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Abstract. We propose a model of Pareto optimization (multi-objective program-
ming) in the context of a categorical theory of resources. We describe how to adapt
multi-objective swarm intelligence algorithms to this categorical formulation.
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1. Introduction

Pareto optimization (or multi-objective programming) refers to a class of problems
where several simultaneous objective functions (objective valuations), usually valued
in cones inside real Euclidean spaces, need to be optimized simultaneously. Since they
are subject to constraints, the optimization cannot be achieved simply by individually
maximizing each function. A Pareto optimal solution (in general non-unique) is a
solution where none of the objective functions can be improved without worsening
some of the others. More precisely, a possible solution S1 is said to Pareto dominate
another solution S2 if all the objective valuations fi satisfy fi(S1) ≥ fi(S2) and for
at least one of them the inequality is strict. Pareto optimal solutions are those that
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are not Pareto dominated by any other. The Pareto frontier is the set of all Pareto
optimal solutions.

While Pareto optimization is a very useful approach in describing optimization
problems that cannot be reduced to a single scalar function, the use of functions in
Euclidean spaces is still often approached through a process of aggregative “scalar-
ization” that considers weighted combinations of the different objective functions to
reproduce a scalar optimization problem for a single real valued function.

Our goal here is to develop a setting for Pareto optimization that is entirely in-
dependent of real valued functions and is formulated in terms of the “mathematical
theory of resources” (in the sense of [3] and [6]) in a categorical framework. In the
setting we develop here, objective functions are replaced by objective functors, and
the Pareto frontier and Pareto optimization are entirely describable in categorical
terms. The categorical setting should not be surprising, as it is easy to see that the
typical universal properties in category theory can be expressed in the form of opti-
mization problems, so that category theory is indeed a natural setting for an astract
formulation of optimization problems.

We will formulate here our Pareto optimization setting in terms of assignments of
resources to a (finite) set. Thus, the solutions of our optimization problem will be
summing functors from a category of subsets of a finite set (which we generally think of
as subsystems of a given system) to a symmetric monoidal category of resources. One
can refine this setting by considering, as in [8], assignments of resources to a network
(directed graph) using an appropriate notion of “network summing functors”. This
choice of the source category is not necessary and can be replaced by other categories.
We choose this setting because the present paper is part of a larger ongoing study of
dynamical assignments of resources to networks in a categorical framework, [8], [9].

The objective functors, in turn, will be functors from the category of summing
functors to other categories containing target goal objects. These serve the purpose
of measuring whether a given assignment of resources to the system suffice to achieve
the desired goals.

We introduce the Pareto frontier in terms of an optimization on “convertibility of
resources” in a categorical sense, and we present a formulation of the Pareto frontier
as a category of essential preimages of colimits of a class of diagrams.

In the usual setting of Pareto optimization, multi-objective programming can be
formulated in terms of a swarm intelligence algorithm. The goal of the swarm particles
in this approach is to find solutions as close as possible to the Pareto frontier and
as diverse as possible, mapping out different regions of the Pareto frontier. This is
achieved by considering a virtual swarm of “particles” that moves according to some
dynamical rules across the landscape of possibilities (the configuration space). The
structure of the swarm intelligence algorithm can be summarized as follows:

(1) the swarm is initialized by a random distribution of positions and momenta
drawn with uniform measure over configuration space;
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(2) each individual particle in the swarm can memorize its best solution up to the
present time;

(3) each particle in the swarm tends to search near its best position obtained so
far;

(4) each particle can see the positions of the other particles of the swarm at
the same time and evaluate the best position achieved by the swarm at that
moment;

(5) each individual particle tends to move towards the best position achieved
within the swarm at that time.

This idea is formalized by update rules (in discrete time) for positions and velocities
of the swarm particles, where the velocities are updated by a rule of the form

Vi(n+ 1) = λ3 Vi(n) + λ1G1(Xi(n)−Xi,best(n)) + λ2G2(Xi(n)−Xbest(n))

where the Gi are Gaussians, the λi are tunable parameters, the Xi,best(n) is the
best position of the i-th particle in its previous history, that is, among the set of
positions {Xi(0), . . . , Xi(n)}, while Xbest(n) is the best position among all the N
swarm particles {X1(n), . . . , XN(n)} at the given time n. The positions are then
simply updated by the rule

Xi(n+ 1) = Xi(n) + Vi(n+ 1) .

Under good conditions (see the discussion in [11], [12]), for large swarm size N and
sufficiently many iterations n, the positions of the swarm draw out the Pareto frontier.

We show that a direct probabilistic analog of this swarm intelligence algorithm
can be developed in the categorical framework. A single particle model identifies the
Pareto frontier, but the resulting probability distribution is very spread out so it does
not provide an efficient algorithm.

2. Pareto frontier in categories

2.1. Categories of resources. As in [3] and [6], resources are modelled by a sym-
metric monoidal category (C, ◦,⊗, I) (which we will also be writing “additively” as
(C,⊕, 0)). Objects A ∈ Obj(C) represent resources, the monoidal operation A ⊗ B
represents the combination of resources, with the unit object I of the monoidal struc-
ture representing the empty resource. Morphisms f : A→ B in MorC(A,B) describe
possible processes of conversion of resource A into resource B. Thus, the convertibility
of resources is expressed by the condition MorC(A,B) 6= ∅.

One associates to a category (C, ◦,⊗, I) of resources a preordered abelian semigroup
(R,+,�, 0) on the set R of isomorphism classes of objects in Obj(C) with A+B the
class of A⊗B with unit 0 given by the class of the unit object I and with A � B iff
MorC(A,B) 6= ∅. Measuring semigroups are abelian semigroups with partial ordering
and with a semigroup homomorphism M : (R,+)→ (S, ∗) with M(A) ≥M(B) in S
when A � B in R. It is shown in [6] that they satisfy ρA→B ·M(B) ≤ M(A) with
respect to the maximal conversion rate

ρA→B := sup{m
n
|n · A � m ·B, m, n ∈ N} .
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2.2. Summing functors. A summing functor is a consistent assignment of resources
of type C to all subsystems of a given system so that a combination of independent
subsystems corresponds to combined resources. The notion of summing functors was
first introduced by Segal in [13], in the homotopy theory setting of Gamma-spaces,
in the case where C is a category with sum and zero-object, and was extended by
Thomason in [14], [15] to the more general case where C is a symmetric monoidal
category. We formulate it here for finite sets rather than for finite pointed sets as in
the original setting.

Let (C,⊕, 0)) be a symmetric monoidal category, written in additive notation. Let
S be a finite set and let P(S) denote the category with objects the subsets A ⊆ S
and morphisms the inclusions j : A ⊆ A′. A functor ΦS : P(S) → C is a summing
functor if

ΦS(A ∪ A′) = ΦS(A)⊕ ΦS(A′) when A ∩ A′ = ∅
and ΦS(∅) is the monoidal unit 0 of C.

Let ΣC(S) be the category of summing functors ΦS : P(S) → C, with morphisms
given by the invertible natural transformations. This category describes all the pos-
sible assignments of resources of type C to the subsystems of S, with all the possible
equivalences between such assignments.

A summing functor ΦS : P (S) → C completely determined by values ΦS(x) :=
ΦS({x}) for x ∈ S, and the category ΣC(S) of summing functors is equivalent to the

category Ĉn, where n = #S and where Ĉ is the category with same objects as C and
the invertible morphisms of C.

When the finite set S is replaced by a finite directed graph G, various notions
of “network summing functors” can be considered that generalize the setting above,
We refer the reader to [8] for a more detailed discussion. For the purposes of this
paper we just discuss the case of categories of summing functors ΣC(S) as above. The
generalization to networks is straightforward.

2.3. Objective valuation functors. Let S be a finite set as above, with ΣC(S) the
category of summing functors for resources of type C. A valuation system (F,X) =
(Fα, Xα)α∈I consists of a finite family {Vα}α∈I of categories that describe possible
objectives for optimization, with functors Fα : ΣC(S)→ Vα (valuations) and objects
Xα ∈ Obj(Vα) (goals). Valuation functors may factor through the target category
of resources C, but we do not assume that this is necessarily the case. Valuation
functors Fα : ΣC(S)→ Vα are in general not fully faithful.

A summing functor Φ ∈ ΣC(S) is F -minorized by another Ψ ∈ ΣC(S) if

HomVα(Fα(Φ), Fα(Ψ)) 6= ∅ ∀α ∈ I .
It is strictly F -minorized if the above holds and there exists some α ∈ I with Fα(Φ)
and Fα(Ψ) not isomorphic in Vα (hence Φ is not isomorphic to Ψ). We can define
F -majorization in a similar way.

The F -minorization condition above means that Fα(Ψ) is obtainable from Fα(Φ)
through an admissible “conversion of resources” in the category Vα.
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A summing functor Φ ∈ ΣC(S) is (F,X)-minorized by another Ψ ∈ ΣC(S) if for all
α ∈ I

HomVα(Fα(Φ), Fα(Ψ)) 6= ∅ ,
HomVα(Fα(Φ), Xα) 6= ∅ ,
HomVα(Fα(Ψ), Xα) 6= ∅ ,

with a strict minorization if, for some α, Fα(Φ) and Fα(Ψ) are not isomorphic. This
means that Fα(Ψ) is obtainable from Fα(Φ), while both are good enough to obtain
the goals Xα.

We then define the Pareto frontier in the following way. An assignment of resources
Φ ∈ ΣC(S) is on the (F,X)-Pareto upper frontier if

HomVα(Fα(Φ), Xα) 6= ∅ ∀α ∈ I
but there is no Ψ ∈ ΣC(S) not isomorphic to Φ that is a strict (F,X)-minorization
of Φ.

The terminology “upper frontier” is used here to indicate an optimization over
valuations that lie “above the goals”. An analogous notion of lower frontier can be
defined with the condition HomVα(Xα, Fα(Φ)) 6= ∅ and (F,X)-majorizations.

2.4. Categorical Pareto frontier. We give here a description of the Pareto frontier
as a category.

2.4.1. Preorders and diagrams. A preorder � on a set J is a relation that is transitive
(x � y and y � z ⇒ x � z) and reflexive (x � x for all x). A preorder (J,�) is a
directed set if J 6= ∅ and for all x, y ∈ J there is a z ∈ J with x � z and y � z.
Every finite subset {x1, . . . , xn} of a directed set (J,�) has an upper bound, that is,
an element z such that xi � z for all i = 1, . . . , n. A preorder (J,�) is a thin category
with objects x ∈ J and a single morphism x → y when x � y. A directed set is a
filtered thin category (all finite diagrams have a cocone).

Let Σadm
C (S) denote the full subcategory of ΣC(S) of (F,X)-admissible summing

functors, with objects those Φ ∈ Obj(ΣC(S)) such that

HomVα(Fα(Φ), Xα) 6= ∅ ,
for all α ∈ I. On Obj(Σadm

C (S)) consider the preorder relations Ψ �α Φ iff

HomVα(Fα(Φ), Fα(Ψ)) 6= ∅ .
We write (Jα,�α) for the thin category with objects Obj(Σadm

C (S)) and a single
morphism Ψ→ Φ iff Ψ �α Φ.

Let Dα denote the category with objects Y ∈ Obj(Vα) that are isomorphic Y '
Fα(Φ) in Vα, for some Φ ∈ Σadm

C (S), and with morphisms ϕ = (u, v, v′) that form a
commutative diagram

Y
u

//

v

  

Y ′

v′

}}

Xα
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We can then view minorizations as diagrams D : J op
α → Dα of the form

(2.1) Fα(Φ) //

##

Fα(Ψ)

{{

Xα

Thus, we are interested in considering inverse systems, namely diagrams D : J op
α →

Dα, and their colimits in Dα
Lα(D) := colimJ opα D .

We consider the following class of diagrams.

Let Diagrα be the class of diagrams D : J op
α → Dα with shape

(2.2) • → • → · · · • →
either finite or infinite, with the following properties:

(1) if the diagram is finite of length n then the object Fα(Φn) in the terminal
position must satisfy the condition that, for any admissible Ψ,

Hom(Fα(Φn), Fα(Ψ)) 6= ∅ ⇒ Fα(Φn) ' Fα(Ψ) ,

(2) any two consecutive terms Fα(Φi) → Fα(Φi+1) in the diagrams are non-
isomorphic, Fα(Φi) 6' Fα(Φi+1).

These are finite or infinite diagrams in Dα of the form

Fα(Φ1) //

##

· · · //

��

Fα(Φn)

{{

· · ·

Xα

where all the horizontal arrows are strict minorizations.

Let Lα = {Lα(D) |D ∈ Diagrα} be the colimits of the diagrams in Diagrα (when
they exist in Dα). Note that, in the case of a finite diagram of shape • → · · · → •
the colimit is isomorphic to the last term. So the interesting case is that of infinite
diagrams.

2.4.2. The Pareto frontier category. Given a valuation functor Fα : ΣC(S) → Vα
and the class Lα of objects of Dα given by colimits of diagrams in Diagrα as above,
consider the full subcategory F−1

α (Lα) of ΣC(S) with objects

Obj(F−1
α (Lα)) = {Φ ∈ Obj(Σadm

C (S)) |Fα(Φ) ' Lα(D) for some D ∈ Diagrα} .

Given the finite collection F = {Fα}α∈I of valuation functors, and the collection

of objects L = ∪αLα we similarly define the subcategory Σ
(F,L)
C (S) ⊂ Σadm

C (S) as the
full subcategory with objects given by

Obj(Σ
(F,L)
C (S)) = ∩αObj(F−1

α (Lα))
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We can then extend our previous definition of the Pareto frontier in the following

way. We define the Pareto frontier category to be the category Σ
(F,L)
C (S) obtained

above. Namely, an object Φ ∈ Σadm
C (S) is on the (upper) Pareto frontier with respect

to the system (F,X) of valuations and goals, iff Φ is in Σ
(F,L)
C (S), with Lα the colimits

of diagrams in Diagrα (whenever these colimits exist in Dα).

Note that, for all the finite diagrams, this reproduces by construction the Pareto
frontier as we described it above, since the essential preimages of the colimits in this
case are exactly those admissible Φ that have no strict minorization, namely

Hom(Fα(Φ), Fα(Ψ)) 6= ∅ ⇒ Fα(Φ) ' Fα(Ψ) .

The difference here is that we include the colimits of the infinite sequences of strict
minorizations, if these colimits exist in Dα, and we describe the Pareto frontier as a
category rather than a set/class.

3. Probabilistic particles

In this section we discuss a direct analog, in our categorical setting, of the usual
swarm intelligence algorithm for multi-objective optimization, and we show that this
simple generalization does not suffice to identify the Pareto frontier.

3.1. Probabilistic categories. