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Classical codes

alphabet finite set A of cardinality q ≥ 2

classical (unstructured) code: subset C ⊂ An

elements of C are code words: x = (a1, . . . , an) in C ⊂ An

k = k(C ) = logq #C with ⌊k⌋ integer part of k

transmission rate: ratio R = k/n

Hamming distance between code words x = (ai ) and y = (bi )

d(x , y) = #{i | ai ̸= bi}

relative minimum distance: ratio δ = d/n with
d(C ) = min{d(x , y) | x , y ∈ C , x ̸= y}
classical code C with these parameters: [n, k, d ]q code
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Classical linear codes

finite field A = Fq of cardinality q = pr characteristic p > 0

code is linear if C ⊂ Fn
q is an Fq-linear subspace of vector

space Fn
q

k = ⌊k⌋ is an integer for linear codes = dimC as vector space

given Fq-bilinear form ⟨·, ·⟩ on Fn
q, self-orthogonal code C if

all code words x , y ∈ C have ⟨x , y⟩ = 0

dual code C⊥: vectors v in Fn
q with ⟨v , x⟩ = 0 for all x ∈ C

self-orthogonal: C ⊆ C⊥
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Central extensions: groups from linear codes

ilnear code C ⊂ Fn
q with dimC = qk so C ≃ Fk

q

cocycle θ : C × C → Fq

θ(v ,w)− θ(u + v ,w) + θ(u, v + w)− θ(u, v) = 0

central extension

0 → Fq → Gθ → C → 0

multiplication

(v , x) · (w , y) = (v + w , x + y + θ(v ,w))

associativity from cocycle condition

when Fq = F2 view θ : C × C → F2 as “QR code diagram”
θ : Fk

2 × Fk
2 → F2
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Example

quaternion units group Q8 = {1,±i ,±j ,±k} relations
i2 = j2 = k2 = −1 and ij = k

C = F2
2, extension 0 → F2 → Q8 → C → 0 with cocycle θ
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Quantum codes

qbit = a vector in finite dimensional Hilbert space C2

binary qbit spaces (C2)⊗n

q-ary qbit = a vector in Cq and q-ary qbit spaces (Cq)⊗n

q-ary quantum code of length n and size k = a k-dimensional
C-linear subspace of Cqn = (Cq)⊗n

quantum error: a linear map E ∈ EndC(Cqn)

for quantum errors of the form E = E1 ⊗ · · · ⊗ En, the weight
is w(E ) = #{i |Ei ̸= id}
quantum error E is detectable by a quantum code Q if

PQ E PQ = λEPQ

with PQ orthogonal projection onto Q ⊂ Cqn and λE ∈ C
constant depending only on E
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for q = pm consider field Fq as an Fp-vector space, Fm
p

for x ∈ Fn
q, x = (a1, . . . , an) write each coefficient ai ∈ Fq as

vectors ai = (ai1, . . . , aim) with aij in Fp

elements of Z/pZ, integer numbers 0 ≤ aij ≤ p − 1

given a linear operator L ∈ EndC(Cp) with Lp = id , can
consider integer powers Laij
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Fundamental error operators

T and R on Cp given by matrices

T =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0



R =



1 0 0 · · · 0 0
0 ξ 0 · · · 0 0
0 0 ξ2 · · · 0 0
...

...
0 0 0 · · · ξp−2 0
0 0 0 · · · 0 ξp−1


,

where ξ = exp(2πi/p)
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Relations and basis

power and commutation relations

T p = Rp = id and TR = ξRT

these imply composition relations

T kRℓ = ξkℓRℓT k

(T kRℓ)(T rRs) = ξ−rℓT r+kRs+ℓ = ξsk−rℓ(T rRs)(T kRℓ)

the operators T kRℓ form an orthonormal basis of
Mp(C) = EndC(Cp) with respect to the inner product
⟨A,B⟩ = Tr(A∗B)
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Composite error operators

x and y are elements in Fq, written as vectors
x = (a1, . . . , am), y = (b1, . . . , bm) with coeffs ai , bi ∈ Fp

linear maps E = E1 ⊗ · · · ⊗ En in EndC(Cqn), with q = pm,
where the factors Ei are of the form Ei = TxRy

Tx = T a1 ⊗ · · · ⊗ T an

Ry = Rb1 ⊗ · · · ⊗ Rbn

for v = (x1, . . . , xn) and w = (y1, . . . , yn) vectors in Fn
q,

corresponding error operator

Ev ,w = Tx1Ry1 ⊗ · · · ⊗ TxnRyn

T and R relations imply commutation relation

Ev ,wEv ′,w ′ = ξ⟨v ,w
′⟩−⟨w ,v ′⟩Ev ′,w ′Ev ,w

for v ,w ∈ Fn
q, the bilinear form ⟨v ,w⟩

⟨v ,w⟩ =
n∑

i=1

m∑
j=1

aijbij
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Group laws

also get composition relation

Ev ,wEv ′,w ′ = ξ−⟨w ,v ′⟩Ev+v ′,w+w ′

E subgroup of AutC(Cqn) given by invertible linear maps of
the form

E = {ξkEv ,w | v ,w ∈ Fn
q, 0 ≤ k ≤ p − 1}

finite group of order p2mn+1

center Z of E is the subgroup {ξk id} isomorphic to Z/pZ
We’ll see this is related to Heisenberg groups and symplectic
spaces over finite fields
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Quantum stabilizer codes

quantum stabilizer code is a quantum code is obtained as
joint eigenspace of all the linear transformations in a
commutative subgroup of E
S ⊂ E commutative subgroup with #S = pr+1

χ : S → U(1) character trivial on Z
quantum stabilizer code Q = QS,χ is linear subspace of Cqn

QS,χ = {ψ ∈ Cqn |Aψ = χ(A)ψ, ∀A ∈ S}

dimension pmn−r
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CRSS algorithm: classical–quantum correspondence

given classical linear self-orthogonal code C ⊂ F2n
q , with

#C = pr

linear maps Ev ,φ(w), for (v ,w) an Fp-basis of C , together

with elements ξk id , generate a subgroup S ⊂ E
composition relation and self-orthogonality imply subgroup S
is abelian

by construction of order #S = pr+1

this determines a quantum stabilizer codes QS,χ with
parameters [[n, n − r/m, d⊥]]q

minimum distance dQ of the quantum stabilizer code QS,χ
satisfies

dQ = d⊥ = dC⊥∖C

dC⊥∖C := min#{i | vi ̸= 0 or wi ̸= 0, (v ,w) ∈ F2n
q , (v ,w) ∈ C⊥∖C}

Matilde Marcolli From Classical to Quantum Codes



CRSS algorithm: classical–quantum correspondence

conversely given quantum stabilizer code Q = QS,χ

given Fp-linear automorphism φ ∈ AutFp(Fm
p )

get Fp-linear code of length 2n, with #C = pr for #S = pr+1

C = CQ,φ = {(v , φ−1(w)) |Ev ,w ∈ S}

C is self-orthogonal with respect to bilinear form

⟨v , φ(w ′)⟩ − ⟨v ′, φ(w)⟩

with ⟨v ,w⟩ =
∑n

i=1

∑m
j=1 aijbij

role of automorphism φ: field extension Fq of Fp is identified
with the vector space Fm

p (loose track of field structure); can
use field automorphism φ to remember the remaining
structure
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Symplectic vector spaces and Heisenberg groups

Symplectic vector space (V , ω) over a finite field Fq

(char ̸= 2):

ω closed: cocycle condition

dω(u, v ,w) = ω(v ,w)−ω(u+v ,w)+ω(u, v+w)−ω(u, v) = 0

ω non-degenerate: given u ∈ V find v with ω(u, v) ̸= 0

Heisenberg group central extension determined by cocycle ω

0 → Fq → Heis(V , ω) → V → 0

(v , x) · (w , y) = (v + w , x + y +
1

2
ω(v ,w))
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H(F2n
q ) = Heis(F2n

q , ω) with ω standard Darboux form

Darboux form: sum F2n
q = ⊕iF2

q on each F2
q symplectic form

ω((x1, y1), (x2, y2)) = y1x2 − y2x1

the error operators Eab = TaRb give the explicit
representation matrices of the Heisenberg group H(F2n

q ) with
respect to the central character specified by ξ with ξp = 1

Darboux basis for (V , ω) direct sum of 2-dim symplectic
spaces over Fq

using ω non-degen can find a first F2
q = span{u, v} with

ω(u, v) = 1
using closed can decompose V = F2

q ⊕W with
W = {w ∈ V |ω(u,w) = ω(v ,w) = 0}
then repeat
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Heisenberg groups and CRSS quantum codes

unique irreducible complex representation H = Hχ(V , ω) of
Heis(V , ω) with central character χ : Fq → C∗

functorial geometric quantization over finite fields
(Gurevich–Hadani) ⇒ decomposition of H = (Cq)⊗n as
tensor product of q-ary qbits Cq

representation matrices Eab = TaRb of Heis(V , ω) additive
basis of End(H)

isotropic subspace C ⊂ V ⇒ abelian subgroup of Heis(V , ω)
⇒ mutually diagonalizable, H sum of #C = qk eigenspaces
of dimension qn−k

Each such joint eigenspace of C of dimension qn−k is a
quantum code QC ≃ (Cq)⊗(n−k) that encodes n − k qbits to
n qbits (CRSS quantum code associated to classical code C )
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Algebro-geometric codes

algebraic points X (Fq) of a curve X over a finite field Fq

set A ⊂ X (Fq) and divisor D on X with supp(D) ∩ A = ∅
code C = CX (A,D) by evaluation at A of rational functions
f ∈ Fq(X ) with poles at D

bound on order of pole of f at D determines dimension of the
linear code

Matilde Marcolli From Classical to Quantum Codes



Reed-Solomon codes case X (Fq) = P1(Fq)

C = {(f (x1), · · · , f (xn)) : f ∈ Fq[x ], deg(f ) < k} gives an
[n, k , n − k + 1]q with n ≤ q

or homogeneous polynomials at points xi = (ui : vi ) ∈ P1(Fq)

Ĉ = {(f (u1, v1), . . . , f (un, vn)) : f ∈ Fq[u, v ], homog. deg(f ) < k}

generalized Reed-Solomon codes: w = (w1, . . . ,wn) ∈ Fn
q

Cw ,k = {(w1f (x1), · · · ,wnf (xn)) : f ∈ Fq[x ], deg(f ) < k}

Ĉw ,k = {(w1f (u1, v1), . . . ,wnf (un, vn)) : f ∈ Fq[u, v ], homog. deg(f ) < k}.
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CRSS of Reed-Solomon codes

Hermitian self-dual case: ⟨v ,w⟩H =
∑n

i=1 viw
q
i , with

v ,w ∈ Fn
q2

Hermitian-self-dual length n over Fq2 gives self-dual code C̃
length 2n over Fq then CRSS

Hermitian self-duality conditions for generalized
Reed–Solomon codes with w = (w1, . . . ,wn) ∈ (F∗

q2)
n

For wi = 1 and n = q2 with k = q, Hermitian-self-dual
Reed-Solomon code C = C1,q and associated
[[q2 + 1, q2 − 2q + 1, q + 1]]q-quantum Reed-Solomon code C
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Symplectic vector spaces and perfect tensors (p > 2)

perfect tensor: T ∈ V⊗m (V with inner prod to identify with
dual, here qbit V = Cq) such that all splittings (tensor/Hom)
for j ≤ m/2 are isometries

V⊗j → V⊗(m−j)

when isometric injection of the (n − k)-qbits code space QC

inside the n-qbit space H is obtained from a partition of the
indices of a (2n − k)-index tensor into (n − k)-qbits (to be
encoded), together with n-qbits (encoding space)

even number of indices of perfect tensor when dimC = k even

procedure to produce directly perfect tensors via a version of
CRSS algorithm and quantization of symplectic vector spaces
over finite fields
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Lagrangians

Symplectic vector space (V , ω) of dim 2n over Fq; Lagrangian
subspace L ⊂ V (of dim n)

Irreducible rep of Heis(V , ω) can be realized through a choice
of Lagrangian L ⊂ V (in classical construction of quantum
mechanical Hilbert space that identifies position vs momentum
repres L, L∨) HL = Hχ(V , L, ω) (invariants under L

∨)

L chosen in “general position” means that intersection with
Darboux decomposition as small as possible, so a basis of HL

is as far as possible from being a tensor-product basis in the
Darboux decomposition

(dimV = 4n) V = ⊕iVi ⇒ (Cq)⊗2n = H = ⊗iHi = ⊗iCq

V = W ⊕W ′ splitting of 2n indices k ≤ n and 2n − k

dim(L ∩W ) ≥ 2(k − n), dim(L ∩W ′) ≥ 2(n − k)

for k = n general position if both zero-dimensional
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Lagrangians and perfect tensors

geometrically maximal rank of perfect tensors with respect to
decomposition into groups of qbits corresponds to a “general
position” of the Lagrangian (with respect to a given
symplectic splitting of V into 2-dim Darboux pieces)

most non-general position: L′ sum of 1-dim Lagrangians in
each 2-dim Darboux subspace (maximally decomposable)

(functorial quantization): symplectomorphism
ψ : W1 → W2 ⇒ H(ψ) : H(W1) → H(W2)

if Lagrangian L in general position then symplectomorphism
ψ : W̄ → W ′ (with opposite (W̄ , ω̄) = (W ,−ω))
H(ψ) : H(W )∨ → H(W ′) same as tensor
T ∈ H(W )⊗H(W ′) = H(V ) is perfect tensor
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Example: 3-qtrit quantum code

quantum Reed–Solomon code with perfect tensor condition

start with classical [n, k , n − k + 1]q2 Reed–Solomon code

choose parameters n = q = 3, k = (q − 1)/2 = 1

X = P1(F3)∖ {∞} = {[1 : 0], [1 : 1], [1 : 2]}
[3, 1, 3]9-code

{(fa(1, 0), fa(1, 1), fa(1, 2)) | a ∈ F9, fa ∈ F9[u, v ]}

k = 1 so homogeneous polynomials just fa(u, v) = a0 ∈ F9

{(a0, a0, a0) | a0 ∈ F9}

self-orthogonal code: ⟨a, b⟩ = 3a0b
3
0 = 0

dQ = min{weight(v) | v ∈ D⊥ ∖ D} = 2 from

D⊥ = {⟨a, b⟩ = a0(b
3
1+b32+b33) = 0} = {(2b2+2b3, b2, b3) | bi ∈ F9}
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take then classical [2n, 2k , 2n − 2k + 1]q Reed–Solomon code
same parameters n = q = 3, k = (q − 1)/2 = 1

inputs a = (a0, b0) ∈ F2
3 and code

C = {(fa0(1, 0), fb0(1, 0), fa0(1, 1), fb0(1, 1), fa0(1, 2), fb0(1, 2))}

again because k = 1 just

C = {((a0, b0), (a0, b0), (a0, b0)) | (a0, b0) ∈ F2
3}

self-orthogonality for inner product

⟨(a, b), (a′, b′)⟩ = 3a0b
′
0 − 3a′0b0 = 0
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for (a, b) ∈ C group elements ξiEa,b with 0 ≤ i ≤ 2

Ea,b = Ta0Rb0 ⊗ Ta0Rb0 ⊗ Ta0Rb0

matrices Ta0Rb0
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orthonormal basis of qbits |a0⟩ with a0 ∈ F3

common eigenvectors of the matrices Ta0Rb0

with |ijk⟩ = |i⟩ ⊗ |j⟩ ⊗ |k⟩ ∈ (C3)⊗3
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eigenvalues and eigenvectors ξiEa,b (with notation

a30 := (a0, a0, a0))
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from table see that invariant subspaces for group S are
span{|A⟩, |B⟩, |C ⟩} or span{|D⟩, |E ⟩, |F ⟩} or
span{|G ⟩, |H⟩, |I ⟩}
can equivalently take one: say QC = span{|A⟩, |B⟩, |C ⟩}
resulting quantum code [[3, 1, 2]]3 quantum Reed-Solomon
3-qtrit code is a 4-index perfect tensor

see as an isometric map T : C3 → (C3)⊗3

|0⟩ 7→ 1√
3
|A⟩, |1⟩ 7→ 1√

3
|B⟩, |2⟩ 7→ 1√

3
|C ⟩
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Characteristic 2 case: Symplectic spaces and quantization

S. Gurevich, R. Hadani, The Weil representation in
characteristic two, Adv. Math. 230 (2012), no. 3, 894–926

Setting:

finite field k = F2r

residue field OK/mK = F2r of an unramified extension K of
degree r of Q2, with OK ⊂ K ring of integers, mK maximal
ideal

ring R = OK/m
2
K

(Ṽ , ω̃) free R-module with a symplectic form

F2r -vector space V = Ṽ /mK with R-valued non-degenerate
skew-symmetric form (almost-symplectic) ω = 2ω̃
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polarization of symplectic form ω̃: bilinear form
β̃ : Ṽ × Ṽ → R with

β̃(ṽ , w̃)− β̃(w̃ , ṽ) = ω̃(ṽ , w̃)

bilinearity implies cocycle condition

β̃(ṽ , w̃ + ũ)− β̃(ṽ , w̃)− β̃(ṽ + w̃ , ũ) + β̃(w̃ , ũ) = 0

on V β = 2β̃ induces an R-valued cocycle with

β(v ,w)− β(w , v) = ω(v ,w)
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Heisenberg groups in characteristic 2

Heisenberg group is the extension determined by cocycle β

0 → R → Heis(V , β) → V → 0

multiplication

(v , r) ⋆ (w , s) = (r + s + β(v ,w), v + w)

choice of a character χ : R → C∗ determines an irreducible
complex representation Hχ(V , β) of Heis(V , β)
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Weil Heisenberg groups in characteristic 2

F = F2d , central extension of a symplectic F2d -vector space
(V , ω) by F-valued cocycle β : V × V → F with
β(u, v)− β(v , u) = ω(u, v)

0 → F → HeisWeil(V , β) → V → 0

advantage of version with R instead of F: better symmetries
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Comparison

automorphisms in Aut(Heis(V , β)) acting trivially on center:
affine symplectic group

0 → V ∨ → ASp(V ) → Sp(V ) → 1

extension of symplectic group: solutions (α, g) of

α(v + w)− α(v)− α(w) = β(gv , gw)− β(v ,w)

automorphisms in Aut(HeisWeil(V , β)) acting trivially on
center: pseudo-symplectic group

0 → V ∨ → Ψ(V ) → O(Q) → 1

O(Q) ⊂ Sp(V ) orthogonal group of quadratic form
Q(v) = β(v , v): solutions (α, g) of above

Ψ(V ) not an extension of symplectic group but ASp(V ) yes

Matilde Marcolli From Classical to Quantum Codes



enhanced Lagrangians

pair (L, α) with L ⊂ V Lagrangian and α : L → R satisfying

α(v + w)− α(v)− α(w) = β(v ,w)

this α : L → R defines section τ : L → Heis(V , β) of the
projection Heis(V , β) → V by τ : ℓ 7→ (ℓ, α(ℓ))

τ(ℓ+ ℓ′) = (ℓ+ ℓ′, α(ℓ+ ℓ′)) =

(ℓ+ ℓ′, α(ℓ) + α(ℓ′) + β(ℓ, ℓ′)) = τ(ℓ) ⋆ τ(ℓ′)

realization of irreducible Heisenberg representation: H(V ,L,β,χ)

subspace of C[Heis(V , β)] functions with

f ((0, x) · (w , y)) = χ(x) f (w , y), ∀x ∈ k , ∀(w , y) ∈ V × k

f (τ(ℓ) · (w , y)) = f (w , y), ∀ℓ ∈ L, ∀(w , y) ∈ V × k

with action of Heis(V , β) by right translations
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Tensor Networks, Quantum Codes, and Geometry from Information

Fernando Pastawski, Beni Yoshida, Daniel Harlow, John
Preskill, Holographic quantum error-correcting codes: Toy
models for the bulk/boundary correspondence, JHEP 06
(2015) 149 [HaPPY]

Main Idea: Bulk spacetime geometry is the result of entanglement
of quantum states in the boundary through a network of quantum
error correcting codes

quantum codes by perfect tensors: maximal entanglement
across bipartitions

network of perfect tensors with contracted legs along a
tessellation of hyperbolic space

uncontracted legs at the boundary (physical spins), and at the
center of each tile in the bulk (logical spins)

holographic state: pure state of boundary spins

logical inputs on the bulk: encoding by the tensor network
(holographic code)
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AdS/CFT Holographic Correspondence

bulk/boundary spaces

hyperbolic geometry in the bulk (Lorentzian AdS spaces,
Euclidean hyperbolic spaces Hd+1)

conformal boundary at infinity:
∂H3 = P1(C) (AdS3/CFT2) or
∂H2 = P1(R) (AdS2/CFT1)

AdS/CFT correspondence: a d-dimensional conformal field
theory on the boundary related to a gravitational theory on
the d + 1 dimensional bulk

AdS/CFT Holography developed in String Theory since the 1990s

E. Witten, Anti-de Sitter space and holography,
arXiv:hep-th/9802150
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More recent view of AdS/CFT: Quantum Information

relation between CFT on the boundary and gravity on the
bulk with focus on Information (Entanglement Entropy) of
quantum states on the boundary and geometry (gravity) on
the bulk.

from R.Cowen, “The quantum source of space-time”, Nature 527 (2015) 290–293

Spacetime geometry emerges from quantum entanglement

Matilde Marcolli From Classical to Quantum Codes



Entanglement between quantum fields in regions A and B
decreases when corresponding regions of bulk space are pulled
apart: dynamics of spacetime geometry (= gravity) constructed
from quantum entanglement

from R.Cowen, “The quantum source of space-time”, Nature 527 (2015) 290–293
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Ryu–Takayanagi Formula:
Entanglement Entropy and Bulk Geometry

• Entanglement Entropy: H = HA ⊗HB

ρA = TrHB
(|Ψ⟩⟨Ψ|), SA = −Tr(ρA log ρA)

• Entanglement and Geometry: (conjecture)

SA =
A(Σmin)

4G

area of minimal surface in the bulk with given boundary ∂A = ∂B

from T.Nishioka,S.Ryu,T.Takayanagi, “Holographic entanglement entropy:

an overview”, J.Phys.A 42 (2009) N.50, 504008
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tensor networks as discretization of the bulk space

from R.Cowen, “The quantum source of space-time”, Nature 527 (2015) 290–293
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Pentagon tile holographic code [HaPPY]

• perfect tensors: Ti1,...,in such that, for {1, . . . , n} = A ∪ Ac with
#A ≤ #Ac , isometry T : HA → HAc ; perfect code (encodes one
qbit to n − 1)

• six legs perfect tensor Ti1...,i6 : five qbit perfect code
[[5, 1, 3]]2-quantum code:

C ⊂ H⊗5, C = {ψ ∈ H⊗5 : Sjψ = ψ}

S1 = X ⊗ Z ⊗ Z ⊗ X ⊗ I

X ,Y ,Z Pauli gates and S2, S3,S4, S5 = S1S2S3S4 cyclic perms,
with H = C2 one qbit Hilbert space
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5-ary qbits perfect tensor codes generalize case of 3-qtrit with
6-legs perfect tensor
• Example of perfect tensor codes

single 3-ary qubit (qutritt) encodes to three 3-ary qubits

|0⟩ 7→ |000⟩+ |111⟩+ |222⟩
|1⟩ 7→ |012⟩+ |120⟩+ |201⟩
|2⟩ 7→ |021⟩+ |102⟩+ |210⟩

polynomial codes fa(x) = axd + bd−1x
d−1 + · · ·+ b1x + b0

|a⟩ 7→
∑
b∈Fd

q

(
⊗x∈Fq |fa(x)⟩

)
example: q = 5 [HaPPY] code case

|a⟩ 7→
∑

b0,b1∈F5

|b0, b0+b1+a, b0+2b1+4a, b0+3b1+4a, b0+4b1+a⟩

in general [n, k , n − k + 1]q Reed–Solomon code ⇒ quantum
[[n, n− 2k , k + 1]]q code; for n = q and k + 1 = n− k perfect
tensor [[q, 1, (q + 1)/2]]q code
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from F.Pastawski, B.Yoshida, D.Harlow, J.Preskill, Holographic quantum error-correcting codes: Toy models for

the bulk/boundary correspondence, JHEP 06 (2015) 149
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Properties of the [HaPPY] code

quantum error-correcting codes with a tensor network
structure as discretized version of spacetime

bulk and boundary degrees of freedom (logical/physical)

exact prescription for mapping bulk operators to boundary
operators

Ryu–Takayanagi: entanglement entropy in the CFT is
computed by the area of a certain minimal surface in the bulk
geometry (cutting legs in the tensor network cuts out the bulk
region)

Bulk discretization via tensor networks depend on a choice of
tessellation and construction of a network of perfect tensors along
the tessellation: is there a natural bulk discretization that works?
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• Some more results on the [HaPPY] code:

Elliott Gesteau, Monica Jinwoo Kang, The
infinite-dimensional HaPPY code: entanglement wedge
reconstruction and dynamics, arXiv:2005.05971

Elliott Gesteau, Monica Jinwoo Kang, Thermal states are
vital: Entanglement Wedge Reconstruction from
Operator-Pushing, arXiv:2005.07189

Passing to the limit of an infinite tessellation in the [HaPPY]
construction shows some limitations as a model of AdS/CFT
holography (lack of long-range entanglement in the boundary and
CFT behavior, but good properties of entanglement wedge
reconstruction)

Matilde Marcolli From Classical to Quantum Codes



Tensor networks: general setup

Graphs

finite graph G = (F ,V , ∂, j)

F set of flags (half-edges) and V set of vertices

boundary map ∂ : F → V identifies root vertex of each flag

structure involution j : F → F , j2 = id described how
half-edges are glued together into edges of G

internal edges Eint(G ) are pairs e = (f , f ′) with j(f ) = f ′ and
f ̸= f ′

external edges Eext(G ) are fixed points j(f ) = f

cut set C ⊂ Ein(G ) set of internal edges such that if all the
edges e ∈ C are cut get exactly two non-empty connected
components

G ∖ C = GC ,1 ⊔ GC ,2
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tensor network on a graph: tensor network (G ,H,T )

(finite) graph G without multiple edges (in general want to
extend to infinite graph)

vertices v ∈ V are decorated by pairs (Hv ,T
(v)) of a complex

vector space Hv = (Cq)⊗ deg(v), for some q = pr > 0 a power
of some prime p, with deg(v) the valence of the vertex, and a
T (v) ∈ Hv

tensor T (v) = (T (v))i1,...,ideg(v) , with indices if ∈ Fq, labelled
by the flags f ∈ F with ∂(f ) = v

edge e = (f , f ′), f ′ = j(f ), with ∂e = {v , v ′} corresponds to
a contraction of indices of T (v) and T (v ′)∑

if ,i
′
f ′∈Fq

δif ,i
′
f ′ T

(v)
i1,...,ideg(v)

T
(v ′)
i ′1,...,i

′
deg(v′)

δij the Kronecker delta function

bonds = internal edges of G , dangling legs = external edges
of G

graph G is called the support of the tensor network
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Entangled state

tensor network T = (G ,H,T ) computes an entangled state
|ψT ⟩ in HT = (Cq)⊗|Eext(G)|

standard basis |a1 . . . aN⟩ of the space (Cq)⊗N with
a = (a1, . . . , aN) ∈ FN

q

at vertex v ∈ V (G ) entangled state

|ψv ⟩ =
∑

a1,...,adeg(v)∈Fq

T
(v)
a1,...,adeg(v) |a1 . . . adeg(v)⟩

superposition of the pure states |a1⟩ ⊗ · · · ⊗ |adeg(v)⟩
along an edge e ∈ Eint(G )

|ψe⟩ =
∑

ai ,bj∈Fq

δaf ,bf ′ T
(v)
a1,...,adeg(v) T

(v ′)
b1,...,bdeg(v′)

|â(f ), b̂(f ′)⟩,

with â(f ) = (a1, . . . , âf , . . . , adeg(v)) and

b̂(f
′) = (b1, . . . , b̂f ′ , . . . , bdeg(v ′)), and âf and b̂f ′ with this entry

removed

after performing all edge contractions on the |ψv ⟩ get |ψT ⟩
(remaining qubits of external edges)
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case with no external edges

same computation gives a complex number: amplitude αT

for any cut-set C an entangled states |ψC ,i ⟩ in (Cq)⊗|C |

amplitude αT is obtained from these by contracting the
indices corresponding to the pairs e = (f1, f2) cut set

density matrix

density matrix of the entangled state |ψT ⟩

ρ =
1

⟨ψT |ψT ⟩
|ψT ⟩ ⟨ψT |

partition A ⊔ B of the set of external edges of G :

ρA = TrB(ρ)

with TrB : HA ⊗HB → HA, tracing out (contracting indices)
dangling legs in B
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Entanglement entropy

assignment
A 7→ ST (A) := Tr(ρA log ρA),

for A ⊂ Eext(G ) ranging over all subsets of external edges

connected graph G with no external edges:

Ai 7→ ST ,C ,i (Ai ) := Tr(ρC ,Ai
log ρC ,Ai

),

for C ranging over cut-sets and Ai ⊂ Eext(GC ,i )

ρC ,Ai
= TrC∖Ai

(ρC ,i )

with ρC ,i density matrix of entangled state |ψC ,i ⟩
More general: can have more legs of tensor T (v) at vertices:
deg(v) outputs and some inputs, then tensor network as quantum
code

Matilde Marcolli From Classical to Quantum Codes



Other geometric aspects of CRSS quantum codes
Twisted group rings

discrete group G , group ring C[G ] associative
noncommutative algebra

(reduced) C ∗-completion C ∗
r (G ): closure of C[G ] operator

norm of algebra of bounded operators B(ℓ2(G )) using right
(or left) regular representation

right regular representation: action of C[G ] on ℓ2(G ) by
rg f (g

′) = f (g ′g)
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multiplier σ : G × G → U(1) is a 2-cocycle

σ(g , 1) = σ(1, g) = 1

σ(g1, g2)σ(g1g2, g3) = σ(g1, g2g3)σ(g2, g3)

twisted group ring C[G , σ] is generated by the twisted
translations rσg f (g

′) = f (g ′g)σ(g ′, g)

cocycle property implies associativity of C[G , σ] (and unital)

composition relation

rσg r
σ
g ′ = σ(g , g ′)rσgg ′

twisted (reduced) group C ∗-algebra C ∗
r (G , σ) norm closure of

C[G , σ] in B(ℓ2(G ))
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Matrix algebras

matrix algebra Mqn(C) for q = pm identified with twisted
group C ∗-algebra C ∗((Z/pZ)2mn, σ)

multiplier σ : (Z/pZ)2m × (Z/pZ)2m → U(1)

σ((v ,w), (v ′,w ′)) = ξ−⟨w ,v ′⟩

with ξ = exp(2πi/p) and

⟨v ,w⟩ =
n∑

i=1

m∑
j=1

aijbij

cocycle condition σ((v ,w), (0, 0)) = σ((0, 0), (v ,w)) = 1 and

σ((v ,w), (v ′,w ′))σ((v+v ′,w+w ′), (v ′′,w ′′)) = ξ−⟨w ,v ′⟩−⟨w ,v ′′⟩−⟨w ′,v ′′⟩

= σ((v ,w), (v ′ + v ′′,w ′ + w ′′))σ((v ′,w ′), (v ′′,w ′′))

generators rσ(v ,w) such that rσ(v ,w)r
σ
(v ′,w ′) = ξ−⟨w ,v ′⟩rσ(v+v ′,w+w ′)

same as generated by transformations ξiEv ,w
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Noncommutative tori

(rational or irrational) rotation algebras aka noncommutative
tori

rotation algebra Aθ is C ∗-algebra generated by two unitaries
U and V with commutation relation

UV = ξVU

with ξ = exp(2πiθ)

rational case, θ ∈ Q these algebras are Morita equivalent
(bimodule identifying categories of modules, isom for NC
spaces) to functions C (T2) on ordinary commutative torus T2

irrational case θ ∈ R∖Q, the Morita equivalence classes
correspond to the orbits of the action of SL2(Z) on the real
line by fractional linear transformations
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Rational noncommutative tori

rational case with ξ = exp(2πi/p)

A1/p ∋ a =
∑
k,ℓ

fk,ℓ(µ, λ)T
kRℓ

fk,ℓ(µ, λ) continuous functions of (λ, µ) ∈ S1 × S1 = T2

T and R fundamental error matrices of quantum codes

finite sum for 0 ≤ k, ℓ ≤ p − 1 since T p = Rp = id

generators U and V are U = µT and V = λR, with
µ = exp(2πit) and λ = exp(2πis) in S1
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Quantum codes and vector bundles

rational NC torus An/m isomorphic to the algebra
Γ(T 2,End(Em)) of sections of the endomorphisms bundle of a
rank m vector bundle Em over torus T 2

start with trivial bundle on T 2 with fiber Mm(C)
action of (Z/mZ)2 by

τ1,0 : (µ, λ,M) 7→ (µ, e−2πin/mλ,TMT−1)

τ0,1 : (µ, λ,M) 7→ (e2πin/mµ, λ,RMR−1)

quotient gives a non-trivial bundle over T 2, which is
endomorphisms bundle End(Em) of a vector bundle Em of
rank m: bundle with fiber Mm(C)
algebra of sections Γ(T 2,End(Em)) is fixed point subalgebra
of C (T 2,Mm(C)) = C (T 2)⊗Mm(C) (endomorphisms of
trivial bundle) under (Z/mZ)2-action
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action on algebra C (T 2,Mm(C)) = C (T 2)⊗Mm(C)

α1,0 : f (µ, λ)⊗M 7→ f (µ, e−2πin/mλ)⊗ TMT−1,

α0,1 : f (µ, λ)⊗M 7→ f (e2πin/mµ, λ)⊗ RMR−1

fixed point subalgebra then generated by µ⊗ T and λ⊗ R
with commutation relation of the NC torus

C ∗-algebra homomorphism An/m → Mm(C) sending
generators U and V to the matrices T and R.
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Quantum stabilizer codes

Ep rank p bundle over T 2 with A1/p = Γ(T 2,End(Ep))

q-ary quantum stabilizer code QS,χ (for q = pm) of length n
and size k ⇒ commutative subalgebra AS ⊂ A⊗r

1/p, with

r = nm, and subbundle FS,χ of external tensor product E⊠mn
p

over T 2r = T 2 × · · · × T 2

elements of the algebra AS act as scalars on FS,χ

these data equivalent to assigning QS,χ

here action of (Z/pZ)2r on C (T 2r ,Mqn(C))

αv ,w : f (µ, λ)⊗M 7→ f (ξvµ, ξ−wλ)⊗ Ev ,wME−1
v ,w

matrix algebra Mqn(C) identified with
C ∗(E/Z) = C ∗((Z/pZ)2mn, σ) generated by the Ev ,w
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algebra AS = C (XS) algebra of functions of a space
XS = ∪χ∈ŜTχ

Tχ is a quotient of the torus T 2r

over Tχ the bundle FS,χ becomes direct sum L⊕k
S,χ of k-copies

of a line bundle

if quantum code QS,χ from classical linear code C ⊂ Fn
q via

CRSS algorithm can see some properties of classical code
from algebra AS

for c ∈ C Hamming weight ϖ(c) number of non-zero
coordinates of c ∈ Fn

q

algebra AS = C (XS) has natural filtration by Hamming
weight of words in classical code C
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Moufang loops and codes

a loop is a set L with an operation ⋆ : L× L → L that is not
associative, a unit element e with e ⋆ a = a ⋆ e = a for all
a ∈ L and such that the left and right multiplication maps
rx(y) = y ⋆ x and ℓx(y) = x ⋆ y are bijections L → L

last condition shows existence of unique left and right inverses
x−1
ℓ , x−1

r of x ∈ L

in this very general form there is not much structure, but can
impose a stronger condition

Moufang loop: loop L satisfying near-associativity relation
(Moufang identity)

x ⋆ (y ⋆ (x ⋆ z)) = ((x ⋆ y) ⋆ x) ⋆ z , ∀x , y , z ∈ L
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Some properties of Moufang loops

any subloop (closed under ⋆ containing e) generated by two
elements x , y is a group (i.e. associative)

powers of a single element are well defined:
x3 = (x ⋆ x) ⋆ x = x ⋆ (x ⋆ x) etc

left and right inverse agree x−1
ℓ = x−1

r = x−1

other equivalent forms of the Moufang identity

x ⋆ (y ⋆ (z ⋆ y)) = ((x ⋆ y) ⋆ z) ⋆ y , ∀x , y , z ∈ L

(y ⋆(x ⋆z))⋆y = (y ⋆x)⋆(z ⋆y) = y ⋆((x ⋆z)⋆y)) ∀x , y , z ∈ L
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commutator [a, b] and associator [a, b, c] in loop L:

a ⋆ b = b ⋆ a ⋆ [a, b] and (a ⋆ b) ⋆ c = (a ⋆ (b ⋆ c)) ⋆ [a, b, c]

nucleus N(L) of loop L: set of all elements a ∈ L such that
[a, b, c] = [b, a, c] = [b, c , a] = 1 for all b, c ∈ L

Moufang center C (L) of Moufang loop L: set of elements
a ∈ L such that [a, b] = 1 for all b ∈ L

center Z (L) of Moufang loop L: intersection
Z (L) = N(L) ∩ C (L)

nucleus N(L) is a subgroup of L and center Z (L) is an abelian
subgroup
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Code loops

C ⊂ Fn
q linear code

twisted cocycle θ : C × C → Fq with

θ(v ,w)− θ(u + v ,w) + θ(u, v + w)− θ(u, v) = δ(u, v ,w)

(2-cochain that is not a cocycle)

loop L(C , θ) = C ⋉θ Fq instead of group

conditions under which this is a Moufang loop?

