
Topic 9: Analysis of Riemann-Hilbert Problems

Cauchy integrals.

Definition of arcs and loops, chord-arc estimation, analyticity of Cauchy integral off contour.

Definition 1 (Arcs). An arc C is a parametrized curve z = z(t) = x(t)+iy(t) ∈ C, a ≤ t ≤ b for which z′(t)
exists as a continuous and nonvanishing function for a < t < b, extending continuously to t = a and t = b,
and for which z(t) is one-to-one for a ≤ t ≤ b. Sometimes we identify the arc simply with its image in the
complex plane, a simple curve with finite distinct endpoints z(a) and z(b) and with a continuously turning
tangent at every point.

Every arc C carries a natural orientation (increasing t) and can be reparametrized by arc length s = s(t):

s(t) :=

∫ t

a

√
x′(τ)2 + y′(τ)2 dτ =

∫ t

a

|z′(τ)|dτ =

∫ t

a

|z′(τ) dτ | =
∫ z(t)

z(a)

|dz|.

Thus, the arc length differential is simply ds = |dz|. Since a straight line is the shortest path between two
points, the arc length s(z1, z2) between two points z1 and z2 lying on C satisfies

(1) s(z1, z2) ≥ |z2 − z1|, ∀z1, z2 ∈ C.

Definition 2 (Loops). A loop is a simple closed curve in the complex plane that is a finite collection of arcs
placed end-to-end such that their orientations match and such that at each junction point the tangents of the
two joining arcs make an angle θ ∈ (−π, π).

Geometrically, loops are piecewise-smooth closed non-self-intersecting curves that can have corner points
but not cusps. By the Jordan Theorem, each loop L divides the complex plane into a bounded set (the
interior of L) and an unbounded set (the exterior of L). In considering the arc length between points z1 and
z2 on a loop L, we will define s(z1, z2) as the shortest of the two lengths between z1 and z2 along L. It can
be shown that there exists a constant 0 < k0 ≤ 1 characteristic of each loop L such that

(2) s(z1, z2) ≥ |z2 − z1| ≥ k0s(z1, z2) ∀z1, z2 ∈ L.
From now on we will be considering matrix-valued functions on various sets in the complex plane. Consider

the vector space CN×N ofN×N complex matrices. This space can be equipped with any number of equivalent
norms induced from a given norm ‖ · ‖ on the vector space CN by the formula

‖A‖ := max
‖x‖=1

‖Ax‖

where on the right-hand side the norm is the given one on CN and on the left-hand side we are defining the
corresponding norm of a matrix A ∈ CN×N . Aside from satisfying all of the standard axioms of a norm,
such a matrix norm behaves well with respect to matrix multiplication. Indeed, it follows from the definition
that

(3) ‖AB‖ ≤ ‖A‖ · ‖B‖, A,B ∈ CN×N .

Definition 3 (Cauchy integral). Let L be a loop, and let F : L→ CN×N be absolutely integrable with respect
to arc length: ∫

L

‖F(w)‖ |dw| <∞.

For each z ∈ C \ L, the Cauchy integral of F along L is

CL[F](z) :=
1

2πi

∫
L

F(w) dw

w − z
=

1

2πi

∑̀
j=1

∫ bj

aj

F(zj(t))

zj(t)− z
z′j(t) dt,

where the functions z = zj(t), j = 1, . . . , `, parametrize the ` arcs C1, . . . , C` making up L. The function
F : L→ CN×N is called the density of the Cauchy integral.

Lemma 1 (Piecewise analyticity of Cauchy integrals). CL[F](·) is an analytic function on the disconnected
domain C \ L, and CL[F](z) = O(z−1) as z →∞.
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Proof. Morera’s Theorem and Fubini’s Theorem to exchange integration order. Intuition: the integral is a
superposition of functions z 7→ (w − z)−1 with pole w varying along the arcs Cj of L. Then

‖CL[F](z)‖ ≤ ML(z)

2π

∫
L

‖F(w)‖ |dw|, ML(z) := max
w∈L

1

|w − z|
,

and since L is bounded it is obvious that ML(z) = O(z−1) as z →∞. �

Hölder continuity, boundary values of Cauchy integrals.

Definition 4 (Hölder continuity). Let 0 < ν ≤ 1. A matrix function F defined on some connected set
S ⊂ C is said to be Hölder continuous on S with exponent ν if there exists a constant K > 0 such that
‖F(z2)− F(z1)‖ ≤ K|z2 − z1|ν holds for all z1, z2 ∈ S.

Thus every function that is Hölder continuous with exponent ν is continuous on S, but moreover we have
a uniform estimate of the modulus of continuity in terms of a power function. The greater the value of ν, the
smoother the function, although for no value of ν < 1 can it be assumed that a derivative of any sort exists
at any point. In the special case ν = 1, Hölder continuity is sometimes called Lipschitz continuity, and it can
be said that if S is an interval Lipschitz continuity implies the existence of a uniformly bounded derivative
(Lebesgue) almost everywhere. It is an easy exercise to show that if F satisfies ‖F(z2)−F(z1)‖ ≤ K|z2−z1|ν
for any ν > 1 then F : S → CN×N is a constant function, which explains the restriction to 0 < ν ≤ 1. We
denote by Hν(S) the vector space of complex-valued (matrix) functions F that are Hölder continuous on S
with exponent ν.

Let z0 be an interior point of one of the arcs Cj of a loop L, and suppose that F : L → CN×N is not
only absolutely integrable but also Hölder continuous with exponent ν in some neighborhood of z0. We may
write the integrand of the Cauchy integral of F along L in the form

F(w)

w − z
=

F(z0)

w − z
+

F(w)− F(z0)

w − z
=

F(z0)

w − z
+

F(w)− F(z0)

w − z0
+

(F(w)− F(z0))(z − z0)

(w − z)(w − z0)

By the Residue Theorem,

1

2πi

∫
L

F(z0) dw

w − z
=

F(z0)

2πi

∫
L

dw

w − z
=

{
±F(z0), z in the interior of L

0, z in the exterior of L,

where the “+” sign (“−” sign) corresponds to positive (negative) orientation of the loop L. Also,∥∥∥∥∫
L

(F(w)− F(z0))(z − z0)

(w − z)(w − z0)
dw

∥∥∥∥ = |z − z0|
∥∥∥∥∫

L

F(w)− F(z0)

w − z0

dw

w − z

∥∥∥∥ ≤ |z − z0|
∫
L

‖F(w)− F(z0)‖
|w − z0|

|dw|
|w − z|

.

Let C0 be the sub-arc of the arc Cj of L containing z0 and all points of Cj of arc length at most δ/2 from
z0, and suppose that δ is sufficiently small that F is Hölder continuous on C0 with exponent ν. Then as
z → z0 from either the interior or exterior of L, the Lebesgue Dominated Convergence Theorem implies that
for each δ > 0, ∫

L\C0

‖F(w)− F(z0)‖
|w − z0|

|dw|
|w − z|

→
∫
L\C0

‖F(w)− F(z0)‖
|w − z0|2

|dw| <∞

because the singularity of the integrand at w = z0 is bounded away from the contour of integration. Therefore,
for each δ > 0 and each ε > 0 there is some η = η(δ, ε) > 0 such that

|z − z0| < η(δ, ε) =⇒ |z − z0|
∫
L\C0

‖F(w)− F(z0)‖
|w − z0|

|dw|
|w − z|

<
ε

2
.

Also, using the Hölder condition satisfied by F on C0,

|z − z0|
∫
C0

‖F(w)− F(z0)‖
|w − z0|

|dw|
|w − z|

≤ K|z − z0|
∫
C0

|dw|
|w − z0|1−ν |w − z|

≤ K |z − z0|
|w∗ − z|

∫
C0

|dw|
|w − z0|1−ν

,

where w∗ is a point of C0 minimizing the Euclidean distance to z ∈ C \ L. This upper bound can be made
small provided that z → z0 from either the interior or exterior of L but in a nontangential fashion. This
means that we choose once and for all some small positive angle θ > 0 and insist that the vector from z0

to z makes an angle φ(z) in the range θ ≤ |φ(z)| ≤ π − θ with the tangent vector to Cj at z0. Consider
the triangle T with vertices w∗, z0, and z. Since w∗ minimizes the distance to z, the corresponding side of
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T is perpendicular to the tangent to Cj at w∗. Another side of T is the segment with endpoints w∗ and
z0, a secant line to Cj through w∗ that is very close to its tangent when |z − z0| is small and hence so is
|w∗− z0|. Therefore, when |z− z0| is small, T is approximately a right triangle with legs (w∗, z) and (w∗, z0)
and hypotenuse (z, z0), so

|z − z0|
|w∗ − z|

≈ 1

| sin(φ(z))|
≤ 1

sin(θ)
.

By assuming that |z − z0| is sufficiently small and that the angle of approach to z0 is controlled by θ, we
may therefore conclude that

|z − z0|
|w∗ − z|

≤ 2

sin(θ)
.

For such z we then have

|z − z0|
∫
C0

‖F(w)− F(z0)‖
w − z0

|dw|
|w − z|

≤ 2K

sin(θ)

∫
C0

|dw|
|w − z0|1−ν

.

Now, let ε > 0 be given. Since |w− z0|ν−1 is integrable for ν > 0, we may choose δ = δ(ε) (the arc length of
C0) so small that

2K

sin(θ)

∫
C0

|dw|
|w − z0|1−ν

<
ε

2
.

Then with δ = δ(ε) fixed in this way, requiring |z − z0| < η(δ(ε), ε) gives∥∥∥∥∫
L

(F(w)− F(z0))(z − z0)

(w − z)(w − z0)
dw

∥∥∥∥ < ε

2
+
ε

2
= ε

so we have proven the existence of the nontangential limit

(4) lim
z→z0

∫
L

(F(w)− F(z0))(z − z0)

(w − z)(w − z0)
dw = 0.

Therefore, provided the density F satisfies a Hölder continuity condition near a non-corner point z = z0 ∈ L,
the Cauchy integral CL[F](z) has two (generally different) well-defined limiting values as z → z0 nontangen-
tially from opposite sides of L:

(5) CL[F](z)→


±F(z0) +

1

2πi

∫
L

F(w)− F(z0)

w − z0
dw, z → z0 from the interior of L

1

2πi

∫
L

F(w)− F(z0)

w − z0
dw, z → z0 from the exterior of L

and the sign ± refers to the orientation of L. Note that the Hölder condition satisfied by F near z0 ensures
also that the integral term has an integrand that is absolutely integrable on L.

This calculation also goes through in the case that z tends to a corner point z0 of L, provided that
F is Hölder continuous with exponent ν on a neighborhood of the corner point and that (as is part of
the definition of a loop) the corner has a nonzero interior angle (i.e., it’s not a cusp). The meaning of
nontangential approach of z → z0 is then that z cannot approach z0 tangentially to either arc joining at z0.

Plemelj formula, Plemelj-Privalov theorem, elementary properties of boundary operators.

Definition 5. Let F : L→ CN×N be Hölder continuous near a point z0 ∈ L, with exponent ν ∈ (0, 1]. Then
the nontangential boundary values taken by CL[F](z) on L as z → z0 from the left (right) of L according to
its orientation are denoted CL+[F](z0) (CL−[F](z0)).

An immediate corollary of the formula (5) is the following.

Proposition 1 (Plemelj formula). Suppose that F is Hölder continuous with exponent ν near a point z0 of
a loop L. Then,

CL+[F](z0)− CL−[F](z0) = F(z0).
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The vector space of Hölder continuous matrix functions on a loop L, Hν(L), can be given a norm.
Indeed, the inequality ‖F(z2)−F(z1)‖ ≤ K|z2− z1|ν holding for all z1, z2 ∈ L is equivalent to the condition
hν(F) <∞, where

hν(F) := sup
z1,z2∈L
z1 6=z2

‖F(z2)− F(z1)‖
|z2 − z1|ν

.

The quantity hν satisfies the triangle inequality and is homogeneous with respect to scalar multiplication,
but it is not a norm because hν(F) = 0 for all constant functions F ∈ Hν(L) (and constant functions indeed
are contained in Hν(L) for all 0 < ν ≤ 1). Therefore, it is necessary to add another term to distinguish the
constants. Observe that if hν(F) <∞ then in particular F : L→ CN×N is continuous on L; therefore as L
is a compact subset of C it follows also that ‖F‖∞ <∞, where

‖F‖∞ := max
z∈L
‖F(z)‖.

The norm on Hν(L) is defined by:

‖F‖ν := ‖F‖∞ + hν(F).

