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TopriCc 9: ANALYSIS OF RIEMANN-HILBERT PROBLEMS
Cauchy integrals.
Definition of arcs and loops, chord-arc estimation, analyticity of Cauchy integral off contour.

Definition 1 (Arcs). An arc C is a parametrized curve z = z(t) = x(t) +iy(t) € C, a <t < b for which z'(t)
exists as a continuous and nonvanishing function for a <t < b, extending continuously tot =a and t =,
and for which z(t) is one-to-one for a <t <b. Sometimes we identify the arc simply with its image in the
complex plane, a simple curve with finite distinct endpoints z(a) and z(b) and with a continuously turning
tangent at every point.

Every arc C carries a natural orientation (increasing t) and can be reparametrized by arc length s = s(¢):
z(t)

t t t
s() = / VI Ty ()P dr = / 12/ (r)] dr = / 1 (r) dr| = / dl.
a a a z(a)
Thus, the arc length differential is simply ds = |dz|. Since a straight line is the shortest path between two
points, the arc length s(z1, 22) between two points z; and 2o lying on C' satisfies

(1) s(z1,22) > |22 — 21|, V21,22 € C.

Definition 2 (Loops). A loop is a simple closed curve in the complex plane that is a finite collection of arcs
placed end-to-end such that their orientations match and such that at each junction point the tangents of the
two joining arcs make an angle 6 € (—m, 7).

Geometrically, loops are piecewise-smooth closed non-self-intersecting curves that can have corner points
but not cusps. By the Jordan Theorem, each loop L divides the complex plane into a bounded set (the
interior of L) and an unbounded set (the exterior of L). In considering the arc length between points z; and
zo on a loop L, we will define s(z1, 22) as the shortest of the two lengths between z; and z5 along L. It can
be shown that there exists a constant 0 < ky < 1 characteristic of each loop L such that

(2) s(z1,22) > |22 — 21| > kos(z1,22) Vz1,29 € L.

From now on we will be considering matrix-valued functions on various sets in the complex plane. Consider
the vector space CV*V of N x N complex matrices. This space can be equipped with any number of equivalent

norms induced from a given norm || - || on the vector space C by the formula
[A[l:= max [[Ax]|
lIx]I=1

where on the right-hand side the norm is the given one on CV and on the left-hand side we are defining the
corresponding norm of a matrix A € CN*V, Aside from satisfying all of the standard axioms of a norm,
such a matrix norm behaves well with respect to matrix multiplication. Indeed, it follows from the definition
that

3) IAB| < [|A[l- B, A,BeCY**.

Definition 3 (Cauchy integral). Let L be a loop, and let F : L — CN*N be absolutely integrable with respect
to arc length:

J 1Pl jaul < .
For each z € C\ L, the Cauchy integral of F along L is

J4 b,
1 F(w) dw 1 i F(z;(t))
CLIF)(z) = — | —— = — =S () dt
[F(2) 27Ti/L w—z 27rijz_;/a]. zj(t)_zzj() :
where the functions z = z;(t), j = 1,...,£, parametrize the £ arcs Ci,...,Cy making up L. The function
F: L — CN*N s called the density of the Cauchy integral.

Lemma 1 (Piecewise analyticity of Cauchy integrals). CZ[F](-) is an analytic function on the disconnected
domain C\ L, and CL[F)(z) = O(271) as 2 — oo.
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Proof. Morera’s Theorem and Fubini’s Theorem to exchange integration order. Intuition: the integral is a
superposition of functions z + (w — 2)~! with pole w varying along the arcs C; of L. Then

M*E(z) 1

L < L L— —_—

et )l < M5 [ il M) = max

and since L is bounded it is obvious that M*(z) = O(z7!) as z — oc. O

Hoélder continuity, boundary values of Cauchy integrals.

Definition 4 (Holder continuity). Let 0 < v < 1. A matriz function F defined on some connected set
S C C is said to be Hélder continuous on S with exponent v if there exists a constant K > 0 such that

|IF(2z2) — F(21)]| < K22 — z1|" holds for all z1,2z2 € S.

Thus every function that is Holder continuous with exponent v is continuous on .S, but moreover we have
a uniform estimate of the modulus of continuity in terms of a power function. The greater the value of v, the
smoother the function, although for no value of ¥ < 1 can it be assumed that a derivative of any sort exists
at any point. In the special case v = 1, Holder continuity is sometimes called Lipschitz continuity, and it can
be said that if S is an interval Lipschitz continuity implies the existence of a uniformly bounded derivative
(Lebesgue) almost everywhere. It is an easy exercise to show that if F satisfies |F(22) —F(21)] < Klz2 — 21"
for any v > 1 then F : § — CN*¥ is a constant function, which explains the restriction to 0 < v < 1. We
denote by H¥(S) the vector space of complex-valued (matrix) functions F that are Holder continuous on S
with exponent v.

Let zy be an interior point of one of the arcs C; of a loop L, and suppose that F : L — CN*N ig not
only absolutely integrable but also Holder continuous with exponent v in some neighborhood of zy. We may
write the integrand of the Cauchy integral of F along L in the form

F(w) _ F(z)  F(w) ~F(z) _ F(z)  Flw) = F(z) (Fw) - F(z0))(z — 20)
w—2z w-—2z w—z w—z w — 2o (w—2)(w — 20)
By the Residue Theorem,

L/ F(z0)dw  F(z0) / dw ) £F(20), z in the interior of L
27 Jg, N rw—z |0, z in the exterior of L,

w—z 2mi

where the “4” sign (“—” sign) corresponds to positive (negative) orientation of the loop L. Also,

(F(w) — F(x0))(= — =) F(w) — F(z) duw IF(w) — Fz0)]| |du)
‘/ dw / <lmal [

(w— 2)(w — 29) w—2z0 wW-—2 |lw— 2|
Let Cy be the sub-arc of the arc C; of L containing z, and all points of C; of arc length at most ¢/2 from
2o, and suppose that ¢ is sufficiently small that F is Hélder continuous on Cy with exponent v. Then as
z — 2o from either the interior or exterior of L, the Lebesgue Dominated Convergence Theorem implies that

for each § > 0,
F(w)-F F - F
[ I FCol Mol g DR Feol
e  lw—2l  Jw—z " Jpne o |w—zl

= |z — 2]

because the singularity of the integrand at w = zg is bounded away from the contour of integration. Therefore,
for each § > 0 and each € > 0 there is some n = 7(J, €) > 0 such that
|F(w) — F(20) |dwl

2 — 20| <n(de) = |z— 2z <<
ne, lw—z| |w—z "2

Also, using the Holder condition satisfied by F on C,

F —F d
[F(w) ~FCao)| Jdul _ o
o o=zl Jw—d

|dw| |z — zo] |dw]

=l A T [ T I T S T

where w, is a point of Cy minimizing the Euclidean distance to z € C\ L. This upper bound can be made

small provided that z — zg from either the interior or exterior of L but in a nontangential fashion. This

means that we choose once and for all some small positive angle # > 0 and insist that the vector from z

to z makes an angle ¢(z) in the range # < |¢(z)| < m — 0 with the tangent vector to C; at z;. Consider

the triangle T with vertices w,, 29, and z. Since w, minimizes the distance to z, the corresponding side of
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T is perpendicular to the tangent to C; at w.. Another side of T is the segment with endpoints w, and
Zp, a secant line to C; through w, that is very close to its tangent when |z — 2o| is small and hence so is
|ws — z0|. Therefore, when |z — zp| is small, T is approximately a right triangle with legs (w., z) and (wx, 20)
and hypotenuse (z, zp), so

|z — 20| _ 1 P

w. —z] 7 [sin(¢(2))] ~ sin(6)’
By assuming that |z — zg| is sufficiently small and that the angle of approach to 2 is controlled by 6, we
may therefore conclude that

|Z - Zo| 2
<.
|we — 2| ~ sin(6)
For such z we then have

B [F(w) — F(zo)| _|dwl| 2K |dw|
|2 = 2o <= —.
Co w — 2 |w—z| = sin(0) Jo, |w— 2017

Now, let € > 0 be given. Since |w — zo|”~! is integrable for v > 0, we may choose § = d(¢) (the arc length of

Cy) so small that
2K / |dw <€
sin(0) Jo, |w— z['7v "2
)

Then with § = d§(e) fixed in this way, requiring |z — zo| < n(d(€), €

‘/ (F(w) = F(20))(z = 20) 4 H PR
I (w—z)(w — zp) 2
so we have proven the existence of the nontangential limit
F -F —
W [ F) - Fo))—z0)
S5, w2 w— =)

Therefore, provided the density F satisfies a Holder continuity condition near a non-corner point z = zg € L,
the Cauchy integral CL[F](z) has two (generally different) well-defined limiting values as z — 2o nontangen-
tially from opposite sides of L:

F(w)—F
+F(z0) + — / M dw, z — 2o from the interior of L
2 Jp, w — 2o

w, z — zg from the exterior of L

i/ F(w)—F(ZQ)d
27 Jp, w — 2
and the sign 4 refers to the orientation of L. Note that the Holder condition satisfied by F near zj ensures
also that the integral term has an integrand that is absolutely integrable on L.

This calculation also goes through in the case that z tends to a corner point zy of L, provided that
F is Holder continuous with exponent v on a neighborhood of the corner point and that (as is part of
the definition of a loop) the corner has a nonzero interior angle (i.e., it’s not a cusp). The meaning of
nontangential approach of z — z is then that z cannot approach zy tangentially to either arc joining at zg.

Plemelj formula, Plemelj-Privalov theorem, elementary properties of boundary operators.

Definition 5. Let F : L — CN*N be Hélder continuous near a point zo € L, with exponent v € (0,1]. Then
the nontangential boundary values taken by CL[F](z) on L as z — 2y from the left (right) of L according to
its orientation are denoted CL[F|(z0) (CE[F](z0)).

An immediate corollary of the formula (5) is the following.

Proposition 1 (Plemelj formula). Suppose that F is Holder continuous with exponent v near a point zo of
a loop L. Then,

CL[F)(20) — CE[F](20) = F(20).



The vector space of Holder continuous matrix functions on a loop L, H”(L), can be given a norm.
Indeed, the inequality ||F(z2) — F(21)|| < K|z2 — z1|” holding for all z;, z9 € L is equivalent to the condition
hy(F) < oo, where

WE) e sup IFC2) = FCl

z1,22€L |Z2 - Zl|V

z1#£22
The quantity h, satisfies the triangle inequality and is homogeneous with respect to scalar multiplication,
but it is not a norm because h, (F) = 0 for all constant functions F € H”(L) (and constant functions indeed
are contained in H"(L) for all 0 < v < 1). Therefore, it is necessary to add another term to distinguish the
constants. Observe that if h, (F) < oo then in particular F : L — CN¥*¥ is continuous on L; therefore as L
is a compact subset of C it follows also that ||F||cc < oo, where

Flls :i= F .
[l == max [F(2)]

The norm on HY(L) is defined by:

IF(l == [|Floc + Ao (F).
It still holds that F € H(L) if and only if | F||, < co. We do not prove that this definition satisfies all of the
axioms of a norm, but it is the case. It is also the case that H(L) is complete with respect to convergence
in this norm, so it makes H”(L) into a Banach space of matrix-valued functions on the loop L. Observe
that H” (L) is also closed under pointwise multiplication: if A and B are in H”(L), then so is AB with the
definition AB(z) := A(2)B(z) for z € L. Moreover, we have

©
|AB|l, =max [A(:)B(:)| + sup 1ACGIBE)ZALIBE]

21,22€L |z — 21|V
zo#21

|A(22)B(22) — A(22)B(21) + A(22)B(21) — A(21)B(21) |

— max [A(z)B(:)]| + sup

zeL z1,22€L |Z2 - Zl|u
zo#21
A(2)B(22) — A(22)B A(2)B(z1) — A(21)B
z€L 21,22€L |22 — 21" 21,22€L |22 — 21"
zoF#21 227#21
A(z)] - |B(22) — B(z A(z) — A(z)] - ||B(z
zeL 21,20€L |20 — 2z1]¥ 21,20€L 2o — 21/
29721 22721
B(z) — B(z
< max | A ()| max | B(=)| + max [A()] sup 122 =BG
z€L z€L z€L 21,20€L |22 — Zl|y
z2#21
A — A
+ max ||B(Z)|| sup || (22) (21)”
z€eL 21,22€L |Zz — 21|V

zoF#21
:”AHOOHBHOO + ”A”oth(B) + ||B||oth(A)
<[[Alloo|Blloo + [[Allochw (B) + [ Bllochu (A) + hu (A)h, (B)
=[Al.IB],

where to get the fourth line we used (3). Therefore a natural analogue of the matrix norm inequality (3)
holds also for the norm on H”(L).