Some code loops references

R.L. Griess, Code Loops, J. of Algebra, 100 (1986) 224–234

T. Hsu, Explicit constructions of code loops as centrally
twisted products, Math. Proc. Camb. Phil. Soc. 128 (2000),
223–232

B. Nagy, D.M. Roberts, (Re)constructing Code Loops, The
American Mathematical Monthly, 128 (2021) N.2, 151–161
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Code loop construction: doubly even codes

binary linear codes C ⊂ Fn
2

doubly even code: weight |v | = #{vi = 1} = v1 + · · ·+ vn,
the number of ones in the word, is divisible by 4

logical AND operation: u&v := (u1v1, . . . , unvn)

twisted cocycle θ with twisting function

δ(u, v ,w) = |u&v&w | mod 2

θ satisfies

θ(v ,w) + θ(w , v) =
1

2
|v&w | mod 2

θ(v , v) =
1

4
|v | mod 2

(Griess): loop codes obtained in this way are Moufang loops
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Examples of doubly even codes: Hamming and Golay codes

Hamming code C ⊂ F8
2 subspace spanned by the four row

vectors

extended binary Golay code C ⊂ F24
2 linear subspace spanned

by row vectors
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decomposition into complementary subspaces C = V ⊕W

to determine θ enough to evaluate on complementary
subspaces
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Example: Golay code and Parker loop

for Golay code take C = V ⊕W with two left/right columns
of basis vectors above

θ then completely determined by 214 − 28 + 1 = 16129 values

Parker loop L(C , θ) = C ⋉θ F2
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Parker loop and the Monster group

J.H. Conway, A simple construction for the Fischer–Griess
monster group, Invent. Math. 79 (1985), 513–540

Sketch of main idea

Monster group: simple group constructed by Griess as
automorphism group of a certain algebra in a
196884-dimensional space

Conway obtained a simpler construction from the Parker loop

symmetries of Golay code: permutations of a set Ω of size 24
that fix C seen as subset of the set of parts P = P(Ω)
identifying F2-valued vectors with characteristic functions of
subsets

the Golay code has symmetries M24 the Mathieu group

using sets of ordered triples in P ∪ {0} and self-maps of these
sets construct various subgroups of the Monster group
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Code loops and cubic symplectic structures

T. Hsu, Moufang loops of class 2 and cubic forms, Math.
Proc. Camb. Phil. Soc. 128 (2000), 197–222

Setting:

Moufang loops L that are central extensions

0 → Z → L → C → 0

with abelian groups Z = Z (L) and C = L/Z (L)

associated cubic symplectic structure

χ : C × C → Z , α : C × C × C → Z

χ(ā, b̄) = [a, b], α(ā, b̄, c̄) = [a, b, c]

for a, b, c ∈ L with ā, b̄, c̄ in C

expressions well defined as values of [a, b] and [a, b, c] do not
change when shifting entries by elements of center Z = Z (L)

Note: commutators and associators take values center Z (L)
as quotient L/Z (L) is an abelian group
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α : C × C × C → Z is antisymmetric and multilinear (hence
also a cocycle)

χ : C × C → Z is antisymmetric and satisfies

χ(ā+ b̄, c̄) = χ(ā, c̄) + χ(b̄, c̄) + 3α(ā, b̄, c̄)

from identity (where terms in rhs can be associated in any
way)

[a ⋆ b, c] = [a, c] ⋆ [[a, c], b] ⋆ [b, c] ⋆ [a, b, c]3

that holds when associators are central

Note special role of characteristic p = 3
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also consider function σ : C → Z with σ(ā) = ap =

p−times︷ ︸︸ ︷
a ⋆ · · · ⋆ a

this satisfies

σ(ā+ b̄) = σ(ā) + σ(b̄) + χ(a, b), when p = 2

σ(ā+ b̄) = σ(ā) + σ(b̄), when p > 2

(a ⋆ b)p =

p−times︷ ︸︸ ︷
(a ⋆ b) ⋆ · · · ⋆ (a ⋆ b) = ap ⋆ bp ⋆ [a, b]p(p−1)/2

writing Z additively: σ(ā) + σ(b̄) + p(p−1)
2 χ(ā, b̄), for p > 2

coefficient multiple of characteristic p so zero, for p = 2
coefficient p(p−1)

2 = 1

Note special role of characteristic p = 2
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Loops from cubic symplectic structures

O. Chein, E. Goodaire. Moufang loops with a unique
nonidentity commutator (associator, square). J. Alg. 130
(1990), 369–384.

proved that (in characteristic 2) all loops obtained in this way
are code loops of doubly even codes

data of Hsu’s cubic symplectic structure can be chosen
arbitrarily: for any data σi , χij , αijk ∈ F2, ∃ binary linear code
C with basis {ci} such that

σ(ci ) = σi , χij = χ(ci , cj), α(ci , cj , ck) = αijk

the case of doubly even codes is a cubic symplectic structure
in Hsu’s sense

any small Frattini extension is a code loop of a doubly even
code

σi = |ci |/4, χ(ci , cj) = |ci&cj |/2, α(ci , cj , ck) = |ci&cj&ck |.
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Another construction: Almost-symplectic code loops

Almost-symplectic structure (p odd)

finite dimensional vector space V over Fq (q odd) with
non-degenerate skew-symmetric form ω : V × V → Fq.

ω(u, v) = −ω(v , u), with ω(u, 0) = ω(0, u) = 0
for any u ̸= 0 in V , there is some v ∈ V satisfying ω(u, v) ̸= 0

ω is not required to be closed

nontrivial coboundary dω = δ

dω(u, v ,w) = ω(v ,w)−ω(u+v ,w)+ω(u, v+w)−ω(u, v) = δ(u, v ,w)

Note: ω is not bilinear, otherwise dω = 0 would follow
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Almost-symplectic structure (p = 2)

q = 2r , consider ring R = OK/m
2
K , where F2r = OK/mK

(V , ω) with almost-symplectic ω : V × V → R

polarization: β : V × V → R

β(u, v)− β(v , u) = ω(u, v)

coboundary

dβ(u, v ,w) = β(v ,w)−β(u+v ,w)+β(u, v+w)−β(u, v) = γ(u, v ,w),

with
δ(u, v ,w) = γ(u, v ,w) + γ(w , v , u).

polarization satisfies β(v , 0) = β(0, v) since
ω(0, v) = ω(v , 0) = 0

polarization β(u, v)− β(v , u) = ω(u, v) is normalized if also
satisfies β(v , 0) = 0 for all v ∈ V .
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Lack of linearity

lack of linearity of β in the left/right variable:

γℓ(u, v ,w) := β(u + v ,w)− β(u,w)− β(v ,w)

γr (u, v ,w) := β(u, v + w)− β(u,w)− β(v ,w),

so can write

γ(u, v ,w) = γr (u, v ,w)− γℓ(u, v ,w),

similarly for δℓ(u, v ,w) and δr (u, v ,w), lack of linearity of ω.
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Almost-symplectic code loops

p odd: code loops L(V , ω) given by extension

0 → Fq → L(V , ω) → V → 0

non-associative multiplication

(u, x) ⋆ (v , y) = (u + v , x + y +
1

2
ω(u, v))

u, v ∈ V and x , y ∈ Fq

p even: code loops L(V , β) given by extensions

0 → R → L(V , β) → V → 0

non-associative multiplication

(u, x) ⋆ (v , y) = (u + v , x + y + β(u, v))

u, v ∈ V and x , y ∈ R
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Moufang identity

