

From Classical to Quantum Codes

Matilde Marcolli

Ma148b: Algebraic and Categorical Information
Caltech, Winter 2025

This lecture is based on:

- A.R. Calderbank, E.M. Rains, P.W. Shor, N.J.A. Sloane, *Quantum error correction and orthogonal geometry*, Phys. Rev. Lett. 78 (1997), no. 3 405.
- M. Heydeman, M. Marcolli, S. Parikh, I. Saberi, *Nonarchimedean holographic entropy from networks of perfect tensors*, Adv. Theor. Math. Phys. 25 (2021), no. 3, 591–721.
- S. Gurevich and R. Hadani, *Quantization of symplectic vector spaces over finite fields*, Journal of Symplectic Geometry 7 (2009), no. 4 475–502.
- M. Marcolli, C. Perez, *Codes as fractals and noncommutative spaces*, Math. Comput. Sci. 6 (2012), no. 3, 199–215.
- N. Combé, Yu.I. Manin, M. Marcolli, *Moufang patterns and Geometry of Information*, Pure Appl. Math. Q. 19 (2023), no. 1, 149–189..

Classical codes

- alphabet finite set \mathfrak{A} of cardinality $q \geq 2$
- classical (unstructured) code: subset $C \subset \mathfrak{A}^n$
- elements of C are code words: $x = (a_1, \dots, a_n)$ in $C \subset \mathfrak{A}^n$
- $k = k(C) = \log_q \#C$ with $\lfloor k \rfloor$ integer part of k
- **transmission rate**: ratio $R = k/n$
- Hamming distance between code words $x = (a_i)$ and $y = (b_i)$

$$d(x, y) = \#\{i \mid a_i \neq b_i\}$$

- **relative minimum distance**: ratio $\delta = d/n$ with $d(C) = \min\{d(x, y) \mid x, y \in C, x \neq y\}$
- classical code C with these parameters: $[n, k, d]_q$ code

Classical linear codes

- finite field $\mathfrak{A} = \mathbb{F}_q$ of cardinality $q = p^r$ characteristic $p > 0$
- code is linear if $C \subset \mathbb{F}_q^n$ is an \mathbb{F}_q -linear subspace of vector space \mathbb{F}_q^n
- $k = \lfloor k \rfloor$ is an integer for linear codes $= \dim C$ as vector space
- given \mathbb{F}_q -bilinear form $\langle \cdot, \cdot \rangle$ on \mathbb{F}_q^n , **self-orthogonal** code C if all code words $x, y \in C$ have $\langle x, y \rangle = 0$
- **dual code** C^\perp : vectors v in \mathbb{F}_q^n with $\langle v, x \rangle = 0$ for all $x \in C$
- self-orthogonal: $C \subseteq C^\perp$

Central extensions: groups from linear codes

- linear code $C \subset \mathbb{F}_q^n$ with $\dim C = q^k$ so $C \simeq \mathbb{F}_q^k$
- cocycle $\theta : C \times C \rightarrow \mathbb{F}_q$

$$\theta(v, w) - \theta(u + v, w) + \theta(u, v + w) - \theta(u, v) = 0$$

- central extension

$$0 \rightarrow \mathbb{F}_q \rightarrow G_\theta \rightarrow C \rightarrow 0$$

- multiplication

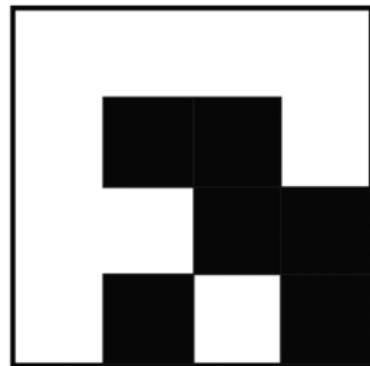
$$(v, x) \cdot (w, y) = (v + w, x + y + \theta(v, w))$$

- associativity from cocycle condition
- when $\mathbb{F}_q = \mathbb{F}_2$ view $\theta : C \times C \rightarrow \mathbb{F}_2$ as “QR code diagram”
 $\theta : \mathbb{F}_2^k \times \mathbb{F}_2^k \rightarrow \mathbb{F}_2$

Example

- quaternion units group $Q_8 = \{1, \pm i, \pm j, \pm k\}$ relations $i^2 = j^2 = k^2 = -1$ and $ij = k$
- $C = \mathbb{F}_2^2$, extension $0 \rightarrow \mathbb{F}_2 \rightarrow Q_8 \rightarrow C \rightarrow 0$ with cocycle θ

$v \setminus w$	00	10	01	11
00	0	0	0	0
10	0	1	1	0
01	0	0	1	1
11	0	1	0	1



Quantum codes

- qbit = a vector in finite dimensional Hilbert space \mathbb{C}^2
- binary qbit spaces $(\mathbb{C}^2)^{\otimes n}$
- q-ary qbit = a vector in \mathbb{C}^q and q-ary qbit spaces $(\mathbb{C}^q)^{\otimes n}$
- **q-ary quantum code** of *length* n and *size* k = a k -dimensional \mathbb{C} -linear subspace of $\mathbb{C}^{q^n} = (\mathbb{C}^q)^{\otimes n}$
- **quantum error**: a linear map $E \in \text{End}_{\mathbb{C}}(\mathbb{C}^{q^n})$
- for quantum errors of the form $E = E_1 \otimes \cdots \otimes E_n$, the **weight** is $w(E) = \#\{i \mid E_i \neq id\}$
- quantum error E is **detectable** by a quantum code Q if

$$P_Q E P_Q = \lambda_E P_Q$$

with P_Q orthogonal projection onto $Q \subset \mathbb{C}^{q^n}$ and $\lambda_E \in \mathbb{C}$ constant depending only on E

- for $q = p^m$ consider field \mathbb{F}_q as an \mathbb{F}_p -vector space, \mathbb{F}_p^m
- for $x \in \mathbb{F}_q^n$, $x = (a_1, \dots, a_n)$ write each coefficient $a_i \in \mathbb{F}_q$ as vectors $a_i = (a_{i1}, \dots, a_{im})$ with a_{ij} in \mathbb{F}_p
- elements of $\mathbb{Z}/p\mathbb{Z}$, integer numbers $0 \leq a_{ij} \leq p - 1$
- given a linear operator $L \in \text{End}_{\mathbb{C}}(\mathbb{C}^p)$ with $L^p = id$, can consider integer powers $L^{a_{ij}}$

Fundamental error operators

- T and R on \mathbb{C}^p given by matrices

$$T = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & & & & & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

$$R = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \xi & 0 & \cdots & 0 & 0 \\ 0 & 0 & \xi^2 & \cdots & 0 & 0 \\ \vdots & & & & & \vdots \\ 0 & 0 & 0 & \cdots & \xi^{p-2} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \xi^{p-1} \end{pmatrix},$$

where $\xi = \exp(2\pi i/p)$

Relations and basis

- power and commutation relations

$$T^p = R^p = id \quad \text{and} \quad TR = \xi RT$$

- these imply composition relations

$$T^k R^\ell = \xi^{k\ell} R^\ell T^k$$

$$(T^k R^\ell)(T^r R^s) = \xi^{-r\ell} T^{r+k} R^{s+\ell} = \xi^{sk-r\ell} (T^r R^s)(T^k R^\ell)$$

- the operators $T^k R^\ell$ form an orthonormal basis of $M_p(\mathbb{C}) = \text{End}_{\mathbb{C}}(\mathbb{C}^p)$ with respect to the inner product $\langle A, B \rangle = \text{Tr}(A^* B)$

Composite error operators

- x and y are elements in \mathbb{F}_q , written as vectors
 $x = (a_1, \dots, a_m)$, $y = (b_1, \dots, b_m)$ with coeffs $a_i, b_i \in \mathbb{F}_p$
- linear maps $E = E_1 \otimes \dots \otimes E_n$ in $\text{End}_{\mathbb{C}}(\mathbb{C}^{q^n})$, with $q = p^m$, where the factors E_i are of the form $E_i = T_x R_y$

$$T_x = T^{a_1} \otimes \dots \otimes T^{a_n}$$

$$R_y = R^{b_1} \otimes \dots \otimes R^{b_n}$$

- for $v = (x_1, \dots, x_n)$ and $w = (y_1, \dots, y_n)$ vectors in \mathbb{F}_q^n , corresponding error operator

$$E_{v,w} = T_{x_1} R_{y_1} \otimes \dots \otimes T_{x_n} R_{y_n}$$

- T and R relations imply commutation relation

$$E_{v,w} E_{v',w'} = \xi^{\langle v, w' \rangle - \langle w, v' \rangle} E_{v',w'} E_{v,w}$$

- for $v, w \in \mathbb{F}_q^n$, the bilinear form $\langle v, w \rangle$

$$\langle v, w \rangle = \sum_{i=1}^n \sum_{j=1}^m a_{ij} b_{ij}$$

Group laws

- also get composition relation

$$E_{v,w} E_{v',w'} = \xi^{-\langle w, v' \rangle} E_{v+v', w+w'}$$

- \mathcal{E} subgroup of $\text{Aut}_{\mathbb{C}}(\mathbb{C}^{q^n})$ given by invertible linear maps of the form

$$\mathcal{E} = \{\xi^k E_{v,w} \mid v, w \in \mathbb{F}_q^n, 0 \leq k \leq p-1\}$$

- finite group of order p^{2mn+1}
- center \mathcal{Z} of \mathcal{E} is the subgroup $\{\xi^k id\}$ isomorphic to $\mathbb{Z}/p\mathbb{Z}$
- We'll see this is related to Heisenberg groups and symplectic spaces over finite fields

Quantum stabilizer codes

- **quantum stabilizer code** is a quantum code is obtained as joint eigenspace of all the linear transformations in a commutative subgroup of \mathcal{E}
- $\mathcal{S} \subset \mathcal{E}$ commutative subgroup with $\#\mathcal{S} = p^{r+1}$
- $\chi : \mathcal{S} \rightarrow U(1)$ character trivial on \mathcal{Z}
- quantum stabilizer code $Q = Q_{\mathcal{S}, \chi}$ is linear subspace of \mathbb{C}^{q^n}

$$Q_{\mathcal{S}, \chi} = \{\psi \in \mathbb{C}^{q^n} \mid A\psi = \chi(A)\psi, \forall A \in \mathcal{S}\}$$

- dimension p^{mn-r}

CRSS algorithm: classical–quantum correspondence

- given classical linear self-orthogonal code $C \subset \mathbb{F}_q^{2n}$, with $\#C = p^r$
- linear maps $E_{v,\varphi(w)}$, for (v, w) an \mathbb{F}_p -basis of C , together with elements $\xi^k id$, generate a subgroup $\mathcal{S} \subset \mathcal{E}$
- composition relation and self-orthogonality imply subgroup \mathcal{S} is abelian
- by construction of order $\#\mathcal{S} = p^{r+1}$
- this determines a quantum stabilizer codes $Q_{\mathcal{S}, \chi}$ with parameters $[[n, n - r/m, d^\perp]]_q$
- minimum distance d_Q of the quantum stabilizer code $Q_{\mathcal{S}, \chi}$ satisfies

$$d_Q = d^\perp = d_{C^\perp \setminus C}$$

$$d_{C^\perp \setminus C} := \min \#\{i \mid v_i \neq 0 \text{ or } w_i \neq 0, (v, w) \in \mathbb{F}_q^{2n}, (v, w) \in C^\perp \setminus C\}$$

CRSS algorithm: classical–quantum correspondence

- conversely given quantum stabilizer code $Q = Q_{\mathcal{S}, \chi}$
- given \mathbb{F}_p -linear automorphism $\varphi \in \text{Aut}_{\mathbb{F}_p}(\mathbb{F}_p^m)$
- get \mathbb{F}_p -linear code of length $2n$, with $\#C = p^r$ for $\#\mathcal{S} = p^{r+1}$

$$C = C_{Q, \varphi} = \{(v, \varphi^{-1}(w)) \mid E_{v, w} \in \mathcal{S}\}$$

- C is self-orthogonal with respect to bilinear form

$$\langle v, \varphi(w') \rangle - \langle v', \varphi(w) \rangle$$

with $\langle v, w \rangle = \sum_{i=1}^n \sum_{j=1}^m a_{ij} b_{ij}$

- role of automorphism φ : field extension \mathbb{F}_q of \mathbb{F}_p is identified with the vector space \mathbb{F}_p^m (loose track of field structure); can use field automorphism φ to remember the remaining structure

Symplectic vector spaces and Heisenberg groups

- Symplectic vector space (V, ω) over a finite field \mathbb{F}_q ($\text{char} \neq 2$):

