2-dim Darboux pieces)

@ most non-general position: L’ sum of 1-dim Lagrangians in
each 2-dim Darboux subspace (maximally decomposable)

e (functorial quantization): symplectomorphism
Y Wi — Wo = H(Y) : H(Wh) — H(W2)

o if Lagrangian L in general position then symplectomorphism
Y W — W' (with opposite (W,®) = (W, —w))

o H(v): H(W)Y — H(W') same as tensor
T e H(W) @ H(W') = H(V) is perfect tensor
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Example: 3-qtrit quantum code

@ quantum Reed-Solomon code with perfect tensor condition
start with classical [n, k, n — k + 1] 2 Reed—Solomon code
choose parameters n=qg=3, k=(¢q—1)/2=1
X =PY(F3) ~ {oo} = {[1:0],[1:1],[L:2]}
[3, 1, 3]o-code

{(£:(1,0),f,(1,1),f2(1,2)) | a € Fy, f, € Folu, v]}
@ k =1 so homogeneous polynomials just f,(u,v) = ag € Fy

{(a0, a0, a0) | a0 € Fo}

self-orthogonal code: (a, b) = 3aph§ = 0
dg = min{weight(v)|v € D+ \ D} = 2 from

DJ‘ = {(a, b> = ao(b%-l-b%—l-bg) = 0} = {(2b2+2b3, by, b3) ‘ b; € Fg}
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o take then classical [2n,2k,2n — 2k + 1]; Reed-Solomon code
same parameters n=q =3, k=(q—1)/2=1

e inputs a = (ap, by) € F3 and code

C= {(fao(l’o)a fbo(]-a 0)7 f30(1> 1)a fb0(17 1)a fao(lv 2)7 fbo(17 2))}

@ again because k =1 just

C = {((a0, bo), (a0, bo). (a0 bo)) | (a0, bo) € F3}
@ self-orthogonality for inner product

((a, b),(a', b)) = 3agbly — 3apho = 0
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o for (a, b) € C group elements ¢'E, ,, with 0 < i < 2
Ea,b = TaoRbo & Tao Rbo & Tao Rbo

@ matrices T, Rp,

1 1 1
ToRy = 1 ToR, = 13 ToRy = &
1 & 3
010 0 ¢ 0 0 & 0
TiRo=|0 0 1| TwrRi=|0 0 &| TiR=]0 0 ¢
1 00 1 0 0 1 0 0
00 1 00 ¢ 00 ¢
ToRy=11 0 0 LR, = 00 ThRy=11 0 0
01 0 ¢ 0 € 0
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@ orthonormal basis of gbits |ag) with ap € F3

1 0 0
0y=10 =10 12)= |1
0 1 0
@ common eigenvectors of the matrices T, Rp,
|A) = [000) + [111) +[222) |B) = [012) +[120) + [201) |C) = [021) + [210) + [102)
|D) =001) + [112) + [220) |E) = [010) + [121) +[202) |F) = [100) + [211) + [022)

|G) = 002) + [110) +[221)  |H) = [020) + [101) +[212) |} = [200) + [011) + [122)
with [ijk) = |i) @ |j) @ [k) € (C*)=3
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@ eigenvalues and eigenvectors §"Ea’b (with notation

a3 := (a0, a0, a0))

Egs s | Eos1o | Egsos | Evsgs | Ersgs | Eysgs | Egsgs | Egsps | Eas g
|A) 1 1 1 1 1 1 1 1 1
|B) 1 1 1 1 1 1 1 1 1
|C) 1 1 1 1 1 1 1 1 1
D) | 1 ¢ £ 1 ¢ ¢ 1 & ¢
|E) 1 ¢ £ 1 ¢ S 1 & g
|F) 1 & £ 1 & § 1 & S
&) 1 £ & 1 S 5 1 § 5
|H) 1 £ ¢ 1 S ¢ 1 S ¢
1) 1 € ¢ 1 ¢ ¢ 1 § ¢
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@ from table see that invariant subspaces for group S are
span{|A),|B),|C)} or span{|D), |E), |F)} or
span{|G), [H), |I)}

@ can equivalently take one: say Q¢ = span{|A),|B),|C)}

@ resulting quantum code [[3, 1, 2]]3 quantum Reed-Solomon
3-qtrit code is a 4-index perfect tensor

@ see as an isometric map T : C3 — (C3)®3
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Characteristic 2 case: Symplectic spaces and quantization
@ S. Gurevich, R. Hadani, The Weil representation in
characteristic two, Adv. Math. 230 (2012), no. 3, 894-926
Setting:
o finite field k = For
o residue field Ok /myk = Fyr of an unramified extension K of
degree r of Q2, with Ok C K ring of integers, my maximal
ideal
e ring R = Ok /m%
o (V,&) free R-module with a symplectic form

o [Fyr-vector space V = \7/mK with R-valued non-degenerate
skew-symmetric form (almost-symplectic) w = 2&
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@ polarization of symplectic form &: bilinear form
B:V x V= R with

B(v,w) = B(w, 7) = &(7, w)
@ bilinearity implies cocycle condition
B0, W + d@) — B(V, W) — B(V + W, &) + (W, d) = 0
e on V 3 =27 induces an R-valued cocycle with

B(v,w) — B(w,v) =w(v,w)
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Heisenberg groups in characteristic 2

@ Heisenberg group is the extension determined by cocycle 3
0 — R — Heis(V,8) - V=0
@ multiplication
(vir)x(w,s) =(r+s+B(v,w),v+w)

@ choice of a character x : R — C* determines an irreducible
complex representation #,(V, 3) of Heis(V, f3)
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Weil Heisenberg groups in characteristic 2

o F = F,4, central extension of a symplectic [F,4-vector space
(V,w) by F-valued cocycle 5: V x V — T with
,B(U, V) - 5(‘/’ u) = w(uv V)