It still holds that F ∈ Hν(L) if and only if ‖F‖ν <∞. We do not prove that this definition satisfies all of the
axioms of a norm, but it is the case. It is also the case that Hν(L) is complete with respect to convergence
in this norm, so it makes Hν(L) into a Banach space of matrix-valued functions on the loop L. Observe
that Hν(L) is also closed under pointwise multiplication: if A and B are in Hν(L), then so is AB with the
definition AB(z) := A(z)B(z) for z ∈ L. Moreover, we have

‖AB‖ν = max
z∈L
‖A(z)B(z)‖+ sup

z1,z2∈L
z2 6=z1

‖A(z2)B(z2)−A(z1)B(z1)‖
|z2 − z1|ν

= max
z∈L
‖A(z)B(z)‖+ sup

z1,z2∈L
z2 6=z1

‖A(z2)B(z2)−A(z2)B(z1) + A(z2)B(z1)−A(z1)B(z1)‖
|z2 − z1|ν

≤max
z∈L
‖A(z)B(z)‖+ sup

z1,z2∈L
z2 6=z1

‖A(z2)B(z2)−A(z2)B(z1)‖
|z2 − z1|ν

+ sup
z1,z2∈L
z2 6=z1

‖A(z2)B(z1)−A(z1)B(z1)‖
|z2 − z1|ν

≤max
z∈L
‖A(z)‖ · ‖B(z)‖+ sup

z1,z2∈L
z2 6=z1

‖A(z2)‖ · ‖B(z2)−B(z1)‖
|z2 − z1|ν

+ sup
z1,z2∈L
z2 6=z1

‖A(z2)−A(z1)‖ · ‖B(z1)‖
|z2 − z1|ν

≤max
z∈L
‖A(z)‖ ·max

z∈L
‖B(z)‖+ max

z∈L
‖A(z)‖ sup

z1,z2∈L
z2 6=z1

‖B(z2)−B(z1)‖
|z2 − z1|ν

+ max
z∈L
‖B(z)‖ sup

z1,z2∈L
z2 6=z1

‖A(z2)−A(z1)‖
|z2 − z1|ν

=‖A‖∞‖B‖∞ + ‖A‖∞hν(B) + ‖B‖∞hν(A)

≤‖A‖∞‖B‖∞ + ‖A‖∞hν(B) + ‖B‖∞hν(A) + hν(A)hν(B)

=‖A‖ν‖B‖ν ,

(6)

where to get the fourth line we used (3). Therefore a natural analogue of the matrix norm inequality (3)
holds also for the norm on Hν(L).

Theorem 1 (Plemelj-Privalov). Suppose that F ∈ Hν(L), and that 0 < ν < 1. Then the boundary values
CL±[F](z0) considered as functions of z0 ∈ L are also in Hν(L), and moreover there is a constant M > 0
depending only on the geometry of L such that

‖CL±[F]‖ν ≤M‖F‖ν , ∀F ∈ Hν(L).
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Note that the theorem is false for ν = 1, but if F ∈ H1(L), then for each ε > 0, the boundary values
CL±[F](·) are in H1−ε(L).

Proof. According to the formula (5), it is enough to show that for G : L→ CN×N defined by

G(z) :=
1

2πi

∫
L

F(w)− F(z)

w − z
dw, z ∈ L,

‖G‖ν ≤ K‖F‖ν holds for some overall constant K. First, observe that for z ∈ L,

‖G(z)‖ ≤ 1

2π

∫
L

‖F(w)− F(z)‖
|w − z|

|dw| ≤ hν(F)

2π

∫
L

|dw|
|w − z|1−ν

≤ ‖F‖ν
2π

∫
L

|dw|
|w − z|1−ν

.

Because ν > 0, the latter integral is finite for every z ∈ L, and it is even a continuous function of z ∈ L.
Therefore, taking the maximum over z ∈ L,

(7) ‖G‖∞ ≤ K1‖F‖ν , K1 :=
1

2π
max
z∈L

∫
L

|dw|
|w − z|1−ν

.

Now consider G(z)−G(z0) for two points z, z0 ∈ L:

G(z)−G(z0) =
1

2πi

∫
L

[
F(w)− F(z)

w − z
− F(w)− F(z0)

w − z0

]
dw.

One crude estimate of the difference is simply:

‖G(z)−G(z0)‖ ≤ 1

2π

∫
L

‖F(w)− F(z)‖
|w − z|

|dw|+ 1

2π

∫
L

‖F(w)− F(z0)‖
|w − z0|

|dw|

≤ hν(F)

2π

[∫
L

|dw|
|w − z|1−ν

+

∫
L

|dw|
|w − z0|1−ν

]
≤ ‖F‖ν

2π

[∫
L

|dw|
|w − z|1−ν

+

∫
L

|dw|
|w − z0|1−ν

]
≤ 2K1‖F‖ν .

Recall that s(z, z0) denotes the shortest arc length along L between z and z0. Using (2),

(8)
‖G(z)−G(z0)‖
|z − z0|ν

≤ 2K1

kν0s(z, z0)ν
‖F‖ν ≤

2K1

kν0

(
4

s(L)

)ν
‖F‖ν , whenever s(z, z0) ≥ 1

4
s(L),

where s(L) denotes the total arc length of L. Now, suppose s(z, z0) < 1
4s(L), and let L0 denote the part

of L consisting of points w with s(w, z0) < 2s(z, z0), a strict subset of L under the inequality in force on
s(z, z0). L0 contains both z and z0. Then

‖G(z)−G(z0)‖ ≤ 1

2π

∫
L0

∥∥∥∥F(w)− F(z)

w − z
− F(w)− F(z0)

w − z0

∥∥∥∥ |dw|
+

1

2π

∥∥∥∥∥
∫
L\L0

[
F(w)− F(z)

w − z
− F(w)− F(z0)

w − z0

]
dw

∥∥∥∥∥ .
(9)

Now, ∫
L0

∥∥∥∥F(w)− F(z)

w − z
− F(w)− F(z0)

w − z0

∥∥∥∥ |dw| ≤ ∫
L0

‖F(w)− F(z)‖
|w − z|

|dw|+
∫
L0

‖F(w)− F(z0)‖
|w − z0|

|dw|

≤ hν(F)

[∫
L0

|dw|
|w − z|1−ν

+

∫
L0

|dw|
|w − z0|1−ν

]
≤ ‖F‖ν ·

[∫
L0

|dw|
|w − z|1−ν

+

∫
L0

|dw|
|w − z0|1−ν

]
≤ ‖F‖ν
k1−ν

0

[∫
L0

|dw|
s(w, z)1−ν +

∫
L0

|dw|
s(w, z0)1−ν

]
,
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where we used (2). By the reverse triangle inequality, s(w, z) ≥ |s(w, z0)−s(z, z0)|. Therefore, recalling that
|dw| denotes the arc length differential ds,∫

L0

∥∥∥∥F(w)− F(z)

w − z
− F(w)− F(z0)

w − z0

∥∥∥∥ |dw| ≤ ‖F‖νk1−ν
0

[∫ 2s(z,z0)

−2s(z,z0)

ds

||s| − s(z, z0)|1−ν
+

∫ 2s(z,z0)

−2s(z,z0)

ds

|s|1−ν

]

=
‖F‖ν
k1−ν

0

s(z, z0)ν
[∫ 2

−2

dm

||m| − 1|1−ν
+

∫ 2

−2

dm

|m|1−ν

]
≤ K2‖F‖ν |z − z0|ν ,

(10)

where

K2 :=
1

k0

∫ 2

−2

dm

||m| − 1|1−ν
+

1

k0

∫ 2

−2

dm

|m|1−ν
<∞.

To get the second line in (10) we used the rescaling substitution s = s(z, z0)m, and to get the third line we
again used (2). Next, consider the integral over L \ L0, in which we split up the integrand as follows:

F(w)− F(z)

w − z
− F(w)− F(z0)

w − z0
= (z − z0)

F(w)− F(z)

(w − z)(w − z0)
− F(z)− F(z0)

w − z0

By exact integration,∫
L\L0

F(z)− F(z0)

w − z0
dw = (F(z)− F(z0))

∫
L\L0

dw

w − z0
= (F(z)− F(z0)) [log(z′ − z0)− log(z′′ − z0)] ,

for some branches of the complex logarithm, where the initial endpoint of L0 is z′ and the terminal endpoint
of L0 is z′′. Of course the imaginary parts of the logarithms are bounded, and

Re [log(z′ − z0)− log(z′′ − z0)] = ln

∣∣∣∣ z′ − z0

z′′ − z0

∣∣∣∣ .
But, using (2), we get

ln(k0) = ln

(
k0s(z

′, z0)

s(z′′, z0)

)
≤ ln

∣∣∣∣ z′ − z0

z′′ − z0

∣∣∣∣ ≤ ln

(
s(z′, z0)

k0s(z′′, z0)

)
= − ln(k0),

because both points z′ and z′′ have exactly the same arc length distance of 2s(z, z0) from z0. Since 0 < k0 ≤ 1,
from this it follows that the difference in logarithms is uniformly bounded independently of z0 and z in L.
Therefore, there is some constant K3 > 0 such that

(11)

∥∥∥∥∥
∫
L\L0

F(z)− F(z0)

w − z0
dw

∥∥∥∥∥ ≤ K3‖F(z)− F(z0)‖ ≤ K3hν(F)|z − z0|ν ≤ K3‖F‖ν |z − z0|ν .

Also, again using (2) and the reverse triangle inequality,∥∥∥∥∥
∫
L\L0

(z − z0)
F(w)− F(z)

(w − z)(w − z0)
dw

∥∥∥∥∥ ≤ hν(F)|z − z0|
∫
L\L0

|dw|
|w − z|1−ν |w − z0|

≤ ‖F‖ν |z − z0|
∫
L\L0

|dw|
|w − z|1−ν |w − z0|

≤ ‖F‖ν |z − z0|
k2−ν

0

[∫ −2s(z,z0)

−s(L)/2

+

∫ s(L)/2

2s(z,z0)

]
ds

||s| − s(z, z0)|1−ν |s|
.

But it is easy to see that over the whole range of integration 2s(z, z0) ≤ |s| ≤ 1
2s(L),

|s| − s(z, z0)

|s|
= 1− s(z, z0)

|s|
≥ 1− 1

2
=

1

2
,
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so ∥∥∥∥∥
∫
L\L0

(z − z0)
F(w)− F(z)

(w − z)(w − z0)
dw

∥∥∥∥∥ ≤ 21−ν‖F‖ν |z − z0|
k2−ν

0

[∫ −2s(z,z0)

−s(L)/2

+

∫ s(L)/2

2s(z,z0)

]
ds

|s|2−ν

=

(
2

k0

)2−ν ‖F‖ν |z − z0|
1− ν

[
(2s(z, z0))ν−1 −

(
1

2
s(L)

)ν−1
]

≤ 2‖F‖ν
k2−ν

0 (1− ν)

[
1−

(
1

4
s(L)

)ν−1

|z − z0|1−ν
]
|z − z0|ν

where in the last line we used s(z, z0) ≥ |z − z0| and hence s(z, z0)ν−1 ≤ |z − z0|ν−1 because ν < 1. Since
|z− z0|1−ν is uniformly bounded as z, z0 range over the bounded set L, there is evidently a constant K4 > 0
such that

(12)

∥∥∥∥∥
∫
L\L0

(z − z0)
F(w)− F(z)

(w − z)(w − z0)
dw

∥∥∥∥∥ ≤ K4‖F‖ν |z − z0|ν .

Using (10), (11), and (12) in (9) shows that

(13)
‖G(z)−G(z0)‖
|z − z0|ν

≤ (K2 +K3 +K4) ‖F(·)‖ whenever s(z, z0) <
1

4
s(L).

Combining (8) with (13) and taking the supremum over z, z0 ∈ L with z 6= z0 gives

hν(G) ≤ K5‖F‖ν , K5 := max

{
2K1

kν0

(
4

s(L)

)ν
,K2 +K3 +K4

}
.

Finally, combining this with (7) gives

‖G‖ν = ‖G‖∞ + hν(G) ≤ K‖F‖ν , K := K1 +K5,

which completes the proof. �

Our proof mimics that given in [3, §19]. The Plemelj-Privalov Theorem asserts that CL± may be interpreted
as bounded linear operators on the Banach space Hν(L) when 0 < ν < 1.

It can be further shown that (see [3, §22]) the Cauchy integral CL[F](z) of a function F ∈ Hν(L) with
0 < ν < 1 is Hölder continuous in both the closure of the interior of L (taking the boundary value from
within) and also in the closure of the exterior of L (taking the boundary value from outside). This implies
that, after the fact, we may dispense with the device of taking boundary-values in a strictly non-tangential
fashion. Because Hölder continuity implies mere continuity, we then have the following, in which for operators
A, B acting on a space, the composition A ◦ B denotes the action A(BF).

Proposition 2. The bounded operators CL± acting on Hν(L) for 0 < ν < 1 satisfy the identities

CL+ ◦ CL− = CL− ◦ CL+ = 0.

Proof. Let F ∈ Hν(L), and consider CL[CL−[F]](z), for z on the “+” side of L. Since CL−[F](·) is the boundary
value of a function analytic on the “−” side of L and continuous up to L from that side, and since z is
on the other side of L, the contour of integration in the outer integral may be deformed into the region on
the “−” side of L by the Generalized Cauchy Integral Theorem1. If this region is the interior of L, then
CL[CL−[F]](z) = 0 for all such z, while if this region is the exterior of L, then the same holds true because
the integrand decays like w−2 as w → ∞. Letting z tend to L again from the “+” side yields the identity
CL+ ◦ CL− = 0. The proof that CL− ◦ CL+ = 0 is similar. �

Corollary 1. The bounded operators CL± acting on Hν(L) for 0 < ν < 1 satisfy the identities

CL+ ◦ CL+ = CL+ and (−CL−) ◦ (−CL−) = −CL−.

1See, e.g., [5, pg. 60]. The Generalized Cauchy Integral Theorem is just like the Cauchy Integral Theorem except that it
only requires continuity of the function integrated up to the curve (plus, of course, analyticity in the open interior).
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Proof. Combine Proposition 2 with Proposition 1 (which has the operator interpretation of CL+−CL− = I). �

These results show that the operators ±CL± are complementary projections on the Banach space Hν(L)
for 0 < ν < 1.

Examples. Let L be the unit circle in the complex plane: |z| = 1. We can think of L as arising from two arcs,
namely the upper semicircle parametrized by z = eit, 0 ≤ t ≤ π, and the lower semicircle parametrized by
z = eit, −π ≤ t ≤ 0, placed end-to-end. The orientation of L is counter-clockwise. By simple trigonometry
(the law of cosines), if w, z ∈ L are separated by a shortest arc length of s(w, z) ≤ π, the corresponding chord

length is |w − z| =
√

2(1− cos(s(w, z))). Therefore, the minimum value of |w − z|/s(w, z) is, by calculus,

k0 := inf
0<s<π

√
2(1− cos(s))

s
=

2

π

and hence for points on L we have the sharp bounds 2
π s(w, z) ≤ |w − z| ≤ s(w, z).