Theorem 1 (Plemelj-Privalov). Suppose that F € HY(L), and that 0 < v < 1. Then the boundary values
CE[F)(20) considered as functions of z9 € L are also in HY(L), and moreover there is a constant M > 0
depending only on the geometry of L such that

ICE[F]]l, < M|[F|l,, VF € H"(L).



Note that the theorem is false for v = 1, but if F € H'(L), then for each ¢ > 0, the boundary values
CE[F](-) are in H'~¢(L).

Proof. According to the formula (5), it is enough to show that for G : L — CV*¥ defined by
1 F(w)—F
G(z) = —/ de, zel,
2mi w—z

IG|l. < K||F||, holds for some overall constant K. First, observe that for z € L,

F(w d F|. d
oo < o [ IECI=FC gy  Pul®) [l (Pl [l
\w z| 277 |lw — z|17¥ |w — z|1=¥

Because v > 0, the latter integral is finite for every z € L, and it is even a continuous function of z € L.
Therefore, taking the maximum over z € L,

_ldw]

@ Gl < KBl Ky = 5oma [ I

27 zel
Now consider G(z) — G(zp) for two points z, zg € L:

() - Glan) — - / {F(w) ~F(z) F(w)- F(z())} .

2mi w—z w — 2o

One crude estimate of the difference is simply:

1G() - Gleol < 5 /”F M g L [ IR,

|
|dw| |dw|
T T A T
HFllu |dw| |dw|
S 1— + 1—
Llw—=z=" " Jp jw— 2zl

<25 6],
Recall that s(z,zg) denotes the shortest arc length along L between z and zg. Using (2),

IG(2) — G(20)]] 2K, 2K, 4 \" 1
8 v 5 \ Ty F vy h ) Z —s(L )
0 DEbll < TR Ciml < 22 (S ) IR whenever s(e,20) > a(2)

where s(L) denotes the total arc length of L. Now, suppose s(z,zq) < %S(L), and let Lo denote the part

of L consisting of points w with s(w, z9) < 2s(z, 20), a strict subset of L under the inequality in force on
s(z, 2z0). Lo contains both z and zp. Then

G(2) — G(20)] < ;ﬂ/ F(wu), - ZF(Z) B F(wu); - 20 ‘ o]
(9)
1 F(w)-F(z) F(w)-F(0)] o
+§ /L\Lo[ w— 2 w — 2o }d ’

Now,
Flw) -F(z) F(w)-

w—z w — 2o

J.

e |</LUWW+/LOWM g
®|[ = e
dw dw
< |IFl., - {/ | Jw — 2| /L0|w—|zd1—”}
¥, dw dw
5 [ ]




where we used (2). By the reverse triangle inequality, s(w, z) > |s(w, z9) — s(z, z0)|. Therefore, recalling that

|dw| denotes the arc length differential ds,
HFHV /25(2,20) ds . /23(2720) ds
—25(2,20) HS| - 5(2720)‘171/ —25(z,20) |s|1il’

J. i

(10) B \|F||,,S(z ) {/2 dm +/2 dm }
kT e Il =1y [l

< IG||F|u[z = 20l

A

F(w) —F(z) F(w)—F(z)
0

\ dul

w—z w —

where

X 1 /2 dm N 1 /2 dm _
= — e+ — — < 00.
2 ko J o [Im[ =17 T ko J_y [m[*=v

To get the second line in (10) we used the rescaling substitution s = s(z, zp)m, and to get the third line we
again used (2). Next, consider the integral over L\ Ly, in which we split up the integrand as follows:

F(w) -F(z) F(w) —F(z0) _ (2 — 2) F(w) - F(z) _ F(z) —F(20)
— — =z 20 — — —
w—z w — 2o (w—z)(w — zp) w — 2o

By exact integration,

/L\L M dw = (F(z) — F(ZO))/ dw _ (F(Z) _ F(Zo)) [log(z’ . ZO) . log(zﬂ . ZO)] ’

w — 20 L\Lo W — 20

for some branches of the complex logarithm, where the initial endpoint of Lg is 2’ and the terminal endpoint
of Lo is 2”. Of course the imaginary parts of the logarithms are bounded, and

/ —
Re[log(z" — 29) — log(z"” — 29)] = In S

1"

Z7 =20

But, using (2), we get

In(ko) = In (’W(ZIZO)> <In

2 — 2

s(2", z0) 2" — 2

<In M = —In(ko),
(kos(z )

because both points 2z’ and z” have exactly the same arc length distance of 2s(z, zg) from zg. Since 0 < ko < 1,
from this it follows that the difference in logarithms is uniformly bounded independently of zg and z in L.
Therefore, there is some constant K3 > 0 such that

[ EO-FG,
I\Lo

— < K3|[F(2) — F(z0)| < Kahy (F)|z — 20" < K3l|Flu |z — 20",

(11) |

Also, again using (2) and the reverse triangle inequality,

F(w) - F(z)

. Fw)-Fk) du|
/L\LO(Z ) o= 2w = z0)

I\Lo [w — 2" 7w — 2|

dul
<IFlfe -zl [
L\Lo lw — 2| lw — zo|

||F||V|Z o ZO| —2s(2,20) s(L)/2 ds
< 2—v + 1-v '
kg —s(L)/2 25(2,20) | 18] = 8(25 20)[* 73]

But it is easy to see that over the whole range of integration 2s(z, zo) < |s| < $s(L),

< hy(F)lz = 20

|s| —s(z,20) s(z, z0) < 11

5] - sl T 22
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L Fw)-F()
/L\LO(Z o —2)(w )

217V||F||V|Z*ZO| —25(z,20) s(L)/2 ds
S 2—v + 2—v
kg —s(L)/2 25(z,20) | 18]
2\*7 ||F ]2 — 2ol v\
B WE Ml 7 201 1o v=1_ ( Zg(L
(7) Pl ey - (G0

2||F|, 1 -
< 1 11— =s(L - VI z = zl”
— k(Q)—V(l_V) 45( ) |Z ZOI ‘Z Zol

where in the last line we used s(z, 29) > |z — 20| and hence s(z,29)" "1 < |z — 20/"~! because v < 1. Since
|z — 20|17 is uniformly bounded as z, zy range over the bounded set L, there is evidently a constant K4 > 0

such that
_, F(w) — F(2) w
() | R e ek

Using (10), (11), and (12) in (9) shows that

I6(z) = G(zo)l < (Ka+ K3+ Ky) ||F(-)|] whenever s(z,29) < is(L).

< Ku|[F[lu]z = 20"

(13)

|z — zo|¥
Combining (8) with (13) and taking the supremum over z,zp € L with z # 2z gives
2K, 4
kg \s(L)

hy(G) S [(5”]:7‘”1,7 K5 = max{ > ,KQ +K3 +K4} .

Finally, combining this with (7) gives
1G]l = |Gllec + 1 (G) < K[[F[,, K :=K;+ K,
which completes the proof. O

Our proof mimics that given in [3, §19]. The Plemelj-Privalov Theorem asserts that CI may be interpreted
as bounded linear operators on the Banach space HY(L) when 0 < v < 1.

It can be further shown that (see [3, §22]) the Cauchy integral CL[F](z) of a function F € H¥(L) with
0 < v < 1 is Holder continuous in both the closure of the interior of L (taking the boundary value from
within) and also in the closure of the exterior of L (taking the boundary value from outside). This implies
that, after the fact, we may dispense with the device of taking boundary-values in a strictly non-tangential
fashion. Because Holder continuity implies mere continuity, we then have the following, in which for operators
A, B acting on a space, the composition A o B denotes the action A(BF).

Proposition 2. The bounded operators CL acting on H”(L) for 0 < v < 1 satisfy the identities

ChocCt=cloct=o.

Proof. Let F € HY(L), and consider CL[CL[F]](z), for z on the “+” side of L. Since CZ[F](-) is the boundary
value of a function analytic on the “—” side of L and continuous up to L from that side, and since z is
on the other side of L, the contour of integration in the outer integral may be deformed into the region on
the “—” side of L by the Generalized Cauchy Integral Theorem®. If this region is the interior of L, then
CE[CL[F]](2) = 0 for all such z, while if this region is the exterior of L, then the same holds true because
the integrand decays like w=2 as w — oco. Letting z tend to L again from the “+” side yields the identity
Cf_ oCL = 0. The proof that C o C_f_ = 0 is similar. a

Corollary 1. The bounded operators Ck acting on H”(L) for 0 < v < 1 satisfy the identities
ChoCh=CY and (-CE)o(-CE)=-CL.

1See, e.g., [5, pg. 60]. The Generalized Cauchy Integral Theorem is just like the Cauchy Integral Theorem except that it
only requires continuity of the function integrated up to the curve (plus, of course, analyticity in the open interior).
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Proof. Combine Proposition 2 with Proposition 1 (which has the operator interpretation of C¥ —CX = 7). O

These results show that the operators +C¥ are complementary projections on the Banach space HY (L)
forO0<v <1

Ezamples. Let L be the unit circle in the complex plane: |z| = 1. We can think of L as arising from two arcs,

namely the upper semicircle parametrized by z = e'*, 0 < ¢ < 7, and the lower semicircle parametrized by

z =el'!, —r <t <0, placed end-to-end. The orientation of L is counter-clockwise. By simple trigonometry

(the law of cosines), if w, z € L are separated by a shortest arc length of s(w, z) < 7, the corresponding chord

length is |w — 2| = 1/2(1 — cos(s(w, 2))). Therefore, the minimum value of |w — z|/s(w, z) is, by calculus,
ko= inf 2(1 — cos(s)) _2

0<s<m S ™

and hence for points on L we have the sharp bounds Zs(w, 2) < |w — z| < s(w, 2).

Consider the scalar function (or 1x 1 matrix function) defined on L by f(z(t)) := | sin(¢)]”, for —7 <t <,
where v > 0 is a parameter. We claim that f € HY(L) provided v < 1, and that f € H'(L) for v > 1.
It is not hard to see this; indeed the “roughest” points for f on L are the points z = +1 where f fails to
be differentiable with respect to arc length ¢ for v < 1. But near these points we have |sin(¢)|” ~ [t|” or
[sin()|V =~ |+ 7 —¢t|”.