- ω closed: cocycle condition

$$d\omega(u, v, w) = \omega(v, w) - \omega(u+v, w) + \omega(u, v+w) - \omega(u, v) = 0$$

- ω non-degenerate: given $u \in V$ find v with $\omega(u, v) \neq 0$

- Heisenberg group central extension determined by cocycle ω

$$0 \rightarrow \mathbb{F}_q \rightarrow \text{Heis}(V, \omega) \rightarrow V \rightarrow 0$$

$$(v, x) \cdot (w, y) = (v + w, x + y + \frac{1}{2}\omega(v, w))$$

- $H(\mathbb{F}_q^{2n}) = \text{Heis}(\mathbb{F}_q^{2n}, \omega)$ with ω standard Darboux form
- Darboux form: sum $\mathbb{F}_q^{2n} = \bigoplus_i \mathbb{F}_q^2$ on each \mathbb{F}_q^2 symplectic form

$$\omega((x_1, y_1), (x_2, y_2)) = y_1 x_2 - y_2 x_1$$

- the error operators $E_{ab} = T_a R_b$ give the explicit representation matrices of the Heisenberg group $H(\mathbb{F}_q^{2n})$ with respect to the central character specified by ξ with $\xi^p = 1$
- Darboux basis for (V, ω) direct sum of 2-dim symplectic spaces over \mathbb{F}_q
 - using ω non-degen can find a first $\mathbb{F}_q^2 = \text{span}\{u, v\}$ with $\omega(u, v) = 1$
 - using closed can decompose $V = \mathbb{F}_q^2 \oplus W$ with $W = \{w \in V \mid \omega(u, w) = \omega(v, w) = 0\}$
 - then repeat

Heisenberg groups and CRSS quantum codes

- unique irreducible complex representation $\mathcal{H} = \mathcal{H}_\chi(V, \omega)$ of $\text{Heis}(V, \omega)$ with central character $\chi : \mathbb{F}_q \rightarrow \mathbb{C}^*$
- functorial geometric quantization over finite fields (Gurevich–Hadani) \Rightarrow decomposition of $\mathcal{H} = (\mathbb{C}^q)^{\otimes n}$ as tensor product of q -ary qubits \mathbb{C}^q
- representation matrices $E_{ab} = T_a R_b$ of $\text{Heis}(V, \omega)$ additive basis of $\text{End}(\mathcal{H})$
- **isotropic subspace** $C \subset V \Rightarrow$ **abelian subgroup** of $\text{Heis}(V, \omega)$ \Rightarrow mutually diagonalizable, \mathcal{H} sum of $\#C = q^k$ eigenspaces of dimension q^{n-k}
- Each such joint eigenspace of C of dimension q^{n-k} is a quantum code $\mathcal{Q}_C \simeq (\mathbb{C}^q)^{\otimes(n-k)}$ that encodes $n - k$ qubits to n qubits (CRSS quantum code associated to classical code C)

Algebro-geometric codes

- algebraic points $X(\mathbb{F}_q)$ of a curve X over a finite field \mathbb{F}_q
- set $A \subset X(\mathbb{F}_q)$ and divisor D on X with $\text{supp}(D) \cap A = \emptyset$
- code $C = C_X(A, D)$ by evaluation at A of rational functions $f \in \mathbb{F}_q(X)$ with poles at D
- bound on order of pole of f at D determines dimension of the linear code

Reed-Solomon codes case $X(\mathbb{F}_q) = \mathbb{P}^1(\mathbb{F}_q)$

- $C = \{(f(x_1), \dots, f(x_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\}$ gives an $[n, k, n - k + 1]_q$ with $n \leq q$
- or homogeneous polynomials at points $x_i = (u_i : v_i) \in \mathbb{P}^1(\mathbb{F}_q)$

$$\hat{C} = \{(f(u_1, v_1), \dots, f(u_n, v_n)) : f \in \mathbb{F}_q[u, v], \text{homog. } \deg(f) < k\}$$

- generalized Reed-Solomon codes: $w = (w_1, \dots, w_n) \in \mathbb{F}_q^n$

$$C_{w,k} = \{(w_1 f(x_1), \dots, w_n f(x_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\}$$

$$\hat{C}_{w,k} = \{(w_1 f(u_1, v_1), \dots, w_n f(u_n, v_n)) : f \in \mathbb{F}_q[u, v], \text{homog. } \deg(f) < k\}$$

CRSS of Reed-Solomon codes

- Hermitian self-dual case: $\langle v, w \rangle_H = \sum_{i=1}^n v_i w_i^q$, with $v, w \in \mathbb{F}_{q^2}^n$
- Hermitian-self-dual length n over \mathbb{F}_{q^2} gives self-dual code \tilde{C} length $2n$ over \mathbb{F}_q then CRSS
- Hermitian self-duality conditions for generalized Reed–Solomon codes with $w = (w_1, \dots, w_n) \in (\mathbb{F}_{q^2}^*)^n$
- For $w_i = 1$ and $n = q^2$ with $k = q$, Hermitian-self-dual Reed-Solomon code $C = C_{1,q}$ and associated $[[q^2 + 1, q^2 - 2q + 1, q + 1]]_q$ -quantum Reed-Solomon code \mathcal{C}

Symplectic vector spaces and perfect tensors $(p > 2)$

- **perfect tensor:** $T \in \mathcal{V}^{\otimes m}$ (\mathcal{V} with inner prod to identify with dual, here qbit $\mathcal{V} = \mathbb{C}^q$) such that all splittings (tensor/Hom) for $j \leq m/2$ are *isometries*

$$\mathcal{V}^{\otimes j} \rightarrow \mathcal{V}^{\otimes(m-j)}$$

- when isometric injection of the $(n - k)$ -qbits code space \mathcal{Q}_C inside the n -qbit space \mathcal{H} is obtained from a partition of the indices of a $(2n - k)$ -index tensor into $(n - k)$ -qbits (to be encoded), together with n -qbits (encoding space)
- even number of indices of perfect tensor when $\dim C = k$ even
- procedure to produce directly perfect tensors via a version of CRSS algorithm and quantization of symplectic vector spaces over finite fields

Lagrangians

- Symplectic vector space (V, ω) of dim $2n$ over \mathbb{F}_q ; Lagrangian subspace $L \subset V$ (of dim n)
- Irreducible rep of $\text{Heis}(V, \omega)$ can be realized through a choice of Lagrangian $L \subset V$ (in classical construction of quantum mechanical Hilbert space that identifies position vs momentum repres L, L^\vee) $\mathcal{H}_L = \mathcal{H}_\chi(V, L, \omega)$ (invariants under L^\vee)
- L chosen in “general position” means that intersection with Darboux decomposition as small as possible, so a basis of \mathcal{H}_L is as far as possible from being a tensor-product basis in the Darboux decomposition

$$(\dim V = 4n) \quad V = \bigoplus_i V_i \Rightarrow (\mathbb{C}^q)^{\otimes 2n} = \mathcal{H} = \bigotimes_i \mathcal{H}_i = \bigotimes_i \mathbb{C}^q$$

$V = W \oplus W'$ splitting of $2n$ indices $k \leq n$ and $2n - k$

$$\dim(L \cap W) \geq 2(k - n), \quad \dim(L \cap W') \geq 2(n - k)$$

for $k = n$ general position if both zero-dimensional

Lagrangians and perfect tensors

- geometrically maximal rank of perfect tensors with respect to decomposition into groups of qbits corresponds to a “general position” of the Lagrangian (with respect to a given symplectic splitting of V into 2-dim Darboux pieces)
- most non-general position: L' sum of 1-dim Lagrangians in each 2-dim Darboux subspace (maximally decomposable)
- (functorial quantization): symplectomorphism
 $\psi : W_1 \rightarrow W_2 \Rightarrow \mathcal{H}(\psi) : \mathcal{H}(W_1) \rightarrow \mathcal{H}(W_2)$
- if Lagrangian L in general position then symplectomorphism
 $\psi : \bar{W} \rightarrow W'$ (with opposite $(\bar{W}, \bar{\omega}) = (W, -\omega)$)
- $\mathcal{H}(\psi) : \mathcal{H}(W)^\vee \rightarrow \mathcal{H}(W')$ same as tensor
 $T \in \mathcal{H}(W) \otimes \mathcal{H}(W') = \mathcal{H}(V)$ is perfect tensor

Example: 3-qtrit quantum code

- quantum Reed–Solomon code with perfect tensor condition
- start with classical $[n, k, n - k + 1]_{q^2}$ Reed–Solomon code
- choose parameters $n = q = 3$, $k = (q - 1)/2 = 1$
- $X = \mathbb{P}^1(\mathbb{F}_3) \setminus \{\infty\} = \{[1 : 0], [1 : 1], [1 : 2]\}$
- $[3, 1, 3]_9$ -code

$$\{(f_a(1, 0), f_a(1, 1), f_a(1, 2)) \mid a \in \mathbb{F}_9, f_a \in \mathbb{F}_9[u, v]\}$$

- $k = 1$ so homogeneous polynomials just $f_a(u, v) = a_0 \in \mathbb{F}_9$

$$\{(a_0, a_0, a_0) \mid a_0 \in \mathbb{F}_9\}$$

- self-orthogonal code: $\langle a, b \rangle = 3a_0b_0^3 = 0$
- $d_Q = \min\{\text{weight}(v) \mid v \in D^\perp \setminus D\} = 2$ from

$$D^\perp = \{\langle a, b \rangle = a_0(b_1^3 + b_2^3 + b_3^3) = 0\} = \{(2b_2 + 2b_3, b_2, b_3) \mid b_i \in \mathbb{F}_9\}$$

- take then classical $[2n, 2k, 2n - 2k + 1]_q$ Reed–Solomon code
same parameters $n = q = 3$, $k = (q - 1)/2 = 1$
- inputs $a = (a_0, b_0) \in \mathbb{F}_3^2$ and code

$$C = \{(f_{a_0}(1, 0), f_{b_0}(1, 0), f_{a_0}(1, 1), f_{b_0}(1, 1), f_{a_0}(1, 2), f_{b_0}(1, 2))\}$$

- again because $k = 1$ just

$$C = \{((a_0, b_0), (a_0, b_0), (a_0, b_0)) \mid (a_0, b_0) \in \mathbb{F}_3^2\}$$

- self-orthogonality for inner product

$$\langle (a, b), (a', b') \rangle = 3a_0 b'_0 - 3a'_0 b_0 = 0$$

- for $(a, b) \in C$ group elements $\xi^i E_{a,b}$ with $0 \leq i \leq 2$

$$E_{a,b} = T_{a_0} R_{b_0} \otimes T_{a_0} R_{b_0} \otimes T_{a_0} R_{b_0}$$

- matrices $T_{a_0} R_{b_0}$

$$\begin{aligned}
 T_0 R_0 &= \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} & T_0 R_1 &= \begin{pmatrix} 1 & & \\ & \xi & \\ & & \xi^2 \end{pmatrix} & T_0 R_2 &= \begin{pmatrix} 1 & & \\ & \xi^2 & \\ & & \xi \end{pmatrix} \\
 T_1 R_0 &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} & T_1 R_1 &= \begin{pmatrix} 0 & \xi & 0 \\ 0 & 0 & \xi^2 \\ 1 & 0 & 0 \end{pmatrix} & T_1 R_2 &= \begin{pmatrix} 0 & \xi^2 & 0 \\ 0 & 0 & \xi \\ 1 & 0 & 0 \end{pmatrix} \\
 T_2 R_0 &= \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} & T_2 R_1 &= \begin{pmatrix} 0 & 0 & \xi^2 \\ 1 & 0 & 0 \\ 0 & \xi & 0 \end{pmatrix} & T_2 R_2 &= \begin{pmatrix} 0 & 0 & \xi \\ 1 & 0 & 0 \\ 0 & \xi^2 & 0 \end{pmatrix}.
 \end{aligned}$$

- orthonormal basis of qbits $|a_0\rangle$ with $a_0 \in \mathbb{F}_3$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad |1\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad |2\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

- common eigenvectors of the matrices $T_{a_0} R_{b_0}$

$$|A\rangle = |000\rangle + |111\rangle + |222\rangle \quad |B\rangle = |012\rangle + |120\rangle + |201\rangle \quad |C\rangle = |021\rangle + |210\rangle + |102\rangle$$

$$|D\rangle = |001\rangle + |112\rangle + |220\rangle \quad |E\rangle = |010\rangle + |121\rangle + |202\rangle \quad |F\rangle = |100\rangle + |211\rangle + |022\rangle$$

$$|G\rangle = |002\rangle + |110\rangle + |221\rangle \quad |H\rangle = |020\rangle + |101\rangle + |212\rangle \quad |I\rangle = |200\rangle + |011\rangle + |122\rangle$$

with $|ijk\rangle = |i\rangle \otimes |j\rangle \otimes |k\rangle \in (\mathbb{C}^3)^{\otimes 3}$