Consider the scalar function (or 1×1 matrix function) defined on L by f(z(t)) := | sin(t)|ν , for −π ≤ t ≤ π,
where ν > 0 is a parameter. We claim that f ∈ Hν(L) provided ν ≤ 1, and that f ∈ H1(L) for ν > 1.
It is not hard to see this; indeed the “roughest” points for f on L are the points z = ±1 where f fails to
be differentiable with respect to arc length t for ν ≤ 1. But near these points we have | sin(t)|ν ≈ |t|ν or
| sin(t)|ν ≈ | ± π − t|ν .

With this example, we can also show how the Cauchy boundary-value operators CL± fail to map the

Lipschitz space H1(L) to itself. We first calculate CL±[f ](z) for f(z(t)) = | sin(t)|, which gives f ∈ H1(L).
Noting that f(z) = (z− z−1)/(2i) on the upper semicircle of L and that f(z) = −(z− z−1)/(2i) on the lower
semicircle of L, we get

CL[f ](z) =
1

2πi

∫ −1

1

1

2i

w − w−1

w − z
dw − 1

2πi

∫ 1

−1

1

2i

w − w−1

w − z
dw

where the first (second) integral is taken over the upper (lower) semicircle. Since

w − w−1

w − z
= 1 +

z − z−1

w − z
+
z−1

w
,

we get

CL[f ](z) =
1

π
− z − z−1

4π

∫ −1

1

dw

w − z
+
z − z−1

4π

∫ 1

−1

dw

w − z
where again the first (second) integral is over the upper (lower) semicircle. Now observe that if log(·) refers
to the principal branch, log(i(w− z)) (log(−i(w− z))) is an antiderivative of (w− z)−1 analytic except on a
vertical branch cut emanating upwards (downwards) from z. Therefore,

CL[f ](z) =
1

π
− z − z

−1

4π
[log(−i(−1− z))− log(−i(1− z))] +

z − z−1

4π
[log(i(1− z))− log(i(−1− z))], |z| < 1,

while, noting that log(e−i arg(z)(z − w)) is an antiderivative of (w − z)−1 analytic except on a branch cut
emanating radially from z away from the origin,

CL[f ](z) =
1

π
− z − z−1

2π
[log(e−i arg(z)(z + 1))− log(e−i arg(z)(z − 1))], |z| > 1.

Therefore, letting z tend to L from inside and outside of the unit circle, on which z = eit,

CL+[f ](z(t)) =
1

π
− i sin(t)

2π
[log(−i(−1−eit))− log(−i(1−eit))+log(i(−1−eit))− log(i(1−eit))], −π ≤ t ≤ π

and

CL−[f ](z(t)) =
1

π
− i sin(t)

π
[log(1 + e−it)− log(1− e−it)], −π ≤ t ≤ π.

These boundary values do not lie in H1(L). Indeed, near t = 0 corresponding to z = 1 both boundary values
have a dominant term proportional to |t| ln(|t|−1) which while continuous through t = 0 fails to be Lipschitz
(its derivative blows up like ln(|t|−1)). A similar phenomenon occurs near z = −1. The difference of the
boundary values is, of course, Lipschitz, being as from the Plemelj formula we have CL+[f ](z(t))−CL−[f ](z(t)) =
| sin(t)|.
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Additional technical properties of the spaces Hν(L). Another kind of bounded operator on Hν(L) is that
obtained by multiplying on the right or left by a fixed function in the same space:

Definition 6 (Multiplication operators). Let M ∈ Hν(L) be a fixed function. The operator of left-
multiplication by M is denoted LM and has the action LMF(z) := M(z)F(z). The operator of right-
multiplication by M is denoted RM and has the action RMF(z) := F(z)M(z).

It follows easily from (6) that LM and RM are both bounded operators on Hν(L) with norm less than
or equal to ‖M‖ν :

‖LMF‖ν ≤ ‖M‖ν‖F‖ν and ‖RMF‖ν ≤ ‖M‖ν‖F‖ν .
Since Hµ(L) ⊂ Hν(L) whenever µ > ν, we may consider multiplication operators with M ∈ Hµ(L) for
µ > ν as a special case. The action of these multiplication operators can be composed with the action
of the operators CL±. Of particular interest are the commutators [CL±,LM] = CL± ◦ LM − LM ◦ CL± and

[CL±,RM] = CL± ◦ RM −RM ◦ CL±. Written out in terms of their action on a function F ∈ Hν(L), we have

[CL±,LM]F(z) =
1

2πi

∫
L

M(w)F(w)−M(z)F(z)

w − z
dw −M(z)

1

2πi

∫
L

F(w)− F(z)

w − z
dw

=
1

2πi

∫
L

M(w)−M(z)

w − z
F(w) dw, z ∈ L,

and

[CL±,RM]F(z) =
1

2πi

∫
L

F(w)M(w)− F(z)M(z)

w − z
dw − 1

2πi

∫
L

F(w)− F(z)

w − z
dw ·M(z)

=
1

2πi

∫
L

F(w)
M(w)−M(z)

w − z
dw, z ∈ L.

The subscript “±” on the left-hand side is not reflected on the right-hand side, because according to the
Plemelj formula (Proposition 1) the difference between CL+ and CL− is the identity operator, which commutes
with everything. Notice also that on the right-hand side in these formulae, the variable z appears in the
argument of M and no longer in the argument of F. This suggests that it will be smoothness properties of
M rather than F that determine those of [CL±,LM]F and [CL±,RM]F. Indeed, we have the following result:

Proposition 3 (Mapping properties of commutators). Suppose that 0 < µ, ν < 1 and that M ∈ Hµ(L).
Then [CL±,LM] and [CL±,RM] are bounded linear operators from Hν(L) to Hµ(L).

Proof. This is virtually the same proof as that of the Plemelj-Privalov theorem (Theorem 1), except that
we estimate the Hµ(L) norm and find an upper bound proportional to ‖F‖∞ which in turn is bounded by
‖F‖ν (but observe that the quantity hν(F) never appears in the estimates). �

We have remarked that Hµ(L) ⊂ Hν(L) whenever µ > ν. Indeed, suppose that µ > ν and that F ∈
Hµ(L). Then, it is easy to see that

hν(F) = sup
z1,z2∈L
z2 6=z1

‖F(z2)− F(z1)‖
|z2 − z1|ν

≤ sup
z1,z2∈L

|z2−z1|µ−ν sup
z1,z2∈L
z2 6=z1

‖F(z2)− F(z1)‖
|z2 − z1|µ

= sup
z1,z2∈L

|z2−z1|µ−ν ·hµ(F).

But since µ > ν, |z2 − z1|µ−ν is uniformly bounded on the (bounded) loop L, so there is a constant C > 0
such that hν(F) ≤ Chµ(F) whenever µ ≥ ν. It follows easily that µ ≥ ν and ‖F‖µ < ∞ implies that also
‖F‖ν <∞, i.e., Hµ(L) ⊂ Hν(L).

Definition 7 (Inclusion map). Let 0 < ν ≤ µ ≤ 1. The inclusion map Iµ→ν is the linear operator from
Hµ(L) into Hν(L) that simply acts as the identity.

Another important fact in the theory is the following. The notion of a compact operator is introduced,
for example, in [1, §8.5].

Proposition 4 (Compactness of inclusion map). Suppose that 0 < ν < µ ≤ 1. Then Iµ→ν : Hµ(L)→ Hν(L)
is compact.
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Proof. We need to show that the image of every bounded set in Hµ(L) is precompact in the Hν(L) topology,
i.e., that if B ⊂ Hµ(L) consists of infinitely many F with ‖F‖µ ≤ C for some constant C, then there exists
a sequence {Fn}∞n=1 ⊂ B that is convergent in the Hν(L) norm.

The condition ‖F‖µ ≤ C implies that ‖F‖∞ ≤ C, i.e., that the family B of functions F is uniformly
bounded, and also that hµ(F) ≤ C, which in turn implies that ‖F(z)− F(w)‖ ≤ C|z − w|µ for all z, w ∈ L.
But this further implies that the family B of functions F is equicontinuous, i.e., the modulus of continuity is
independent of F. By the Arzelá-Ascoli Theorem2, there exists a sequence {Fn}∞n=1 ⊂ B that is uniformly
convergent to some limit function F0, i.e., ‖Fn − F0‖∞ → 0 as n → ∞. The limit function obviously3 also
satisfies ‖F0‖µ ≤ C and hence lies in Hµ(L) ⊂ Hν(L).

Next consider the quantity

Hn(z, w) :=
Fn(z)− Fn(w)

|z − w|ν
, z, w ∈ L, z 6= w, n = 1, 2, 3, . . . .

In fact, since Fn ∈ Hµ(L) and µ > ν, it follows that Hn(z, w) → 0 as z → w, so we simply define it
naturally on the diagonal as Hn(z, z) = 0, z ∈ L. It can be shown that this function is Hölder continuous
with exponent µ− ν > 0 on the Cartesian product L× L in the sense that [3, pg. 15]

‖Hn(z, w)−Hn(z′, w′)‖ ≤ ‖Fn‖µ
[
|z − z′|µ−ν + |w − w′|µ−ν

]
, z, z′, w, w′ ∈ L, n = 1, 2, 3, . . . .

But since ‖Fn‖µ ≤ C, we now observe uniform boundedness and equicontinuity of the sequence of two-
variable functions {Hn}∞n=1 on L × L, and so again by the Arzelá-Ascoli Theorem there is a subsequence
{Hnk

}∞k=1 that is uniformly convergent on L×L to some limit function; moreover we may identify this limit
function as

H0(z, w) :=
F0(z)− F0(w)

|z − w|ν
because clearly Hnk

(z, w) → H0(z, w) in the sense of pointwise convergence since Fnk
converges uniformly

(and hence also pointwise) on L to F0.
It therefore follows that the sequence {Fnk

}∞k=1 ⊂ B ⊂ Hµ(L), which is also a sequence in Hν(L) by the
inclusion map Iµ→ν , satisfies

‖Fnk
− F0‖ν = ‖Fnk

− F0‖∞ + hν(Fnk
− F0) = ‖Fn,k − F0‖∞ + sup

z,w∈L
‖Hn,k(z, w)−H0(z, w)‖

which tends to zero as k → ∞ by uniform convergence of Fn,k to F0 on L and by uniform convergence of
Hn,k to H0 on L× L. �

The above proof is adapted from [4, pgs. 102–103]. The main application of this result is the following:

Corollary 2. Let 0 < ν < µ < 1, and suppose that M ∈ Hµ(L). The commutators [CL±,LM] and [CL±,RM]
are compact operators on Hν(L).

Proof. The commutators are bounded from Hν(L) into Hµ(L), so composition with the compact inclusion
map Iµ→ν yields a compact operator in each case. �

The purpose in considering compactness properties of commutators is that we will use them later to prove
that a certain singular integral operator is Fredholm, an important step toward developing a notion of the
Fredholm alternative for solving Riemann-Hilbert problems.

2See [1, pg. 156]. The version formulated there involves functions on an interval [a, b] but easily generalizes to the present

context.
3The argument goes as follows. Let n be arbitrary, and consider any (x, y, z) ∈ L3 with x 6= y. By using F0(·) =

Fn(·) + (F0(·)− Fn(·)), applying the triangle inequality and using ‖Fn‖µ ≤ C, we can easily derive the inequality

‖F0(z)‖+
‖F0(x)− F0(y)‖
|x− y|µ

≤ C + ‖F0(z)− Fn(z)‖+
‖F0(x)− Fn(x)‖+ ‖F0(y)− Fn(y)‖

|x− y|µ
.

By uniform convergence of Fn to F0 on L, there exists n0(ε) for each ε > 0 such that n ≥ n0(ε) guarantees that ‖F0(x) −
Fn(x)‖ < ε holds for all x ∈ L. Given z ∈ L and x 6= y, choose n ≥ max(n0( 1

3
ε), n0( 1

3
|x− y|µε)). Then we have

‖F0(z)‖+
‖F0(x)− F0(y)‖
|x− y|µ

≤ C + ε

holding for all z ∈ L and x 6= y. Hence taking the supremum over z ∈ L and x 6= y in L gives ‖F0‖µ ≤ C + ε. But this

inequality holds for all ε > 0, and therefore ‖F0‖µ ≤ C.
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Riemann-Hilbert problems on bounded contours.

Definition 8 (Admissible contours). An admissible contour Σ is a finite union of arcs such that for each
point z0 ∈ C belonging to two or more arcs, the corresponding tangent lines to the arcs at z0 are distinct.

Every admissible contour Σ has a finite set X of exceptional points, namely the endpoints of the arcs
and any points belonging to two or more arcs. Each component of Σ◦ := Σ \X is an oriented arc without
endpoints. See Figure 1 for an example. We denote by Hµ

◦ (Σ) the space of matrix functions F : Σ◦ → CN×N

Figure 1. Left two panels: semicircular arcs C1 and C2. Right panel: an admissible
contour Σ composed of C1 and C2. The six exceptional points in the set X are circled, and
the six components of Σ◦ are oriented circular arcs without endpoints. Note the transversal
intersections of C1 and C2.

with the property that on each component Σj of Σ◦, F has a continuous extension to the initial and terminal

endpoints that lies in Hµ(Σj). The norm of F ∈ Hµ
◦ (Σ) is

‖F‖◦µ :=
∑
j

‖F|Σj
‖µ

where on the right-hand side we have the Hµ(Σj) norm.