With this example, we can also show how the Cauchy boundary-value operators C¥ fail to map the
Lipschitz space H'(L) to itself. We first calculate C%[f](z) for f(z(t)) = |sin(t)|, which gives f € H(L).
Noting that f(z) = (z —2z71)/(2i) on the upper semicircle of L and that f(z) = —(z—271)/(2i) on the lower
semicircle of L, we get

-1 —1 1 ~1
CLIf)(2) = i/ lwow g, L[ lumw g,
27 J1 21 w—z 2 J_1 21 w—z

where the first (second) integral is taken over the upper (lower) semicircle. Since

w—w ! z—2z"1 271
=14+ 4+ - ,
w—z w—z w
we get
1 z—z1 [ dw z—27t 1 dw
Clfl(z) = = —
f1z) 7r 4 /1 w—er am /,lw—z

where again the first (second) integral is over the upper (lower) semicircle. Now observe that if log(-) refers
to the principal branch, log(i(w — 2)) (log(—i(w — z))) is an antiderivative of (w — z)~! analytic except on a
vertical branch cut emanating upwards (downwards) from z. Therefore,

1 z-—2z71 z—z71

CHf)(2) = — = = llog(—i(—1 — 2)) — log(~i(1 — 2))] + =~ [log(i(1 — )) ~log(i(~1- )}, [s] <1,

while, noting that log(e~'2"8(*)(z — w)) is an antiderivative of (w — z)~! analytic except on a branch cut
emanating radially from z away from the origin,

L _ l R 2zt —iarg(z) o —iarg(z) (., _
ColAl(=) = — 5, log(e (z+1)) —log(e (z=1), lz[>1

Therefore, letting z tend to L from inside and outside of the unit circle, on which z = et

CE) = O oy (i1~ ")) log(~i(1— ) +log(i(~—1 ~ ) ~log(i(1 —e")], 7 <t <7
and
CHA0) = £ W g1 et tog(1 e )], —r<i<n

These boundary values do not lie in H!(L). Indeed, near t = 0 corresponding to z = 1 both boundary values
have a dominant term proportional to [¢| In(|¢|~!) which while continuous through ¢ = 0 fails to be Lipschitz
(its derivative blows up like In(|t|~1)). A similar phenomenon occurs near z = —1. The difference of the
boundary values is, of course, Lipschitz, being as from the Plemelj formula we have CX[f](2(¢))—CE[f](2(t)) =
| sin(¢)].
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Additional technical properties of the spaces H”(L). Another kind of bounded operator on H"(L) is that
obtained by multiplying on the right or left by a fixed function in the same space:

Definition 6 (Multiplication operators). Let M € HY(L) be a fixzed function. The operator of left-
multiplication by M s denoted Ly and has the action LyF(z) == M(2)F(z). The operator of right-
multiplication by M is denoted Ry and has the action RmF () := F(2)M(z).

It follows easily from (6) that Ly and Ry are both bounded operators on H”(L) with norm less than
or equal to | M||,:
[£mFl, < M, |[Fll,  and  [RymF[l, < M, [[F], .

Since H#(L) C HY(L) whenever u > v, we may consider multiplication operators with M € H*(L) for
w > v as a special case. The action of these multiplication operators can be composed with the action
of the operators C¥. Of particular interest are the commutators [CL, L] = CE o Ly — L o CE and
[CL,Rm] = CE o Rm — R o CL. Written out in terms of their action on a function F € H” (L), we have

(CL, Lad]F(2) = QLM/L M(w)F(u:U): M(2)F(z) duw fM(z)i/L F(w) — F(2) duw
M

z 2mi w—z
- i —(w) _ M(Z)F(w) dw, ze€lL,
2mi fp w—z
and
[CL, RmIF(2) = QLm/L F(w)M(u:U) :ZF(Z)M(Z) dw — 2%“ i 71:‘(11;)} : f(z) dw - M(z)
= % i F(w)—M(wu)} : 12\/1(z> dw, ze€lL.

The subscript “£” on the left-hand side is not reflected on the right-hand side, because according to the
Plemelj formula (Proposition 1) the difference between C¥ and CZ is the identity operator, which commutes
with everything. Notice also that on the right-hand side in these formulae, the variable z appears in the
argument of M and no longer in the argument of F. This suggests that it will be smoothness properties of
M rather than F that determine those of [CE, Ly]F and [CL, Rym|F. Indeed, we have the following result:

Proposition 3 (Mapping properties of commutators). Suppose that 0 < p,v < 1 and that M € H*(L).
Then [CE, La) and [CE, Rm] are bounded linear operators from HY (L) to H*(L).

Proof. This is virtually the same proof as that of the Plemelj-Privalov theorem (Theorem 1), except that
we estimate the H#(L) norm and find an upper bound proportional to ||F|/s which in turn is bounded by
||IF||., (but observe that the quantity h, (F) never appears in the estimates). O

We have remarked that H*(L) C HY(L) whenever u > v. Indeed, suppose that y > v and that F €
H#(L). Then, it is easy to see that

[F(22) = F(z1)l [F(z2) = F(z1)]|

hy(F)= sup ——————— < sup |zo—2z|""" sup ———F———== sup |z—zn""" h,(F).
/(F) smel 22— a1l zl,zzeL| | szmel |z — 2|t zl,zzeL| | n(F)
ZoFz1 22721

But since p > v, |22 — z1|/#7¥ is uniformly bounded on the (bounded) loop L, so there is a constant C' > 0
such that h, (F) < Ch,(F) whenever p > v. It follows easily that p > v and ||F||, < oo implies that also
|F|, < oo, ie., H*(L) c H*(L).

Definition 7 (Inclusion map). Let 0 < v < p < 1. The inclusion map I,,_,, is the linear operator from
H*(L) into HY(L) that simply acts as the identity.

Another important fact in the theory is the following. The notion of a compact operator is introduced,
for example, in [1, §8.5].

Proposition 4 (Compactness of inclusion map). Suppose that0 < v < u <1. ThenZ,,, : H*(L) — H"(L)
18 compact.



Proof. We need to show that the image of every bounded set in H*(L) is precompact in the H” (L) topology,
i.e., that if B C H*(L) consists of infinitely many F with ||F||, < C for some constant C, then there exists
a sequence {F,,}>° , C B that is convergent in the H”(L) norm.

The condition ||F||, < C implies that |F|. < C, ie., that the family B of functions F is uniformly
bounded, and also that h,(F) < C, which in turn implies that |F(z) — F(w)| < Clz — w|* for all z,w € L.
But this further implies that the family B of functions F' is equicontinuous, i.e., the modulus of continuity is
independent of F. By the Arzeld-Ascoli Theorem?, there exists a sequence {F, }>°, C B that is uniformly
convergent to some limit function Fy, i.e., ||F,, — Fgllooc — 0 as n — co. The limit function obviously® also
satisfies ||Foll, < C and hence lies in H*(L) C H(L).

Next consider the quantity

F.(z) = F,(w)

|2 = wl”

H,(z,w):= , zZyw€L z#w, n=123....

In fact, since F,, € H*(L) and p > v, it follows that H,(z,w) — 0 as z — w, so we simply define it
naturally on the diagonal as H, (z,z) = 0, z € L. It can be shown that this function is Holder continuous
with exponent y — v > 0 on the Cartesian product L x L in the sense that [3, pg. 15]

[H,, (2, w) — Hy (2, w0)|| < [[Fully [l2 = 2'[*77 + w—w'|*7"], 2,2, w,w €L, n=1,23,....

But since ||F,||, < C, we now observe uniform boundedness and equicontinuity of the sequence of two-
variable functions {H,, }5%; on L x L, and so again by the Arzeld-Ascoli Theorem there is a subsequence
{H,,, }72, that is uniformly convergent on L x L to some limit function; moreover we may identify this limit
function as - -
z) —Fo(w
Hy(z,w) := Fo(2) = Fo(w)

|z = wl]”
because clearly H,,, (z,w) — Hy(z,w) in the sense of pointwise convergence since F,,, converges uniformly
(and hence also pointwise) on L to Fy.

It therefore follows that the sequence {F,, }?°, C B C H*(L), which is also a sequence in H”(L) by the
inclusion map Z,,_,,, satisfies

[Fny, = Follv = [[Fn, — Folloo + M (Frn, —Fo) = [[Fp i — Folloo + SupL [ Hy k (2, w) — Ho(z, w)|
zZ,we

which tends to zero as k — co by uniform convergence of F,, 1, to Fg on L and by uniform convergence of
H, ; to Hyon L x L. O

The above proof is adapted from [4, pgs. 102-103]. The main application of this result is the following:

Corollary 2. Let 0 < v < p < 1, and suppose that M € H*(L). The commutators [CL, La] and [CE, Ru|
are compact operators on HY(L).

Proof. The commutators are bounded from H" (L) into H*(L), so composition with the compact inclusion
map Z,,, yields a compact operator in each case. O

The purpose in considering compactness properties of commutators is that we will use them later to prove
that a certain singular integral operator is Fredholm, an important step toward developing a notion of the
Fredholm alternative for solving Riemann-Hilbert problems.

2See (1, pg. 156]. The version formulated there involves functions on an interval [a, b] but easily generalizes to the present
context.

3The argument goes as follows. Let n be arbitrary, and consider any (z,y,z) € L3 with  # y. By using Fo(-) =
Fn()+ (Fo(-) — Fn()), applying the triangle inequality and using ||Fy||, < C, we can easily derive the inequality

IFo(z) — Fo(y)ll IFo(z) = Fn(z)ll + IFo(y) — Fr(y)ll
| — y|~ |z — y|~ '

(IFo ()| + < C+||Fo(z) — Fu(2)| +

By uniform convergence of F,, to Fg on L, there exists no(¢) for each ¢ > 0 such that n > ng(e) guarantees that |Fo(x) —
F,(z)|| < € holds for all z € L. Given z € L and x # y, choose n > max(no(le),no(%\z — y|€)). Then we have

3
IFo(z) — Fo)ll

<
T <C+He

IFo(2)Il +

holding for all z € L and = # y. Hence taking the supremum over z € L and = # y in L gives ||Fol|, < C + e. But this
inequality holds for all € > 0, and therefore ||Fo|, < C.
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Riemann-Hilbert problems on bounded contours.

Definition 8 (Admissible contours). An admissible contour ¥ is a finite union of arcs such that for each
point zg € C belonging to two or more arcs, the corresponding tangent lines to the arcs at zg are distinct.

Every admissible contour ¥ has a finite set X of exceptional points, namely the endpoints of the arcs
and any points belonging to two or more arcs. Each component of ¥° := ¥\ X is an oriented arc without
endpoints. See Figure 1 for an example. We denote by H5 (¥) the space of matrix functions F : ° — CNXN

C C C
Co O oo

Ch

FIGURE 1. Left two panels: semicircular arcs C; and C3. Right panel: an admissible
contour ¥ composed of C7 and Cs. The six exceptional points in the set X are circled, and
the six components of X° are oriented circular arcs without endpoints. Note the transversal
intersections of C7 and Cs.

with the property that on each component ¥; of 3°, F has a continuous extension to the initial and terminal

endpoints that lies in H#(X;). The norm of F € HY(X) is
IE(5 =D 1P, e
J

where on the right-hand side we have the H#(X;) norm.

Definition 9 (Admissible jump matrices). Let ¥ be an admissible contour. A mapping V : X° — CNXN s
called an admissible jump matriz on 3 with Holder exponent p if V. € HE(X) and the following properties
hold.

o det(V(2)) =1 for all z € ¥°. (Thus V(z) € SL(N,C) c CN*N.)

o Let zg € X be an exceptional point of X3, let the K > 1 components of X.° that join at zg be labeled

in counter-clockwise order about zo as X1,...,Xk, denote the orientation of each ¥; by o; = 1
(0; = —1) if ¥; is oriented away from (toward) zy, and let
V; = ZILII;O V(z).
ZEE]'
Then
(14) VIi'V3z... V¥ =1

holds for each zy € X.

Note that if X contains any arc endpoints zy that belong to only one arc, then for an admissible jump
matrix we have V(z) — [ as z — zo within ¥°, while V generally need not extend continuously to other
points of X (because it can have different limits from different components of ¥°, although these limits must
be related by (14)). Now we can formulate a class of matrix Riemann-Hilbert problems. Recall that we use
the subscript “+” (resp., “—”) to refer to the left (resp., right) side of an arc according to its orientation.
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Riemann-Hilbert Problem 1. Let ¥ be an admissible contour and let V : £° — CVN*N be an admissible
jump matriz with Hélder exponent ju. Seek a matriz-valued function M : C\ ¥ — CN*N with the following
properties:

Analyticity: M is analytic (i.e., its N> matriz elements are all analytic) in the domain C \ ¥.
Jump condition: M extends continuously to the boundary ¥ from each component of C\ X, taking
boundary values My (z) on each component ¥; of 3° defined by

Mi(z) := J)lglz M(w), z€ZX,
w on the + side of ¥;

and the boundary values satisfy the jump condition
M,i(z) =M_(2)V(z), ze€X°.