- eigenvalues and eigenvectors $\xi^i E_{a,b}$ (with notation $a_0^3 := (a_0, a_0, a_0)$)

	$E_{0^3,0^3}$	$E_{0^3,1^3}$	$E_{0^3,2^3}$	$E_{1^3,0^3}$	$E_{1^3,1^3}$	$E_{1^3,2^3}$	$E_{2^3,0^3}$	$E_{2^3,1^3}$	$E_{2^3,2^3}$
$ A\rangle$	1	1	1	1	1	1	1	1	1
$ B\rangle$	1	1	1	1	1	1	1	1	1
$ C\rangle$	1	1	1	1	1	1	1	1	1
$ D\rangle$	1	ξ^2	ξ	1	ξ^2	ξ	1	ξ^2	ξ
$ E\rangle$	1	ξ^2	ξ	1	ξ^2	ξ	1	ξ^2	ξ
$ F\rangle$	1	ξ^2	ξ	1	ξ^2	ξ	1	ξ^2	ξ
$ G\rangle$	1	ξ	ξ^2	1	ξ	ξ^2	1	ξ	ξ^2
$ H\rangle$	1	ξ	ξ^2	1	ξ	ξ^2	1	ξ	ξ^2
$ I\rangle$	1	ξ	ξ^2	1	ξ	ξ^2	1	ξ	ξ^2

- from table see that invariant subspaces for group S are $\text{span}\{|A\rangle, |B\rangle, |C\rangle\}$ or $\text{span}\{|D\rangle, |E\rangle, |F\rangle\}$ or $\text{span}\{|G\rangle, |H\rangle, |I\rangle\}$
- can equivalently take one: say $Q_C = \text{span}\{|A\rangle, |B\rangle, |C\rangle\}$
- resulting quantum code $[[3, 1, 2]]_3$ quantum Reed-Solomon 3-qtrit code is a 4-index perfect tensor
- see as an isometric map $T : \mathbb{C}^3 \rightarrow (\mathbb{C}^3)^{\otimes 3}$

$$|0\rangle \mapsto \frac{1}{\sqrt{3}}|A\rangle, \quad |1\rangle \mapsto \frac{1}{\sqrt{3}}|B\rangle, \quad |2\rangle \mapsto \frac{1}{\sqrt{3}}|C\rangle$$

Characteristic 2 case: Symplectic spaces and quantization

- S. Gurevich, R. Hadani, *The Weil representation in characteristic two*, Adv. Math. 230 (2012), no. 3, 894–926

Setting:

- finite field $k = \mathbb{F}_{2^r}$
- residue field $\mathcal{O}_K/\mathfrak{m}_K = \mathbb{F}_{2^r}$ of an unramified extension K of degree r of \mathbb{Q}_2 , with $\mathcal{O}_K \subset K$ ring of integers, \mathfrak{m}_K maximal ideal
- ring $R = \mathcal{O}_K/\mathfrak{m}_K^2$
- $(\tilde{V}, \tilde{\omega})$ free R -module with a symplectic form
- \mathbb{F}_{2^r} -vector space $V = \tilde{V}/\mathfrak{m}_K$ with R -valued non-degenerate skew-symmetric form (almost-symplectic) $\omega = 2\tilde{\omega}$

- **polarization** of symplectic form $\tilde{\omega}$: bilinear form

$\tilde{\beta} : \tilde{V} \times \tilde{V} \rightarrow R$ with

$$\tilde{\beta}(\tilde{v}, \tilde{w}) - \tilde{\beta}(\tilde{w}, \tilde{v}) = \tilde{\omega}(\tilde{v}, \tilde{w})$$

- bilinearity implies cocycle condition

$$\tilde{\beta}(\tilde{v}, \tilde{w} + \tilde{u}) - \tilde{\beta}(\tilde{v}, \tilde{w}) - \tilde{\beta}(\tilde{v} + \tilde{w}, \tilde{u}) + \tilde{\beta}(\tilde{w}, \tilde{u}) = 0$$

- on V $\beta = 2\tilde{\beta}$ induces an R -valued cocycle with

$$\beta(v, w) - \beta(w, v) = \omega(v, w)$$

Heisenberg groups in characteristic 2

- Heisenberg group is the extension determined by cocycle β

$$0 \rightarrow R \rightarrow \text{Heis}(V, \beta) \rightarrow V \rightarrow 0$$

- multiplication

$$(v, r) \star (w, s) = (r + s + \beta(v, w), v + w)$$

- choice of a character $\chi : R \rightarrow \mathbb{C}^*$ determines an irreducible complex representation $\mathcal{H}_\chi(V, \beta)$ of $\text{Heis}(V, \beta)$

Weil Heisenberg groups in characteristic 2

- $\mathbb{F} = \mathbb{F}_{2^d}$, central extension of a symplectic \mathbb{F}_{2^d} -vector space (V, ω) by \mathbb{F} -valued cocycle $\beta : V \times V \rightarrow \mathbb{F}$ with $\beta(u, v) - \beta(v, u) = \omega(u, v)$

$$0 \rightarrow \mathbb{F} \rightarrow \text{Heis}_{\text{Weil}}(V, \beta) \rightarrow V \rightarrow 0$$

- advantage of version with R instead of \mathbb{F} : better symmetries

Comparison

- automorphisms in $\text{Aut}(\text{Heis}(V, \beta))$ acting trivially on center: **affine symplectic group**

$$0 \rightarrow V^\vee \rightarrow \text{ASp}(V) \rightarrow \text{Sp}(V) \rightarrow 1$$

extension of symplectic group: solutions (α, g) of

$$\alpha(v + w) - \alpha(v) - \alpha(w) = \beta(gv, gw) - \beta(v, w)$$

- automorphisms in $\text{Aut}(\text{Heis}_{\text{Weil}}(V, \beta))$ acting trivially on center: **pseudo-symplectic group**

$$0 \rightarrow V^\vee \rightarrow \Psi(V) \rightarrow O(Q) \rightarrow 1$$

$O(Q) \subset \text{Sp}(V)$ orthogonal group of quadratic form

$Q(v) = \beta(v, v)$: solutions (α, g) of above

- $\Psi(V)$ not an extension of symplectic group but $\text{ASp}(V)$ yes

enhanced Lagrangians

- pair (L, α) with $L \subset V$ Lagrangian and $\alpha : L \rightarrow R$ satisfying

$$\alpha(v + w) - \alpha(v) - \alpha(w) = \beta(v, w)$$

- this $\alpha : L \rightarrow R$ defines section $\tau : L \rightarrow \text{Heis}(V, \beta)$ of the projection $\text{Heis}(V, \beta) \rightarrow V$ by $\tau : \ell \mapsto (\ell, \alpha(\ell))$

$$\tau(\ell + \ell') = (\ell + \ell', \alpha(\ell + \ell')) =$$

$$(\ell + \ell', \alpha(\ell) + \alpha(\ell') + \beta(\ell, \ell')) = \tau(\ell) \star \tau(\ell')$$

- realization of irreducible Heisenberg representation: $\mathcal{H}_{(V, L, \beta, \chi)}$ subspace of $\mathbb{C}[\text{Heis}(V, \beta)]$ functions with

$$f((0, x) \cdot (w, y)) = \chi(x) f(w, y), \quad \forall x \in k, \quad \forall (w, y) \in V \times k$$

$$f(\tau(\ell) \cdot (w, y)) = f(w, y), \quad \forall \ell \in L, \quad \forall (w, y) \in V \times k$$

with action of $\text{Heis}(V, \beta)$ by right translations

Tensor Networks, Quantum Codes, and Geometry from Information

- Fernando Pastawski, Beni Yoshida, Daniel Harlow, John Preskill, *Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence*, JHEP 06 (2015) 149 [HaPPY]

Main Idea: Bulk spacetime geometry is the result of *entanglement* of quantum states in the boundary through a network of quantum error correcting codes

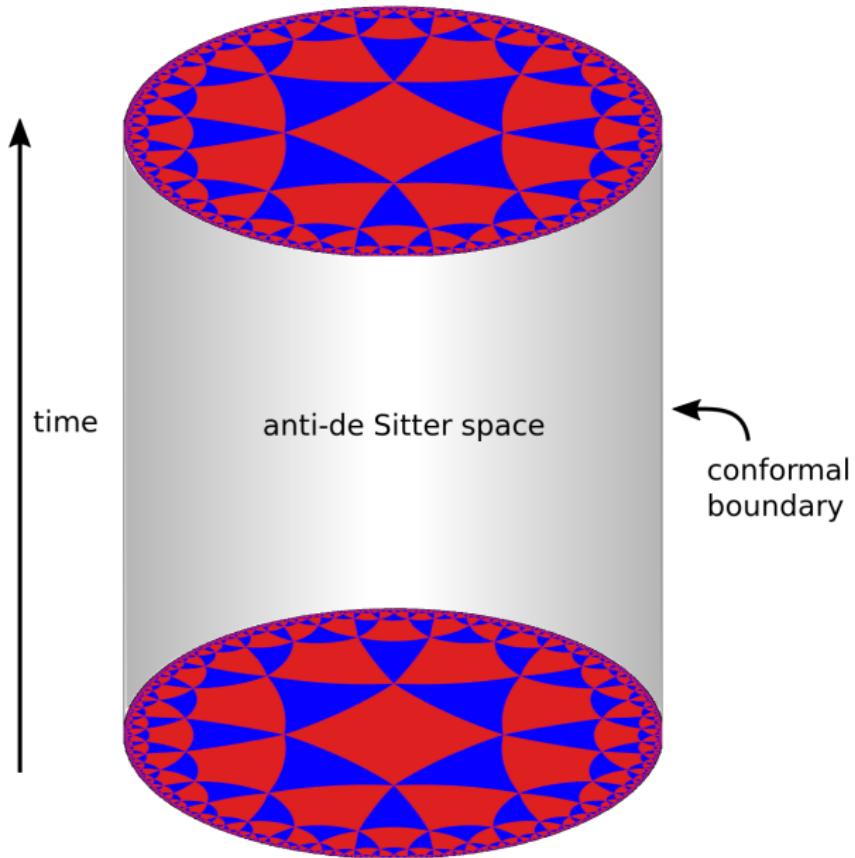
- quantum codes by perfect tensors: maximal entanglement across bipartitions
- network of perfect tensors with contracted legs along a tessellation of hyperbolic space
- uncontracted legs at the boundary (physical spins), and at the center of each tile in the bulk (logical spins)
- holographic state: pure state of boundary spins
- logical inputs on the bulk: encoding by the tensor network (holographic code)

AdS/CFT Holographic Correspondence

- bulk/boundary spaces
- hyperbolic geometry in the bulk (Lorentzian AdS spaces, Euclidean hyperbolic spaces \mathbb{H}^{d+1})
- conformal boundary at infinity:
 $\partial\mathbb{H}^3 = \mathbb{P}^1(\mathbb{C})$ (AdS₃/CFT₂) or
 $\partial\mathbb{H}^2 = \mathbb{P}^1(\mathbb{R})$ (AdS₂/CFT₁)
- AdS/CFT correspondence: a d -dimensional conformal field theory on the boundary related to a gravitational theory on the $d + 1$ dimensional bulk

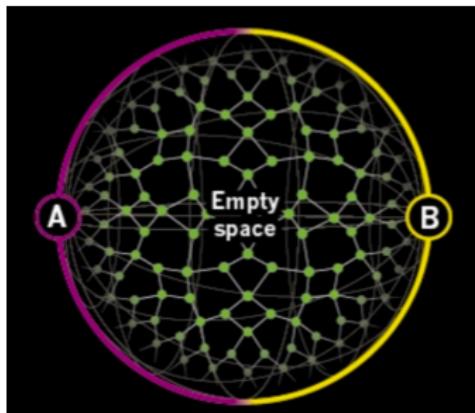
AdS/CFT Holography developed in String Theory since the 1990s