Definition 9 (Admissible jump matrices). Let Σ be an admissible contour. A mapping V : Σ◦ → CN×N is
called an admissible jump matrix on Σ with Hölder exponent µ if V ∈ Hµ

◦ (Σ) and the following properties
hold.

• det(V(z)) = 1 for all z ∈ Σ◦. (Thus V(z) ∈ SL(N,C) ⊂ CN×N .)
• Let z0 ∈ X be an exceptional point of Σ, let the K ≥ 1 components of Σ◦ that join at z0 be labeled

in counter-clockwise order about z0 as Σ1, . . . ,ΣK , denote the orientation of each Σj by σj = 1
(σj = −1) if Σj is oriented away from (toward) z0, and let

Vj := lim
z→z0
z∈Σj

V(z).

Then

(14) Vσ1
1 Vσ2

2 · · ·V
σK

K = I
holds for each z0 ∈ X.

Note that if X contains any arc endpoints z0 that belong to only one arc, then for an admissible jump
matrix we have V(z) → I as z → z0 within Σ◦, while V generally need not extend continuously to other
points of X (because it can have different limits from different components of Σ◦, although these limits must
be related by (14)). Now we can formulate a class of matrix Riemann-Hilbert problems. Recall that we use
the subscript “+” (resp., “−”) to refer to the left (resp., right) side of an arc according to its orientation.
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Riemann-Hilbert Problem 1. Let Σ be an admissible contour and let V : Σ◦ → CN×N be an admissible
jump matrix with Hölder exponent µ. Seek a matrix-valued function M : C \ Σ→ CN×N with the following
properties:

Analyticity: M is analytic (i.e., its N2 matrix elements are all analytic) in the domain C \ Σ.
Jump condition: M extends continuously to the boundary Σ from each component of C\Σ, taking
boundary values M±(z) on each component Σj of Σ◦ defined by

M±(z) := lim
w→z

w on the ± side of Σj

M(w), z ∈ Σj ,

and the boundary values satisfy the jump condition

M+(z) = M−(z)V(z), z ∈ Σ◦.

Normalization: M(z)→ I as z →∞.

Note that since Σ is a bounded set, in fact any solution of the Riemann-Hilbert problem has a convergent
Laurent expansion for sufficiently large |z|:

M(z) = I +
∞∑
n=1

Mnz
−n, |z| > sup

w∈Σ
|w|.

The given data of the Riemann-Hilbert problem is the pair (Σ,V). We can get some results about this
problem right away.

Proposition 5 (Unimodularity and uniqueness). Suppose Riemann-Hilbert Problem 1 has a solution M(z).
Then det(M(z)) = 1 holds for all z ∈ C \ Σ, and there are no other solutions.

Proof. The matrix function M(z) is analytic for z ∈ C\Σ and continuous up to the boundary Σ, so the same
holds for the scalar function f(z) := det(M(z)) as a polynomial in the matrix entries of M(z). By taking
determinants in the jump condition, using the fact that det(V(z)) = 1 for all z ∈ Σ◦ by definition of an
admissible jump matrix, we see that at each point of Σ◦, the boundary values of f(z) agree: f+(z) = f−(z).
Therefore f(z) may be defined for z ∈ Σ by continuity to be a function continuous in the whole complex
plane and analytic for z ∈ C \Σ. It follows from Morera’s Theorem combined with the Generalized Cauchy
Integral Theorem that f is an entire function of z. Since M(z)→ I as z →∞, f(z)→ 1 in the same limit,
so by Liouville’s Theorem, f(z) = det(M(z)) = 1 for all z ∈ C \ Σ. This proves the first statement.

For the second part, suppose M̃(z) is a second solution of the same problem. By the first part, we have

det(M̃(z)) = 1 so the inverse matrix M̃(z)−1 is also an analytic function of z ∈ C \ Σ, because the entries
of the inverse matrix can be expressed by Cramer’s rule as ratios of determinants — polynomials in the
analytic matrix entries of M̃(z) — and the denominator is always det(M̃(z)) = 1. Therefore, the product

P(z) := M(z)M̃(z)−1 is a matrix that is analytic for z ∈ C \ Σ. From the jump condition satisfied by both

M(z) and M̃(z), we calculate that

P+(z) = M+(z)M̃+(z)−1 = M−(z)V(z)[M̃−(z)V(z)]−1 = M−(z)M̃−(z)−1 = P−(z), z ∈ Σ◦,

so P(z) may be considered as a matrix function continuous for z ∈ C and analytic for z ∈ C \ Σ. Also,

lim
z→∞

P(z) = lim
z→∞

M(z)M̃(z)−1 = I · I = I.

Therefore, by the same argument as worked for the determinant, the matrix P(z) is entire and equal to its

constant limit at z = ∞: P(z) = I for all z ∈ C \ Σ, in other words M̃(z) = M(z) for all z ∈ C \ Σ. This
proves the second statement. �

The fact that det(M(z)) = 1 for the solution of Riemann-Hilbert Problem 1, assuming a solution exists,
explains the necessity of the condition (14) in the definition of an admissible jump matrix. Indeed, considering
a neighborhood of an exceptional point z0 ∈ X about which there are components Ωj , j = 1, . . . ,K, of C\Σ
in counter-clockwise order, the solution M(z) is required to have a well-defined limit Mj as z → z0 from Ωj .
But these limiting values are related to those in neighboring sectors by the jump conditions across the arcs
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Σj meeting at z0, in particular by their limiting forms as z → z0, which involve the matrices Vj . Assuming
that Ωj comes just before Σj in counter-clockwise order, we have the relations

M2 = M1V
σ1
1 , M3 = M2V

σ2
2 , . . . MK = MK−1V

σK−1

K−1

and also M1 = MKVσK

K . But these together imply that

M1 = M1V
σ1
1 Vσ2

2 · · ·V
σK

K ,

so since M1 is invertible, we see that (14) is a necessary condition for existence of a solution to Riemann-
Hilbert Problem 1.

Example. Consider the special case that N = 2 (i.e., we are dealing with 2× 2 matrices) and let V : Σ◦ →
C2×2 be an admissible jump matrix on Σ of the form

(15) V(z) =

[
1 v(z)
0 1

]
, z ∈ Σ◦,

where v is a scalar function in Hµ
◦ (Σ) that, by the admissibility criterion, satisfies

(16)
∑
j

σjvj = 0,

for limits vj as z → z0 along arcs of Σ meeting at z0 with orientation indices σj . We can seek a solution
M(z) of Riemann-Hilbert Problem 1 also in the form of an upper triangular matrix:

(17) M(z) =

[
1 m(z)
0 1

]
, z ∈ C \ Σ

for some scalar function m analytic in the indicated domain. By the normalization condition we require
m(z)→ 0 as z →∞, and noting that the generally noncommutative multiplicative jump condition on M(z)
becomes, for jump matrices of the form (15) and an ansatz of the form (17), simply the additive jump
condition

m+(z) = m−(z) + v(z), or m+(z)−m−(z) = v(z), z ∈ Σ◦.

This type of Riemann-Hilbert problem is solved by appealing to the Plemelj formula. Indeed,

(18) m(z) = CΣ[v](z) =
1

2πi

∫
Σ

v(w) dw

w − z
.

Combining this explicit formula with (17) gives a candidate solution of Riemann-Hilbert Problem 1. The
only thing that remains to be confirmed is that m(z) as given by (18) is continuous up to Σ from each
component of C\Σ. But this is clear by Hölder continuity of v for all non-exceptional points z ∈ Σ◦. It is an
exercise to use the condition (16) to check that m(z) has a limit as z → z0 ∈ X from each local component
of C\Σ. Therefore, M(z) given by (17)–(18) solves Riemann-Hilbert Problem 1. According to Proposition 5
it is the only solution. Clearly, det(M(z)) = 1 holds.

Hölder function spaces adapted to bounded contours with self-intersection points.

Definition 10 (Complete admissible contours). An admissible contour Σ is said to be complete if it divides
the complex plane into two disjoint regions, Ω+ and Ω− (i.e., C is the disjoint union of Ω+, Ω−, and Σ)

and if Σ may simultaneously be considered as a collection of loops {L+
j }

N+

j=1 each of which is the positively-

oriented boundary of a component Ω+
j of Ω+ and as a collection of loops {L−j }

N−
j=1 each of which is the

negatively-oriented boundary of a component Ω−j of Ω−.

Without any loss of generality, we may assume that Riemann-Hilbert Problem 1 is formulated relative
to a complete admissible contour Σ. Indeed, given an arbitrary admissible contour Σ0 we can produce a
complete admissible contour Σ simply by (i) including a finite number of additional arcs and (ii) reversing
the orientation of some of the components of Σ◦. When we replace Σ0 with its “completion” Σ, we also
have to modify the given admissible jump matrix V0 as follows: (i) on each arc added to Σ0 to produce
Σ we define V(z) = I, and (ii) on the remaining components of Σ◦ we either define V(z) = V0(z)−1 or
V(z) = V0(z), depending upon whether the orientation of the component had to be changed or not. It is
easy to check that V is still an admissible jump matrix now relative to the complete contour Σ, and that the
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jump conditions have not been changed in essence. Thus the Riemann-Hilbert problem with data (Σ0,V0)
has exactly the same solutions as does that with data (Σ,V). We assume from now on that the admissible
contour Σ is complete.

Exactly one of the domains {Ω±j }
N±
j=1 is unbounded. Note that at each exceptional point z0 of Σ, an even

number of components of Σ◦ meet with alternating orientation going around the point z0 in the positive
direction.

Example. Let the admissible contour from Figure 1 be renamed Σ0. This contour can be completed by adding
two arcs and re-orienting some arcs, as illustrated in Figure 2. Let the four endpoints of Σ0 be denoted±w and
±w∗, and consider the 2×2 admissible jump matrix V0 on Σ0 given by V0(z) = exp[(z2−w2)(z2−w∗2)σ3].
It is easy to confirm that V0(±w) = V0(±w∗) = I, and that V0(z) has well-defined limits as z tends to
either of the self-intersection points of Σ0 along any of the four arcs meeting at those points. Thus (taking
into account the orientation indices σj of the arcs meeting at each such point, two of which are +1 and two
of which are −1) V0(z) satisfies the condition (14) at all six exceptional points of Σ0. Furthermore V0(z)
is clearly analytic on each of the six components of Σ◦0 and hence satisfies the required Hölder continuity
condition for any positive exponent µ ≤ 1. Finally, det(V0(z)) = 1. In going from the admissible contour
Σ0 to its completion Σ, we must also modify the jump matrix as follows. On the three components of Σ◦0
in the upper half-plane, we leave V0(z) alone by defining there V(z) := V0(z), while as the orientation
of the components of Σ◦0 in the lower half-plane are reversed in the completion process, we define on these
components V(z) := V0(z)−1. Finally, on the two new arcs added to complete the contour (dashed curves
in the left-hand panel of Figure 2) we simply define V(z) := I. It is an exercise to confirm that V(z) is then
an admissible jump matrix on the completion Σ, and that the jump condition in Riemann-Hilbert Problem 1
is unchanged modulo re-labeling of the boundary values.

Figure 2. The process of completing an admissible contour. Left panel: the contour from
Figure 1 renamed Σ0 can be completed by adding two arcs (dashed) and re-orienting some
arcs. Right-panel: the resulting complete admissible contour Σ divides the complex plane
into Ω+ on its left and Ω− on its right. There are now only two exceptional points.

Hölder spaces for complete contours.

Definition 11. We denote by Hν
±(Σ) the Banach space of N±-tuples of matrix functions (F1, . . . ,FN±)

such that Fj ∈ Hν(L±j ), equipped with the norm

‖(F1, . . . ,FN±)‖±ν := ‖F1‖ν + · · ·+ ‖FN±‖ν
with the norms on the right-hand side being taken over the corresponding loops.

Each element of Hν
±(Σ) may be regarded as a matrix function on Σ, provided one allows the function to

take multiple values at exceptional points common to multiple loops L±j . If such a function in Hν
+(Σ) agrees
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with a function in Hν
−(Σ) away from the exceptional points, it admits a single-valued Hölder-continuous

extension to all of Σ and hence can be identified with an element of Hν(Σ). Conversely, it is easy to
see that every F ∈ Hν(Σ) can be viewed simultaneously as an element of Hν

+(Σ) and of Hν
−(Σ). Thus

Hν
+(Σ) ∩Hν

−(Σ) = Hν(Σ).
We have the following analogues of the basic results for Hölder-continuous functions on loops. In all of

these statements, Σ is a complete admissible contour.

Proposition 6. Let 0 < ν ≤ µ ≤ 1. The inclusion map Iµ→ν can be defined from Hµ
±(Σ) to Hν

±(Σ) or from
Hµ(Σ) to Hν(Σ). It is compact whenever ν < µ.

Proposition 7. If M ∈ Hν
±(Σ), then LM and RM are bounded on Hν

±(Σ) and from Hν(Σ) to Hν
±(Σ). If

M ∈ Hν(Σ), then LM and RM are bounded on Hν(Σ), Hν
+(Σ), and Hν

−(Σ).

Proposition 8 (Generalized Plemelj-Privalov Theorem). Suppose that 0 < ν < 1. The Cauchy operators
CΣ
± are bounded on Hν

±(Σ) and from Hν
∓(Σ) to Hν(Σ). On the space Hν

+(Σ)∪Hν
−(Σ), the following operator

identities hold:

CΣ
+ − CΣ

− = I, CΣ
± ◦ CΣ

∓ = 0, (±CΣ
±)2 = ±CΣ

±.