Normalization: M(z) — 1 as z — oo.

Note that since ¥ is a bounded set, in fact any solution of the Riemann-Hilbert problem has a convergent
Laurent expansion for sufficiently large |z|:

M(z) =1+ Zan_", |z| > sgg |w].
n=1 w

The given data of the Riemann-Hilbert problem is the pair (3, V). We can get some results about this
problem right away.

Proposition 5 (Unimodularity and uniqueness). Suppose Riemann-Hilbert Problem 1 has a solution M(z).
Then det(M(z)) =1 holds for all z € C\ 2, and there are no other solutions.

Proof. The matrix function M(z) is analytic for z € C\ X and continuous up to the boundary ¥, so the same
holds for the scalar function f(z) := det(M(z)) as a polynomial in the matrix entries of M(z). By taking
determinants in the jump condition, using the fact that det(V(z)) = 1 for all z € X° by definition of an
admissible jump matrix, we see that at each point of 3°, the boundary values of f(z) agree: fi(z) = f_(2).
Therefore f(z) may be defined for z € ¥ by continuity to be a function continuous in the whole complex
plane and analytic for z € C\ X. Tt follows from Morera’s Theorem combined with the Generalized Cauchy
Integral Theorem that f is an entire function of z. Since M(z) — I as z — 00, f(z) — 1 in the same limit,
so by Liouville’s Theorem, f(z) = det(M(z)) = 1 for all z € C\ X. This proves the first statement.

For the second part, suppose M(z) is a second solution of the same problem. By the first part, we have
det(M(z)) = 1 so the inverse matrix M(z)~! is also an analytic function of z € C\ ¥, because the entries
of the inverse matrix can be expressed by Cramer’s rule as ratios of determinants — polynomials in the
analytic matrix entries of M(z) — and the denominator is always det(M(z)) = 1. Therefore, the product
P(z) := M(z)M(z)~! is a matrix that is analytic for z € C\ ¥. From the jump condition satisfied by both
M(z) and M(z), we calculate that

P,(2) =M, ()M, (2) ' =M_(2)V2)[M_(2)V(2)| ' =M_(2)M_(2) ' =P_(2), ze€¥°,
so P(z) may be considered as a matrix function continuous for z € C and analytic for z € C\ 3. Also,
. T ~ -1 _ 7. _
Zlin;o P(z) = Zhﬂn;Q M )M(z)" =I1-I=1

Therefore, by the same argument as worked for the determinant, the matrix P(2) is entire and equal to its
constant limit at z = oo: P(z) =1 for all z € C\ ¥, in other words M(z) = M(z) for all z € C\ 3. This
proves the second statement. (I

The fact that det(M(z)) = 1 for the solution of Riemann-Hilbert Problem 1, assuming a solution exists,
explains the necessity of the condition (14) in the definition of an admissible jump matrix. Indeed, considering
a neighborhood of an exceptional point zy € X about which there are components ;, j =1,..., K, of C\ X
in counter-clockwise order, the solution M(z) is required to have a well-defined limit M; as z — zo from Q.
But these limiting values are related to those in neighboring sectors by the jump conditions across the arcs
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Y; meeting at zg, in particular by their limiting forms as z — 2o, which involve the matrices V. Assuming
that €2; comes just before ¥; in counter-clockwise order, we have the relations

Mo =M, V7', Mj3=M,V3, ... Mg-= MK,lV;(K:ll
and also My = Mg V7X. But these together imply that
M; =M, V{'V32... VX,

so since M; is invertible, we see that (14) is a necessary condition for existence of a solution to Riemann-
Hilbert Problem 1.

Ezample. Consider the special case that N = 2 (i.e., we are dealing with 2 x 2 matrices) and let V : £° —
C?*2 be an admissible jump matrix on ¥ of the form

(15) v =y "] s

where v is a scalar function in H5 (X) that, by the admissibility criterion, satisfies

(16) ZO'J"UJ‘ = 0,
J

for limits v; as z — zp along arcs of 3 meeting at zy with orientation indices o;. We can seek a solution
M(z) of Riemann-Hilbert Problem 1 also in the form of an upper triangular matrix:

(17) M(z) = [(1) mf)] . zeC\¥

for some scalar function m analytic in the indicated domain. By the normalization condition we require
m(z) — 0 as z — o0, and noting that the generally noncommutative multiplicative jump condition on M(z)
becomes, for jump matrices of the form (15) and an ansatz of the form (17), simply the additive jump
condition

my(z) =m_(z)+v(z), or my(z)—m_(2) =v(z), ze€X°.
This type of Riemann-Hilbert problem is solved by appealing to the Plemelj formula. Indeed,

mz:EvZ:L v(w) dw
(18) (2) = C2](2) / |

2mi w—z

Combining this explicit formula with (17) gives a candidate solution of Riemann-Hilbert Problem 1. The
only thing that remains to be confirmed is that m(z) as given by (18) is continuous up to ¥ from each
component of C\ X. But this is clear by Holder continuity of v for all non-exceptional points z € X°. It is an
exercise to use the condition (16) to check that m(z) has a limit as z — zg € X from each local component
of C\ X. Therefore, M(z) given by (17)—(18) solves Riemann-Hilbert Problem 1. According to Proposition 5
it is the only solution. Clearly, det(M(z)) = 1 holds.

Holder function spaces adapted to bounded contours with self-intersection points.

Definition 10 (Complete admissible contours). An admissible contour X is said to be complete if it divides
the complex plane into two disjoint regions, QT and Q= (i.e., C is the disjoint union of Q*, Q~, and 2)
and if ¥ may simultaneously be considered as a collection of loops {L;‘}j\g1 each of which is the positively-

oriented boundary of a component Qj of QT and as a collection of loops {L;};V:] each of which is the
negatively-oriented boundary of a component 2 of Q™.

Without any loss of generality, we may assume that Riemann-Hilbert Problem 1 is formulated relative
to a complete admissible contour X. Indeed, given an arbitrary admissible contour >3 we can produce a
complete admissible contour 3 simply by (i) including a finite number of additional arcs and (ii) reversing
the orientation of some of the components of ¥°. When we replace ¥y with its “completion” 3, we also
have to modify the given admissible jump matrix Vy as follows: (i) on each arc added to ¥ to produce
¥ we define V(z) = I, and (ii) on the remaining components of ¥° we either define V(z) = V(2)~! or
V(z) = Vg(z), depending upon whether the orientation of the component had to be changed or not. It is
easy to check that V is still an admissible jump matrix now relative to the complete contour X, and that the
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jump conditions have not been changed in essence. Thus the Riemann-Hilbert problem with data (£g, Vo)
has exactly the same solutions as does that with data (3, V). We assume from now on that the admissible
contour Y is complete.

Exactly one of the domains {Qj[ };vjl is unbounded. Note that at each exceptional point zg of X, an even
number of components of X° meet with alternating orientation going around the point zy in the positive
direction.

Example. Let the admissible contour from Figure 1 be renamed Y. This contour can be completed by adding
two arcs and re-orienting some arcs, as illustrated in Figure 2. Let the four endpoints of ¥y be denoted £w and
+w*, and consider the 2 x 2 admissible jump matrix Vg on g given by V(z) = exp[(22 — w?) (22 —w*?)o3].
It is easy to confirm that Vo(tw) = Vo(+w*) = I, and that V((z) has well-defined limits as z tends to
either of the self-intersection points of ¥y along any of the four arcs meeting at those points. Thus (taking
into account the orientation indices o; of the arcs meeting at each such point, two of which are 41 and two
of which are —1) V{(z) satisfies the condition (14) at all six exceptional points of 3. Furthermore Vg(z)
is clearly analytic on each of the six components of 37 and hence satisfies the required Holder continuity
condition for any positive exponent p < 1. Finally, det(V((z)) = 1. In going from the admissible contour
Yo to its completion ¥, we must also modify the jump matrix as follows. On the three components of ¥§
in the upper half-plane, we leave V(z) alone by defining there V(z) := Vg(z), while as the orientation
of the components of 3§ in the lower half-plane are reversed in the completion process, we define on these
components V(z) := Vy(z)~ L. Finally, on the two new arcs added to complete the contour (dashed curves
in the left-hand panel of Figure 2) we simply define V(z) := L. It is an exercise to confirm that V(z) is then
an admissible jump matrix on the completion ¥, and that the jump condition in Riemann-Hilbert Problem 1
is unchanged modulo re-labeling of the boundary values.

FIGURE 2. The process of completing an admissible contour. Left panel: the contour from
Figure 1 renamed ¥, can be completed by adding two arcs (dashed) and re-orienting some
arcs. Right-panel: the resulting complete admissible contour ¥ divides the complex plane
into Q% on its left and Q= on its right. There are now only two exceptional points.

Hoélder spaces for complete contours.

Definition 11. We denote by HY(X) the Banach space of Ny-tuples of matriz functions (F1,...,Fn.)
such that F; € H (Lji), equipped with the norm

+
[(Fx, o EN ) =l -+ [[Faely
with the norms on the right-hand side being taken over the corresponding loops.

Each element of HY (X) may be regarded as a matrix function on ¥, provided one allows the function to
take multiple values at exceptional points common to multiple loops th. If such a function in HY (X) agrees
14



with a function in H” (X) away from the exceptional points, it admits a single-valued Holder-continuous
extension to all of ¥ and hence can be identified with an element of H”(X). Conversely, it is easy to
see that every F € H"(X) can be viewed simultaneously as an element of HY(X) and of H”(¥). Thus
HY(X)NHY(X) = H(X).

We have the following analogues of the basic results for Holder-continuous functions on loops. In all of
these statements, ¥ is a complete admissible contour.

Proposition 6. Let 0 < v <y < 1. The inclusion map Z,,_,, can be defined from H'.(X) to HYL(X) or from
HH(X) to HY(X). It is compact whenever v < .

Proposition 7. If M € HY (), then Ly and Ry are bounded on HY(X) and from HY(X) to HY(X). If
M € H"(X), then Ly and Ry are bounded on HY(X), HY (X), and HY (X).

Proposition 8 (Generalized Plemelj-Privalov Theorem). Suppose that 0 < v < 1. The Cauchy operators
C are bounded on HY(X) and from H%(X) to H”(X). On the space HY (X)UH" (), the following operator
identities hold:

CP—C»=1, CioC:=0, (+CI)°==+CI.

Proposition 9. Suppose that 0 < p,v < 1. If M € HY(X) (respectively, if M € H"(X) or H*(X)), then the
commutators [CE, Lam| and [CF, R are bounded from HY (X), H”(X), or H*(X) to H(X) (respectively, to
H"(X) or HY(X)). If v < p and the commutators are followed by the inclusion map I,_,,, they all become
compact.

The proofs of Propositions 6-9 are similar to those for loops, but additional care must be taken in adding
up the contributions to Cauchy integrals from various loops. One further useful fact is the following.

Proposition 10. Suppose that F,G € HY(X)U HY(X). Let Hy(z) denote the pointwise matriz product
H_ (z) := CI[F](2)CZ[G](2). Then CZ[Hi](z) = 0.