- E. Witten, *Anti-de Sitter space and holography*, arXiv:hep-th/9802150



More recent view of AdS/CFT: Quantum Information

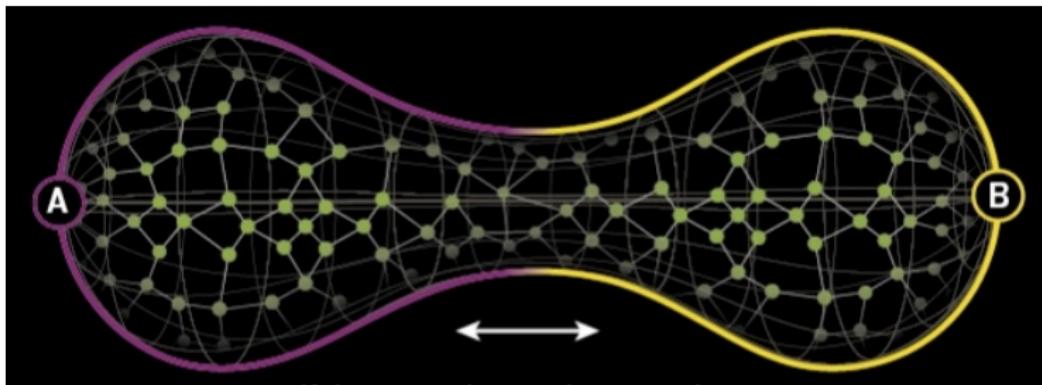
- relation between CFT on the boundary and gravity on the bulk with focus on **Information** (Entanglement Entropy) of quantum states on the boundary and geometry (gravity) on the bulk.



from R.Cowen, "The quantum source of space-time", Nature 527 (2015) 290–293

Spacetime geometry emerges from quantum entanglement

Entanglement between quantum fields in regions A and B decreases when corresponding regions of bulk space are pulled apart: dynamics of spacetime geometry (= gravity) constructed from quantum entanglement



from R.Cowen, "The quantum source of space-time", Nature 527 (2015) 290–293

Ryu–Takayanagi Formula:

Entanglement Entropy and Bulk Geometry

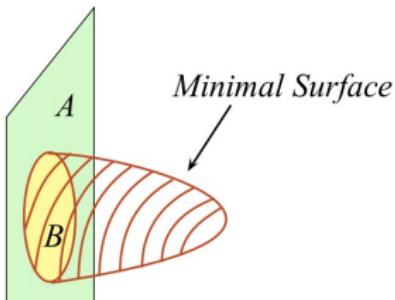
- Entanglement Entropy: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

$$\rho_A = \text{Tr}_{\mathcal{H}_B} (|\Psi\rangle\langle\Psi|), \quad S_A = -\text{Tr}(\rho_A \log \rho_A)$$

- Entanglement and Geometry: (conjecture)

$$S_A = \frac{\mathcal{A}(\Sigma_{\min})}{4G}$$

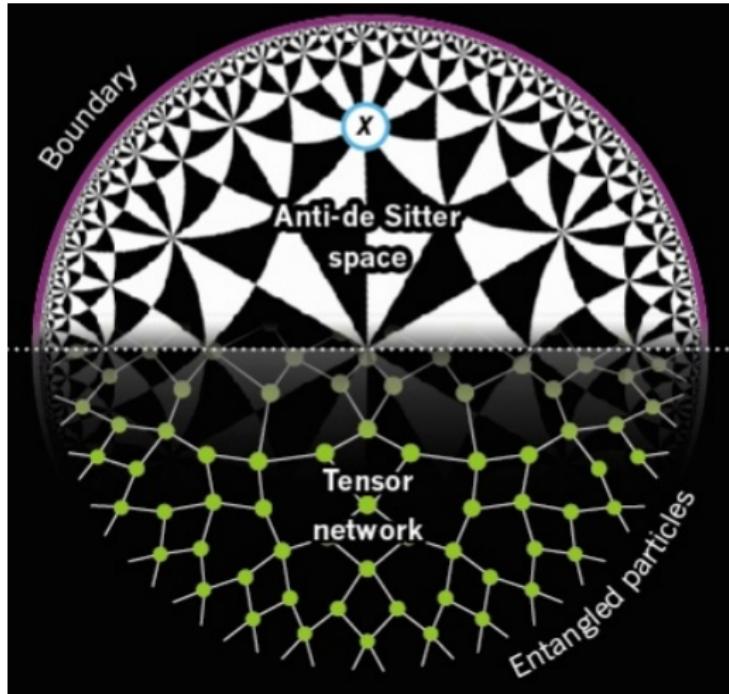
area of minimal surface in the bulk with given boundary $\partial A = \partial B$



from T.Nishioka,S.Ryu,T.Takayanagi, "Holographic entanglement entropy:

an overview", J.Phys.A 42 (2009) N.50, 504008

tensor networks as discretization of the bulk space



from R.Cowen, "The quantum source of space-time", Nature 527 (2015) 290–293

Pentagon tile holographic code [HaPPY]

- perfect tensors: T_{i_1, \dots, i_n} such that, for $\{1, \dots, n\} = A \cup A^c$ with $\#A \leq \#A^c$, isometry $T : \mathcal{H}_A \rightarrow \mathcal{H}_{A^c}$; perfect code (encodes one qbit to $n - 1$)
- six legs perfect tensor T_{i_1, \dots, i_6} : five qbit perfect code
[[5, 1, 3]]₂-quantum code:

$$\mathcal{C} \subset \mathcal{H}^{\otimes 5}, \quad \mathcal{C} = \{\psi \in \mathcal{H}^{\otimes 5} : S_j \psi = \psi\}$$

$$S_1 = X \otimes Z \otimes Z \otimes X \otimes I$$

X, Y, Z Pauli gates and $S_2, S_3, S_4, S_5 = S_1 S_2 S_3 S_4$ cyclic perms,
with $\mathcal{H} = \mathbb{C}^2$ one qbit Hilbert space



5-ary qbits perfect tensor codes generalize case of 3-qtrit with 6-legs perfect tensor

- Example of perfect tensor codes

- single 3-ary qubit (qutritt) encodes to three 3-ary qubits

$$\begin{aligned} |0\rangle &\mapsto |000\rangle + |111\rangle + |222\rangle \\ |1\rangle &\mapsto |012\rangle + |120\rangle + |201\rangle \\ |2\rangle &\mapsto |021\rangle + |102\rangle + |210\rangle \end{aligned}$$

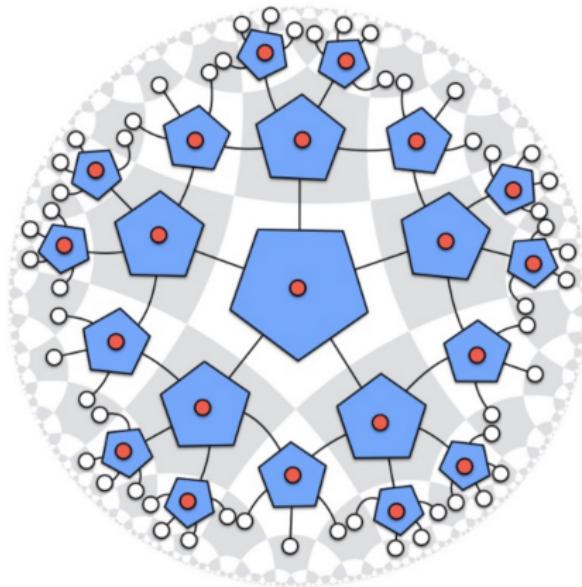
- polynomial codes $f_a(x) = ax^d + b_{d-1}x^{d-1} + \dots + b_1x + b_0$

$$|a\rangle \mapsto \sum_{b \in \mathbb{F}_q^d} (\otimes_{x \in \mathbb{F}_q} |f_a(x)\rangle)$$

- example: $q = 5$ [HaPPY] code case

$$|a\rangle \mapsto \sum_{b_0, b_1 \in \mathbb{F}_5} |b_0, b_0+b_1+a, b_0+2b_1+4a, b_0+3b_1+4a, b_0+4b_1+a\rangle$$

- in general $[n, k, n - k + 1]_q$ Reed-Solomon code \Rightarrow quantum $[[n, n - 2k, k + 1]]_q$ code; for $n = q$ and $k + 1 = n - k$ perfect tensor $[[q, 1, (q + 1)/2]]_q$ code



from F.Pastawski, B.Yoshida, D.Harlow, J.Preskill, *Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence*, JHEP 06 (2015) 149

Properties of the [HaPPY] code

- quantum error-correcting codes with a tensor network structure as *discretized version* of spacetime
- bulk and boundary degrees of freedom (logical/physical)
- exact prescription for mapping bulk operators to boundary operators
- Ryu–Takayanagi: entanglement entropy in the CFT is computed by the area of a certain minimal surface in the bulk geometry (cutting legs in the tensor network cuts out the bulk region)

Bulk discretization via tensor networks depend on a choice of tessellation and construction of a network of perfect tensors along the tessellation: is there a **natural bulk discretization** that works?

- Some more results on the [HaPPY] code:
 - Elliott Gesteau, Monica Jinwoo Kang, *The infinite-dimensional HaPPY code: entanglement wedge reconstruction and dynamics*, arXiv:2005.05971
 - Elliott Gesteau, Monica Jinwoo Kang, *Thermal states are vital: Entanglement Wedge Reconstruction from Operator-Pushing*, arXiv:2005.07189

Passing to the limit of an infinite tessellation in the [HaPPY] construction shows some limitations as a model of AdS/CFT holography (lack of long-range entanglement in the boundary and CFT behavior, but good properties of entanglement wedge reconstruction)

Tensor networks: general setup

Graphs

- finite graph $G = (F, V, \partial, j)$
- F set of flags (half-edges) and V set of vertices
- boundary map $\partial : F \rightarrow V$ identifies root vertex of each flag
- structure involution $j : F \rightarrow F$, $j^2 = id$ described how half-edges are glued together into edges of G
- internal edges $E_{int}(G)$ are pairs $e = (f, f')$ with $j(f) = f'$ and $f \neq f'$
- external edges $E_{ext}(G)$ are fixed points $j(f) = f$
- cut set $C \subset E_{in}(G)$ set of internal edges such that if all the edges $e \in C$ are cut get exactly two non-empty connected components

$$G \setminus C = G_{C,1} \sqcup G_{C,2}$$

tensor network on a graph: tensor network (G, \mathcal{H}, T)

- (finite) graph G without multiple edges (in general want to extend to infinite graph)
- vertices $v \in V$ are decorated by pairs $(\mathcal{H}_v, T^{(v)})$ of a complex vector space $\mathcal{H}_v = (\mathbb{C}^q)^{\otimes \deg(v)}$, for some $q = p^r > 0$ a power of some prime p , with $\deg(v)$ the valence of the vertex, and a $T^{(v)} \in \mathcal{H}_v$
- tensor $T^{(v)} = (T^{(v)})_{i_1, \dots, i_{\deg(v)}}$, with indices $i_f \in \mathbb{F}_q$, labelled by the flags $f \in F$ with $\partial(f) = v$
- edge $e = (f, f')$, $f' = j(f)$, with $\partial e = \{v, v'\}$ corresponds to a contraction of indices of $T^{(v)}$ and $T^{(v')}$

$$\sum_{i_f, i'_{f'} \in \mathbb{F}_q} \delta^{i_f, i'_{f'}} T^{(v)}_{i_1, \dots, i_{\deg(v)}} T^{(v')}_{i'_1, \dots, i'_{\deg(v')}}$$

δ^{ij} the Kronecker delta function

- *bonds* = internal edges of G , *dangling legs* = external edges of G
- graph G is called the *support* of the tensor network

Entangled state

- tensor network $\mathcal{T} = (G, \mathcal{H}, T)$ computes an entangled state $|\psi_{\mathcal{T}}\rangle$ in $\mathcal{H}_{\mathcal{T}} = (\mathbb{C}^q)^{\otimes |E_{ext}(G)|}$
- standard basis $|a_1 \dots a_N\rangle$ of the space $(\mathbb{C}^q)^{\otimes N}$ with $a = (a_1, \dots, a_N) \in \mathbb{F}_q^N$
- at vertex $v \in V(G)$ entangled state

$$|\psi_v\rangle = \sum_{a_1, \dots, a_{\deg(v)} \in \mathbb{F}_q} T_{a_1, \dots, a_{\deg(v)}}^{(v)} |a_1 \dots a_{\deg(v)}\rangle$$

superposition of the pure states $|a_1\rangle \otimes \dots \otimes |a_{\deg(v)}\rangle$

- along an edge $e \in E_{int}(G)$

$$|\psi_e\rangle = \sum_{a_i, b_j \in \mathbb{F}_q} \delta^{a_f, b_{f'}} T_{a_1, \dots, a_{\deg(v)}}^{(v)} T_{b_1, \dots, b_{\deg(v')}}^{(v')} |\hat{a}^{(f)}, \hat{b}^{(f')}\rangle,$$

with $\hat{a}^{(f)} = (a_1, \dots, \hat{a}_f, \dots, a_{\deg(v)})$ and

$\hat{b}^{(f')} = (b_1, \dots, \hat{b}_{f'}, \dots, b_{\deg(v')})$, and \hat{a}_f and $\hat{b}_{f'}$ with this entry removed