Proposition 9. Suppose that 0 < µ, ν < 1. If M ∈ Hµ
+(Σ) (respectively, if M ∈ Hµ

−(Σ) or Hµ(Σ)), then the

commutators [CΣ
±,LM] and [CΣ

±,RM] are bounded from Hν
+(Σ), Hν

−(Σ), or Hν(Σ) to Hµ
+(Σ) (respectively, to

Hµ
−(Σ) or Hµ(Σ)). If ν < µ and the commutators are followed by the inclusion map Iµ→ν , they all become

compact.

The proofs of Propositions 6–9 are similar to those for loops, but additional care must be taken in adding
up the contributions to Cauchy integrals from various loops. One further useful fact is the following.

Proposition 10. Suppose that F,G ∈ Hν
+(Σ) ∪ Hν

−(Σ). Let H±(z) denote the pointwise matrix product

H±(z) := CΣ
±[F](z)CΣ

±[G](z). Then CΣ
∓[H±](z) = 0.

Proof. The function H±(z) is the product of boundary values of functions analytic in Ω± and decaying like
O(z−1) as z → ∞ in any unbounded component of the latter domain. Therefore H±(z) is also such an
analytic function, but decaying like O(z−2) as z → ∞. In calculating CΣ

∓[H±](z), we first let z ∈ Ω∓ and

apply the Generalized Cauchy Integral Theorem to deduce (by deforming the path of integration into Ω±j
from each loop L±j ) that CΣ[H±](z) = 0 for z ∈ Ω∓. The result follows by taking the limit z → Σ. �

Example. The various spaces associated to a complete admissible contour Σ and the way the Cauchy bound-
ary operators CΣ

± relate these spaces can be illustrated by the following simple example. Take the contour
Σ illustrated in the right-hand panel of Figure 2. Consider the function f : Σ◦ → C defined as f(z) := 1
(f(z) := −1) on the boundary of the component Ω+

1 (Ω+
2 ) of Ω+. This function is (may be identified with) an

element of the space Hν
+(Σ), because its restriction to each loop L+

1 , L+
2 separately is a constant. However,

it is not in Hν
−(Σ), because there are jump discontinuities along the boundary of Ω−, which consists of two

loops L−1 , L−2 . The Cauchy integral of f along Σ is easy to calculate by residues by first splitting the integral
into two integrals over the two loops L+

1 , L+
2 :

CΣ[f ](z) =


1, z ∈ Ω+

1

−1, z ∈ Ω+
2

0, z ∈ Ω− = Ω−1 ∪ Ω−2 .

Thus, letting z tend to Σ◦ from Ω+ yields the result CΣ
+[f ](z) = f(z), so CΣ

+[f ] ∈ Hν
+(Σ) as guaranteed

by Proposition 8. Letting z tend to Σ◦ from Ω− yields the even simpler result CΣ
−[f ](z) = 0, a constant

function that is obviously in Hν(Σ) (and obviously in both Hν
+(Σ) and Hν

−(Σ)). Therefore CΣ
−[f ] ∈ Hν(Σ)

for f ∈ Hν
+(Σ) again as guaranteed in general by Proposition 8.
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Equivalent integral equation. We begin by defining an appropriate sort of algebraic factorization of the
jump matrix from Riemann-Hilbert Problem 1.

Definition 12 (Admissible factorization). Let Σ be a complete admissible contour and let V be a corre-
sponding admissible jump matrix of Hölder exponent µ < 1. Then (Σ,B+,B−) is an admissible factorization
of the Riemann-Hilbert data (Σ,V) provided that

(19) V(z) = B−(z)−1B+(z), z ∈ Σ◦

where B±(z) are unimodular matrices and B± ∈ Hµ
±(Σ).

The condition det(B±(z)) = 1 is not essential (invertibility is enough) but is convenient given that
det(V(z)) = 1. There are many different admissible factorizations corresponding to fixed Riemann-Hilbert

data (Σ,V). Indeed, suppose (Σ,B+,B−) is an admissible factorization of (Σ,V). Then so is (Σ, B̃+, B̃−)
where, given any Y ∈ Hµ(Σ) with det(Y(z)) = 1,

(20) B̃+(z) = Y(z)B+(z) and B̃−(z) = Y(z)B−(z).

We show that there exists at least one admissible factorization by a direct construction, which relies on the
following technical lemma.

Lemma 2 (Unimodular interpolation). Let A and B be matrices with unit determinant. Then there exists
a matrix function F : [0, 1] → CN×N that is of class C∞([0, 1]) and satisfies F(0) = A and F(1) = B, and
det(F(t)) = 1 for all t ∈ [0, 1].

Proof. Write the unit determinant matrix A−1B in Jordan canonical form as

A−1B = S(D + N)S−1,

where D = diag(d1, . . . , dN ) is a diagonal matrix of eigenvalues of A−1B, and where N is the corresponding
upper triangular nilpotent part of the Jordan form. Let `1, . . . , `N be complex numbers (logarithms) such
that e`j = dj 6= 0, and such that `1 + · · · + `N = 0 (this is possible by choice of branches of the complex
logarithm because d1 · · · dN = 1). Then set L := diag(`1, . . . , `N ), and define

(21) F(t) := AS [exp(tL) + tN] S−1.

Clearly we get F(0) = A and F(1) = B. It is also obvious that F is infinitely differentiable. Finally,
det(F(t)) = det(exp(tL) + tN) = et`1 · · · et`N = et(`1+···+`N ) = 1. �

To describe a systematic construction of an admissible factorization of Riemann-Hilbert data (Σ,V), we
first let X0 ⊂ X denote those (exceptional) self-intersection points of Σ at which at least one of the jump
matrix limits Vj at z0 is not the identity matrix I (and therefore by (14) at least two of the Vj are not
identity matrices). We isolate each point z0 ∈ X0 by letting D(z0) be a disk centered at z0 of sufficiently
small radius that it contains only z0 and K arcs joining z0 to the boundary ∂D(z0) (and in particular D(z0)
does not contain any other points of X0). Set

B+(z) := V(z) and B−(z) := I, z ∈ Σ \
⋃

z0∈X0

D(z0),

that is, we take a trivial factorization of V(z) away from all self-intersection points of Σ at which we do not
consistently have V(z0) = I. Now for each z0 ∈ X0, Σ ∩ D(z0) consists of an even number of arcs joining
the boundary of D(z0) with z0 with alternating in/out orientations; we order them in counter-clockwise
order about z0 as C1, C2, . . . , CK , K even, and we assume that C1 is oriented toward z0. Take a smooth
parametrization z = zk(t), 0 ≤ t ≤ 1 for each arc Ck as a constant multiple of arc length. Observe that zk(0)
lies on ∂D(z0) and zk(1) = z0 for k odd while zk(0) = z0 and zk(1) lies on ∂D(z0) for k even. To define
B±(z) on the arcs C1, . . . , CK within D(z0), we first set, by natural continuation of the definitions outside
of D(z0),

B+(z) := V(z) and B−(z) := I, z ∈ C1.

Suppose that B±(z) have been defined on Ck−1, and we will now explain how to choose B±(z) on Ck so
that they are locally continuous along ∂Ω±. If k is even, note that between Ck and Ck−1 lies a component
of Ω− so we will require continuity of B−(z) along the boundary of this component by setting B−(zk(0)) =
B−(zk−1(1)). Then, we invoke Lemma 2 to obtain B−(z) on Ck as a matrix with unit determinant satisfying
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B−(zk(1)) = I. This function is Lipschitz as a function of scaled arc length t, but this implies that it is
also in H1(Ck) by the standard upper bound of arc length in terms of straight-line distance. With B−(z)
defined on Ck, we set B+(z) := B−(z)V(z) for z ∈ Ck. On the other hand, if k is odd, then between Ck
and Ck−1 lies a component of Ω+ so we require continuity of B+(z) along the boundary of this component.
Thus we define B+(zk(t)) for 0 ≤ t ≤ 1 by again invoking Lemma 2 using B+(zk(0)) = V(zk(0)) and
B+(zk(1)) = B+(zk−1(0)), and then obtain B−(z) on Ck by B−(z) := B+(z)V(z)−1.

The fact that this factorization V(z) = B−(z)−1B+(z) is admissible clearly boils down to showing that
B± ∈ Hµ

±(Σ), i.e., that B±(z) is Hölder continuous around each loop L±j , even where several loops meet at

an exceptional point z0 ∈ X. This continuity follows from the above construction due to the identity (14)
satisfied by the limiting jump matrices at each self-intersection point z0 of Σ. In the case of self-intersection
points z0 ∈ X \ X0, the limit of B±(z) as z → z0 is I for each arc meeting z0, so the desired continuity
holds automatically. We call an admissible factorization (Σ,B+,B−) of (Σ,V) of the type just constructed
a standard factorization.

In many situations one can show that a standard factorization has the property that if ‖V− I‖◦µ is small,

then so are ‖B±−I‖±µ . In fact, given concrete choices of the various parameters (e.g. disk radii, interpolating
function F) of a standard factorization, one can easily prove an estimate of the form

(22) ‖B± − I‖±µ ≤ KΣ‖V − I‖◦µ
for some constant KΣ independent of the admissible jump matrix as long as X0 is fixed. Another property
that will be useful in applications is:

Proposition 11. Let Σ be a complete admissible contour and let V be a corresponding admissible jump
matrix of Hölder exponent µ < 1 with the property that for some point z0 ∈ X, V(z) = I + O(|z − z0|p).
Then for a standard factorization, it also holds that B±(z) = I +O(|z − z0|p).

Proof. A standard factorization sets B+(z) = V(z) and B−(z) = I on the part of Σ in a neighborhood of
each such point z0 (because z0 ∈ X \X0). �

Now for any (Σ,B+,B−) admissible and associated with Riemann-Hilbert data (Σ,V), define

(23) W+(z) := B+(z)− I ∈ Hµ
+(Σ) and W−(z) := I−B−(z) ∈ Hµ

−(Σ).

The key operator in studying Riemann-Hilbert Problem 1 is then the following:

CW := CΣ
+ ◦ RW− + CΣ

− ◦ RW+ .

In more concrete terms, the action of CW on a function F : Σ◦ → CN×N is

CW[F](z) = CΣ
+[FW−](z) + CΣ

−[FW+](z), z ∈ Σ.

Proposition 12. CW is a bounded linear operator on Hν(Σ) whenever ν ≤ µ < 1.

Proof. Since Hµ
−(Σ) ⊂ Hν

−(Σ) for ν ≤ µ, RW− is bounded from Hν(Σ) to Hν
−(Σ), on which CΣ

+ is bounded

with range Hν(Σ). Likewise RW+ is bounded from Hν(Σ) to Hν
+(Σ), on which CΣ

− is bounded with range
Hν(Σ). �

Theorem 2 (Singular integral equation for the Riemann-Hilbert problem). Let (Σ,B+,B−) be an admissible
factorization of Riemann-Hilbert data (Σ,V) of Hölder exponent µ < 1, and let ν ≤ µ. Every solution
X ∈ Hν(Σ) of the singular integral equation

(24) (I − CW)X = I ∈ Hν(Σ)

gives a solution of Riemann-Hilbert Problem 1 via the formula

(25) M(z) = I + CΣ[X(W+ + W−)](z) := I +
1

2πi

∫
Σ

X(w)(W+(w) + W−(w))

w − z
dw, z ∈ C \ Σ.

Proof. Suppose that X is a solution of (24). The formula (25) then defines M(z) as an analytic function of z
in the domain C \Σ that is Hölder continuous up to Σ with exponent ν and that satisfies the normalization
condition M(z) → I as z → ∞. We now show that M(z) given by (25) satisfies the jump condition
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M+(z) = M−(z)V(z), which in view of the factorization (19) and the definition (23) can be written in the
form

M+(z)(I + W+(z))−1 = M−(z)(I−W−(z))−1.

Substituting from (25) yields

(I + CΣ
+[XW+](z) + CΣ

+[XW−](z))(I + W+(z))−1 = (I + CΣ
−[XW+](z) + CΣ

−[XW−](z))(I−W−(z))−1.

Then, using the integral equation (24) satisfied by X, this becomes

(X(z)+CΣ
+[XW+](z)−CΣ

−[XW+](z))(I+W+(z))−1 = (X(z)−CΣ
+[XW−](z)+CΣ

−[XW−](z))(I−W−(z))−1,

which after using the Plemelj formula CΣ
+ − CΣ

− = I becomes an identity X(z) = X(z) for z ∈ Σ◦. �

Proposition 13. Given two admissible factorizations (Σ,B+,B−) and (Σ, B̃+, B̃−) of the same Riemann-

Hilbert data (Σ,V) and related by (20), by analogy with (23) set W̃±(z) := ±(B̃±(z) − I). Then, the
associated operators I − CW and I − CW̃ are related explicitly by

I − CW̃ = (I − CW) ◦ RY.

Hence I − CW̃ is invertible on Hν(Σ) if and only if I − CW is.

Proof. Observe first that from (20) and (23),

W̃±(z) = ±(Y(z)B±(z)− I) = ±(Y(z)− I±Y(z)W±(z)) = ±(Y(z)− I) + Y(z)W±(z).

Therefore, by definition of CW̃, we have

(I − CW̃)[X](z) := X(z)− CΣ
+[XW̃−](z)− CΣ

−[XW̃+](z)

= X(z) + CΣ
+[X(Y − I)](z)− CΣ

−[X(Y − I)](z)− CΣ
+[XYW−](z)− CΣ

−[XYW+](z).

Finally, using the Plemelj formula on the second and third terms on the right-hand side, we obtain

(I − CW̃)[X](z) = X(z)Y(z)− CΣ
+[XYW−](z)− CΣ

−[XYW+](z)

= (I − CW)[XY](z)

= ((I − CW) ◦ RY)[X](z).