Proof. The function H.(z) is the product of boundary values of functions analytic in Q% and decaying like
O(z7') as z — oo in any unbounded component of the latter domain. Therefore H(2) is also such an
analytic function, but decaying like O(z72) as z — oo. In calculating CZ[H](z), we first let z € QF and
apply the Generalized Cauchy Integral Theorem to deduce (by deforming the path of integration into Q;t
from each loop L;t) that C*[H](z) = 0 for z € QF. The result follows by taking the limit z — . O

Ezample. The various spaces associated to a complete admissible contour 3 and the way the Cauchy bound-
ary operators CT relate these spaces can be illustrated by the following simple example. Take the contour
Y illustrated in the right-hand panel of Figure 2. Consider the function f : ¥° — C defined as f(z) := 1
(f(2) := —1) on the boundary of the component Q" (23) of Q*. This function is (may be identified with) an
element of the space HY (X), because its restriction to each loop Lf, L;‘ separately is a constant. However,
it is not in HY (X), because there are jump discontinuities along the boundary of Q~, which consists of two
loops Li, Ly . The Cauchy integral of f along ¥ is easy to calculate by residues by first splitting the integral
into two integrals over the two loops L, L3

1, z€Qf
CE[fl(z) =< -1, =zeQf
0, 2EQ =07 UQ;.

Thus, letting z tend to X° from Q7 yields the result CY[f](z) = f(z), so CY[f] € HY(X) as guaranteed
by Proposition 8. Letting z tend to X° from Q= yields the even simpler result CZ[f](z) = 0, a constant
function that is obviously in H(X) (and obviously in both HY (X) and H(X)). Therefore C*[f] € H"(X)
for f € HY(X) again as guaranteed in general by Proposition 8.
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Equivalent integral equation. We begin by defining an appropriate sort of algebraic factorization of the
jump matrix from Riemann-Hilbert Problem 1.

Definition 12 (Admissible factorization). Let ¥ be a complete admissible contour and let V be a corre-
sponding admissible jump matriz of Holder exponent yu < 1. Then (X, BT, B™) is an admissible factorization
of the Riemann-Hilbert data (X,V) provided that

(19) V(z) =B (2)"'BT(2), ze¥°
where BE(2) are unimodular matrices and B* € HK(X).

The condition det(B¥(z)) = 1 is not essential (invertibility is enough) but is convenient given that
det(V(z)) = 1. There are many different admissible factorizations corresponding to fixed Riemann-Hilbert
data (3,V). Indeed, suppose (X, BT, B™) is an admissible factorization of (3, V). Then so is (3,B*,B™)
where, given any Y € H*(X) with det(Y(z)) =1,

(20) BT (2) =Y(2)BT(z) and B (z) = Y(2)B (2).

We show that there exists at least one admissible factorization by a direct construction, which relies on the
following technical lemma.

Lemma 2 (Unimodular interpolation). Let A and B be matrices with unit determinant. Then there exists
a matriz function F : [0,1] — CNXN that is of class C>([0,1]) and satisfies F(0) = A and F(1) = B, and
det(F(¢)) =1 for all t € [0,1].

Proof. Write the unit determinant matrix A~'B in Jordan canonical form as
AT'B=S(D+N)S™,

where D = diag(dy, ...,dy) is a diagonal matrix of eigenvalues of A~'B, and where N is the corresponding
upper triangular nilpotent part of the Jordan form. Let ¢q,...,¢x be complex numbers (logarithms) such
that el = d; # 0, and such that ¢; + --- 4+ ¢,y = 0 (this is possible by choice of branches of the complex
logarithm because d; - --dy = 1). Then set L := diag(¢y,...,¢n), and define

(21) F(t) := AS[exp(tL) + tN]S~'.
Clearly we get F(0) = A and F(1) = B. It is also obvious that F is infinitely differentiable. Finally,
det(F(t)) = det(exp(tL) + tN) = etf1 ... etn = tllrtH+in) — 1, O

To describe a systematic construction of an admissible factorization of Riemann-Hilbert data (3, V), we
first let Xo C X denote those (exceptional) self-intersection points of ¥ at which at least one of the jump
matrix limits V; at 2z is not the identity matrix I (and therefore by (14) at least two of the V; are not
identity matrices). We isolate each point zp € Xy by letting D(zo) be a disk centered at zy of sufficiently
small radius that it contains only 2o and K arcs joining zo to the boundary 0D(zg) (and in particular D(zp)
does not contain any other points of X). Set

B*(2):=V(z) and B (2):=1, zeX\ |J D(x),
20€X0o
that is, we take a trivial factorization of V(z) away from all self-intersection points of ¥ at which we do not
consistently have V(zy) = I. Now for each zp € Xo, ¥ N D(zo) consists of an even number of arcs joining
the boundary of D(zp) with zp with alternating in/out orientations; we order them in counter-clockwise
order about zg as C1,C5,...,Ck, K even, and we assume that C is oriented toward zg. Take a smooth
parametrization z = zx(t), 0 <t < 1 for each arc C}, as a constant multiple of arc length. Observe that z;(0)
lies on 0D(zp) and zx(1) = 2o for k odd while z;(0) = zp and zx(1) lies on 9D(zg) for k even. To define
B*(2) on the arcs Cy,...,Cx within D(z), we first set, by natural continuation of the definitions outside
of D(Zo),
Bt(z):=V(z) and B (2):=1, z¢cC.
Suppose that B¥(z) have been defined on Cj,_1, and we will now explain how to choose B¥(2) on Cj, so
that they are locally continuous along 9QF. If k is even, note that between Cy and Cy_; lies a component
of Q= so we will require continuity of B~ (z) along the boundary of this component by setting B~ (24(0)) =
B~ (2-1(1)). Then, we invoke Lemma 2 to obtain B~ (z) on C}, as a matrix with unit determinant satisfying
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B~ (2(1)) = I. This function is Lipschitz as a function of scaled arc length ¢, but this implies that it is
also in H*(C},) by the standard upper bound of arc length in terms of straight-line distance. With B~ (z)
defined on Cy, we set BT (z) := B™(2)V(2) for z € C). On the other hand, if & is odd, then between Cj,
and Cj_1 lies a component of Q1 so we require continuity of B¥(z) along the boundary of this component.
Thus we define Bt (z,(¢)) for 0 < ¢ < 1 by again invoking Lemma 2 using BT (z;(0)) = V(2(0)) and
BT (21(1)) = BT(2£-1(0)), and then obtain B~ (z) on Cy by B~ (2) := BT (2)V(2)~L.

The fact that this factorization V(z) = B~ (2) !B (2) is admissible clearly boils down to showing that
B* € HL(Y), i.e., that B¥(2) is Holder continuous around each loop L;‘E7 even where several loops meet at
an exceptional point zo € X. This continuity follows from the above construction due to the identity (14)
satisfied by the limiting jump matrices at each self-intersection point zp of ¥. In the case of self-intersection
points zg € X \ Xo, the limit of B¥(2) as z — 2y is I for each arc meeting zg, so the desired continuity
holds automatically. We call an admissible factorization (X, B*,B™) of (3, V) of the type just constructed
a standard factorization.

In many situations one can show that a standard factorization has the property that if ||V —I[|;, is small,
then so are |[B=—I]||. In fact, given concrete choices of the various parameters (e.g. disk radii, interpolating
function F) of a standard factorization, one can easily prove an estimate of the form

(22) IB= 1l < KsllV -1],

for some constant Ky independent of the admissible jump matrix as long as Xy is fixed. Another property
that will be useful in applications is:

Proposition 11. Let ¥ be a complete admissible contour and let V be a corresponding admissible jump
matriz of Holder exponent u < 1 with the property that for some point zg € X, V(z) = 14 O(|z — 20/P).
Then for a standard factorization, it also holds that B*(z) =1+ O(|z — z[P).

Proof. A standard factorization sets BT (z) = V(z) and B~ (2) = I on the part of ¥ in a neighborhood of
each such point zy (because zg € X \ Xjp). O

Now for any (3, BT, B™) admissible and associated with Riemann-Hilbert data (3, V), define
(23) Wt (z):=B*(z) —Ie H{(Z) and W (z):=1-B (z) € H(%).
The key operator in studying Riemann-Hilbert Problem 1 is then the following;:
Cw :=C¥ o Rw- +C= o Rw-+.
In more concrete terms, the action of Cw on a function F : ° — CNXV s
Cw|F](z) = CE[FW](2) + CE[FWT](2), z€X.
Proposition 12. Cw is a bounded linear operator on HY(X) whenever v < p < 1.

Proof. Since H"(X) € H(X) for v < p1, Ry~ is bounded from H"(X) to H” (%), on which C¥ is bounded
with range H"(X). Likewise Ry~ is bounded from H(X) to H” (X), on which C* is bounded with range
HY(S). O

Theorem 2 (Singular integral equation for the Riemann-Hilbert problem). Let (3, BT, B™) be an admissible
factorization of Riemann-Hilbert data (3,V) of Hélder exponent p < 1, and let v < u. Every solution
X € HY(X) of the singular integral equation

(24) (ZT-Cw)X=1I€H"X)
gives a solution of Riemann-Hilbert Problem 1 via the formula
w) + W~ (w))

-z

(25) M(z) =T+ CEX(WT +W7)(z) =T+ QL/ X (w) (W dw, ze€C\ZX.
i Jx w

Proof. Suppose that X is a solution of (24). The formula (25) then defines M(z) as an analytic function of z

in the domain C\ ¥ that is Holder continuous up to ¥ with exponent v and that satisfies the normalization

condition M(z) — T as z — oo. We now show that M(z) given by (25) satisfies the jump condition
17



M, (z) = M_(2)V(z), which in view of the factorization (19) and the definition (23) can be written in the
form

M (2)(I+ W ()™ = M_(2) (I — W (2))~.
Substituting from (25) yields
(I+CEXWT](2) + CEXW T (2)) I+ WH(2) ™! = I+ CEXWT](2) + CE[XW | (2))(I - W (2))~ L.
Then, using the integral equation (24) satisfied by X, this becomes
(X(2)+CXW () ~CE[XW ) (2)) 14+ W (2)) ™" = (X(2) ~CE[XW () +CEXW ) (2)) 1= W~ (),
which after using the Plemelj formula C7 — C* = T becomes an identity X(z) = X(z) for z € ¥°. O

Proposition 13. Given two admissible factorizations (X, BT, B™) and (%, ]g’)“‘,B_)~ of the same Riemann-
Hilbert data (X, V) and related by (20), by analogy with (23) set W*(2) := £(B*(z) — 1). Then, the
associated operators T — Cw and L — Cys, are related explicitly by

T-Cy = (I —-Cw)oRy.
Hence T — Cyg, is invertible on HY(X) if and only if T — Cw is.
Proof. Observe first that from (20) and (23),
WE(z) = £(Y(2)BE(2) = 1) = £(Y(2) — I £ Y(2)WH(2)) = £(Y(2) = I) + Y(2) W*(2).
Therefore, by definition of Cy;,, we have
(T — C)[X](2) ==X (2) — CYXW](2) - CE[XW](2)
=X(2) + CY[X(Y —D](2) — CZ[X(Y — D](z) — CT XYW (2) — CZ[XYWT](z).
Finally, using the Plemelj formula on the second and third terms on the right-hand side, we obtain
(Z - Cw)IX](2) = X(2) Y (2) = CE[XYW](2) = CE[XYW](2)
= (T - Cw)[XY](2)
= ((Z - Cw) o Ry)[X](2)-
Since right-multiplication by the invertible Y € H”(X) is an isomorphism of H”(X), the proof is finished. O
For applications, the following result will be useful.

Proposition 14. Suppose that (24) has a solution X € HY(X) and that zy € ¥ is a point at which W*(z)
vanish to all orders as z — zy along each component of ¥° meeting zg. Then the corresponding (unique)
solution M(z) of Riemann-Hilbert Problem 1 given by (25) has an asymptotic expansion in powers of z — zy:

(26) M(z)—HNZMn(z—zo)", z— 2z, z2€C\X,
n=0

with coefficients
_ 1 X(w)(WH(w) + W (w))
C 27y (w — zp)t1

(27) M, : dw, n=0,1,2,....