- after performing all edge contractions on the $|\psi_v\rangle$ get $|\psi_{\mathcal{T}}\rangle$ (remaining qubits of external edges)

case with no external edges

- same computation gives a complex number: amplitude $\alpha_{\mathcal{T}}$
- for any cut-set C an entangled states $|\psi_{C,i}\rangle$ in $(\mathbb{C}^q)^{\otimes |C|}$
- amplitude $\alpha_{\mathcal{T}}$ is obtained from these by contracting the indices corresponding to the pairs $e = (f_1, f_2)$ cut set

density matrix

- density matrix of the entangled state $|\psi_{\mathcal{T}}\rangle$

$$\rho = \frac{1}{\langle \psi_{\mathcal{T}} | \psi_{\mathcal{T}} \rangle} |\psi_{\mathcal{T}}\rangle \langle \psi_{\mathcal{T}}|$$

- partition $A \sqcup B$ of the set of external edges of G :

$$\rho_A = \text{Tr}_B(\rho)$$

with $\text{Tr}_B : \mathcal{H}_A \otimes \mathcal{H}_B \rightarrow \mathcal{H}_A$, tracing out (contracting indices) dangling legs in B

Entanglement entropy

- assignment

$$A \mapsto S_T(A) := \text{Tr}(\rho_A \log \rho_A),$$

for $A \subset E_{\text{ext}}(G)$ ranging over all subsets of external edges

- connected graph G with no external edges:

$$A_i \mapsto S_{T,C,i}(A_i) := \text{Tr}(\rho_{C,A_i} \log \rho_{C,A_i}),$$

for C ranging over cut-sets and $A_i \subset E_{\text{ext}}(G_{C,i})$

$$\rho_{C,A_i} = \text{Tr}_{C \setminus A_i}(\rho_{C,i})$$

with $\rho_{C,i}$ density matrix of entangled state $|\psi_{C,i}\rangle$

More general: can have more legs of tensor $T^{(v)}$ at vertices:
 $\deg(v)$ outputs and some inputs, then tensor network as **quantum code**

Other geometric aspects of CRSS quantum codes

Twisted group rings

- discrete group G , **group ring** $\mathbb{C}[G]$ associative noncommutative algebra
- (reduced) C^* -completion $C_r^*(G)$: closure of $\mathbb{C}[G]$ operator norm of algebra of bounded operators $\mathcal{B}(\ell^2(G))$ using right (or left) regular representation
- right regular representation: action of $\mathbb{C}[G]$ on $\ell^2(G)$ by $r_g f(g') = f(g'g)$

- **multiplier** $\sigma : G \times G \rightarrow U(1)$ is a **2-cocycle**

$$\sigma(g, 1) = \sigma(1, g) = 1$$

$$\sigma(g_1, g_2)\sigma(g_1g_2, g_3) = \sigma(g_1, g_2g_3)\sigma(g_2, g_3)$$

- twisted group ring $\mathbb{C}[G, \sigma]$ is generated by the twisted translations $r_g^\sigma f(g') = f(g'g) \sigma(g', g)$
- cocycle property implies associativity of $\mathbb{C}[G, \sigma]$ (and unital)
- composition relation

$$r_g^\sigma r_{g'}^\sigma = \sigma(g, g') r_{gg'}^\sigma$$

- twisted (reduced) group C^* -algebra $C_r^*(G, \sigma)$ norm closure of $\mathbb{C}[G, \sigma]$ in $\mathcal{B}(\ell^2(G))$

Matrix algebras

- matrix algebra $M_{q^n}(\mathbb{C})$ for $q = p^m$ identified with twisted group C^* -algebra $C^*((\mathbb{Z}/p\mathbb{Z})^{2mn}, \sigma)$
- multiplier $\sigma : (\mathbb{Z}/p\mathbb{Z})^{2m} \times (\mathbb{Z}/p\mathbb{Z})^{2m} \rightarrow U(1)$

$$\sigma((v, w), (v', w')) = \xi^{-\langle w, v' \rangle}$$

with $\xi = \exp(2\pi i/p)$ and

$$\langle v, w \rangle = \sum_{i=1}^n \sum_{j=1}^m a_{ij} b_{ij}$$

- cocycle condition $\sigma((v, w), (0, 0)) = \sigma((0, 0), (v, w)) = 1$ and
$$\sigma((v, w), (v', w'))\sigma((v+v', w+w'), (v'', w'')) = \xi^{-\langle w, v' \rangle - \langle w, v'' \rangle - \langle w', v'' \rangle}$$
$$= \sigma((v, w), (v' + v'', w' + w''))\sigma((v', w'), (v'', w''))$$
- generators $r_{(v, w)}^\sigma$ such that $r_{(v, w)}^\sigma r_{(v', w')}^\sigma = \xi^{-\langle w, v' \rangle} r_{(v+v', w+w')}^\sigma$
- same as generated by transformations $\xi^i E_{v, w}$

Noncommutative tori

- (rational or irrational) rotation algebras aka noncommutative tori
- rotation algebra \mathcal{A}_θ is C^* -algebra generated by two unitaries U and V with commutation relation

$$UV = \xi VU$$

with $\xi = \exp(2\pi i\theta)$

- rational case, $\theta \in \mathbb{Q}$ these algebras are Morita equivalent (bimodule identifying categories of modules, isom for NC spaces) to functions $C(\mathbb{T}^2)$ on ordinary commutative torus \mathbb{T}^2
- irrational case $\theta \in \mathbb{R} \setminus \mathbb{Q}$, the Morita equivalence classes correspond to the orbits of the action of $SL_2(\mathbb{Z})$ on the real line by fractional linear transformations

Rational noncommutative tori

- rational case with $\xi = \exp(2\pi i/p)$

$$\mathcal{A}_{1/p} \ni a = \sum_{k,\ell} f_{k,\ell}(\mu, \lambda) T^k R^\ell$$

- $f_{k,\ell}(\mu, \lambda)$ continuous functions of $(\lambda, \mu) \in S^1 \times S^1 = \mathbb{T}^2$
- T and R fundamental error matrices of quantum codes
- finite sum for $0 \leq k, \ell \leq p-1$ since $T^p = R^p = id$
- generators U and V are $U = \mu T$ and $V = \lambda R$, with $\mu = \exp(2\pi i t)$ and $\lambda = \exp(2\pi i s)$ in S^1

Quantum codes and vector bundles

- rational NC torus $\mathcal{A}_{n/m}$ isomorphic to the algebra $\Gamma(T^2, \text{End}(E_m))$ of sections of the endomorphisms bundle of a rank m vector bundle E_m over torus T^2
- start with trivial bundle on T^2 with fiber $M_m(\mathbb{C})$
- action of $(\mathbb{Z}/m\mathbb{Z})^2$ by

$$\tau_{1,0} : (\mu, \lambda, M) \mapsto (\mu, e^{-2\pi i n/m} \lambda, TMT^{-1})$$

$$\tau_{0,1} : (\mu, \lambda, M) \mapsto (e^{2\pi i n/m} \mu, \lambda, RMR^{-1})$$

- quotient gives a non-trivial bundle over T^2 , which is endomorphisms bundle $\text{End}(E_m)$ of a vector bundle E_m of rank m : bundle with fiber $M_m(\mathbb{C})$
- algebra of sections $\Gamma(T^2, \text{End}(E_m))$ is fixed point subalgebra of $C(T^2, M_m(\mathbb{C})) = C(T^2) \otimes M_m(\mathbb{C})$ (endomorphisms of trivial bundle) under $(\mathbb{Z}/m\mathbb{Z})^2$ -action

- action on algebra $C(T^2, M_m(\mathbb{C})) = C(T^2) \otimes M_m(\mathbb{C})$

$$\alpha_{1,0} : f(\mu, \lambda) \otimes M \mapsto f(\mu, e^{-2\pi i n/m} \lambda) \otimes TMT^{-1},$$

$$\alpha_{0,1} : f(\mu, \lambda) \otimes M \mapsto f(e^{2\pi i n/m} \mu, \lambda) \otimes RMR^{-1}$$

- fixed point subalgebra then generated by $\mu \otimes T$ and $\lambda \otimes R$ with commutation relation of the NC torus
- C^* -algebra homomorphism $\mathcal{A}_{n/m} \rightarrow M_m(\mathbb{C})$ sending generators U and V to the matrices T and R .

Quantum stabilizer codes

- E_p rank p bundle over T^2 with $\mathcal{A}_{1/p} = \Gamma(T^2, \text{End}(E_p))$
- q -ary quantum stabilizer code $Q_{S,\chi}$ (for $q = p^m$) of length n and size $k \Rightarrow$ commutative subalgebra $\mathcal{A}_S \subset \mathcal{A}_{1/p}^{\otimes r}$, with $r = nm$, and subbundle $\mathcal{F}_{S,\chi}$ of external tensor product $E_p^{\boxtimes mn}$ over $T^{2r} = T^2 \times \dots \times T^2$
- elements of the algebra \mathcal{A}_S act as scalars on $\mathcal{F}_{S,\chi}$
- these data equivalent to assigning $Q_{S,\chi}$
- here action of $(\mathbb{Z}/p\mathbb{Z})^{2r}$ on $C(T^{2r}, M_{q^n}(\mathbb{C}))$

$$\alpha_{v,w} : f(\underline{\mu}, \underline{\lambda}) \otimes M \mapsto f(\xi^v \underline{\mu}, \xi^{-w} \underline{\lambda}) \otimes E_{v,w} M E_{v,w}^{-1}$$

- matrix algebra $M_{q^n}(\mathbb{C})$ identified with $C^*(\mathcal{E}/\mathcal{Z}) = C^*((\mathbb{Z}/p\mathbb{Z})^{2mn}, \sigma)$ generated by the $E_{v,w}$

- algebra $\mathcal{A}_{\mathcal{S}} = C(X_{\mathcal{S}})$ algebra of functions of a space
 $X_{\mathcal{S}} = \bigcup_{\chi \in \hat{\mathcal{S}}} T_{\chi}$
- T_{χ} is a quotient of the torus T^{2r}
- over T_{χ} the bundle $\mathcal{F}_{\mathcal{S}, \chi}$ becomes direct sum $\mathcal{L}_{\mathcal{S}, \chi}^{\oplus k}$ of k -copies of a line bundle
- if quantum code $Q_{\mathcal{S}, \chi}$ from classical linear code $C \subset \mathbb{F}_q^n$ via CRSS algorithm can see some properties of classical code from algebra $\mathcal{A}_{\mathcal{S}}$
- for $c \in C$ Hamming weight $\varpi(c)$ number of non-zero coordinates of $c \in \mathbb{F}_q^n$
- algebra $\mathcal{A}_{\mathcal{S}} = C(X_{\mathcal{S}})$ has natural filtration by Hamming weight of words in classical code C

Moufang loops and codes

- a **loop** is a set L with an operation $\star : L \times L \rightarrow L$ that is not associative, a unit element e with $e \star a = a \star e = a$ for all $a \in L$ and such that the left and right multiplication maps $r_x(y) = y \star x$ and $\ell_x(y) = x \star y$ are bijections $L \rightarrow L$
- last condition shows existence of unique left and right inverses x_ℓ^{-1}, x_r^{-1} of $x \in L$
- in this very general form there is not much structure, but can impose a stronger condition
- **Moufang loop**: loop L satisfying near-associativity relation (Moufang identity)

$$x \star (y \star (x \star z)) = ((x \star y) \star x) \star z, \quad \forall x, y, z \in L$$

Some properties of Moufang loops

- any subloop (closed under \star containing e) generated by two elements x, y is a group (i.e. associative)
- powers of a single element are well defined:
 $x^3 = (x \star x) \star x = x \star (x \star x)$ etc
- left and right inverse agree $x_\ell^{-1} = x_r^{-1} = x^{-1}$
- other equivalent forms of the Moufang identity

$$x \star (y \star (z \star y)) = ((x \star y) \star z) \star y, \quad \forall x, y, z \in L$$

$$(y \star (x \star z)) \star y = (y \star x) \star (z \star y) = y \star ((x \star z) \star y) \quad \forall x, y, z \in L$$

- **commutator** $[a, b]$ and **associator** $[a, b, c]$ in loop L :

$$a \star b = b \star a \star [a, b] \quad \text{and} \quad (a \star b) \star c = (a \star (b \star c)) \star [a, b, c]$$

- **nucleus** $N(L)$ of loop L : set of all elements $a \in L$ such that $[a, b, c] = [b, a, c] = [b, c, a] = 1$ for all $b, c \in L$
- **Moufang center** $C(L)$ of Moufang loop L : set of elements $a \in L$ such that $[a, b] = 1$ for all $b \in L$
- **center** $Z(L)$ of Moufang loop L : intersection $Z(L) = N(L) \cap C(L)$
- nucleus $N(L)$ is a subgroup of L and center $Z(L)$ is an abelian subgroup

Code loops

- $C \subset \mathbb{F}_q^n$ linear code
- *twisted cocycle* $\theta : C \times C \rightarrow \mathbb{F}_q$ with

$$\theta(v, w) - \theta(u + v, w) + \theta(u, v + w) - \theta(u, v) = \delta(u, v, w)$$

(2-cochain that is not a cocycle)

- loop $L(C, \theta) = C \ltimes_{\theta} \mathbb{F}_q$ instead of group
- conditions under which this is a Moufang loop?