Since right-multiplication by the invertible Y ∈ Hν(Σ) is an isomorphism of Hν(Σ), the proof is finished. �

For applications, the following result will be useful.

Proposition 14. Suppose that (24) has a solution X ∈ Hν(Σ) and that z0 ∈ Σ is a point at which W±(z)
vanish to all orders as z → z0 along each component of Σ◦ meeting z0. Then the corresponding (unique)
solution M(z) of Riemann-Hilbert Problem 1 given by (25) has an asymptotic expansion in powers of z− z0:

(26) M(z)− I ∼
∞∑
n=0

Mn(z − z0)n, z → z0, z ∈ C \ Σ,

with coefficients

(27) Mn :=
1

2πi

∫
Σ

X(w)(W+(w) + W−(w))

(w − z0)n+1
dw, n = 0, 1, 2, . . . .

Note that these integrals are all absolutely convergent, and that according to Proposition 11 the hypotheses
are guaranteed with the use of a standard factorization provided V(z)− I vanishes to all orders as z → z0.

Proof. For any M = 0, 1, 2, . . . , we can write the Cauchy kernel (w − z)−1 in the form

1

w − z
=

1

(w − z0)− (z − z0)
=

1

w − z0
· 1

1− ρ
=

1

w − z0

[
M∑
n=0

ρn +
ρM+1

1− ρ

]
, ρ :=

z − z0

w − z0
,

or,

1

w − z
=

M∑
n=0

(z − z0)n

(w − z0)n+1
+

(z − z0)M+1

(w − z0)M+1(w − z)
.
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Therefore, from (25) we have

M(z)− I−
M∑
n=0

Mn(z − z0)n = (z − z0)M+1CΣ[FM ](z), FM (w) :=
X(w)(W+(w) + W−(w))

(w − z0)M+1
.

But the hypotheses on W± imply that FM ∈ Hν(Σ◦) for all M = 0, 1, 2, . . . , so CΣ[FM ](z) is Hölder
continuous with exponent ν up to Σ, from which it follows that the right-hand side is O((z − z0)M+1) as
z → z0. �

Observe that the asymptotic expansion (26) is generally either divergent, or if convergent its sum does
not equal M(z)− I. Indeed, if the series were to converge, its sum would have to be analytic at z0. However,
while by hypothesis the jump matrices approach the identity matrix as z → z0 faster than any power of
z − z0, they need not equal the identity matrix locally, and therefore M(z)− I need not even be continuous
in a neighborhood of z0, for the result to hold.

Small-norm problems. The easiest way to solve the integral equation (24), and hence Riemann-Hilbert
Problem 1, is to apply iteration, representing the inverse operator (I − CW)−1 on Hν(Σ) by its Neumann
series

(I − CW)−1 = I + CW + CW ◦ CW + · · · =
∞∑
n=0

CnW.

The Neumann series converges if ‖CW‖ν , the operator norm on Hν(Σ) of CW, satisfies

‖CW‖ν < 1.

Such a situation is called a small-norm problem. We know from Proposition 12 that the operator norm
‖CW‖ν is finite, but it will be useful to estimate it in terms of more controllable quantities. Since CΣ

± are
bounded operators from Hν

∓(Σ) to Hν(Σ), there exists a constant K depending only on the contour Σ such
that

‖CΣ
±F‖ν ≤ K‖F‖∓ν

where on the left-hand side we have the norm on Hν(Σ) while on the right-hand side we have the norm on
Hν
∓(Σ) (which is a sum of Hν(L) norms over loops L∓j ). But then it follows easily that

‖CWF‖ν ≤ K(‖W+‖+ν + ‖W−‖−ν )‖F‖ν
holds for all F ∈ Hν(Σ). We therefore have a small-norm problem if

‖W+‖+ν + ‖W−‖−ν <
1

K
.

This condition essentially says that the jump matrix V should be close to the identity matrix in a suitable
sense on Σ◦.

Because the bounded operators on Hν(Σ) form a Banach algebra, i.e., for bounded operators A, B acting
on Hν(Σ) we have ‖A ◦ B‖ν ≤ ‖A‖ν‖B‖ν , it follows from the Neumann series formula that

‖(I − CW)−1‖ν ≤
∞∑
n=0

‖CW‖nν =
1

1− ‖CW‖ν
, ‖CW‖ν < 1.

Therefore, since the norm of the constant function I ∈ Hν(Σ) is ‖I‖ν = 1, in the small norm setting we get

‖X‖ν ≤
1

1− ‖CW‖ν
, ‖CW‖ν < 1.

If in addition the hypotheses of Proposition 14 hold, the integrals (27) therefore satisfy

‖Mn‖ ≤
s(Σ)

2π(1− ‖CW‖ν)
sup
w∈Σ

‖W+(w) + W−(w)‖
|w − z0|n+1

, n = 0, 1, 2, . . . ,

where s(Σ) is the total arc length of Σ. By analogy with (22), with the use of a standard factorization
the above supremum can typically be estimated in terms of V − I and in particular its (rapidly vanishing)
asymptotic behavior near z = z0, i.e., in terms of the original data (Σ,V) for Riemann-Hilbert Problem 1.

Small norm problems seldom arise on their own in applications. However, in situations where a small
parameter ε� 1 is present in the data (Σ,V) of a Riemann-Hilbert problem, one can sometimes introduce a
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finite sequence of well-motivated substitutions that convert the Riemann-Hilbert problem with data (Σ,V)
into an equivalent one with data (Σ′,V′) that is indeed a small-norm problem in the limit ε → 0. This is
the main idea behind the Deift-Zhou steepest descent method for Riemann-Hilbert problems that we have
discussed already in the course.

Fredholm theory. Recall the following definitions, for which an excellent reference is [2, Chapter 27].

Definition 13 (Kernel and cokernel). Let A : B → B be a bounded linear operator on a Banach space B.
The kernel of A is the subspace ker(A) ⊂ B of vectors f ∈ B such that Af = 0. The range of A is the
subspace ran(A) ⊂ B of vectors f ∈ B such that f = Ag for some g ∈ B. The cokernel of A is the vector
space (of equivalence classes) coker(A) := B/ran(A).

Definition 14 (Fredholm operator). A bounded linear operator A : B → B on a Banach space B is a
Fredholm operator if dim(ker(A) and dim(coker(A)) are both finite. The index of a Fredholm operator A is
ind(A) := dim(ker(A))− dim(coker(A)).

Definition 15 (Pseudoinverse). Let A be a bounded linear operator on a Banach space B. Another bounded
linear operator B acting on B is called a pseudoinverse to A if

B ◦ A = I − K and A ◦ B = I − K′

where K,K′ : B → B are both compact.

The key result of the general theory that we will need is the following.

Theorem 3. Let A : B → B be a bounded linear operator on a Banach space B. Then A is a Fredholm
operator if A has a pseudoinverse.

By analogy with the definition of the operator CW, we may define an operator constructed from the
inverses of the matrices B±(z): we first set

U+(z) := B+(z)−1 − I ∈ Hµ
+(Σ) and U−(z) := I−B−(z)−1 ∈ Hµ

−(Σ),

and define CU := CΣ
+ ◦ RU− + CΣ

− ◦ RU+ . By the same argument as in Proposition 12, CU is bounded on
Hν(Σ). Note also that since B±(z)B±(z)−1 = B±(z)−1B±(z) = I,
(28) W±(z)U±(z) = U±(z)W±(z) = ∓(W±(z) + U±(z)).

Proposition 15. Let Σ be a complete admissible contour, and suppose that V is an admissible jump matrix
on Σ with positive exponent µ < 1 having the corresponding admissible factorization V(z) = B−(z)−1B+(z).
Then I − CU is a pseudoinverse to I − CW on the space Hν(Σ) for each ν < µ.

Proof. Let K := I − (I − CU) ◦ (I − CW). We prove that K : Hν(Σ)→ Hν(Σ) is compact. We now expand
out K, and to keep the formulas as simple as possible, we omit the redundant superscript Σ (because the
contour Σ is fixed) from the Cauchy operators CΣ

±, and we simply use the symbol M in place of the operator
RM of right multiplication by M (since CW and CU involve no left multiplications):

K = CU + CW − CU ◦ CW
=
[
C+ ◦U− + C− ◦U+ + C+ ◦W− + C− ◦W+

]
−
[
C+ ◦U− ◦ C+ ◦W− + C+ ◦U− ◦ C− ◦W+ + C− ◦U+ ◦ C+ ◦W− + C− ◦U+ ◦ C− ◦W+

]
In the first and last terms on the second line, use the Plemelj formula to eliminate the right-most Cauchy
operators:

C+ ◦U− ◦ C+ ◦W− = C+ ◦U− ◦W− + C+ ◦U− ◦ C− ◦W−

= C+ ◦ (W−U−) + C+ ◦U− ◦ C− ◦W−

= C+ ◦ (U− + W−) + C+ ◦U− ◦ C− ◦W−

= C+ ◦U− + C+ ◦W− + C+ ◦U− ◦ C− ◦W−,

where on the second line (W−U−) denotes the operator of right-multiplication by the matrix product
W−U− and going to the third line we have used (28). Similarly

C− ◦U+ ◦ C− ◦W+ = C− ◦U+ + C− ◦W+ + C− ◦U+ ◦ C+ ◦W+.
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The terms linear in W± or U± therefore cancel from K and we get

K = K1 +K2 +K3 +K4,

where

K1 := −C+ ◦U− ◦ C− ◦W−

K2 := −C+ ◦U− ◦ C− ◦W+

K3 := −C− ◦U+ ◦ C+ ◦W−

K4 := −C− ◦U+ ◦ C+ ◦W+.

Because C+ ◦ C− = 0 on the space Hν
−(Σ), the range of U− ◦W− acting on Hν(Σ), we have

(29) K1 = C+ ◦ [C−,U−] ◦W−.

Similarly, because C− ◦ C+ = 0 on the space Hν
+(Σ), the range of U+ ◦W+ acting on Hν(Σ), we have

(30) K4 = C− ◦ [C+,U+] ◦W+.

By the Plemelj formula, the matrix identity U−(z) = C+[U−](z) − C−[U−](z) holds, so K2 can be written
in the form

K2 = −C+ ◦U−+ ◦ C− ◦W+ − C+ ◦U−− ◦ C− ◦W+, U−±(z) := ±C±[U−](z).

By Proposition 10 the second term vanishes because it is C+ acting on a product of functions in the range
of C−. Then, since C+ ◦ C− = 0 on Hν

+(Σ), the range of U−+ ◦W+ acting on Hν(Σ), we have

(31) K2 = C+ ◦ [C−,U−+] ◦W+.

Similarly,

K3 = −C− ◦U+
+ ◦ C+ ◦W− − C− ◦U+

− ◦ C+ ◦W−, U+
±(z) := ±C±[U+](z),

and the first term vanishes by Proposition 10 while a commutator can be introduced in the second as above,
with the result that

(32) K3 = C− ◦ [C+,U+
−] ◦W−.

Consider K1 given by (29). The operator [C−,U−] ◦W− is the (ordered) product of a bounded map from
Hν(Σ) to Hν

−(Σ) (Proposition 7), followed by a bounded map from Hν
−(Σ) to Hµ

−(Σ) (Proposition 9) and
is therefore a bounded map from Hν(Σ) to Hµ

−(Σ). To get back to the larger space Hν
−(Σ) we may follow

this action with the identity operator in the form of the inclusion Iµ→ν which is a compact mapping from
Hµ
−(Σ) to Hν

−(Σ) by Proposition 6. Finally by Proposition 8, the left-most factor in K1 is a bounded map
from Hν

−(Σ) to Hν(Σ). Therefore, we see that K1 is a product of bounded maps with one compact factor.
As the compact operators form a two-sided ideal in the algebra of bounded operators [1, 2], all it takes is one
compact factor to make the product K1 a compact map on Hν(Σ). By virtually the same argument applied
to (30), K4 : Hν(Σ)→ Hν(Σ) is also compact.

Next consider K2 given by (31). Note that by Proposition 8, U−+ ∈ Hµ(Σ) as the action of C+ on a
function in Hµ

−(Σ). Thus, the operator of right-multiplication by W+ is bounded from Hν(Σ) to Hν
+(Σ)

(Proposition 7), [C−,U−+] is bounded from Hν
+(Σ) to Hµ(Σ) (Proposition 9) or equivalently is compact from

Hν
+(Σ) to Hν(Σ) (Proposition 6), and C− is bounded on Hν(Σ) (Proposition 8). Thus K2 is compact on

Hν(Σ). By virtually the same arguments applied to the formula (32), K3 : Hν(Σ)→ Hν(Σ) is also compact.
As a sum K = K1 +K2 +K3 +K4 of compact operators on Hν(Σ), K is itself compact on Hν(Σ). Writing

K′ := I − (I − CW) ◦ (I − CU), a simple lexicographical swap W ↔ U in the above arguments shows that
K′ is also compact on Hν(Σ). �

Corollary 3. Under the hypotheses of Proposition 15, I − CW is a Fredholm operator on Hν(Σ).

Proof. Combine Proposition 15 with Theorem 3. �

We present the following important result without (complete) proof. See [6] for details.

Proposition 16 (Zhou’s index theorem). Under the hypotheses of Proposition 15, ind(I − CW) = 0.
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In fact, Zhou proves a more general result. He considers the case of invertible jump matrices V : Σ◦ →
CN×N that need not have unit determinant, and establishes the following remarkable formula for the Fred-
holm index of I − CW:

ind(I − CW) = Nω(det(V)),

where ω(f) denotes the winding number of a function f : Σ◦ → C, i.e.,

ω(f) :=
1

2π

∫
Σ

d(arg(f(z))).

The integral above is the total increment of the phase angle of f as z traverses the arcs of Σ according to
their orientation. Obviously, ω(fg) = ω(f) + ω(g), and so by the factorization V(z) = B−(z)−1B+(z) with
B± ∈ Hν

±(Σ) we have ω(det(V)) = ω(det(B+))−ω(det(B−)). Since Σ may be viewed as either the collection

of loops {L+
j } or {L−j }, both ω(det(B+)) and ω(det(B−)) are integers, and therefore ω(det(V)) ∈ Z. Of

course in the special case that det(V(z)) = 1, ω(det(V)) = 0, so Zhou’s formula reduces to the statement of
Proposition 16.

We can give a simple proof of Zhou’s index theorem under suitable additional hypotheses on W±. For
this we first need another general result of Fredholm theory (see, e.g., [2]).

Theorem 4 (Homotopy invariance of the Fredholm index). Let A(t) be a one-parameter family of Fredholm
operators on a Banach space B, 0 ≤ t ≤ 1, such that A(t) is a continuous function of t with respect to
operator norm. Then ind(A(t)) is independent of t; in particular ind(A(1)) = ind(A(0)).

To use this theorem, we should try to connect I − CW to a simple operator for which we know the index
by a suitable homotopy. The idea is the following: the identities

I±U±(z) = B±(z)−1 = (I±W±(z))−1

show that the matrices U± are determined once W± are known. We may therefore introduce an artificial
parameter t ∈ [0, 1] by setting W±(z; t) := tW±(z) and attempt to determine the corresponding matrix
functions U±(z; t) by inversion of I ±W±(z; t) = I ± tW±(z). Assuming invertibility of I ±W±(z; t) for
0 ≤ t ≤ 1, we may therefore define corresponding bounded operators CW(t) and CU(t) acting on Hν(Σ).

Clearly CW(0) = CU(0) = 0. One condition guaranteeing the required invertibility is simply that W±(z) be
nilpotent matrices.

Proposition 17. Let Σ be a complete admissible contour and V : Σ◦ → CN×N an admissible jump matrix
with exponent µ < 1 and admissible factorization (Σ,B+,B−). Suppose that W± ∈ Hν

±(Σ) are (pointwise)
nilpotent matrices. Then I − CW(t) is continuous on [0, 1] with respect to operator norm on Hν(Σ), and if
ν < µ, I − CU(t) is a pseudoinverse to I − CW(t) on Hν(Σ).

Proof. If W±(z) are nilpotent for each z, all of the eigenvalues of W±(z) vanish, so all of the eigenvalues
of I±W±(z; t) = I± tW±(z) are equal to 1 for all t. It follows that the matrices U±(z; t) exist and lie in
Hν
±(Σ) as functions of z for each t. Hence both CW(t) and CU(t) are bounded operators on the same space

Hν(Σ) for each t. Since I − CW(t) = I − tCW,

‖(I − CW(t2))− (I − CW(t1))‖ν = |t2 − t1| · ‖CW‖ν
where the norms are the operator norm on Hν(Σ), which proves the continuity of I − CW(t) with respect
to t. The fact that I − CU(t) is a pseudoinverse to I − CW(t) follows exactly the proof of Proposition 15, as

that only relied on the algebraic relation (28) between W± and U± which is formally the same for all t. �

Corollary 4 (Zhou’s index theorem — special case of nilpotent W±). Let Σ be a complete admissible
contour and V : Σ◦ → CN×N an admissible jump matrix with exponent µ < 1 and admissible factorization
(Σ,B+,B−). If W± are nilpotent, then for each ν < µ, I − CW : Hν(Σ) → Hν(Σ) is a Fredholm operator
with Fredholm index ind(I − CW) = 0.

Proof. The identity operator I = I − CW(0) obviously has ker(I) = coker(I) = {0}, so ind(I − CW(0)) = 0.
By Proposition 17 and Theorem 4, we then have ind(I − CW) = ind(I − CW(1)) = 0. �

Fredholm alternative. Since according to Proposition 16, I − CW has Fredholm index zero on Hν(Σ), the
Fredholm alternative applies, i.e., I − CW is invertible on Hν(Σ) — and hence Riemann-Hilbert Problem 1
has a solution — provided ker(I − CW) = {0}. This has practical implications, as we will see.
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Application to nonlinear Schrödinger equations. We now study the Riemann-Hilbert problems for the
focusing and defocusing nonlinear Schrödinger equations under the assumption that the reflection coefficient
R is a Schwartz-class function of λ ∈ R. We summarize these here for future reference.

Riemann-Hilbert Problem 2 (Riemann-Hilbert problem for defocusing NLS iψt + 1
2ψxx − |ψ|

2ψ = 0).

Let R : R→ C be the reflection coefficient for initial data ψ(x, 0) = ψ0(x), ψ0 ∈ L1(R), and assume further
that R ∈ S (R) (recall that necessarily |R(λ)|2 < 1 for all λ ∈ R). Find a 2× 2 matrix MD(λ;x, t) with the
following properties:

• Analyticity: MD(λ;x, t) is an analytic function of λ for λ ∈ C \ R.
• Jump Condition: The matrix MD(λ;x, t) takes continuous boundary values MD

±(λ;x, t) on the
real axis from C±, and they are related by the condition

MD
+(λ;x, t) = MD

−(λ;x, t)VD(λ;x, t), λ ∈ R,

where

VD(λ;x, t) :=

[
1− |R(λ)|2 −e−2i(λx+λ2t)R(λ)∗

e2i(λx+λ2t)R(λ) 1

]
.

• Normalization: As λ→∞, MD(λ;x, t)→ I.

Riemann-Hilbert Problem 3 (Riemann-Hilbert problem for focusing NLS iψt + 1
2ψxx + |ψ|2ψ = 0). Let

R : R → C be the reflection coefficient, {λn}Nn=1 the eigenvalues in the upper half-plane, and {cn}Nn=1 the
corresponding residue constants for initial data ψ(x, 0) = ψ0(x), ψ0 ∈ P0 ⊂ L1(R). Assume that R ∈ S (R).
Seek a 2× 2 matrix MF(λ;x, t) satisfying the following properties:

• Analyticity: MF(λ;x, t) is an analytic function of λ for λ ∈ C \ (R ∪ {λ1, . . . , λN , λ
∗
1, . . . , λ

∗
N}).

• Residues: At λ = λn and λ = λ∗n, MF(λ;x, t) has simple poles and the residues satisfy the condi-
tions

(33) Res
λ=λn

MF(λ;x, t) = lim
λ→λn

MF(λ;x, t)

[
0 0

cn(x, t) 0

]
,

and

(34) Res
λ=λ∗

n

MF(λ;x, t) = lim
λ→λ∗

n

MF(λ;x, t)

[
0 −cn(x, t)∗

0 0

]
,

where cn(x, t) := cne2i(λnx+λ2
nt).

• Jump Condition: The matrix MF(λ;x, t) takes continuous boundary values MF
±(λ;x, t) on the

real axis from C±, and they are related by the condition

MF
+(λ;x, t) = MF

−(λ;x, t)VF(λ;x, t),

where

(35) VF(λ;x, t) :=

[
1 + |R(λ)|2 e−2i(λx+λ2t)R(λ)∗

e2i(λx+λ2t)R(λ) 1

]
.

• Normalization: As λ→∞, MF(λ;x, t)→ I.

The solution of the initial-value problem for the nonlinear Schrödinger equation in each case is given by
the same formula:

(36) ψ(x, t) = 2i lim
λ→∞

λMD,F
12 (λ;x, t).
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Swapping poles for jumps across circles. The first issue we have to deal with in applying the general theory
is that Riemann-Hilbert Problem 3 deals with an unknown having not only jumps across contours but also
poles. However, it is easy to get around this problem with the following simple device. For each pole λn ∈ C+,
let Dn be a small disk centered at λn of sufficiently small radius to be lie in the open upper half-plane and
to be disjoint from all other disks. A particular matrix with a simple pole at λ = λn satisfying the condition
(33) is

(37) Pn(λ;x, t) :=

[
1 0

cn(x, t)(λ− λn)−1 1

]
.

Observe now that the matrix N(λ;x, t) := MF(λ;x, t)Pn(λ;x, t)−1 analytic for λ ∈ Dn \ {λn} has only a
removable singularity at λn. Indeed, (33) implies that the Laurent expansion of MF(λ;x, t) about λ = λn
takes the form

MF(λ;x, t) =
(a−1,0)

λ− λn
+ (a0,b0) +O(λ− λn), where a−1 = cn(x, t)b0,

for some vector coefficients a0(x, t) and b0(x, t). Therefore, if e1 and e2 denote the standard unit vectors in
C2,

MF(λ;x, t)Pn(λ;x, t)−1 =

(
(cn(x, t)b0,0)

λ− λn
+ (a0,b0) +O(λ− λn)

)(
(−cn(x, t)e2,0)

λ− λn
+ (e1, e2)

)
has a limit as λ→ λn, because

(cn(x, t)b0,0) · (−cn(x, t)e2,0) = 0 and (cn(x, t)b0,0) · (e1, e2) + (a0,b0) · (−cn(x, t)e2,0) = 0.

Similarly, a matrix corresponding to (37) with a simple pole at λ = λ∗n satisfying the condition (34) is

(iσ2)Pn(λ∗;x, t)∗(iσ2)−1 =

[
1 −cn(x, t)∗(λ− λ∗n)−1

0 1

]
= Pn(λ∗;x, t)−†,

where the superscript −† denotes taking both the conjugate transpose and the inverse. It follows by com-
pletely analogous reasoning that the matrix N(λ;x, t) := MF(λ;x, t)Pn(λ∗;x, t)† has a removable singularity
at λ = λ∗n.

We may therefore define a new matrix unknown N(λ;x, t) in terms of MF(λ;x, t) satisfying Riemann-
Hilbert Problem 3 by the “piecewise” formula

N(λ;x, t) :=


MF(λ;x, t)Pn(λ;x, t)−1, λ ∈ Dn, n = 1, . . . , N,

MF(λ;x, t)Pn(λ∗;x, t)†, λ ∈ D∗n, n = 1, . . . , N,

MF(λ;x, t), λ ∈ C \ (R ∪D1 ∪ · · · ∪DN ∪D
∗
1 ∪ · · · ∪D

∗
N ).

Now, N(λ;x, t) has no poles, but in addition to a jump across the real axis, it has jumps across the circular
disk boundaries. Indeed, if we take ∂Dn to have negative (clockwise) orientation, then

N+(λ;x, t) = MF(λ;x, t) = MF(λ;x, t)Pn(λ;x, t)−1Pn(λ;x, t) = N−(λ;x, t)Pn(λ;x, t)

holds for λ ∈ ∂Dn, n = 1, . . . , N , and if we take ∂D∗n to have positive orientation, then

N+(λ;x, t) = MF(λ;x, t)Pn(λ∗;x, t)† = N−(λ;x, t)Pn(λ∗;x, t)†

holds for λ ∈ ∂D∗n, n = 1, . . . , N . Since N(λ;x, t) = MF(λ;x, t) outside of the disks Dn and their conjugates,
we now see that N(λ;x, t) satisfies the conditions of an equivalent Riemann-Hilbert problem closely related
to Riemann-Hilbert Problem 3 but with the residue conditions replaced by jump conditions across small
circles centered at the points {λn, λ∗n}Nn=1. In formulating this problem, we will simply relabel N(λ;x, t) as
MF(λ;x, t):

Riemann-Hilbert Problem 4 (Pole-free Riemann-Hilbert Problem for focusing NLS). Let R : R → C
be the reflection coefficient, {λn}Nn=1 the eigenvalues in the upper half-plane, and {cn}Nn=1 the corresponding
residue constants for initial data ψ(x, 0) = ψ0(x), ψ0 ∈ P0 ⊂ L1(R). Assume that R ∈ S (R). Seek a 2× 2
matrix MF(λ;x, t) satisfying the following properties:

• Analyticity: MF(λ;x, t) is an analytic function of λ for λ ∈ C\(R∪{∂D1, . . . , ∂DN , ∂D
∗
1 , . . . , ∂D

∗
N}).
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• Jump Conditions: The matrix MF(λ;x, t) takes continuous boundary values MF
±(λ;x, t) on the

real axis from C±, as well as from the left and right on ∂D1, . . . , ∂DN oriented negatively and
∂D∗1 , . . . , ∂D

∗
N oriented positively. The boundary values are related by

MF
+(λ;x, t) = MF

−(λ;x, t)VF(λ;x, t), λ ∈ R,

where VF(λ;x, t) is given by (35), by

MF
+(λ;x, t) = MF

−(λ;x, t)Pn(λ;x, t), λ ∈ ∂Dn, n = 1, . . . , N,

and
MF

+(λ;x, t) = MF
−(λ;x, t)Pn(λ∗;x, t)†, λ ∈ ∂D∗n, n = 1, . . . , N,

where Pn(λ;x, t) is defined by (37) in which cn(x, t) := cne2i(λnx+λ2
nt).

• Normalization: As λ→∞, MF(λ;x, t)→ I.

Since no change was made in MF(λ;x, t) for |λ| sufficiently large, again the solution of the initial value
problem is given by (36).

Compactification of the contours. The next obstruction to applying the general theory is that both Riemann-
Hilbert Problems 2 and 4 involve an unbounded jump contour R, oriented left-to-right. To apply the general
theory as it has been formulated, it is necessary to first map this contour to a bounded contour by a fractional
linear mapping, e.g.,

z = z(λ) :=
λ− iT

λ+ iT
with inverse λ = λ(z) := −iT

z + 1

z − 1
,

which maps the upper (lower) half λ-plane to the interior (exterior) of the unit circle in the z-plane. The
point λ = ∞ is mapped to z = 1, and z = ∞ is the image of λ = −iT . Here, T > 0 is chosen so large that
all disks Dn, D∗n lie within the circle centered at the origin of radius T . This ensures that no point of the
jump contour for Riemann-Hilbert Problem 4 is mapped to z =∞.