0 — F — Heiswei(V,8) = V — 0

@ advantage of version with R instead of F: better symmetries
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Comparison

@ automorphisms in Aut(Heis(V/, 3)) acting trivially on center:
affine symplectic group

0— VY — ASp(V) — Sp(V) — 1
extension of symplectic group: solutions («, g) of
a(v+w) —av) —a(w) = B(gv,gw) — 5(v,w)

@ automorphisms in Aut(Heisye;(V, 3)) acting trivially on
center: pseudo-symplectic group

0= VY= W¥(V)—0(Q)—1

O(Q) C Sp(V) orthogonal group of quadratic form
Q(v) = B(v, v): solutions («, g) of above

@ V(V) not an extension of symplectic group but ASp(V) yes
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enhanced Lagrangians

@ pair (L,a) with L C V Lagrangian and a : L — R satisfying
alv+w) —a(v) — a(w) = (v, w)

@ this @ : L — R defines section 7 : L — Heis(V/, ) of the
projection Heis(V,3) — V by 7 : £ — (£, a(¥))

T+ )=+ a(l+ 1) =

(L+ 2, a(l) +afl') + B4, L) = 7(£) x 7(£)

e realization of irreducible Heisenberg representation: Hy 1 5.)
subspace of C[Heis(V/, 3)] functions with

f((0,x) - (w,y)) = x(x) f(w,y), Vx €k, V(w,y) e V x k

f(r(0) - (w,y)) =f(w,y), Ylel, Y(w,y)e V xk
with action of Heis(V/, ) by right translations



Tensor Networks, Quantum Codes, and Geometry from Information
@ Fernando Pastawski, Beni Yoshida, Daniel Harlow, John
Preskill, Holographic quantum error-correcting codes: Toy
models for the bulk/boundary correspondence, JHEP 06
(2015) 149 [HaPPY]

Main Idea: Bulk spacetime geometry is the result of entanglement
of quantum states in the boundary through a network of quantum
error correcting codes

@ quantum codes by perfect tensors: maximal entanglement
across bipartitions

@ network of perfect tensors with contracted legs along a
tessellation of hyperbolic space

@ uncontracted legs at the boundary (physical spins), and at the
center of each tile in the bulk (logical spins)

@ holographic state: pure state of boundary spins
@ logical inputs on the bulk: encoding by the tensor network
(holographic code)
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AdS/CFT Holographic Correspondence

@ bulk/boundary spaces
@ hyperbolic geometry in the bulk (Lorentzian AdS spaces,
Euclidean hyperbolic spaces H9*1)

@ conformal boundary at infinity:
OH® = P1(C) (AdS3/CFT3) or
OH? = P}(R) (AdS,/CFTy)

e AdS/CFT correspondence: a d-dimensional conformal field
theory on the boundary related to a gravitational theory on
the d + 1 dimensional bulk

AdS/CFT Holography developed in String Theory since the 1990s

e E. Witten, Anti-de Sitter space and holography,
arXiv:hep-th /9802150
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time anti-de Sitter space E \

conformal
boundary
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More recent view of AdS/CFT: Quantum Information

@ relation between CFT on the boundary and gravity on the
bulk with focus on Information (Entanglement Entropy) of
quantum states on the boundary and geometry (gravity) on
the bulk.

from R.Cowen, “The quantum source of space-time”, Nature 527 (2015) 290-293

Spacetime geometry emerges from quantum entanglement
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Entanglement between quantum fields in regions A and B
decreases when corresponding regions of bulk space are pulled
apart: dynamics of spacetime geometry (= gravity) constructed
from quantum entanglement

from R.Cowen, “The quantum source of space-time”, Nature 527 (2015) 290-293
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Ryu—Takayanagi Formula:
Entanglement Entropy and Bulk Geometry

e Entanglement Entropy: H = Ha ® Hp
pa = Try (|W)(V]), Sa= —Tr(palogpa)

e Entanglement and Geometry: (conjecture)
A(zmin)
4G
area of minimal surface in the bulk with given boundary A = 0B

Sa =

y Minimal Surface

i

from T.Nishioka,S.Ryu, T.Takayanagi, “Holographic entanglement entropy:

an overview”, J.Phys.A 42 (2009) N.50, 504008
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tensor networks as discretization of the bulk space

from R.Cowen, “The quantum source of space-time”, Nature 527 (2015) 290-293
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Pentagon tile holographic code [HaPPY]

e perfect tensors: Tj _; such that, for {1,...,n} = AU A with
#A < #AC, isometry T : Ha — Hac; perfect code (encodes one
gbit to n — 1)

e six legs perfect tensor T; . j: five gbit perfect code

[[5, 1, 3]]2-quantum code:

CCH®, C={eH®®: Spp=1}
51 =XQZ2 72X

X, Y, Z Pauli gates and S5, S3, S4, S5 = 5155535, cyclic perms,
with H = C? one gbit Hilbert space
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5-ary gbits perfect tensor codes generalize case of 3-qtrit with
6-legs perfect tensor
e Example of perfect tensor codes
@ single 3-ary qubit (qutritt) encodes to three 3-ary qubits
|0) ~— |000) + |111) + |222)
|1) — |012) + |120) + |201)
|2) ~— |021) + |102) + |210)

o polynomial codes f,(x) = ax? + by_1x9™1 + -+ + byx + by
|a) = D (Oxer,|fa(x)))
beFg
e example: g =5 [HaPPY] code case
)= D |bo, bo+bi+a, bo+2bi+4a, bo+3by+4a, by+4b; +a)
bg,b1 €F5

e in general [n, k,n — k + 1] Reed-Solomon code = quantum
[[n, n — 2k, k 4+ 1]]4 code; for n = q and k + 1 = n — k perfect
tensor [[q,1,(q + 1)/2]]4 code
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from F.Pastawski, B.Yoshida, D.Harlow, J.Preskill, Holographic quantum error-correcting codes: Toy models for

the bulk/boundary correspondence, JHEP 06 (2015) 149
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Properties of the [HaPPY] code