Some code loops references

- R.L. Griess, *Code Loops*, J. of Algebra, 100 (1986) 224–234
- T. Hsu, *Explicit constructions of code loops as centrally twisted products*, Math. Proc. Camb. Phil. Soc. 128 (2000), 223–232
- B. Nagy, D.M. Roberts, *(Re)constructing Code Loops*, The American Mathematical Monthly, 128 (2021) N.2, 151–161

Code loop construction: doubly even codes

- binary linear codes $C \subset \mathbb{F}_2^n$
- **doubly even code**: weight $|v| = \#\{v_i = 1\} = v_1 + \dots + v_n$, the number of ones in the word, is divisible by 4
- logical AND operation: $u \& v := (u_1 v_1, \dots, u_n v_n)$
- twisted cocycle θ with twisting function

$$\delta(u, v, w) = |u \& v \& w| \pmod{2}$$

- θ satisfies

$$\theta(v, w) + \theta(w, v) = \frac{1}{2}|v \& w| \pmod{2}$$

$$\theta(v, v) = \frac{1}{4}|v| \pmod{2}$$

- (Griess): loop codes obtained in this way are Moufang loops

Examples of doubly even codes: Hamming and Golay codes

- Hamming code $C \subset \mathbb{F}_2^8$ subspace spanned by the four row vectors

```
10000111
01001011
00101101
00011110
```

- extended binary Golay code $C \subset \mathbb{F}_2^{24}$ linear subspace spanned by row vectors

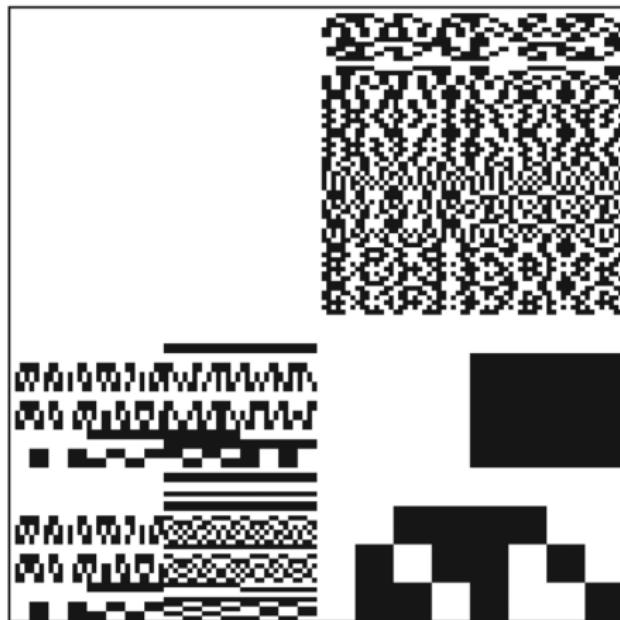
000110000000010110100011	101001011100111001111111
101001111101101111110001	10000001100001001001100
000100000000100100111110	000001000000111001001110
010000000010000110101101	100000001000111000111000
000000000010010101010111	1000000000100101000010111
10000000000100111110001	011011000001111011111111

- decomposition into complementary subspaces $C = V \oplus W$
- to determine θ enough to evaluate on complementary subspaces

$$\begin{aligned}
 \theta(v_1 + w_1, v_2 + w_2) &= \theta(v_1, v_2) + \theta(w_1, w_2) + \theta(v_1, w_1) \\
 &\quad + \theta(w_2, v_2) + \theta(v_1 + v_2, w_1 + w_2) \\
 &\quad + \frac{1}{2}|v_2 \& (w_1 + w_2)| + |v_1 \& v_2 \& (w_1 + w_2)| \\
 &\quad + |w_1 \& w_2 \& v_2| + |v_1 \& w_1 \& (v_2 + w_2)| \pmod{2}
 \end{aligned}$$

Example: Golay code and Parker loop

- for Golay code take $C = V \oplus W$ with two left/right columns of basis vectors above
- θ then completely determined by $2^{14} - 2^8 + 1 = 16129$ values



- Parker loop $L(C, \theta) = C \ltimes_{\theta} \mathbb{F}_2$

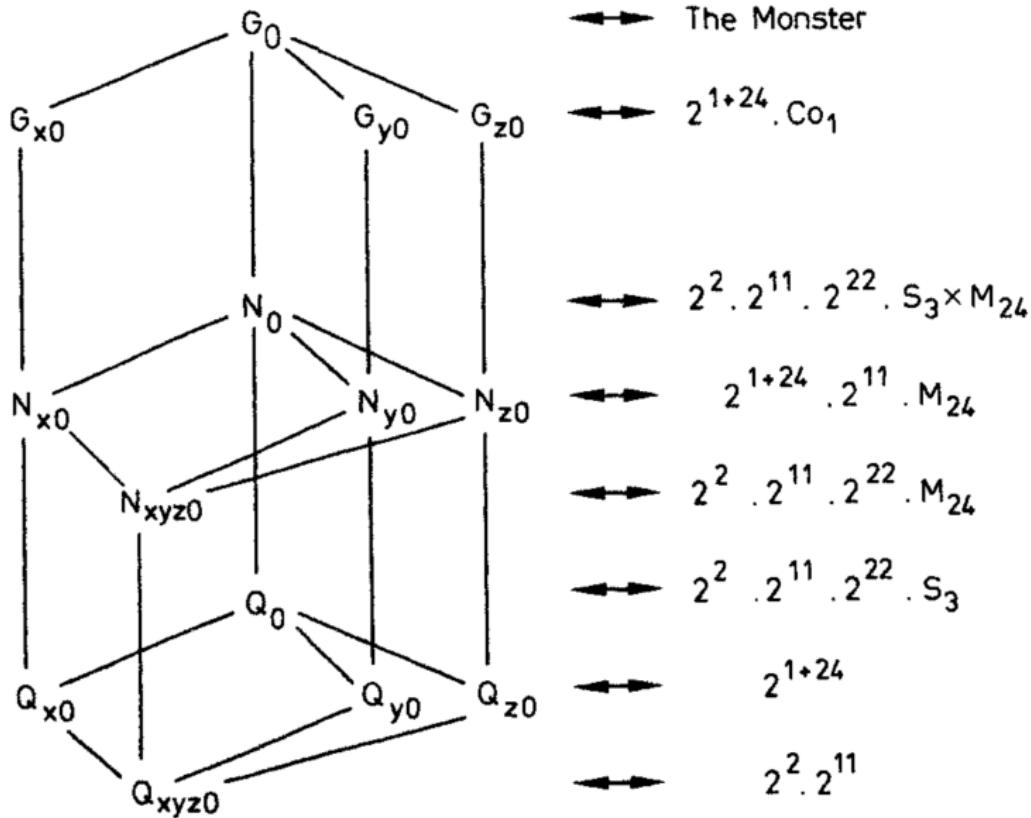
Parker loop and the Monster group

- J.H. Conway, *A simple construction for the Fischer–Griess monster group*, Invent. Math. 79 (1985), 513–540

Sketch of main idea

- Monster group: simple group constructed by Griess as automorphism group of a certain algebra in a 196884-dimensional space
- Conway obtained a simpler construction from the Parker loop
- symmetries of Golay code: permutations of a set Ω of size 24 that fix C seen as subset of the set of parts $P = P(\Omega)$ identifying \mathbb{F}_2 -valued vectors with characteristic functions of subsets
- the Golay code has symmetries M_{24} the Mathieu group
- using sets of ordered triples in $P \cup \{0\}$ and self-maps of these sets construct various subgroups of the Monster group

(subgroups)



Code loops and cubic symplectic structures

- T. Hsu, *Moufang loops of class 2 and cubic forms*, Math. Proc. Camb. Phil. Soc. 128 (2000), 197–222

Setting:

- Moufang loops L that are central extensions

$$0 \rightarrow Z \rightarrow L \rightarrow C \rightarrow 0$$

with abelian groups $Z = Z(L)$ and $C = L/Z(L)$

- associated **cubic symplectic structure**

$$\chi : C \times C \rightarrow Z, \quad \alpha : C \times C \times C \rightarrow Z$$

$$\chi(\bar{a}, \bar{b}) = [a, b], \quad \alpha(\bar{a}, \bar{b}, \bar{c}) = [a, b, c]$$

for $a, b, c \in L$ with $\bar{a}, \bar{b}, \bar{c}$ in C

- expressions well defined as values of $[a, b]$ and $[a, b, c]$ do not change when shifting entries by elements of center $Z = Z(L)$
- Note: commutators and associators take values center $Z(L)$ as quotient $L/Z(L)$ is an abelian group

- $\alpha : C \times C \times C \rightarrow Z$ is antisymmetric and multilinear (hence also a cocycle)
- $\chi : C \times C \rightarrow Z$ is antisymmetric and satisfies

$$\chi(\bar{a} + \bar{b}, \bar{c}) = \chi(\bar{a}, \bar{c}) + \chi(\bar{b}, \bar{c}) + 3\alpha(\bar{a}, \bar{b}, \bar{c})$$

- from identity (where terms in rhs can be associated in any way)

$$[a \star b, c] = [a, c] \star [[a, c], b] \star [b, c] \star [a, b, c]^3$$

that holds when associators are central

- Note special role of characteristic $p = 3$

- also consider function $\sigma : C \rightarrow Z$ with $\sigma(\bar{a}) = a^p = \overbrace{\bar{a} \star \cdots \star \bar{a}}^{p\text{-times}}$
- this satisfies

$$\sigma(\bar{a} + \bar{b}) = \sigma(\bar{a}) + \sigma(\bar{b}) + \chi(a, b), \quad \text{when } p = 2$$

$$\sigma(\bar{a} + \bar{b}) = \sigma(\bar{a}) + \sigma(\bar{b}), \quad \text{when } p > 2$$

- $(a \star b)^p = \overbrace{(a \star b) \star \cdots \star (a \star b)}^{p\text{-times}} = a^p \star b^p \star [a, b]^{p(p-1)/2}$
- writing Z additively: $\sigma(\bar{a}) + \sigma(\bar{b}) + \frac{p(p-1)}{2} \chi(\bar{a}, \bar{b})$, for $p > 2$
 coefficient multiple of characteristic p so zero, for $p = 2$
 coefficient $\frac{p(p-1)}{2} = 1$
- Note special role of characteristic $p = 2$

Loops from cubic symplectic structures

- O. Chein, E. Goodaire. *Moufang loops with a unique nonidentity commutator (associator, square)*. J. Alg. 130 (1990), 369–384.
- proved that (in characteristic 2) all loops obtained in this way are code loops of doubly even codes
- data of Hsu's cubic symplectic structure can be chosen arbitrarily: for any data $\sigma_i, \chi_{ij}, \alpha_{ijk} \in \mathbb{F}_2$, \exists binary linear code C with basis $\{c_i\}$ such that

$$\sigma(c_i) = \sigma_i, \quad \chi_{ij} = \chi(c_i, c_j), \quad \alpha(c_i, c_j, c_k) = \alpha_{ijk}$$

- the case of doubly even codes is a cubic symplectic structure in Hsu's sense
- any small Frattini extension is a code loop of a doubly even code

$$\sigma_i = |c_i|/4, \quad \chi(c_i, c_j) = |c_i \& c_j|/2, \quad \alpha(c_i, c_j, c_k) = |c_i \& c_j \& c_k|.$$

Another construction: **Almost-symplectic code loops**

Almost-symplectic structure (p odd)

- finite dimensional vector space V over \mathbb{F}_q (q odd) with non-degenerate skew-symmetric form $\omega : V \times V \rightarrow \mathbb{F}_q$.
 - $\omega(u, v) = -\omega(v, u)$, with $\omega(u, 0) = \omega(0, u) = 0$
 - for any $u \neq 0$ in V , there is some $v \in V$ satisfying $\omega(u, v) \neq 0$
- ω is not required to be closed
- nontrivial coboundary $d\omega = \delta$

$$d\omega(u, v, w) = \omega(v, w) - \omega(u+v, w) + \omega(u, v+w) - \omega(u, v) = \delta(u, v, w)$$

- **Note:** ω is *not* bilinear, otherwise $d\omega = 0$ would follow

Almost-symplectic structure ($p = 2$)

- $q = 2^r$, consider ring $R = \mathcal{O}_K/\mathfrak{m}_K^2$, where $\mathbb{F}_{2^r} = \mathcal{O}_K/\mathfrak{m}_K$
- (V, ω) with almost-symplectic $\omega : V \times V \rightarrow R$
- **polarization**: $\beta : V \times V \rightarrow R$

$$\beta(u, v) - \beta(v, u) = \omega(u, v)$$

- coboundary

$$d\beta(u, v, w) = \beta(v, w) - \beta(u+v, w) + \beta(u, v+w) - \beta(u, v) = \gamma(u, v, w),$$

with

$$\delta(u, v, w) = \gamma(u, v, w) + \gamma(w, v, u).$$

- polarization satisfies $\beta(v, 0) = \beta(0, v)$ since $\omega(0, v) = \omega(v, 0) = 0$
- polarization $\beta(u, v) - \beta(v, u) = \omega(u, v)$ is normalized if also satisfies $\beta(v, 0) = 0$ for all $v \in V$.