Note that these integrals are all absolutely convergent, and that according to Proposition 11 the hypotheses
are guaranteed with the use of a standard factorization provided V(z) — I vanishes to all orders as z — zg.

Proof. For any M = 0,1,2,..., we can write the Cauchy kernel (w — z)~! in the form
1 1 1 1 1 Mo pMH 2~z
. S D e
w—z (w—z)—(2-2) w-2 l-p w—2z |7= 1—p w — 2o

or,
M+1

1 :i (z — 20)" (z — 20)

(w—20)" Tt (w— 2z0)MH1(w — 2)’



Therefore, from (25) we have

X(w)(W (w) + W™ (w))
(w — zg)M+1 '
But the hypotheses on W¥ imply that Fy; € H¥(X°) for all M = 0,1,2,..., so C¥[Fy](z) is Holder

continuous with exponent v up to ¥, from which it follows that the right-hand side is O((z — 29)™*1) as
zZ = 20. O

M
M(z) 1= Mu(z—20)" = (2 — 20) " T'C[Far](2), Far(w):=
n=0

Observe that the asymptotic expansion (26) is generally either divergent, or if convergent its sum does
not equal M(z) —I. Indeed, if the series were to converge, its sum would have to be analytic at zo. However,
while by hypothesis the jump matrices approach the identity matrix as z — zy faster than any power of
z — zp, they need not equal the identity matrix locally, and therefore M(z) — I need not even be continuous
in a neighborhood of zy, for the result to hold.

Small-norm problems. The easiest way to solve the integral equation (24), and hence Riemann-Hilbert
Problem 1, is to apply iteration, representing the inverse operator (Z — Cw)~! on H”(X) by its Neumann
series

(Z-Cw)'=I+Cw+Cwolw+--=> Ci.
n=0

The Neumann series converges if ||Cw||,,, the operator norm on H”(X) of Cw, satisfies
ICwl., < 1.

Such a situation is called a small-norm problem. We know from Proposition 12 that the operator norm
|Cw||, is finite, but it will be useful to estimate it in terms of more controllable quantities. Since C} are
bounded operators from HY (X)) to H” (%), there exists a constant K depending only on the contour 3 such
that

ICEF, < K|F|F
where on the left-hand side we have the norm on H”(X) while on the right-hand side we have the norm on
HY (%) (which is a sum of H"(L) norms over loops L]). But then it follows easily that

ICwFl, < KW+ [[WI)IF]L

holds for all F € H(X). We therefore have a small-norm problem if
1
78
This condition essentially says that the jump matrix V should be close to the identity matrix in a suitable
sense on X°.

Because the bounded operators on H” (%) form a Banach algebra, i.e., for bounded operators A, B acting
on HY(X) we have || Ao B|, < ||A|l.|IB]|., it follows from the Neumann series formula that

1

L—lCwl,’

Therefore, since the norm of the constant function I € H”(X) is ||I||, = 1, in the small norm setting we get

WL+ Wl <

I(Z—cw) Ml < Y llewlly =

n=0

ICwl, < 1.

1
X[y € —5—  lICwll, <1.
1—[[Cwll
If in addition the hypotheses of Proposition 14 hold, the integrals (27) therefore satisfy
P W+ Ww-
M, || < s(%) W™ (w) + 1(7“”)”, n=01,2,...,
2r(1 — [ICwllv) wes lw — zo|"F

where s(X) is the total arc length of ¥. By analogy with (22), with the use of a standard factorization
the above supremum can typically be estimated in terms of V — I and in particular its (rapidly vanishing)
asymptotic behavior near z = zy, i.e., in terms of the original data (X, V) for Riemann-Hilbert Problem 1.
Small norm problems seldom arise on their own in applications. However, in situations where a small
parameter € < 1 is present in the data (3, V) of a Riemann-Hilbert problem, one can sometimes introduce a
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finite sequence of well-motivated substitutions that convert the Riemann-Hilbert problem with data (2,V)
into an equivalent one with data (¥’, V') that is indeed a small-norm problem in the limit ¢ — 0. This is
the main idea behind the Deift-Zhou steepest descent method for Riemann-Hilbert problems that we have
discussed already in the course.

Fredholm theory. Recall the following definitions, for which an excellent reference is [2, Chapter 27].

Definition 13 (Kernel and cokernel). Let A: B — B be a bounded linear operator on a Banach space B.
The kernel of A is the subspace ker(A) C B of vectors f € B such that Af = 0. The range of A is the
subspace ran(A) C B of vectors f € B such that f = Ag for some g € B. The cokernel of A is the vector
space (of equivalence classes) coker(A) := B/ran(A).

Definition 14 (Fredholm operator). A bounded linear operator A : B — B on a Banach space B is a
Fredholm operator if dim(ker(A) and dim(coker(.A)) are both finite. The index of a Fredholm operator A is
ind(A) := dim(ker(A)) — dim(coker(.A)).

Definition 15 (Pseudoinverse). Let A be a bounded linear operator on a Banach space B. Another bounded
linear operator B acting on B is called a pseudoinverse to A if
BoA=ZT—-K and AoB=I-K
where IC,K' : B — B are both compact.
The key result of the general theory that we will need is the following.

Theorem 3. Let A: B — B be a bounded linear operator on a Banach space B. Then A is a Fredholm
operator if A has a pseudoinverse.

By analogy with the definition of the operator Cw, we may define an operator constructed from the
inverses of the matrices B¥(z): we first set

Ut(z):=BT(2) ' —I€ H{(X) and U (z):=1-B (2)"' € H(D),
and define Cy := C_% o Ry- + C¥ o Ry+. By the same argument as in Proposition 12, Cy is bounded on
HY(X). Note also that since B¥ (2)B*(2)~! = B¥(2)"'B*(2) =1,
(28) WE(2)UE(2) = U (2)WE(2) = T(WE(2) + UE(2)).
Proposition 15. Let 3 be a complete admissible contour, and suppose that 'V is an admissible jump matrix

on X with positive exponent u < 1 having the corresponding admissible factorization V(z) = B~ (2)7!B*(2).
Then T — Cy is a pseudoinverse to T — Cw on the space HY(X) for each v < p.

Proof. Let K:=Z — (Z — Cy) o (Z — Cw). We prove that K : H”(X) — H”(X) is compact. We now expand
out K, and to keep the formulas as simple as possible, we omit the redundant superscript X (because the
contour Y. is fixed) from the Cauchy operators C¥, and we simply use the symbol M in place of the operator
R of right multiplication by M (since Cw and Cy involve no left multiplications):

K=Cu+Cw —CuyolCw
= [C+OU_+C_OU++C+OW_+C_OW+]
—[CtoU 0C oW +C1oU 0C_ooWT4+C_0UT0Ci oW +C_o0UToC_oWT]

In the first and last terms on the second line, use the Plemelj formula to eliminate the right-most Cauchy
operators:

CyoU 0CioW™ =CoU oW~ +CoU 0C_ oW~
=CLo(W U )+CroU oC_oWT™
=C,o(U+W7)+CoU 0C_oW™
=CyoU 4+CLoW 4+ CroU oC_oW™,

where on the second line (W~U7™) denotes the operator of right-multiplication by the matrix product
W~U" and going to the third line we have used (28). Similarly

C_.oUToC_.oWT=C_ oU"+C_ oW +C_oU"0C o WT.
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The terms linear in W+ or U* therefore cancel from KC and we get
K=K +Ks+Ks+ Ky,

where

Ki:=-C;oU oC_oW~

Ky:=-CroU oC_oWT

Ks:=-C_oU%toC oW~

Ky:=—-C_oUtoCLoWT.
Because C; o C_ = 0 on the space H” (X)), the range of U~ o W™ acting on H”(X), we have
(29) Ki=Cio[C_,U oW,
Similarly, because C_ o C4 = 0 on the space HY (X), the range of UT o W acting on H”(X), we have
(30) Ki=C_o[Cy,UT]oWT.
By the Plemelj formula, the matrix identity U~ (z) = C4[U"](z) — C_[U~](z) holds, so K5 can be written
in the form

Ko=-C4oU 0C_oW'T —CioUZo0C_oWT, Ui(z):==£Ci[U](2).
By Proposition 10 the second term vanishes because it is C; acting on a product of functions in the range
of C_. Then, since C4 o C_ = 0 on H(X), the range of U] o W acting on H"(X), we have
(31) Ko=Cyo[Co,Ul]oWT.
Similarly,
Ks=-C_oUfo0CioW™ —C_oUtoCioW™, Ul(z):==+CL[UT](2),

and the first term vanishes by Proposition 10 while a commutator can be introduced in the second as above,
with the result that
(32) Ks=C_o[Cy,UT]o W™,

Consider K; given by (29). The operator [C_, U~ ]o W~ is the (ordered) product of a bounded map from
H"(%) to H” () (Proposition 7), followed by a bounded map from H” (X) to H"(X) (Proposition 9) and
is therefore a bounded map from H”(X) to H”(X). To get back to the larger space H” (X) we may follow
this action with the identity operator in the form of the inclusion Z,_,, which is a compact mapping from
H"(X) to H” (X) by Proposition 6. Finally by Proposition 8, the left-most factor in K; is a bounded map
from HY (X) to HY(X). Therefore, we see that Ky is a product of bounded maps with one compact factor.
As the compact operators form a two-sided ideal in the algebra of bounded operators [1, 2], all it takes is one
compact factor to make the product K; a compact map on H”(X). By virtually the same argument applied

o (30), K4 : HY(X) — H”(X) is also compact.

Next consider Ky given by (31). Note that by Proposition 8, U, € H*(X) as the action of C; on a
function in H”(X). Thus, the operator of right-multiplication by W+ is bounded from H"(X) to HY (%)
(Proposition 7), [C_, U] is bounded from HY (X) to H*(X) (Proposition 9) or equivalently is compact from
HY(¥) to H"(X) (Proposition 6), and C_ is bounded on H"(X) (Proposition 8). Thus Ky is compact on
HY(X). By virtually the same arguments applied to the formula (32), K5 : H¥(X) — H”(X) is also compact.

As asum K = K1 + K3+ K3 + K4 of compact operators on H” (%), K is itself compact on H”(X). Writing
K':=T — (T —Cw) o (Z — Cuy), a simple lexicographical swap W <« U in the above arguments shows that
K’ is also compact on H”(X). O

Corollary 3. Under the hypotheses of Proposition 15, T — Cw is a Fredholm operator on H"(X).
Proof. Combine Proposition 15 with Theorem 3. |
We present the following important result without (complete) proof. See [6] for details.

Proposition 16 (Zhou’s index theorem). Under the hypotheses of Proposition 15, ind(Z — Cw) = 0.
21



In fact, Zhou proves a more general result. He considers the case of invertible jump matrices V : 3° —
CN*N that need not have unit determinant, and establishes the following remarkable formula for the Fred-
holm index of 7 — Cw:

ind(Z — Cw) = Nw(det(V)),
where w(f) denotes the winding number of a function f: ¥° — C, i.e.,

w(f) = 5= [ A

The integral above is the total increment of the phase angle of f as z traverses the arcs of ¥ according to
their orientation. Obviously, w(fg) = w(f) + w(g), and so by the factorization V(z) = B~ (z) BT (z) with
B* € HY(X) we have w(det(V)) = w(det(B*))—w(det(B7)). Since X may be viewed as either the collection
of loops {Lj} or {L; }, both w(det(B*)) and w(det(B~)) are integers, and therefore w(det(V)) € Z. Of
course in the special case that det(V(z)) = 1, w(det(V)) = 0, so Zhou’s formula reduces to the statement of
Proposition 16.

We can give a simple proof of Zhou’s index theorem under suitable additional hypotheses on W*. For
this we first need another general result of Fredholm theory (see, e.g., [2]).