Let ΣD (ΣF) be the image in the z-plane of the jump contour for Riemann-Hilbert Problem 2 (Riemann-
Hilbert Problem 4). See Figure 3 for the defocusing case and Figure 4 for the focusing case. It is easy to
see that ΣD is a complete admissible contour without any self-intersection points, i.e., X = ∅. However,

Figure 3. Left: the original contour for Riemann-Hilbert Problem 2 in the λ-plane. Right:
the image contour ΣD in the z-plane. The domain Ω+ is shaded.

the components of the domains Ω± are not all simply-connected in the case of ΣF, so an augmentation
of the jump contour with additional arcs carrying the identity as the jump matrix is needed to arrive at
a complete admissible contour in the focusing case. The additional arcs are indicated with dashed lines
in Figure 5. With this modification of ΣF, the corresponding jump matrices on ΣD and ΣF obtained by
composing the jump matrices in the λ-plane with λ = λ(z) are easily seen to be admissible in both cases
with Hölder exponent µ = 1. Since neither ΣD nor ΣF has any exceptional points, it is easy to see that the
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Figure 4. Left: the original contour for Riemann-Hilbert Problem 4 in the λ-plane. Right:
the image contour ΣF in the z-plane. The domain Ω+ is shaded.

Figure 5. The additional arcs added to complete the contour in the focusing case.

trivial factorization B+(z) = V(z) and B−(z) = I is admissible. It therefore follows that in both focusing
and defocusing cases, I − CW is Fredholm with index zero on Hν(ΣD) or Hν(ΣF) provided ν < 1.

Thus the analyticity and jump conditions of the Riemann-Hilbert problems for both focusing and defo-
cusing NLS have been recast in the form of Riemann-Hilbert Problem 1. Note however, that every solution
M(z) of that problem is normalized to the identity I at the point z = ∞. Therefore after substituting for
z = z(λ) to return to the λ-plane we obtain a matrix function that tends to the identity matrix as λ→ −iT ,
whereas it is instead required to tend to the identity as λ → ∞. Next observe that because VD(λ;x, t)− I
and VF(λ;x, t) − I vanish to all orders as λ → ∞ (because R ∈ S (R)) the corresponding jump matrix
V(z) for Riemann-Hilbert Problem 1 is in each case such that V(z)− I vanishes at the corresponding point
z = 1 to all orders in |z − 1|. Therefore by Proposition 14 M(z) has an asymptotic power series expansion
about z = 1, and in particular M(1) makes sense and det(M(1)) = 1. Consider the matrix M(1)−1M(z). It
is easy to check that this matrix satisfies all of the conditions of Riemann-Hilbert Problem 1 but with the
normalization condition instead replaced by M(1)−1M(z)→ I as z → 1 (in particular multiplication of the
jump condition on the left by any constant matrix, or even entire matrix, leaves the condition invariant).
Bringing this matrix function back to the λ-plane by substituting z = z(λ) then gives a solution of either
Riemann-Hilbert Problem 2 or 4.
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Application of the Fredholm alternative. By the Fredholm alternative, it therefore remains to show that the
only solution X0 ∈ Hν(Σ), Σ = ΣD or Σ = ΣF, of the equation (I − CW)X0 = 0 is X0(z) ≡ 0. Let
X0 ∈ Hν(Σ) be any solution of this equation, and define a matrix M0(z) by setting

(38) M0(z) := CΣ[X0(W+ + W−)](z), z ∈ C \ Σ

(compare with (25)). First we observe the following.

Proposition 18. Suppose that X0 ∈ Hν(Σ) solves (I − CW)X0 = 0 ∈ Hν(Σ), i.e., X0 ∈ ker(I − CW).
Then M0 : C \ Σ→ CN×N is the zero function if and only if X0 is the zero element of Hν(Σ).

Proof. Clearly if X0(z) ≡ 0 then also M0(z) is the zero function. Suppose now that M0(z) is the zero
function. Then in particular, its boundary value taken on Σ from Ω− vanishes, i.e.,

(39) CΣ
−[X0(W+ + W−)](z) = 0, z ∈ Σ◦.

Since X0(z) = CW[X0](z) = CΣ
+[X0W

−](z) + CΣ
−[X0W

+](z), by the Plemelj formula, we have

X0(z) = X0(z)W−(z) + CΣ
−[X0W

−](z) + CΣ
−[X0W

+](z)

= X0(z)W−(z) + CΣ
−[X0(W− + W+)](z),

or, recalling B−(z) = I−W−(z),

X0(z)B−(z) = CΣ
−[X0(W+ + W−)](z)

= 0, z ∈ Σ◦,

according to (39). But B−(z) is an invertible matrix for each z ∈ Σ◦, so X0(z) = 0. �

Observe that the function M0(z) given by (38) is analytic where it is defined and Hölder continuous
with exponent ν < 1 up to the boundary Σ. Also, by analogous steps as in the proof of Theorem 2, its
boundary values satisfy M0+(z) = M0−(z)V(z) at every point of Σ, where V is the corresponding jump
matrix. Therefore, M0(z) satisfies all of the conditions of Riemann-Hilbert Problem 1 with the exception of
the normalization condition, which gets replaced by M0(z)→ 0 as z →∞ according to (38). Using Propo-
sition 18, we deduce that in the Fredholm index zero situation, Riemann-Hilbert Problem 1 has a (unique)
solution provided that the only vanishing solution of the same problem, i.e., replacing the normalization to
I at z =∞ with normalization to 0, is M0(z) ≡ 0.

Furthermore, since as an analytic function of z for |z| sufficiently large, any nonzero vanishing solution
M0(z) decays as z →∞ like z−p for some positive integer p, the product

M̃0(z) := (z − 1)pM0(z)

will have a nonzero limit as z → ∞ but will vanish to (at least) order p as z → 1, which corresponds to

λ → ∞. Since M̃0(z) is identically zero if and only if M0(z) is, for unique solvability of Riemann-Hilbert
Problems 2 and 4 it is sufficient to rule out nonzero solutions of these two problems in which the conditions
MD,F(λ;x, t)→ I as λ→∞ are replaced with MD,F(λ;x, t) = O(λ−1) as λ→∞ respectively.

Zhou’s vanishing lemma. The non-existence of nontrivial vanishing solutions for Riemann-Hilbert Problems 2
and 4 follows from the following result, due to Zhou [6, Theorem 9.3].

Proposition 19 (Vanishing lemma). Let Σ be a complete contour in the λ-plane that is Schwarz-symmetric
(invariant under reflection through the real axis, including orientation). Let V be an admissible jump matrix
on Σ that satisfies:

(40) V(λ) + V(λ)† is positive definite for λ ∈ R,

and

(41) V(λ∗) = V(λ)†, λ ∈ Σ \ R.

Then the only matrix function M0(λ) analytic for λ ∈ C \ Σ and continuous up to the boundary with
M0+(λ) = M0−(λ)V(λ) for λ ∈ Σ◦, and that satisfies M0(λ) = O(λ−(1+ε)/2) as λ → ∞ for any ε > 0, is
M0(λ) ≡ 0.
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Note that every complete Schwarz-symmetric contour necessarily contains the real axis R, but as usual
the jump matrix may be artificially taken to be the identity on R if necessary.

Proof. Consider the matrix function A(λ) := M0(λ)M0(λ∗)†. Clearly, A(λ) is analytic for λ ∈ C\Σ because
Σ = Σ∗ (Schwarz symmetry), and A(λ) is also continuous up to Σ. Let Σj be an arc of Σ in the open upper
half-plane. We may calculate the jump of A(λ) across Σj as follows: first observe that

A+(λ) = M0+(λ)M0−(λ∗)†,

because if λ→ Σj from the left (“+” side), then λ∗ → Σ∗j from the right (“−” side), where the “±” subscripts
indicate boundary values on Σj (for λ) and Σ∗j (for λ∗), for which the orientation is induced by Schwarz
reflection symmetry. Applying the jump conditions across Σj and Σ∗j respectively thus gives

A+(λ) = M0−(λ)V(λ)[M0+(λ∗)V(λ∗)−1]†

= M0−(λ)V(λ)V(λ∗)−†M0+(λ∗)†.

Next, using the identity (41) gives

A+(λ) = M0−(λ)M0+(λ∗)†

= A−(λ),

by similar reasoning as in the first step. Therefore, A(λ) is continuous in the upper half-plane (as well
as in the lower half-plane by the identity A(λ) = A(λ∗)†). It then follows by Morera’s Theorem and the
Generalized Cauchy Integral Theorem that A(z) is analytic for λ ∈ C \ R, and continuous to the real axis
from either half-plane. Also, A(λ) = O(λ−(1+ε)) as λ → ∞, so A(λ) is integrable at λ = ∞. It therefore
follows again from the Generalized Cauchy Integral Theorem and Jordan’s Lemma (closing the contour by
a large semicircle in C±) that ∫ +∞

−∞
A±(λ) dλ = 0.

But, for λ ∈ R, we have

A+(λ) = M0+(λ)M0−(λ)† = M0−(λ)V(λ)M0−(λ)†

and

A−(λ) = M0−(λ)M0+(λ)† = M0−(λ)[M0+(λ)V(λ)]† = M0−(λ)V(λ)†M0−(λ)†.

Therefore

(42)

∫ +∞

−∞
M0−(λ)[V(λ) + V(λ)†]M0−(λ)† dλ =

∫ +∞

−∞
A+(λ) dλ+

∫ +∞

−∞
A−(λ) dλ = 0 + 0 = 0.

Now let un(λ)†, n = 1, . . . , N , denote the rows of M0−(λ), and denote the quadratic form of V(λ) + V(λ)†

by

Q(u;λ) := u†[V(λ) + V(λ)†]u, λ ∈ R.
By the hypothesis (40), Q(u;λ) ≥ 0 for all λ ∈ R and Q(u;λ) = 0 if and only if u = 0. Taking the trace of
(42) gives

N∑
n=1

∫ +∞

−∞
Q(un(λ);λ) dλ = 0,

but as a sum and integral of nonnegative terms, this implies that Q(un(λ);λ) = 0 for all λ ∈ R and all
n = 1, . . . , N . Therefore (40) implies that un(λ) = 0 for all λ ∈ R and all n = 1, . . . , N , i.e., M0−(λ) = 0
for all λ ∈ R. By M0+(λ) = M0−(λ)V(λ) we therefore also get M0+(λ) = 0 for all λ ∈ R.

Since M0+(λ) = M0−(λ) for all λ ∈ R ⊂ Σ, the Morera/Generalized Cauchy argument applies to show
that M0(λ) is analytic in a neighborhood of every point of Σ◦ on the real axis. Since also M0(λ) = 0 for
λ ∈ R, it follows by analytic continuation that M0(λ) = 0 holds as an identity all the way up to the first
complex arcs of Σ. But then applying the jump condition for M0(λ) on these arcs shows that again both
boundary values agree and vanish, so the argument continues to the next arcs of Σ, and so on until the
complex plane is exhausted. Thus M0(λ) ≡ 0 on the whole complex plane as desired. �
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Global solvability: defocusing case. To confirm the hypotheses of the vanishing lemma in this case, observe
that it is sufficient to show that VD(λ;x, t) + VD(λ;x, t)† is positive definite for all λ ∈ R. But

VD(λ;x, t) + VD(λ;x, t)† =

[
2(1− |R(λ)|2) 0

0 2

]
and this is clearly positive definite because |R(λ)|2 < 1 holds for λ ∈ R. This finally proves:

Theorem 5 (Global solvability of the inverse-scattering problem for defocusing NLS). Riemann-Hilbert
Problem 2 has a unique solution for all (x, t) ∈ R2, hence determining the corresponding solution of the
initial-value problem for the defocusing NLS equation via the formula (36).

Global solvability: focusing case. To confirm the hypotheses of the vanishing lemma in this case, first note that
the contour consisting of the real axis oriented left-to-right together with the positively-oriented circles ∂Dn,
n = 1, . . . , N and the negatively-oriented circles ∂D∗n, n = 1, . . . , N , has the necessary Schwarz symmetry.
Also, clearly V(λ∗) = V(λ)† holds for all complex λ in the jump contour, i.e., on all of the circles. Therefore
it remains again to analyze the jump matrix on the real axis. In this case, we have

VF(λ;x, t) + VF(λ;x, t)† = 2

[
1 + |R(λ)|2 e−2i(λx+λ2t)R(λ)∗

e2i(λx+λ2t)R(λ) 1

]
= G(λ;x, t)†G(λ;x, t),

where

G(λ;x, t) :=
√

2

[
1 0

e2i(λx+λ2t)R(λ) 1

]
is clearly an invertible matrix (det(G(λ;x, t)) = 2). However, every matrix of the form G†G with G
invertible is positive definite, so all hypotheses of the vanishing lemma have been confirmed. Noting that
Riemann-Hilbert Problems 3 and 4 are completely equivalent, we have finally proved the following.

Theorem 6 (Global solvability of the inverse-scattering problem for focusing NLS). Riemann-Hilbert Prob-
lem 3 has a unique solution for all (x, t) ∈ R2, hence determining the corresponding solution (for suitable
generic initial data) of the initial-value problem for the focusing NLS equation via the formula (36).

Observe that the result holds true even in the special case that R(λ) vanishes identically, which gives an
indirect proof that the determinant of the linear algebra system for the N -soliton solution of the focusing
NLS equation is nonzero for all (x, t) ∈ R2.
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