Lack of linearity

- lack of linearity of β in the left/right variable:

$$\gamma_\ell(u, v, w) := \beta(u + v, w) - \beta(u, w) - \beta(v, w)$$

$$\gamma_r(u, v, w) := \beta(u, v + w) - \beta(u, w) - \beta(v, w),$$

- so can write

$$\gamma(u, v, w) = \gamma_r(u, v, w) - \gamma_\ell(u, v, w),$$

- similarly for $\delta_\ell(u, v, w)$ and $\delta_r(u, v, w)$, lack of linearity of ω .

Almost-symplectic code loops

- **p odd**: code loops $\mathcal{L}(V, \omega)$ given by extension

$$0 \rightarrow \mathbb{F}_q \rightarrow \mathcal{L}(V, \omega) \rightarrow V \rightarrow 0$$

- non-associative multiplication

$$(u, x) \star (v, y) = (u + v, x + y + \frac{1}{2}\omega(u, v))$$

$u, v \in V$ and $x, y \in \mathbb{F}_q$

- **p even**: code loops $\mathcal{L}(V, \beta)$ given by extensions

$$0 \rightarrow R \rightarrow \mathcal{L}(V, \beta) \rightarrow V \rightarrow 0$$

- non-associative multiplication

$$(u, x) \star (v, y) = (u + v, x + y + \beta(u, v))$$

$u, v \in V$ and $x, y \in R$

Moufang identity

- Moufang identity for the loop $\mathcal{L}(V, \beta)$ iff

$$\gamma(u, v, u + w) = \gamma(v, w, u) \quad \forall u, v, w \in V$$

- same for $\mathcal{L}(V, \omega)$ for $p > 2$

$$\delta(u, v, u + w) = \delta(v, w, u) \quad \forall u, v, w \in V$$

- by direct computation from Moufang identity

$$(a \star b) \star (c \star a) = a \star ((b \star c) \star a)$$

with $a = (u, x)$, $b = (v, y)$, $c = (w, z)$

Cyclic and Hochschild cochains

- function $\eta : V \times \cdots \times V \rightarrow R$ is **cyclic** if $(1 - \lambda)\eta = 0$ with

$$\lambda\eta(v_0, \dots, v_n) = (-1)^n\eta(v_n, v_0, \dots, v_{n-1})$$

- function $\eta : V \times \cdots \times V \rightarrow R$ is multilinear if $\delta_i\eta = 0$ for all $i = 0, \dots, n$ with $\delta_i\eta(v_0, \dots, v_n) =$

$$\eta(v_0, \dots, v_i + w_i, \dots, v_n) - \eta(v_0, \dots, v_i, \dots, v_n) - \eta(v_0, \dots, w_i, \dots, v_n)$$

- function $\eta : V \times \cdots \times V \rightarrow R$ Hochschild cocycle if $d\eta = 0$ with **Hochschild** coboundary

$$\begin{aligned} d\eta(v_0, \dots, v_{n+1}) &= \eta(v_1, \dots, v_{n+1}) - \eta(v_0 + v_1, v_2, \dots, v_{n+1}) + \cdots \\ &\quad + (-1)^i \eta(v_0, \dots, v_{i-1} + v_i, \dots, v_{n+1}) + \cdots \\ &\quad + (-1)^{n-1} \eta(v_0, \dots, v_{n-1}, v_n + v_{n+1}) + (-1)^n \eta(v_0, \dots, v_n). \end{aligned}$$

- multilinearity implies $d\eta = 0$

$$d\eta = \sum_{i=0}^n (-1)^i \delta_i \eta$$

Moufang condition and cyclic property

- If β is normalized and $\gamma = d\beta$ is multilinear, then the Moufang identity is equivalent to γ being cyclic
- same for $p > 2$: if $\delta = d\omega$ multilinear then Moufang condition equivalent to δ being cyclic

Linear representations of loops

- E.K. Loginov, *On linear representations of Moufang loops.* Commun. Algebra, 21 (1993) N.7, 2527–2536.
- loop \mathcal{L} and vector space \mathcal{H} over a field F
- left and right composition maps $\ell, \rho : \mathcal{L} \rightarrow \text{Aut}(\mathcal{H})$,

$$\ell_a(h) = a \star h, \quad \rho_a(h) = h \star a$$

- these should satisfy $a \star (h + h') = a \star h + a \star h'$,
 $(h + h') \star a = h \star a + h' \star a$, $a \star (\lambda h) = \lambda a \star h$,
 $(\lambda h) \star a = \lambda h \star a$, for all $a \in \mathcal{L}$, $h, h' \in \mathcal{H}$, $\lambda \in F$
- associate to a loop \mathcal{L} the non-associative algebra $F[\mathcal{L}]$
- maps ℓ, ρ extend by linearity to $F[\mathcal{L}]$ (Eilenberg's notion of representation of nonassociative algebras)
- if loop is Moufang maps $\ell, \rho : \mathcal{L} \rightarrow \text{Aut}(\mathcal{H})$ satisfy
 - associator $[a, b, h]$ is skew-symmetric for all $a, b \in F[\mathcal{L}]$ and $h \in \mathcal{H}$
 - identities $h \star (b \star (a \star b)) = ((h \star b) \star a) \star b$ and
 $((a \star b) \star a) \star h = a \star (b \star (a \star h))$ hold, for all $a, b \in F[\mathcal{L}]$ and all $h \in \mathcal{L}$.

Isotropic and polarizable subspaces

- (V, ω) almost-symplectic in characteristic 2 with normalized polarization β
- **isotropic subspace** $C \subset V$ linear subspace where $\omega|_C \equiv 0$
- **polarizable subspace** $P \subset V$ linear subspace for which there is a map $\alpha : P \rightarrow R$ satisfying

$$\alpha(u + v) - \alpha(u) - \alpha(v) = \beta(u, v), \quad \forall u, v \in P$$

- **polarized subspace**: pair (P, α)
- polarization relation is just Hochschild coboundary $\beta = d\alpha$ so it implies $\gamma|_P = d\beta|_P = 0$.

Polarizations and sections

- polarized subspace (P, α) determines a section $\tau : P \rightarrow \mathcal{L}(V, \beta)$ of the projection $\mathcal{L}(V, \beta) \rightarrow V$, with image $\tau(P) \subset \mathcal{L}(V, \beta)$ a **subgroup** of the loop $\mathcal{L}(V, \beta)$
- if P also isotropic, then $\tau(P) \subset \mathcal{L}(V, \beta)$ is an **abelian subgroup**
- take $\tau(v) = (v, \alpha(v))$ for $v \in P$

$$(v, \alpha(v)) \star (w, \alpha(w)) = (v+w, \alpha(v)+\alpha(w)+\beta(v, w)) = (v+w, \alpha(v+w))$$

- associative since $d\beta|_P = 0$
- on an isotropic subspace polarization β is symmetric, hence multiplication also commutative

CRSS quantum codes from code loops

- \mathcal{L} = almost-symplectic loops $\mathcal{L}(V, \omega)$ for $p > 2$ and $\mathcal{L}(V, \beta)$ for $p = 2$
- $\mathcal{H} = \mathbb{C}[\mathcal{L}]$ with left and right composition maps
- $|a\rangle$ with $a \in \mathcal{L}$ for the canonical basis of \mathcal{H}
- character $\chi : Z(\mathcal{L}) \rightarrow \mathbb{C}^*$ (that is, a character $\chi : R \rightarrow \mathbb{C}^*$ for $p = 2$ or $\chi : \mathbb{F}_q \rightarrow \mathbb{C}^*$ for $p > 2$) gives subspace $\mathcal{H}_\chi \subset \mathcal{H}$: functions that transform like $\ell_{(0,x)} f(u, y) = \chi(x) f(u, y)$, for $x \in Z(\mathcal{L})$ and $(u, y) \in \mathcal{L}$
- An isotropic subspace $C \subset V$ determines a commuting family of error operators $\chi(\tau(v))E_v$, with $v \in C$, and an associated error correcting quantum code $\mathcal{C}_C \subset \mathcal{H}_\chi$ given by a joint eigenspace of these operators.
- $C \mapsto \mathcal{C}_C$ almost-symplectic CRSS algorithm.

Wedge product

- $\theta : V \rightarrow \mathbb{F}_q$ for q odd, or $\theta : V \rightarrow R$ in characteristic 2, and $\omega : V \times V \rightarrow \mathbb{F}_q$ for q odd, or $\omega : V \times V \rightarrow R$ in characteristic 2
- wedge product $\theta \wedge \omega$

$$(\theta \wedge \omega)(u, v, w) := \theta(u)\omega(v, w) + \theta(w)\omega(u, v)$$

- uniquely defined by compatibility with wedge product of two 1-forms θ_1, θ_2 as

$$(\theta_1 \wedge \theta_2)(v, w) := \theta_1(v)\theta_2(w) - \theta_1(w)\theta_2(v),$$

through relation

$$d(\theta_1 \wedge \theta_2) = d\theta_1 \wedge \theta_2 - \theta_1 \wedge d\theta_2$$

Locally conformally symplectic structures

- (V, ω) over \mathbb{F}_q almost-symplectic space
- ω is *locally conformally symplectic structure* if there is a closed 1-form θ such that

$$d\omega = \theta \wedge \omega$$

- in characteristic 2 the form θ has values in R instead of \mathbb{F}_q

Darboux decomposition

- Darboux decomposition $V \simeq \bigoplus_i \mathbb{F}_q^2$ for a symplectic vector space uses $d\omega = 0$
- almost-symplectic case in general does *not* have Darboux decomposition
- if almost-symplectic ω is *locally conformally symplectic* then again have Darboux decomposition
- $d\theta = 0$ means θ is linear:

$$d\theta(u, v) = \theta(v) - \theta(u + v) + \theta(u) = 0$$

- So $V = \text{Ker}(\theta) \oplus \mathbb{F}_q$ and $d\omega|_K \equiv 0$
- \exists pair of vectors u, v in K with $\omega(u, v) = 1$: copy of \mathbb{F}_q^2 with Darboux symplectic form
- continue on complement until get $\bigoplus_{i=1}^{n-1} \mathbb{F}_q^2$ plus one \mathbb{F}_q
- combining all $V = \bigoplus_{i=1}^n \mathbb{F}_q^2$
- under quantization, corresponding decomposition of \mathcal{H} into tensor product of q -ary qubits

Lagrangians and perfect tensors

- loop \mathcal{L} (that is, $\mathcal{L}(V, \omega)$ for characteristic $p > 2$ and $\mathcal{L}(V, \beta)$ in characteristic $p = 2$)
- $L \subset V$ be a Lagrangian with respect to ω (an enhanced Lagrangian (L, α) for $p = 2$)
- $\tau(L) \subset \mathcal{L}$ section $\tau(L) = \{(v, \alpha(v)) \mid v \in L\}$ for $p = 2$ ($\tau(L) = \{(v, 0) \mid v \in L\}$ for $p > 2$): abelian group
- Lagrangian L in *general position* with respect to the Darboux decomposition of locally conformally symplectic structure determines a perfect tensor $T_L \in \mathcal{H}$

Moufang loops and Latin square designs

- Latin square design is a pair $\mathcal{D} = (P, A)$ of a set P of points and a set A of lines
- $\#P = 3N$ with a splitting $P = P_1 \sqcup P_2 \sqcup P_3$ into points of three types, with $\#P_i = N$, for $i = 1, 2, 3$
- set A of lines, with $\#A = N^2$
- each line in A contains exactly 3 points, one from each of the three subsets of P
- any two points from two different subsets of P belong to exactly one line in A

Latin square

- Latin square of the design \mathcal{D} is an $N \times N$ matrix
- entries corresponding to the N^2 lines in A and with (x_1, x_2) -entry equal to x_3 if the line containing $x_1 \in P_1$ and $x_2 \in P_2$ has $x_3 \in P_3$ as the third point
- order of Latin square is number N of points of each type