Theorem 4 (Homotopy invariance of the Fredholm index). Let A(t) be a one-parameter family of Fredholm
operators on a Banach space B, 0 < t < 1, such that A(t) is a continuous function of t with respect to
operator norm. Then ind(A(t)) is independent of t; in particular ind(A(1)) = ind(A(0)).

To use this theorem, we should try to connect Z — Cw to a simple operator for which we know the index
by a suitable homotopy. The idea is the following: the identities

I+ U*(2) =B (2) ' = I+ WH(2)) !
show that the matrices U* are determined once W are known. We may therefore introduce an artificial
parameter ¢ € [0,1] by setting W*(2;t) := tW*(2) and attempt to determine the corresponding matrix
functions UT(z;t) by inversion of I+ W*(z;t) = 14+ tW*(z). Assuming invertibility of T4+ W (z;t) for
0 <t <1, we may therefore define corresponding bounded operators Cw ;) and Cy( acting on HY(X).
Clearly Cw (o) = Cu(o) = 0. One condition guaranteeing the required invertibility is simply that WH(2) be
nilpotent matrices.

Proposition 17. Let ¥ be a complete admissible contour and V : £° — CN*N an admissible jump matriz
with exponent u < 1 and admissible factorization (X, B*,B7). Suppose that W* € HY(X) are (pointwise)
nilpotent matrices. Then T — Cw ) is continuous on [0, 1] with respect to operator norm on HY(X), and if
v <, I —Cyy is a pseudoinverse to T — Cy ) on H”(X).

Proof. If W (2) are nilpotent for each z, all of the eigenvalues of W™ (2) vanish, so all of the eigenvalues
of T+ W*(z;t) = 1+ tW*(2) are equal to 1 for all ¢. It follows that the matrices U (z;¢) exist and lie in
H(X) as functions of z for each t. Hence both Cyw ;) and Cy() are bounded operators on the same space
HY(X) for each t. Since Z — Cw(y) = T — tCw,

(T = Cwits)) = (T = Cwin)llv = lt2 = ta - [Cw
where the norms are the operator norm on H"(X), which proves the continuity of Z — Cw ) with respect
to t. The fact that 7 — Cy) is a pseudoinverse to Z — Cyw (s follows exactly the proof of Proposition 15, as
that only relied on the algebraic relation (28) between W* and U* which is formally the same for all t. [

Corollary 4 (Zhou’s index theorem — special case of nilpotent W), Let ¥ be a complete admissible
contour and V : X° — CN*N an admissible jump matriz with exponent u < 1 and admissible factorization
(3,BT,B7). If WT are nilpotent, then for each v < pu, T — Cw : HY(X) — HY(X) is a Fredholm operator
with Fredholm index ind(Z — Cw) = 0.

Proof. The identity operator Z = Z — Cw ) obviously has ker(Z) = coker(Z) = {0}, so ind(Z — Cw (o)) = 0.
By Proposition 17 and Theorem 4, we then have ind(Z — Cw) = ind(Z — Cw(1)) = 0. O

Fredholm alternative. Since according to Proposition 16, Z — Cw has Fredholm index zero on H¥(X), the
Fredholm alternative applies, i.e., T — Cyy is invertible on H”(X) — and hence Riemann-Hilbert Problem 1
has a solution — provided ker(Z — Cw) = {0}. This has practical implications, as we will see.
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Application to nonlinear Schrédinger equations. We now study the Riemann-Hilbert problems for the
focusing and defocusing nonlinear Schrodinger equations under the assumption that the reflection coefficient
R is a Schwartz-class function of A € R. We summarize these here for future reference.

Riemann-Hilbert Problem 2 (Riemann-Hilbert problem for defocusing NLS ity 4+ $t5, — [1[* = 0).
Let R : R — C be the reflection coefficient for initial data 1(x,0) = o(z), Yo € L' (R), and assume further
that R € .7 (R) (recall that necessarily |R(\)|?> < 1 for all A € R). Find a 2 x 2 matriz MP(\; x,t) with the
following properties:

o Analyticity: MP(\;z,t) is an analytic function of A for A\ € C\ R.
e Jump Condition: The matrivt MP(\;z,t) takes continuous boundary values MR (\;z,t) on the
real axis from CL, and they are related by the condition

MP (N2, t) = MP (N2, ) VP (N 2,8), A €R,

where

1— |R()\)‘2 _e—2i(>\x+>\2t)R()\)*

D . R
vV ()\,x,t) = eQi()\:c-i-)\zt)R()\) 1

e Normalization: As A — oo, MP(X\;z,t) — 1.

Riemann-Hilbert Problem 3 (Riemann-Hilbert problem for focusing NLS it + %z/zm + Y2 = 0). Let
R : R — C be the reflection coefficient, {\,}_, the eigenvalues in the upper half-plane, and {c,}\_, the
corresponding residue constants for initial data ¥(x,0) = vo(z), o € Py C L'(R). Assume that R € 7 (R).
Seek a 2 x 2 matriz MY (\; x,t) satisfying the following properties:

o Analyticity: MF (\;x,t) is an analytic function of X for X € C\ (RU{A1,..., AN, AT, .., A% ).
o Residues: At \ = )\, and A = X}, MY¥(\;x,t) has simple poles and the residues satisfy the condi-

tions
(33) Res M¥(\;z,t) = lim MY (\;z,t) 0 0
A=An T A A, U e (x,t) 0]
and
F/y. IERT F/y. 0 —Cn(l',t)*
(34) )\fie)\s: MY (\;z,t) = )\lgg\l: M" (\;,t) [0 0 ,

. 2
where ¢, (x,t) = c,eAnTTAt)

e Jump Condition: The matriz MY (\;x,t) takes continuous boundary values MY (\;z,t) on the
real axis from C, and they are related by the condition

MY (X2, t) = ME (A 2,8) VE (A2, 1),
where

1+ |R(>\)|2 672i(>\w+>\2t)R(/\)*

Fry. —
(35) VE@8) = | i .

e Normalization: As X — co, MF(\;z,t) — L.

The solution of the initial-value problem for the nonlinear Schrodinger equation in each case is given by
the same formula:

(36) Y(z,t) =2 lim AMT (N 2, ).
—00
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Swapping poles for jumps across circles. The first issue we have to deal with in applying the general theory
is that Riemann-Hilbert Problem 3 deals with an unknown having not only jumps across contours but also
poles. However, it is easy to get around this problem with the following simple device. For each pole A,, € C,
let D,, be a small disk centered at A, of sufficiently small radius to be lie in the open upper half-plane and
to be disjoint from all other disks. A particular matrix with a simple pole at A = \,, satisfying the condition
(33) is
1 0
cn(z, )N = A,)" 1 1]

Observe now that the matrix N(X;z,t) :== MF(X\;z,¢)P,,(A\;2,¢)~1 analytic for A € D,, \ {\,} has only a
removable singularity at \,. Indeed, (33) implies that the Laurent expansion of MF (\;x,t) about A = A,
takes the form

(37) P,(\;z,t) :=

(a—lao)
A=A,

for some vector coefficients ag(z,t) and bg(z,t). Therefore, if e; and es denote the standard unit vectors in
C?,

MF(\;z,t) =

+ (ap,bg) + O(A — A,), where a_; =c,(x,t)bg,

MF (A2, )P (A2, )L = (W + (a9, bo) + O(A — )\n)> (W + (e, e2)>

has a limit as A — \,,, because
(cn(z,t)bg,0) - (—cp(z,t)e2,0) =0 and (c¢,(x,t)bg,0) - (e1,e2) + (ag, bg) - (—cp(z,t)ez,0) = 0.
Similarly, a matrix corresponding to (37) with a simple pole at A = A¥ satisfying the condition (34) is

[1 —cp(x, t)* (A= A5) 7!

(iO‘Q)Pn()\*;.’L‘,t>*(iO'2)_1 =10 1

} =P, (\2,t) T,

where the superscript —1 denotes taking both the conjugate transpose and the inverse. It follows by com-
pletely analogous reasoning that the matrix N(\; z,t) := M¥(X\; z,t)P,,(\*; 2,t)T has a removable singularity
at A = \F.

We may therefore define a new matrix unknown N(\;z,t) in terms of MY (\;z,t) satisfying Riemann-
Hilbert Problem 3 by the “piecewise” formula

MYE (X2, )P, (N 2, 1)L, rxebD,, n=1,...,N,
N\ 2,t) = ¢ MF O\ 2, )P, (A o, )T, AeDi, n=1,...,N,
MF (\; z, t), AeC\(RUD,U---UDyUD;U---UDy).
Now, N(); z,t) has no poles, but in addition to a jump across the real axis, it has jumps across the circular
disk boundaries. Indeed, if we take 9D,, to have negative (clockwise) orientation, then
N (\z,t) = ME (N2, t) = MY (2, O)Pa (N2, t) ' PNz, t) = N (A2, )P (X 2, t)
holds for A € 9D,,, n =1,..., N, and if we take 0D}, to have positive orientation, then
N,z t) = MF (X2, )P, (V5 2,t) T = N_(\s 2, )P, (A 2, 1)

holds for A € 9D}, n=1,..., N. Since N(\;x,t) = M (\; 2, ) outside of the disks D,, and their conjugates,
we now see that N(A; z,t) satisfies the conditions of an equivalent Riemann-Hilbert problem closely related
to Riemann-Hilbert Problem 3 but with the residue conditions replaced by jump conditions across small

circles centered at the points {\,, A%} ;. In formulating this problem, we will simply relabel N(\;z,t) as
MY (\; 2, t):

Riemann-Hilbert Problem 4 (Pole-free Riemann-Hilbert Problem for focusing NLS). Let R : R — C
be the reflection coefficient, {\,}N_, the eigenvalues in the upper half-plane, and {c,}_; the corresponding
residue constants for initial data ¥(x,0) = ¥o(x), 1o € Py C L (R). Assume that R € /(R). Seek a 2 x 2
matriz MY (\;z,t) satisfying the following properties:
o Analyticity: MF ()\;z,t) is an analytic function of X for A € C\(RU{dDx,...,0Dx,8D5,...,0D%}).
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e Jump Conditions: The matriz M (\;z,t) takes continuous boundary values MY (X\;z,t) on the
real azis from CL, as well as from the left and right on 0D1,...,0DN oriented negatively and
0D7,...,0D% oriented positively. The boundary values are related by

MY (N2, t) = ME (N2, ) VE (N 2,8), A ER,
where VE(\;z,t) is given by (35), by
MY (A2, t) = ME (A 2,8)Po(N2,t), A€dD,, n=1,...,N,
and
ME (N 2,t) = ME (N2, )P, (A5 2,0)T, A€dD;, n=1,...,N,
where Py, (\; x,t) is defined by (37) in which cp(z,t) = CpeZina+ATE)
e Normalization: As X — co, MF(\;x,t) — L.

Since no change was made in MY (X;z,t) for || sufficiently large, again the solution of the initial value
problem is given by (36).

Compactification of the contours. The next obstruction to applying the general theory is that both Riemann-
Hilbert Problems 2 and 4 involve an unbounded jump contour R, oriented left-to-right. To apply the general
theory as it has been formulated, it is necessary to first map this contour to a bounded contour by a fractional
linear mapping, e.g.,

A—iT 1

z=2z(\) = g ;T with inverse A\ = A(z) := —iTji— T
which maps the upper (lower) half A-plane to the interior (exterior) of the unit circle in the z-plane. The
point A = oo is mapped to z = 1, and z = oo is the image of A = —iT. Here, T' > 0 is chosen so large that

all disks D,,, D} lie within the circle centered at the origin of radius 7'. This ensures that no point of the
jump contour for Riemann-Hilbert Problem 4 is mapped to z = co.