@ quantum error-correcting codes with a tensor network
structure as discretized version of spacetime

@ bulk and boundary degrees of freedom (logical /physical)

@ exact prescription for mapping bulk operators to boundary
operators

@ Ryu—Takayanagi: entanglement entropy in the CFT is
computed by the area of a certain minimal surface in the bulk
geometry (cutting legs in the tensor network cuts out the bulk
region)

Bulk discretization via tensor networks depend on a choice of
tessellation and construction of a network of perfect tensors along
the tessellation: is there a natural bulk discretization that works?
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e Some more results on the [HaPPY] code:

o Elliott Gesteau, Monica Jinwoo Kang, The
infinite-dimensional HaPPY code: entanglement wedge
reconstruction and dynamics, arXiv:2005.05971

o Elliott Gesteau, Monica Jinwoo Kang, Thermal states are
vital: Entanglement Wedge Reconstruction from
Operator-Pushing, arXiv:2005.07189

Passing to the limit of an infinite tessellation in the [HaPPY]
construction shows some limitations as a model of AdS/CFT
holography (lack of long-range entanglement in the boundary and
CFT behavior, but good properties of entanglement wedge
reconstruction)
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Tensor networks: general setup

Graphs
e finite graph G = (F, V,0,))
o F set of flags (half-edges) and V set of vertices
@ boundary map 0 : F — V identifies root vertex of each flag

@ structure involution j : F — F, j?> = id described how
half-edges are glued together into edges of G

e internal edges E;jn:(G) are pairs e = (f, f’) with j(f) = f’ and
f+f

o external edges Eq(G) are fixed points j(f) = f

e cut set C C Ej;(G) set of internal edges such that if all the
edges e € C are cut get exactly two non-empty connected

components
GC= GC,l (] GC’2
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tensor network on a graph: tensor network (G, H, T)

o (finite) graph G without multiple edges (in general want to
extend to infinite graph)

@ vertices v € V are decorated by pairs (H,, T(")) of a complex
vector space H, = (C9)®9e(") for some g = p" > 0 a power
of some prime p, with deg(v) the valence of the vertex, and a
TV e 3,

e tensor T(V) = (T(V))h,...,ideg(v)v with indices ir € Fq, labelled
by the flags f € F with 9(f) = v

e edge e = (f, "), f' = j(f), with de = {v, v’} corresponds to
a contraction of indices of T(") and T(*")

S T gt
4 i1, ldeg(v) '1"“"deg(v’)
If,l;/GIFq
57 the Kronecker delta function

@ bonds = internal edges of G, dangling legs = external edges

of G

@ graph G is called the support of the tensor network
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Entangled state
@ tensor network 7 = (G, H, T) computes an entangled state
[ior) in M = (C9)¥IEecl)
e standard basis |a; ... ay) of the space (C9)®N with

a=(a,...,ay) €FY
@ at vertex v € V(G) entangled state
‘wv> = Z T;Slv,?..,adeg(v) ’31 s adeg(v)>

31:-~~73deg(v)€]Fq

superposition of the pure states |a1) ® - - - ® |ageg(v))
@ along an edge e € Ejn:(G)

ey = > 620 T L, T a0 B,

b1, byeg(y1)
a,-,bjE]Fq

with 3 = (a1,..., 4, ..., deg(v)) and
() = (by,... ber,. .., byeg(v7y), and &r and b¢: with this entry
removed

e after performing all edge contractions on the |¢,) get |¢7)
(remaining qubits of external edges)
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case with no external edges
@ same computation gives a complex number: amplitude o
o for any cut-set C an entangled states |¢/c ;) in (C9)%I¢|

@ amplitude a7 is obtained from these by contracting the
indices corresponding to the pairs e = (f1, f) cut set

density matrix

@ density matrix of the entangled state |¢)1)

= |w>‘¢7’><¢’f‘

@ partition ALl B of the set of external edges of G:

pa = Trg(p)

with Trg : Ha ® Hp — Ha, tracing out (contracting indices)
dangling legs in B
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Entanglement entropy

@ assignment
A 57(A) := Tr(palog pa),

for A C Eext(G) ranging over all subsets of external edges

@ connected graph G with no external edges:
Ai = S7.c,i(Ai) == Tr(pc A log pc.a;)
for C ranging over cut-sets and A; C Eex(Gc,i)
pc.a = Treoa(pe,i)

with pc ; density matrix of entangled state |¢c ;)

More general: can have more legs of tensor T(¥) at vertices:
deg(v) outputs and some inputs, then tensor network as quantum
code
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Other geometric aspects of CRSS quantum codes
Twisted group rings
e discrete group G, group ring C[G] associative
noncommutative algebra

o (reduced) C*-completion C(G): closure of C[G] operator
norm of algebra of bounded operators B(¢2(G)) using right
(or left) regular representation

e right regular representation: action of C[G] on ¢2(G) by
ref(g’) = f(g'g)
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e multiplier o : G x G — U(1) is a 2-cocycle
o(g,1)=0(1,8)=1

o(81.82)0(8182, 83) = o(81,8283)7 (82, 83)
e twisted group ring C[G, o] is generated by the twisted
translations rgf(g') = f(g'g) o(g’, &)
@ cocycle property implies associativity of C[G, o] (and unital)