Category

- Latin square designs form a category
- objects $\mathcal{D} = (P, A)$
- morphisms $\mathcal{D} \rightarrow \mathcal{D}'$ given by triples of maps $\alpha_i : P_i \rightarrow P'_i$ such that, if (x_1, x_2, x_3) is a line in A then $(\alpha_1(x_1), \alpha_2(x_2), \alpha_3(x_3))$ is a line in A'

Thomsen loop and design

- for a loop \mathcal{L} , the *Thomsen design* $\mathcal{D}(\mathcal{L})$ has
 $P = \mathcal{L}_1 \sqcup \mathcal{L}_2 \sqcup \mathcal{L}_3$, three copies of \mathcal{L} labelled $i = 1, 2, 3$, and
 $A = \{(x_1, x_2, x_3) \mid (x_1 \star x_2) \star x_3 = 1 \in \mathcal{L}\}$
- conversely for a Latin square design \mathcal{D} have *Thomsen loop* $\mathcal{L}(\mathcal{D})$
- $\mathcal{D} \mapsto \mathcal{L}(\mathcal{D})$ is functorial and gives an equivalence of categories
- category of loops with morphisms *isotopisms*: triples of maps $(\alpha, \beta, \gamma) : \mathcal{L} \rightarrow \mathcal{L}'$ satisfying $\alpha(x) \star' \beta(y) = \gamma(x \star y)$ for all $x, y \in \mathcal{L}$

Automorphisms and Moufang condition

- automorphism of a Latin square design $\mathcal{D} = (P, A)$ is a permutation of P that sends lines to lines
- central automorphism τ_x of \mathcal{D} , centered at $x \in P$: fixes x and exchanges other two points on each line in A containing x
- *central Latin square design*: admits a central automorphism at every point $x \in P$
- equivalence between the category of central Latin square designs and the category of *Moufang loops*

Graph of the Thomsen design

- loops $\mathcal{L}(V, \omega)$ for p odd and $\mathcal{L}(V, \beta)$ for $p = 2$
- Thomsen designs $\mathcal{D}(\mathcal{L}(V, \omega))$ and $\mathcal{D}(\mathcal{L}(V, \beta))$ associated graphs $G = G_{\mathcal{L}(V, \omega)}$ or $G = G_{\mathcal{L}(V, \beta)}$
- describing how points of the design are connected by lines
- $N = \#\mathcal{L}$ order $N = q^{2n+2}$ for $q = 2^r$ and $N = q^{2n+1}$ for q odd
- panel $\Pi_{(u,x)_i}$ of lines through a point $(u, x)_i$ ($i = 1, 2, 3$ type index) contains N lines, each containing two other points
- panels $\Pi_{(u,x)_i}$ and $\Pi_{(v,y)_j}$ with types $i \neq j$ intersect in a single line
- so graph with $\#V(G) = 3N$ and uniform valence $\deg(v) = 2N$, so $\#E(G) = 3N^2$
- $N = q^{2n+1}$ for $q = p^r$ with p odd and $N = q^{2n+2}$ for $q = 2^r$
- subgraph $G_{\tau(C)}$ with $3q^k$ vertices and $3q^{2k}$ edges for subdesign $\mathcal{D}(\tau(C))$

Tensor network from the Thomsen design

- Lagrangian (L, α) in general position and corresponding perfect tensor T_L
- subgraph $G \subset G_{\tau(L)}$ with same vertex set as $G_{\tau(L)}$ and only edges between points u_i and $(u + e_r)_j$, for $\{e_r\}_{r=1,\dots,n}$ with e_r standard basis of $\mathbb{F}_q^n \simeq L$
- $T = T_{\ell_1, \dots, \ell_{2n}}$ indices labelled by vectors $\ell = (\ell_1, \dots, \ell_{2n}) \in \mathbb{F}_q^{2n} \simeq V$ in the Darboux basis
- entangled state associated to corolla of vertex u_i in G

$$|\psi_{u_i}\rangle = \sum_{\ell} T_{\ell} |\ell\rangle$$

with $|\ell\rangle$ standard basis of \mathcal{H}

Chamber systems

- **chamber system of type I** on a set Ω (set of chambers) is a family $\{\rho_i\}_{i \in I}$ of equivalence relations on Ω
 - ① if $\omega \sim_i \omega'$ and $\omega \sim_j \omega'$, for some $i \neq j \in I$, then $\omega = \omega'$
 - ② the I -graph (vertex set Ω and edges $e_{\omega, \omega'}$, for $\omega \sim_i \omega'$ for some ρ_i) is connected
- subset $J \subset I \Rightarrow$ *residue of type J* is a connected component of J -graph
- number of colors $\#I$ is *rank* of chamber system
- panels = connected components of the monochromatic subgraphs
- **Latin chamber system** is a chamber system of rank 3 where any two panels of different colors intersect in a unique chamber

Latin square designs and Latin chamber systems

- Latin square design determines a Latin chamber system
- Ω given by the set of the N^2 cells of the Latin square
- equivalences: same row, same column, same symbol in the cell
- set of chambers of Latin chamber system = set of lines of the Latin square design
- set of panels = set of points of the Latin square design
- a panel = set of lines that contain a given point

Buildings: Coxeter groups

- best known class of chamber systems are **buildings**
- **Coxeter group**: group defined by a presentation

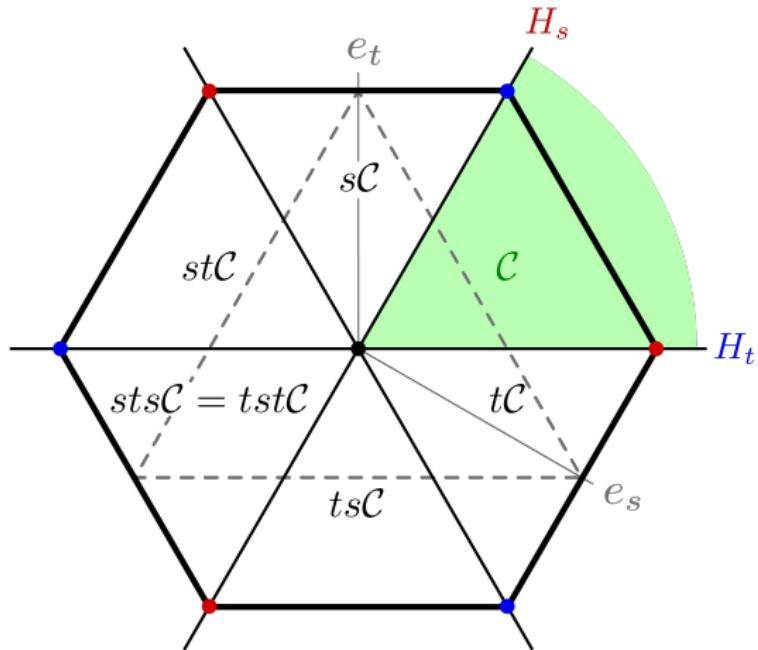
$$G = \langle x_i, i \in I \mid x_i^2 = 1 \forall i, (x_i x_j)^{m_{ij}} = 1 \forall i, j \in I \}$$

with $m_{ij} \geq 2$ integers or $m_{ij} = \infty$ (ie no such relation)

- G always isomorphic to group generated by reflections in a family of hyperplanes H_i in Euclidean or hyperbolic space with mutual angles π/m_{ij} (parallel for $m_{ij} = \infty$)
- **Coxeter complex**: cell complex where images under G of reflecting hyperplanes decompose ambient space into pieces that give the cells
- **chamber system** with chambers the max dim cells of the complex and related by one of the equivalence relations ρ_i if obtained by reflection along the hyperplanes H_i

Example

- dihedral group $D_n = \langle s, t \mid s^2 = 1, t^2 = 1, (st)^n = 1 \rangle$
- chambers and Coxeter complex

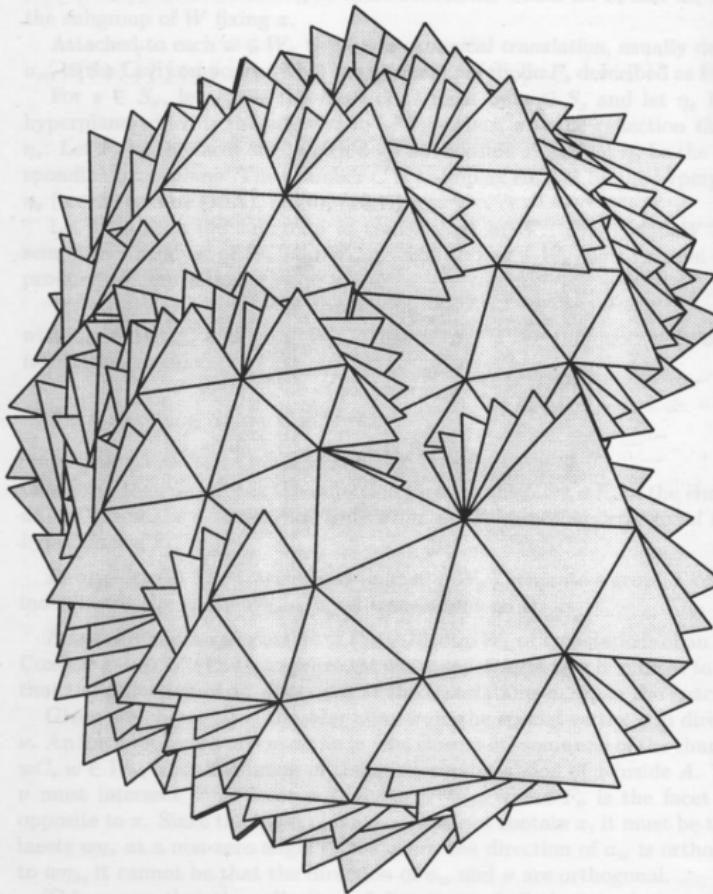


Buildings

- n -dimensional **building**: simplicial complex B that is a union of subcomplexes called **apartments** with
 - 1 every k -simplex with $k < n$ is in at least three n -simplices
 - 2 any $(n-1)$ -simplex in an apartment A lies in exactly two adjacent n -simplices of A
 - 3 the graph of adjacent n -simplices is connected
 - 4 any two simplices lie in a common apartment
 - 5 if two simplices σ, τ are in both A and A' apartments, \exists simplicial isomorphism $A \simeq A'$ fixing σ, τ
- n -simplices are the **chambers**
- **G -building**: apartments are isomorphic to the Coxeter complex of G
- $\exists d : B \times C \rightarrow G$ (a kind of G -valued “metric”) with $\rho_i = \{(b, b') \mid d(b, b') = 1 \text{ or } d(b, b') = x_i\}$ equivalence relations of the chamber system

be the set of all vectors in \mathbb{R}^n which lie in the cone which the σ_i define in the following of W then

Attachment each σ_i to a vector of length $\sqrt{2}$ and translation, namely we



Latin chamber systems and buildings

- Latin chamber systems are not themselves buildings
- but... a Latin chamber system has **universal 2-cover** that is a building iff the associated Thomsen loop is a **group**
- U. Meierfrankenfeld, G. Stroth, R.M. Weiss, *Local identification of spherical buildings and finite simple groups of Lie type*, Math. Proc. Camb. Phil. Soc., Vol.154 (2013) 527–547.

2-coverings

- path (gallery) in (the graph of) a chamber system is **2-homotopically trivial** if it can be reduced to trivial path through a sequence of replacements of subgalleries lying in rank 2 residues by other galleries in same residue
- collection \mathcal{C} of closed walks in a graph Δ : a **\mathcal{C} -covering** $\tilde{\Delta} \rightarrow \Delta$ is covering where every closed walk in \mathcal{C} lifts to a closed walk in $\tilde{\Delta}$: \exists universal \mathcal{C} -cover
- **2-covering** of a chamber system is a \mathcal{C} -covering for $\mathcal{C} =$ all closed walks in rank 2 residues

General question: construction and properties of tensor networks on buildings

- What classes of buildings (or more general chamber systems) have interesting tensor networks?
- What holographic properties can one expect these tensor networks to have?
 - causal wedge and entanglement wedge reconstruction, complementary recovery (Coxeter complex structure is relevant here)
 - geodesic lengths in the bulk and boundary measure (Patterson–Sullivan measure, $CAT(0)$ property)
 - Ryu–Takayanagi formula for entanglement entropy in terms of bulk minimal areas/lengths (expect here stronger hyperbolicity needed, $CAT(-1)$ property)
- Elliott Gestaeu, Matilde Marcolli, and Sarthak Parikh, *Holographic tensor networks from hyperbolic buildings*, J. High Energy Phys. 2022, no. 10, Paper No. 169, 28 pp.