Moufang identity for the loop L(V , β) iff

γ(u, v , u + w) = γ(v ,w , u) ∀u, v ,w ∈ V

same for L(V , ω) for p > 2

δ(u, v , u + w) = δ(v ,w , u) ∀u, v ,w ∈ V

by direct computation from Moufang identity

(a ⋆ b) ⋆ (c ⋆ a) = a ⋆ ((b ⋆ c) ⋆ a)

with a = (u, x), b = (v , y), c = (w , z)
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Cyclic and Hochschild cochains

function η : V × · · · × V → R is cyclic if (1− λ)η = 0 with

λη(v0, . . . , vn) = (−1)nη(vn, v0, . . . , vn−1)

function η : V × · · · × V → R is multilinear if δiη = 0 for all
i = 0, . . . , n with δiη(v0, . . . , vn) =

η(v0, . . . , vi+wi , . . . , vn)−η(v0, . . . , vi , . . . , vn)−η(v0, . . . ,wi , . . . , vn)

function η : V × · · · × V → R Hochschild cocycle if dη = 0
with Hochschild coboundary

dη(v0, . . . , vn+1) = η(v1, . . . , vn+1)−η(v0+v1, v2, . . . , vn+1)+· · ·

+(−1)iη(v0, . . . , vi=1 + vi , . . . , vn+1) + · · ·
+(−1)n−1η(v0, . . . , vn−1, vn + vn+1 + (−1)nη(v0, . . . , vn).

multilinearity implies dη = 0

dη =
n∑

i=0

(−1)iδiη
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Moufang condition and cyclic property

If β is normalized and γ = dβ is multilinear, then the
Moufang identity is equivalent to γ being cyclic

same for p > 2: if δ = dω multilinear then Moufang condition
equivalent to δ being cyclic
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Linear representations of loops

E.K. Loginov, On linear representations of Moufang loops.
Commun. Algebra, 21 (1993) N.7, 2527–2536.

loop L and vector space H over a field F

left and right composition maps ℓ, ρ : L → Aut(H),

ℓa(h) = a ⋆ h, ρa(h) = h ⋆ a

these should satisfy a ⋆ (h + h′) = a ⋆ h + a ⋆ h′,
(h + h′) ⋆ a = h ⋆ a+ h′ ⋆ a, a ⋆ (λh) = λ a ⋆ h,
(λh) ⋆ a = λ h ⋆ a, for all a ∈ L, h, h′ ∈ H, λ ∈ F

associate to a loop L the non-associative algebra F [L]
maps ℓ, ρ extend by linearity to F [L] (Eilenberg’s notion of
representation of nonassociative algebras)
if loop is Moufang maps ℓ, ρ : L → Aut(H) satisfy

associator [a, b, h] is skew-symmetric for all a, b ∈ F [L] and
h ∈ H
identities h ⋆ (b ⋆ (a ⋆ b)) = ((h ⋆ b) ⋆ a) ⋆ b and
((a ⋆ b) ⋆ a) ⋆ h = a ⋆ (b ⋆ (a ⋆ h)) hold, for all a, b ∈ F [L] and
all h ∈ L.
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Isotropic and polarizable subspaces

(V , ω) almost-symplectic in characteristic 2 with normalized
polarization β

isotropic subspace C ⊂ V linear subspace where ω|C ≡ 0

polarizable subspace P ⊂ V linear subspace for which there is
a map α : P → R satisfying

α(u + v)− α(u)− α(v) = β(u, v), ∀u, v ∈ P

polarized subspace: pair (P, α)

polarization relation is just Hochschild coboundary β = dα so
it implies γ|P = dβ|P = 0.
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Polarizations and sections

polarized subspace (P, α) determines a section
τ : P → L(V , β) of the projection L(V , β) → V , with image
τ(P) ⊂ L(V , β) a subgroup of the loop L(V , β)
if P also isotropic, then τ(P) ⊂ L(V , β) is an abelian
subgroup

take τ(v) = (v , α(v)) for v ∈ P

(v , α(v))⋆(w , α(w)) = (v+w , α(v)+α(w)+β(v ,w)) = (v+w , α(v+w))

associative since dβ|P = 0

on an isotropic subspace polarization β is symmetric, hence
multiplication also commutative
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CRSS quantum codes from code loops

L = almost-symplectic loops L(V , ω) for p > 2 and L(V , β)
for p = 2

H = C[L] with left and right composition maps

|a⟩ with a ∈ L for the canonical basis of H
character χ : Z (L) → C∗ (that is, a character χ : R → C∗ for
p = 2 or χ : Fq → C∗ for p > 2) gives subspace Hχ ⊂ H:
functions that transform like ℓ(0,x)f (u, y) = χ(x)f (u, y), for
x ∈ Z (L) and (u, y) ∈ L
An isotropic subspace C ⊂ V determines a commuting family
of error operators χ(τ(v))Ev , with v ∈ C , and an associated
error correcting quantum code CC ⊂ Hχ given by a joint
eigenspace of these operators.

C 7→ CC almost-symplectic CRSS algorithm.
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Wedge product

θ : V → Fq for q odd, or θ : V → R in characteristic 2, and
ω : V × V → Fq for q odd, or ω : V × V → R in
characteristic 2

wedge product θ ∧ ω

(θ ∧ ω) (u, v ,w) := θ(u)ω(v ,w) + θ(w)ω(u, v)

uniquely defined by compatibility with wedge product of two
1-forms θ1, θ2 as

(θ1 ∧ θ2)(v ,w) := θ1(v)θ2(w)− θ1(w)θ2(v),

through relation

d(θ1 ∧ θ2) = dθ1 ∧ θ2 − θ1 ∧ dθ2
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Locally conformally symplectic structures

(V , ω) over Fq almost-symplectic space

ω is locally conformally symplectic structure if there is a
closed 1-form θ such that

dω = θ ∧ ω

in characteristic 2 the form θ has values in R instead of Fq
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Darboux decomposition

Darboux decomposition V ≃ ⊕iF2
q for a symplectic vector

space uses dω = 0

almost-symplectic case in general does not have Darboux
decomposition

if almost-symplectic ω is locally conformally symplectic then
again have Darboux decomposition

dθ = 0 means θ is linear:

dθ(u, v) = θ(v)− θ(u + v) + θ(u) = 0

So V = Ker(θ)⊕ Fq and dω|K ≡ 0

∃ pair of vectors u, v in K with ω(u, v) = 1: copy of F2
q with

Darboux symplectic form

continue on complement until get ⊕n−1
i=1 F

2
q plus one Fq

combining all V = ⊕n
i=1F2

q

under quantization, corresponding decomposition of H into
tensor product of q-ary qubits
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Lagrangians and perfect tensors

loop L (that is, L(V , ω) for characteristic p > 2 and L(V , β)
in characteristic p = 2)

L ⊂ V be a Lagrangian with respect to ω (an enhanced
Lagrangian (L, α) for p = 2)

τ(L) ⊂ L section τ(L) = {(v , α(v)) | v ∈ L} for p = 2
(τ(L) = {(v , 0) | v ∈ L} for p > 2): abelian group

Lagrangian L in general position with respect to the Darboux
decomposition of locally conformally symplectic structure
determines a perfect tensor TL ∈ H
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Moufang loops and Latin square designs

Latin square design is a pair D = (P,A) of a set P of points
and a set A of lines