@ composition relation

rgrg = 0(g,8 ) rey

o twisted (reduced) group C*-algebra C;(G, o) norm closure of
C[G, o] in B(£2(G))
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Matrix algebras
e matrix algebra Mgn(C) for g = p™ identified with twisted

group C*-algebra C*((Z/pZ)?>™, o)
o multiplier o : (Z/pZ)*™ x (Z/pZ)*™ — U(1)
o((v, w), (v, w)) = &)
with £ = exp(27i/p) and
n m
(v,w) =" ajb;
i=1 j=1
@ cocycle condition o((v, w),(0,0)) = ¢((0,0),(v,w)) =1 and
o((v.w), (vV',w))o((v+v, whw), (v, w")) = g v = lw ) =i
=o((v,w), (V' + V", w' + w"))o((v',w'), (v, w"))
@ generators r("v w) such that r("v W)r("v, w) = §*<W"’/>r("v+v, ww')

@ same as generated by transformations 5"EV7W
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Noncommutative tori

e (rational or irrational) rotation algebras aka noncommutative
tori

@ rotation algebra Ay is C*-algebra generated by two unitaries
U and V with commutation relation

UV = ¢wU

with £ = exp(2mi6)

@ rational case, 6 € QQ these algebras are Morita equivalent
(bimodule identifying categories of modules, isom for NC
spaces) to functions C(T?) on ordinary commutative torus T?

@ irrational case 8 € R ~\ QQ, the Morita equivalence classes
correspond to the orbits of the action of SLy(Z) on the real
line by fractional linear transformations
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Rational noncommutative tori
e rational case with £ = exp(27i/p)

Aypda=> fiulp,)) TR
k¢

o fi.o(i,\) continuous functions of (A, u) € St x S1 = T2
@ T and R fundamental error matrices of quantum codes
@ finite sum for 0 < k,/ < p — 1since TP = RP = id
o generators U and V are U = uT and V = AR, with

p = exp(2mit) and A = exp(27is) in St
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Quantum codes and vector bundles

e rational NC torus A, /,,, isomorphic to the algebra
F(T2,End(E,)) of sections of the endomorphisms bundle of a
rank m vector bundle E,, over torus T2

e start with trivial bundle on T2 with fiber M,,(C)
e action of (Z/mZ)? by

T1,0 - (,u, A, M) — (Iu, e,—27rin/m)\7 TMT_l)

701 ¢ (1, A, M) = (7™, \, RMR™Y)

@ quotient gives a non-trivial bundle over T2, which is
endomorphisms bundle End(Ep,) of a vector bundle E,, of
rank m: bundle with fiber Mp,(C)

e algebra of sections I'( T2, End(E,)) is fixed point subalgebra
of C(T2, My(C)) = C(T?) ® My(C) (endomorphisms of
trivial bundle) under (Z/mZ)>?-action
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@ action on algebra C(T2, M,(C)) = C(T?) @ M,,(C)
10 F(p, A) @M f(u, e 2™ /m\) @ TMT 1,
a1 F(p, A) @ M — £(e2™/my \) @ RMR™!

o fixed point subalgebra then generated by 4t ® T and A® R
with commutation relation of the NC torus

o (*-algebra homomorphism A/, — My(C) sending
generators U and V to the matrices T and R.
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Quantum stabilizer codes
o E, rank p bundle over T2 with A;/, = [(T? End(Ep,))

@ g-ary quantum stabilizer code Qs (for g = p™) of length n

and size k = commutative subalgebra Ags C A?/rp, with

r = nm, and subbundle Fs , of external tensor product E,;Em”
over T2 = T2 x ... x T2

@ elements of the algebra As act as scalars on Fgs
@ these data equivalent to assigning Qs
e here action of (Z/pZ)?" on C(T?", My (C))
Qy w - f(H,A) XM — f(gvﬁvg_wé) & EV,WME\;E/I\-/

@ matrix algebra Mgn(C) identified with
C*(&/2) = C*((Z/pZ)*>™, o) generated by the E, ,,
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@ algebra As = C(Xs) algebra of functions of a space
Xs = Uxeg TX
e T, is a quotient of the torus T2

@ over T, the bundle Fs, becomes direct sum Lgl; of k-copies
of a line bundle

e if quantum code Qs from classical linear code C C Fg via
CRSS algorithm can see some properties of classical code
from algebra As

e for ¢ € C Hamming weight w(c) number of non-zero
coordinates of ¢ € Fg

@ algebra As = C(Xs) has natural filtration by Hamming
weight of words in classical code C
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Moufang loops and codes

@ a loop is a set L with an operation x : L x L — L that is not
associative, a unit element e with exa = ax e = a for all
a € L and such that the left and right multiplication maps
r«(y) = y * x and lx(y) = x * y are bijections L — L

@ last condition shows existence of unique left and right inverses

x, Lxitof xel

@ in this very general form there is not much structure, but can
impose a stronger condition

@ Moufang loop: loop L satisfying near-associativity relation
(Moufang identity)

xx(y*x(x*x2))=((xrxy)*xx)*xz, Vx,y,zel
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Some properties of Moufang loops

@ any subloop (closed under x containing e) generated by two
elements x, y is a group (i.e. associative)

@ powers of a single element are well defined:
x3 = (x % x) % x = x* (x % x) etc

o left and right inverse agree Xe_l =x 1 =x"1

@ other equivalent forms of the Moufang identity
xx(yx(zxy))=((xxy)*2z)xy, Vx,y,z€L

(yx(xx2))xy = (y*x)x(zxy) = yx((x*2)xy)) Vx,y,z€L
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e commutator [a, b] and associator [a, b, c] in loop L:
axb=bxax[a,b] and (axb)xc=(ax(bxc))x*][a,b,c]

@ nucleus N(L) of loop L: set of all elements a € L such that
[a, b, c] = [b,a,c] =[b,c,a] =1 forall byceL

e Moufang center C(L) of Moufang loop L: set of elements
a € Lsuch that [a,b] =1 forall be L

e center Z(L) of Moufang loop L: intersection
Z(L)= N(L)n C(L)

@ nucleus N(L) is a subgroup of L and center Z(L) is an abelian
subgroup
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Code loops
e CC Fg linear code

o twisted cocycle § : C x C — Fq with
O(v,w)—0(u+v,w)+0(u,v+w)—0(u,v)=76d(uv,w)

(2-cochain that is not a cocycle)
e loop L(C,8) = C xgFq instead of group
@ conditions under which this is a Moufang loop?
Some code loops references
@ R.L. Griess, Code Loops, J. of Algebra, 100 (1986) 224-234

e T. Hsu, Explicit constructions of code loops as centrally
twisted products, Math. Proc. Camb. Phil. Soc. 128 (2000),
223-232

e B. Nagy, D.M. Roberts, (Re)constructing Code Loops, The
American Mathematical Monthly, 128 (2021) N.2, 151-161

Matilde Marcolli From Classical to Quantum Codes



Code loop construction: doubly even codes
@ binary linear codes C C 5

e doubly even code: weight |v| =#{vi=1} =vi + -+ v,
the number of ones in the word, is divisible by 4

logical AND operation: v&v := (uyva, ..., UpVy)

twisted cocycle 6 with twisting function

o(u,v,w) = |u&v&w| mod 2

o 0 satisfies
O(v,w)+0(w,v) = %|V&W| mod 2
0(v,v) = %|v| mod 2
o (Griess): loop codes obtained in this way are Moufang loops
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Examples of doubly even codes: Hamming and Golay codes

@ Hamming code C C Fg subspace spanned by the four row
vectors

10000111
01001011
00101101
00011110

@ extended binary Golay code C C IE‘%“ linear subspace spanned
by row vectors

000110000000010110100011
101001111101101111110001
000100000000100100111110
010000000010000110101101
000000000010010101010111
100000000000100111110001

1010010111001 11001111111
100000011100001001001100
000001000000111001001110
100000001000111000111000
100000000100101000010111
011011000001111011111111
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@ decomposition into complementary subspaces C =V & W

@ to determine 6 enough to evaluate on complementary
subspaces

O (v + wy, v2 + wa) = O(vy, v2) + O (wr, wp) + O (v, wy)
+ 0(w2, v2) + 0 (v1 + v2, w1 + wy)
+ va & (wy + wo)| + [v1 & vy & (Wi + wy)|
+ |wy & wy & vo] + vy & wy & (v, +wy)|  (mod 2)
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Example: Golay code and Parker loop
e for Golay code take C = V & W with two left/right columns
of basis vectors above

o 0 then completely determined by 2% — 28 4 1 = 16129 values

Lol L TR T W R B BT

e

LT o Rl e el e

@ Parker loop L(C,0) = C xgFy

Matilde Marcolli From Classical to Quantum Codes



Parker loop and the Monster group
e J.H. Conway, A simple construction for the Fischer—Griess
monster group, Invent. Math. 79 (1985), 513-540
Sketch of main idea

@ Monster group: simple group constructed by Griess as
automorphism group of a certain algebra in a
196884-dimensional space

@ Conway obtained a simpler construction from the Parker loop

@ symmetries of Golay code: permutations of a set 2 of size 24
that fix C seen as subset of the set of parts P = P(Q)
identifying F>-valued vectors with characteristic functions of
subsets

@ the Golay code has symmetries M»4 the Mathieu group

@ using sets of ordered triples in P U {0} and self-maps of these
sets construct various subgroups of the Monster group
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{subgroups)

Go -~  The Monster
/ \\ -
G Gyo Gy = 2% .Co
NO\ ——— 22.211.222.53XM2L
/ \ "~ 1426 1
Nyo /Nyo Ny == 2 .27 My
AN ] 2 1,22
Neyz0 —— 2% 27 277 .My,
% - 22 2V 2% g,
\
\ \ 142
QxO /)020
\ 2. 1
Qyy20 ———— 2°.2
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Code loops and cubic symplectic structures

@ T. Hsu, Moufang loops of class 2 and cubic forms, Math.
Proc. Camb. Phil. Soc. 128 (2000), 197-222

Setting:

@ Moufang loops L that are central extensions
0-Z—-L—>C—=0

with abelian groups Z = Z(L) and C = L/Z(L)
@ associated cubic symplectic structure
X:CxC—-2Z, a:CxCxC—Z
x(3,b) = [a,b], «(3,b,E)=[a,b,]
for a, b,c € L with 3,b, in C
@ expressions well defined as values of [a, b] and [a, b, c] do not

change when shifting entries by elements of center Z = Z(L)

o Note: commutators and associators take values center Z(L)
as quotient L/Z(L) is an abelian group
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@ a: Cx Cx C— Zis antisymmetric and multilinear (hence
also a cocycle)

@ y: C x C— Zis antisymmetric and satisfies
X(é + Ba E) = X(éa E) + X(E’ E) + 30‘(5’ 57 E)

o from identity (where terms in rhs can be associated in any
way)

[ax b, c] = [a,c]*[[a, c], b] x [b, c] x [a, b, ]

that holds when associators are central

@ Note special role of characteristic p = 3
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p—times
. . . — e N —
@ also consider function o : C — Z with 0(3) = aP =3 ---xa

@ this satisfies
o(a+ b) = o(3) + o(b) + x(a,b), when p=2

o(a+b) = ca(3) +o(b), whenp>2
p—times
o (axb)P =(axb)*---x(axb)=aPxbP«][a,b]P(P~1)/2
e writing Z additively: o(3) + o(b) + p(p_l) x(3, b), for p > 2
coefficient muItlgle of characteristic p so zero, for p =2
coefficient P2 1

@ Note special roIe of characteristic p = 2
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Loops from cubic symplectic structures

@ O. Chein, E. Goodaire. Moufang loops with a unique
nonidentity commutator (associator, square). J. Alg. 130
(1990), 369-384.

@ proved that (in characteristic 2) all loops obtained in this way
are code loops of doubly even codes

@ data of Hsu's cubic symplectic structure can be chosen
arbitrarily: for any data o7, xjj, @ik € F2, 3 binary linear code
C with basis {¢;} such that

o(ci)=oi, xij=x(ci,q), olc,c,ck) = ajjk

@ the case of doubly even codes is a cubic symplectic structure
in Hsu's sense

@ any small Frattini extension is a code loop of a doubly even
code

oi = |cil/4, x(ci,¢j) = |ci&cjl/2, alci, ¢, ck) = [ci&cjdeck].
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Another construction: Almost-symplectic code loops

Almost-symplectic structure (p odd)

e finite dimensional vector space V over Fq (g odd) with
non-degenerate skew-symmetric form w : V x V — Fg.

o w(u,v)=—w(v,u), with w(u,0) =w(0,u) =0

o for any u # 0 in V, there is some v € V satisfying w(u,v) # 0
@ w is not required to be closed
@ nontrivial coboundary dw = §

dw(u,v,w) = w(v,w)—w(ut+v, w)+w(u, v+w)—w(u, v) = é(u, v, w)

@ Note: w is not bilinear, otherwise dw = 0 would follow
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Almost-symplectic structure (p = 2)
@ g = 2", consider ring R = (’)K/mf(, where For = Ok /mg
e (V,w) with almost-symplecticw : V x V — R
@ polarization: g: V xV = R

,B(U, V) - ﬂ(va U) - w(uv V)
@ coboundary
dp(u,v,w) = B(v,w)—=pB(u+v, w)+5(u, v+w)—p5(u, v) = v(u, v, w),

with
(u,v,w) =~(u,v,w) +y(w, v, u).
@ polarization satisfies 5(v,0) = (0, v) since
w(0,v) =w(v,0) =0
@ polarization B(u, v) — (v, u) = w(u, v) is normalized if also
satisfies §(v,0) =0 for all v € V.
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Lack of linearity
@ lack of linearity of 3 in the left/right variable:

Ye(u,v,w) := B(u+ v,w) — B(u,w) — (v, w)

Yr(u,v,w) = B(u, v+ w) — B(u,w) — B(v, w),

@ SO can write

7(”7 v, W) = ryl’(u? v, W) - 7@(“7 v, W)7

e similarly for d;(u, v, w) and 6,(u, v, w), lack of linearity of w.
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Almost-symplectic code loops

@ p odd: code loops L(V/,w) given by extension
0—=Fg—= L(V,w) =V =0

@ non-associative multiplication

(u,x)*(v,y)=(u+v,x+y+ %w(u, v))

u,ve Vand x,y €y

@ p even: code loops L£(V, ) given by extensions
0—+R—L(V,p) >V —=0
@ non-associative multiplication
(u,x)*x (v,y) =(u+v,x+y+ 5(u,v))

u,ve Vand x,y e R



Moufang identity
e Moufang identity for the loop L(V, ) iff

y(u,v,u+w)=v(v,w,u) Vu,v,weV
@ same for L(V,w) for p > 2
S(u,viu+w)=46(v,w,u) Yuv,weV
@ by direct computation from Moufang identity
(axb)x(c*xa)=ax*((bxc)x*a)

with a = (u,x), b= (v,y), ¢ = (w,z)
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Cyclic and Hochschild cochains
e functionn: V x--- x V — Ris cyclic if (1 — A)n =0 with
An(vo, .oy vn) = (=1)"n(Vny vo, -+, Va1)

e function n: V x--- x V — R is multilinear if §;n = 0 for all
i=0,...,nwith §n(vo,...,vy) =

N(Voy ooy Vit Wiy ooy V)= (Voy e ooy Vig ooy V) =1 (Voy o ooy Wiy ooy Vi)
@ function n: V x --- x V = R Hochschild cocycle if dn =0

with Hochschild coboundary

d77(V07 ey Vn+1) = 77(‘/1’ ceey Vn+1)_77(V0+V17 Vo, ..., Vn+1)+' o

+(—1)i77(v0, cey Viel Vi ooy Vng1) o0
—I—(—l)”_ln(vo, ey V1, Vn + Va1 + (=1)"n(vo, - . -, Vi)
e multilinearity implies dn =0
n .
dn=> (=1)'dim

i=0
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Moufang condition and cyclic property
e If B is normalized and v = df3 is multilinear, then the
Moufang identity is equivalent to v being cyclic
@ same for p > 2: if § = dw multilinear then Moufang condition
equivalent to § being cyclic
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Linear representations of loops
e E.K. Loginov, On linear representations of Moufang loops.
Commun. Algebra, 21 (1993) N.7, 2527-2536.
@ loop £ and vector space H over a field F
e left and right composition maps ¢, p : L — Aut(H),

li(h)=axh, pi(h)y=hx*a

o these should satisfy ax (h+ W) =axh+axH,
(h+H)xa=hxa+h xa, ax(Ah)=Xaxh,
(Ah)xa=Xhxa,forallae L, hy e H, \e F

@ associate to a loop L the non-associative algebra F[L]

@ maps 4, p extend by linearity to F[L] (Eilenberg’s notion of
representation of nonassociative algebras)

e if loop is Moufang maps ¢, p : L — Aut(H) satisfy

e associator [a, b, h] is skew-symmetric for all a, b € F[L] and
heH

o identities hx (bx (ax b)) = ((hx b) xa) x b and
((ax b)*a)xh=ax*(bx(axh)) hold, for all a,b € F[L] and
all he L.



Isotropic and polarizable subspaces

e (V,w) almost-symplectic in characteristic 2 with normalized
polarization

@ isotropic subspace C C V linear subspace where w|c =0

@ polarizable subspace P C V linear subspace for which there is
a map a: P — R satisfying

a(u+v)—a(u) —a(v) =5(u,v), YuveP

@ polarized subspace: pair (P, «)
@ polarization relation is just Hochschild coboundary 8 = da so
it implies v|p = dB|p = 0.
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Polarizations and sections

@ polarized subspace (P, ) determines a section
T: P — L(V,p) of the projection L(V,3) — V, with image
T7(P) C L(V,B) a subgroup of the loop L(V, )

e if P also isotropic, then 7(P) C L(V, 3) is an abelian
subgroup
e take 7(v) = (v,a(v)) forve P

(v, a(V))x(w, a(w)) = (vtw, a(v)+a(w)+5(v, w)) = (v+w, a(v+w))

@ associative since df|p =0

@ on an isotropic subspace polarization 3 is symmetric, hence
multiplication also commutative
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CRSS quantum codes from code loops
e £ = almost-symplectic loops L(V,w) for p > 2 and L(V, j5)
for p =2
e H = C[L] with left and right composition maps
@ |a) with a € L for the canonical basis of H

@ character x : Z(L£) — C* (that is, a character x : R — C* for
p=2orx:Fq— C* for p> 2) gives subspace H, C H:
functions that transform like £ .\ f (u,y) = x(x)f(u, y), for
x€Z(L)and (u,y) e L

@ An isotropic subspace C C V determines a commuting family
of error operators x(7(v))E,, with v € C, and an associated
error correcting quantum code Cc C H, given by a joint
eigenspace of these operators.

@ C +— Cc¢ almost-symplectic CRSS algorithm.
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Wedge product

@ 0:V = TF,forgodd, or §: V — R in characteristic 2, and
w:VxV—=Fgforqgodd,orw:V xV = Rin
characteristic 2

@ wedge product 6 A w
ONAw)(u,v,w) :=0(u)w(v,w) + O(w)w(u, v)

@ uniquely defined by compatibility with wedge product of two
1-forms 61,65 as

(01 N 602)(v,w) == 01(v)b2(w) — O1(w)ba2(v),
through relation

d(@l A 92) =db;1 NO> — 01 N dO>
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Locally conformally symplectic structures
e (V,w) over Fy almost-symplectic space

@ w is locally conformally symplectic structure if there is a
closed 1-form 6 such that

dv=0ANAw

@ in characteristic 2 the form 6 has values in R instead of [F,
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Darboux decomposition

@ Darboux decomposition V ~ GB,-IF% for a symplectic vector
space uses dw =0

@ almost-symplectic case in general does not have Darboux
decomposition

o if almost-symplectic w is locally conformally symplectic then
again have Darboux decomposition

@ df = 0 means 0 is linear:
df(u,v) =0(v) —0(u+v)+6(u)=0

@ So V =Ker(f) ®Fq and dw|x =0

e 3 pair of vectors u, v in K with w(u, v) = 1: copy of IF(% with
Darboux symplectic form

@ continue on complement until get @f;llFé plus one Fq

e combining all V = &_,F2

@ under quantization, corresponding decomposition of H into
tensor product of g-ary qubits
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Lagrangians and perfect tensors

@ loop L (thatis, £(V,w) for characteristic p > 2 and L(V, f3)
in characteristic p = 2)

e L C V be a Lagrangian with respect to w (an enhanced
Lagrangian (L, &) for p = 2)

e 7(L) C L section 7(L) = {(v,(v))|v e L} for p=2
(7(L) = {(v,0)|v € L} for p > 2): abelian group

@ Lagrangian L in general position with respect to the Darboux
decomposition of locally conformally symplectic structure
determines a perfect tensor T, € H

Matilde Marcolli From Classical to Quantum Codes



Moufang loops and Latin square designs

@ Latin square design is a pair D = (P, A) of a set P of points
and a set A of lines

@ #P = 3N with a splitting P = P; LI P, U P3 into points of
three types, with #P; = N, for i =1,2,3

o set A of lines, with #A = N?

@ each line in A contains exactly 3 points, one from each of the
three subsets of P

@ any two points from two different subsets of P belong to
exactly one line in A
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Latin square
@ Latin square of the design D is an N x N matrix
@ entries corresponding to the N2 lines in A and with
(x1, x2)-entry equal to x3 if the line containing x; € P; and
Xp € P> has x3 € P3 as the third point

@ order of Latin square is number N of points of each type
Category
@ Latin square designs form a category
@ objects D = (P, A)
@ morphisms D — D’ given by triples of maps «; : P; — P;
such that, if (x1,x2, x3) is a line in A then
(1(x1), @2(x2), a3(x3)) is a line in A’
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Thomsen loop and design
e for a loop L, the Thomsen design D(L) has
P = L1 U LyU L3, three copies of L labelled i = 1,2, 3, and
A={(x1,x2,x3) | (x1*x2) xx3 =1 € L}
@ conversely for a Latin square design D have Thomsen loop
L(D)
e D+ L(D) is functorial and gives an equivalence of categories

@ category of loops with morphisms isotopisms: triples of maps

(o, B,7) : L — L satisfying a(x) ¥ B(y) = v(x % y) for all
x,y €L
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Automorphisms and Moufang condition

@ automorphism of a Latin square design D = (P, A) is a
permutation of P that sends lines to lines

@ central automorphism 7, of D, centered at x € P: fixes x and
exchanges other two points on each line in A containing x