Let ¥p (Xg) be the image in the z-plane of the jump contour for Riemann-Hilbert Problem 2 (Riemann-
Hilbert Problem 4). See Figure 3 for the defocusing case and Figure 4 for the focusing case. It is easy to
see that Yp is a complete admissible contour without any self-intersection points, i.e., X = . However,

FIGURE 3. Left: the original contour for Riemann-Hilbert Problem 2 in the A-plane. Right:
the image contour ¥p in the z-plane. The domain Q7 is shaded.

the components of the domains QF are not all simply-connected in the case of X, so an augmentation

of the jump contour with additional arcs carrying the identity as the jump matrix is needed to arrive at

a complete admissible contour in the focusing case. The additional arcs are indicated with dashed lines

in Figure 5. With this modification of ¥, the corresponding jump matrices on ¥p and Xp obtained by

composing the jump matrices in the A-plane with A = A(z) are easily seen to be admissible in both cases

with Holder exponent p = 1. Since neither ¥p nor Xr has any exceptional points, it is easy to see that the
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FIGURE 4. Left: the original contour for Riemann-Hilbert Problem 4 in the A-plane. Right:
the image contour ¥ in the z-plane. The domain Q7 is shaded.

F1GURE 5. The additional arcs added to complete the contour in the focusing case.

trivial factorization B¥(2) = V(z) and B~ (z) = I is admissible. It therefore follows that in both focusing
and defocusing cases, Z — Cw is Fredholm with index zero on H”(Xp) or H”(Xy) provided v < 1.

Thus the analyticity and jump conditions of the Riemann-Hilbert problems for both focusing and defo-
cusing NLS have been recast in the form of Riemann-Hilbert Problem 1. Note however, that every solution
M(z) of that problem is normalized to the identity I at the point z = co. Therefore after substituting for
z = z(A) to return to the A-plane we obtain a matrix function that tends to the identity matrix as A — —iT,
whereas it is instead required to tend to the identity as A — oo. Next observe that because VP (\;z,t) — I
and VF(\;2,¢) — T vanish to all orders as A — oo (because R € .#(R)) the corresponding jump matrix
V(z) for Riemann-Hilbert Problem 1 is in each case such that V(z) — I vanishes at the corresponding point
z =1 to all orders in |z — 1|. Therefore by Proposition 14 M(z) has an asymptotic power series expansion
about z = 1, and in particular M(1) makes sense and det(M(1)) = 1. Consider the matrix M(1)"*M(z). It
is easy to check that this matrix satisfies all of the conditions of Riemann-Hilbert Problem 1 but with the
normalization condition instead replaced by M(1)"*M(z) — I as z — 1 (in particular multiplication of the
jump condition on the left by any constant matrix, or even entire matrix, leaves the condition invariant).
Bringing this matrix function back to the A-plane by substituting z = z()) then gives a solution of either
Riemann-Hilbert Problem 2 or 4.
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Application of the Fredholm alternative. By the Fredholm alternative, it therefore remains to show that the
only solution Xy € H¥(X), ¥ = Xp or ¥ = Xy, of the equation (Z — Cw)Xo = 0 is Xo(2) = 0. Let
Xo € H”(X) be any solution of this equation, and define a matrix Mg(z) by setting

(38) My(2) := C¥[Xo(WH + W)(2), z€C\XZ
(compare with (25)). First we observe the following.

Proposition 18. Suppose that Xg € HY(X) solves (I — Cw)Xo = 0 € HY(X), i.e., Xo € ker(Z — Cw).
Then Mg : C\ ¥ — CN*N s the zero function if and only if Xg is the zero element of H” ().

Proof. Clearly if X((z) = 0 then also My(z) is the zero function. Suppose now that My(z) is the zero
function. Then in particular, its boundary value taken on ¥ from €2~ vanishes, i.e.,

(39) CEXo(WH +W)](2) =0, zeXx°.
Since Xo(2) = Cw|[Xo](z) = CE[XoW~|(2) + CZ[XoWT](z), by the Plemelj formula, we have
Xo(z) = Xo(2)W™(2) + CE[XoW](2) + CEZ[XoWT](2)
= Xo(2)W ™ (2) + CZ[Xo (W™ + WH)](2),

or, recalling B~ (z) =1 —- W~ (z),

Xo(2)B™(2) = CZ[Xo(WT + W7)](2)

=0, ze€X°

according to (39). But B~ (z) is an invertible matrix for each z € £°, so X¢(z) = 0. O

Observe that the function Mg(z) given by (38) is analytic where it is defined and Holder continuous
with exponent v < 1 up to the boundary 3. Also, by analogous steps as in the proof of Theorem 2, its
boundary values satisfy Mo4(z) = Mo_(2)V(z) at every point of 3, where V is the corresponding jump
matrix. Therefore, My(z) satisfies all of the conditions of Riemann-Hilbert Problem 1 with the exception of
the normalization condition, which gets replaced by Mg (z) — 0 as z — oo according to (38). Using Propo-
sition 18, we deduce that in the Fredholm index zero situation, Riemann-Hilbert Problem 1 has a (unique)
solution provided that the only vanishing solution of the same problem, i.e., replacing the normalization to
I at z = oo with normalization to 0, is My(z) = 0.

Furthermore, since as an analytic function of z for |z| sufficiently large, any nonzero vanishing solution
My (z) decays as z — oo like 2P for some positive integer p, the product

My (2) := (z — 1)PMy(z)

will have a nonzero limit as z — oo but will vanish to (at least) order p as z — 1, which corresponds to
A — oo. Since My(z) is identically zero if and only if Mg(z) is, for unique solvability of Riemann-Hilbert
Problems 2 and 4 it is sufficient to rule out nonzero solutions of these two problems in which the conditions
MP-F(X\:z,t) — T as A — oo are replaced with MPF(\;z, ) = O(A7!) as A — oo respectively.

Zhou’s vanishing lemma. The non-existence of nontrivial vanishing solutions for Riemann-Hilbert Problems 2
and 4 follows from the following result, due to Zhou [6, Theorem 9.3].

Proposition 19 (Vanishing lemma). Let ¥ be a complete contour in the A-plane that is Schwarz-symmetric
(invariant under reflection through the real axis, including orientation). Let V be an admissible jump matriz
on Y that satisfies:

(40) V(\) + V(N is positive definite for X € R,
and
(41) V) =V, AeX\R.

Then the only matriz function Mg(A) analytic for A € C\ X and continuous up to the boundary with
Mo, (A) = Mo_(AN)V(N) for A € X°, and that satisfies Mg(\) = O(A~U+9/2) as X — oo for any € > 0, is
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Note that every complete Schwarz-symmetric contour necessarily contains the real axis R, but as usual
the jump matrix may be artificially taken to be the identity on R if necessary.

Proof. Consider the matrix function A()) := Mq(A)Mg(A*)T. Clearly, A()\) is analytic for A € C\ ¥ because
Y = ¥* (Schwarz symmetry), and A()) is also continuous up to 3. Let X; be an arc of ¥ in the open upper
half-plane. We may calculate the jump of A(\) across X, as follows: first observe that

A (N) = Mo (A)Mp- (AT,

because if A — ¥; from the left (“+” side), then A* — X7 from the right (“~” side), where the “+” subscripts
indicate boundary values on X; (for A) and 3 (for A*), for which the orientation is induced by Schwarz
reflection symmetry. Applying the jump conditions across 3; and Y7 respectively thus gives

A (N) = Mo-(M)V(\) Mo+ (A) V)T

— Mo ()VOIVO) Moy (V).
Next, using the identity (41) gives

A (A) = Mo (A)Moy (A)F

=A_(N),

by similar reasoning as in the first step. Therefore, A()) is continuous in the upper half-plane (as well
as in the lower half-plane by the identity A(\) = A(\*)T). It then follows by Morera’s Theorem and the
Generalized Cauchy Integral Theorem that A(z) is analytic for A € C\ R, and continuous to the real axis
from either half-plane. Also, A(\) = O(A~U+9)) as A — oo, so A()\) is integrable at A\ = co. It therefore

follows again from the Generalized Cauchy Integral Theorem and Jordan’s Lemma (closing the contour by

a large semicircle in C) that
—+o0
Ai(N)dr=0.

— 00

But, for A € R, we have
A (N) =Mor (MMo-(\)f = Mo— (A V(A)Mo-(A)f

and
A_(A) = Mo (AM)Moy (M) = Mg (M) Mo (AMV(N)]T = Mo (M)V(A) My (M)
Therefore

+oo +o0o +oo
(42) / My_(N)[V(A) + V) Me_ (M) Td = AL (N d+ A_(N)drx=0+0=0.
Now let u,(A)f, n=1,..., N, denote the rows of My_()), and denote the quadratic form of V(\) + V(\)f
by

Q(u; \) :=u [V + V(N Ju, AeR.
By the hypothesis (40), Q(u;\) > 0 for all A € R and Q(u; A\) = 0 if and only if u = 0. Taking the trace of
(42) gives

N +o0
> [ Qmmina-o

but as a sum and integral of nonnegative terms, this implies that Q(u,(A);A) = 0 for all A € R and all
n=1,...,N. Therefore (40) implies that u,(A) =0 forall A€ Rand alln=1,...,N, ie., My_(A) =0
for all A € R. By Mo+ (A) = Mo_(A)V(A) we therefore also get Moy (A) = 0 for all A € R.

Since Mot (A) = Mo_(A) for all A € R C 3, the Morera/Generalized Cauchy argument applies to show
that Mg()\) is analytic in a neighborhood of every point of ¥° on the real axis. Since also My(\) = 0 for
A € R, it follows by analytic continuation that Mg(A) = 0 holds as an identity all the way up to the first
complex arcs of . But then applying the jump condition for Mg(\) on these arcs shows that again both
boundary values agree and vanish, so the argument continues to the next arcs of ¥, and so on until the
complex plane is exhausted. Thus Mgy(A) = 0 on the whole complex plane as desired. (]
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Global solvability: defocusing case. To confirm the hypotheses of the vanishing lemma in this case, observe
that it is sufficient to show that VP (X\;z,t) + VP(X;z,t)! is positive definite for all A € R. But

P [20=RNP) 0
0 2

and this is clearly positive definite because |R(\)|? < 1 holds for A € R. This finally proves:

VP (A z,t) + VP (2, 0)

Theorem 5 (Global solvability of the inverse-scattering problem for defocusing NLS). Riemann-Hilbert
Problem 2 has a unique solution for all (x,t) € R?, hence determining the corresponding solution of the
initial-value problem for the defocusing NLS equation via the formula (36).

Global solvability: focusing case. To confirm the hypotheses of the vanishing lemma in this case, first note that
the contour consisting of the real axis oriented left-to-right together with the positively-oriented circles 0D,
n =1,..., N and the negatively-oriented circles 9D}, n = 1,..., N, has the necessary Schwarz symmetry.
Also, clearly V(\*) = V(AT holds for all complex A in the jump contour, i.e., on all of the circles. Therefore
it remains again to analyze the jump matrix on the real axis. In this case, we have

14+ |R()\)|2 e—2i(Az+A2t)R()\)*

VENz, )+ VEz, ) =2 .
(A ,t) + (A, 1) 621()‘$+)‘2t)R(/\) 1

=G\ z, )Gz, ),

where

1 0
G()H xvt) = \/5 |:621()\z+)\2t)R(/\) 1:|
is clearly an invertible matrix (det(G(\;z,t)) = 2). However, every matrix of the form GG with G
invertible is positive definite, so all hypotheses of the vanishing lemma have been confirmed. Noting that
Riemann-Hilbert Problems 3 and 4 are completely equivalent, we have finally proved the following.

Theorem 6 (Global solvability of the inverse-scattering problem for focusing NLS). Riemann-Hilbert Prob-
lem 3 has a unique solution for all (x,t) € R?, hence determining the corresponding solution (for suitable
generic initial data) of the initial-value problem for the focusing NLS equation via the formula (36).

Observe that the result holds true even in the special case that R(\) vanishes identically, which gives an
indirect proof that the determinant of the linear algebra system for the N-soliton solution of the focusing
NLS equation is nonzero for all (z,t) € R2.
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