#P = 3N with a splitting P = P1 ⊔ P2 ⊔ P3 into points of
three types, with #Pi = N, for i = 1, 2, 3

set A of lines, with #A = N2

each line in A contains exactly 3 points, one from each of the
three subsets of P

any two points from two different subsets of P belong to
exactly one line in A
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Latin square

Latin square of the design D is an N × N matrix

entries corresponding to the N2 lines in A and with
(x1, x2)-entry equal to x3 if the line containing x1 ∈ P1 and
x2 ∈ P2 has x3 ∈ P3 as the third point

order of Latin square is number N of points of each type

Category

Latin square designs form a category

objects D = (P,A)

morphisms D → D′ given by triples of maps αi : Pi → P ′
i

such that, if (x1, x2, x3) is a line in A then
(α1(x1), α2(x2), α3(x3)) is a line in A′
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Thomsen loop and design

for a loop L, the Thomsen design D(L) has
P = L1 ⊔ L2 ⊔ L3, three copies of L labelled i = 1, 2, 3, and
A = {(x1, x2, x3) | (x1 ⋆ x2) ⋆ x3 = 1 ∈ L}
conversely for a Latin square design D have Thomsen loop
L(D)

D 7→ L(D) is functorial and gives an equivalence of categories

category of loops with morphisms isotopisms: triples of maps
(α, β, γ) : L → L′ satisfying α(x) ⋆′ β(y) = γ(x ⋆ y) for all
x , y ∈ L
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Automorphisms and Moufang condition

automorphism of a Latin square design D = (P,A) is a
permutation of P that sends lines to lines

central automorphism τx of D, centered at x ∈ P: fixes x and
exchanges other two points on each line in A containing x

central Latin square design: admits a central automorphism at
every point x ∈ P

equivalence between the category of central Latin square
designs and the category of Moufang loops
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Graph of the Thomsen design

loops L(V , ω) for p odd and L(V , β) for p = 2

Thomsen designs D(L(V , ω)) and D(L(V , β)) associated
graphs G = GL(V ,ω) or G = GL(V ,β)

describing how points of the design are connected by lines

N = #L order N = q2n+2 for q = 2r and N = q2n+1 for q
odd

panel Π(u,x)i of lines through a point (u, x)i (i = 1, 2, 3 type
index) contains N lines, each containing two other points

panels Π(u,x)i and Π(v ,y)j with types i ̸= j intersect in a single
line

so graph with #V (G ) = 3N and uniform valence
deg(v) = 2N, so #E (G ) = 3N2

N = q2n+1 for q = pr with p odd and N = q2n+2 for q = 2r

subgraph Gτ(C) with 3qk vertices and 3q2k edges for
subdesign D(τ(C ))
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Tensor network from the Thomsen design

Lagrangian (L, α) in general position and corresponding
perfect tensor TL

subgraph G ⊂ Gτ(L) with same vertex set as Gτ(L) and only
edges between points ui and (u + er )j , for {er}r=1,...,n with er
standard basis of Fn

q ≃ L

T = Tℓ1,...,ℓ2n indices labelled by vectors
ℓ = (ℓ1, . . . , ℓ2n) ∈ F2n

q ≃ V in the Darboux basis

entangled state associated to corolla of vertex ui in G

|ψui ⟩ =
∑
ℓ

Tℓ |ℓ⟩

with |ℓ⟩ standard basis of H
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Chamber systems

chamber system of type I on a set Ω (set of chambers) is a
family {ρi}i∈I of equivalence relations on Ω

1 if ω ∼i ω
′ and ω ∼j ω

′, for some i ̸= j ∈ I , then ω = ω′

2 the I -graph (vertex set Ω and edges eω,ω′ , for ω ∼i ω
′ for

some ρi ) is connected

subset J ⊂ I ⇒ residue of type J is a connected component
of J-graph

number of colors #I is rank of chamber system

panels = connected components of the monochromatic
subgraphs

Latin chamber system is a chamber system of rank 3 where
any two panels of different colors intersect in a unique
chamber
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Latin square designs and Latin chamber systems

Latin square design determines a Latin chamber system

Ω given by the set of the N2 cells of the Latin square

equivalences: same row, same column, same symbol in the cell

set of chambers of Latin chamber system = set of lines of the
Latin square design

set of panels = set of points of the Latin square design

a panel = set of lines that contain a given point
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Buildings: Coxeter groups

best known class of chamber systems are buildings

Coxeter group: group defined by a presentation

G = ⟨xi , i ∈ I | x2i = 1∀i , (xixj)mij = 1∀i , j ∈ I}

with mij ≥ 2 integers or mij = ∞ (ie no such relation)

G always isomorphic to group generated by reflections in a
family of hyperplanes Hi in Euclidean or hyperbolic space with
mutual angles π/mij (parallel for mij = ∞)

Coxeter complex: cell complex where images under G of
reflecting hyperplanes decompose ambient space into pieces
that give the cells

chamber system with chambers the max dim cells of the
complex and related by one of the equivalence relations ρi if
obtained by reflection along the hyperplanes Hi

Matilde Marcolli From Classical to Quantum Codes



Example

dihedral group Dn = ⟨s, t | s2 = 1, t2 = 1, (st)n = 1}
chambers and Coxeter complex
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Buildings

n-dimensional building: simplicial complex B that is a union
of subcomplexes called apartments with

1 every k-simplex with k < n is in at least three n-simplices
2 any (n − 1)-simplex in an apartment A lies in exactly two

adjacent n-simplices of A
3 the graph of adjacent n-simplices is connected
4 any two simplices lie in a common apartment
5 if two simplices σ, τ are in both A and A′ apartments, ∃

simplicial isomorphism A ≃ A′ fixing σ, τ

n-simplices are the chambers

G -building: apartments are isomorphic to the Coxeter
complex of G

∃ d : B × C → G (a kind of G -valued “metric”) with
ρi = {(b, b′) | d(b, b′) = 1 or d(b, b′) = xi} equivalence
relations of the chamber system
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Latin chamber systems and buildings

Latin chamber systems are not themselves buildings

but... a Latin chamber system has universal 2-cover that is a
building iff the associated Thomsen loop is a group

U. Meierfrankenfeld, G. Stroth, R.M. Weiss, Local identification of

spherical buildings and finite simple groups of Lie type, Math. Proc.

Camb. Phil. Soc., Vol.154 (2013) 527–547.

2-coverings

path (gallery) in (the graph of) a chamber system is
2-homotopically trivial if it can be reduced to trivial path
through a sequence of replacements of subgalleries lying in
rank 2 residues by other galleries in same residue

collection C of closed walks in a graph ∆: a C-covering
∆̃ → ∆ is covering where every closed walk in C lifts to a
closed walk in ∆̃: ∃ universal C-cover
2-covering of a chamber system is a C-covering for C = all
closed walks in rank 2 residues

Matilde Marcolli From Classical to Quantum Codes



General question: construction and properties of tensor networks
on buildings

What classes of buildings (or more general chamber systems)
have interesting tensor networks?

What holographic properties can one expect these tensor
networks to have?

causal wedge and entanglement wedge reconstruction,
complementary recovery (Coxeter complex structure is relevant
here)
geodesic lengths in the bulk and boundary measure
(Patterson–Sullivan measure, CAT (0) property)
Ryu–Takayanagi formula for entanglement entropy in terms of
bulk minimal areas/lengths (expect here stronger hyperbolicity
needed, CAT (−1) property)

Elliott Gestaeu, Matilde Marcolli, and Sarthak Parikh,
Holographic tensor networks from hyperbolic buildings, J.
High Energy Phys. 2022, no. 10, Paper No. 169, 28 pp.
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