@ central Latin square design: admits a central automorphism at
every point x € P

@ equivalence between the category of central Latin square
designs and the category of Moufang loops
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Graph of the Thomsen design

@ loops L(V,w) for p odd and L(V, ) for p=2

@ Thomsen designs D(L(V,w)) and D(L(V, 3)) associated
graphs G= Gﬁ(V,w) or G = GC(V,ﬁ)

@ describing how points of the design are connected by lines

o N =#L order N = ¢*"t2 for g = 2" and N = ¢*"*! for ¢
odd

o panel M, ), of lines through a point (u, x); (i = 1,2,3 type
index) contains N lines, each containing two other points

e panels M, ), and ﬂ(v,y)j with types i # j intersect in a single
line

@ so graph with #V/(G) = 3N and uniform valence
deg(v) = 2N, so #E(G) = 3N?

o N =qg?>"! for g = p" with p odd and N = ¢?>™+2 for g = 2"

@ subgraph G, ¢y with 3g* vertices and 3¢ edges for
subdesign D(7(C))
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Tensor network from the Thomsen design
@ Lagrangian (L, «) in general position and corresponding
perfect tensor T,

@ subgraph G C G;(;) with same vertex set as G, (1) and only
edges between points u; and (u + e/);, for {e-},—1,. n with e
standard basis of Fg ~ L

o T =Ty, . s, indices labelled by vectors
0= (l1,...,0a) € IF%” ~ V in the Darboux basis

@ entangled state associated to corolla of vertex u; in G

|77Z)u,'> = Z Ty |£>
)4

with |¢) standard basis of H
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Chamber systems
@ chamber system of type / on a set Q (set of chambers) is a
family {pi}ics of equivalence relations on
Q if w~;w and w~j W', for some i # j €/, then w =’
@ the /-graph (vertex set Q and edges e, ., for w ~; w’ for
some p;) is connected
@ subset J C | = residue of type J is a connected component
of J-graph
@ number of colors #/ is rank of chamber system

@ panels = connected components of the monochromatic
subgraphs

@ Latin chamber system is a chamber system of rank 3 where
any two panels of different colors intersect in a unique
chamber
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Latin square designs and Latin chamber systems
@ Latin square design determines a Latin chamber system
o Q given by the set of the N? cells of the Latin square
@ equivalences: same row, same column, same symbol in the cell

@ set of chambers of Latin chamber system = set of lines of the
Latin square design

@ set of panels = set of points of the Latin square design

@ a panel = set of lines that contain a given point
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Buildings: Coxeter groups
@ best known class of chamber systems are buildings

@ Coxeter group: group defined by a presentation
G = (x, i €l|x?=1Vi, (xix;)™ = 1Vi,j € I}

with mj; > 2 integers or m;; = oo (ie no such relation)

@ G always isomorphic to group generated by reflections in a
family of hyperplanes H; in Euclidean or hyperbolic space with
mutual angles w/m;; (parallel for m;; = o)

@ Coxeter complex: cell complex where images under G of
reflecting hyperplanes decompose ambient space into pieces
that give the cells

@ chamber system with chambers the max dim cells of the
complex and related by one of the equivalence relations p; if
obtained by reflection along the hyperplanes H;
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Example
o dihedral group D, = (s, t|s> =1, t?> = 1, (st)" = 1}

@ chambers and Coxeter complex

H,
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Buildings
@ n-dimensional building: simplicial complex B that is a union
of subcomplexes called apartments with

every k-simplex with k < nis in at least three n-simplices
any (n — 1)-simplex in an apartment A lies in exactly two
adjacent n-simplices of A

the graph of adjacent n-simplices is connected

any two simplices lie in a common apartment

if two simplices o, T are in both A and A’ apartments, 3
simplicial isomorphism A ~ A’ fixing o, 7

000 O©O0

@ n-simplices are the chambers

@ G-building: apartments are isomorphic to the Coxeter
complex of G

@ 3d:Bx C— G (akind of G-valued "metric") with
pi ={(b,b)|d(b,b)=1 or d(b,b') = x;} equivalence
relations of the chamber system
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Latin chamber systems and buildings
@ Latin chamber systems are not themselves buildings
@ but... a Latin chamber system has universal 2-cover that is a
building iff the associated Thomsen loop is a group
@ U. Meierfrankenfeld, G. Stroth, R.M. Weiss, Local identification of

spherical buildings and finite simple groups of Lie type, Math. Proc.
Camb. Phil. Soc., Vol.154 (2013) 527-547.

2-coverings

@ path (gallery) in (the graph of) a chamber system is
2-homotopically trivial if it can be reduced to trivial path
through a sequence of replacements of subgalleries lying in
rank 2 residues by other galleries in same residue

@ collection C of closed walks in a graph A: a C-covering
A — A is covering where every closed walk in C lifts to a
closed walk in A: 3 universal C-cover

@ 2-covering of a chamber system is a C-covering for C = all
closed walks in rank 2 residues
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General question: construction and properties of tensor networks
on buildings

@ What classes of buildings (or more general chamber systems)
have interesting tensor networks?

@ What holographic properties can one expect these tensor
networks to have?

e causal wedge and entanglement wedge reconstruction,

complementary recovery (Coxeter complex structure is relevant
here)

e geodesic lengths in the bulk and boundary measure
(Patterson—Sullivan measure, CAT(0) property)

e Ryu—Takayanagi formula for entanglement entropy in terms of
bulk minimal areas/lengths (expect here stronger hyperbolicity
needed, CAT(—1) property)

o Elliott Gestaeu, Matilde Marcolli, and Sarthak Parikh,
Holographic tensor networks from hyperbolic buildings, J.
High Energy Phys. 2022, no. 10, Paper No. 169, 28 pp.
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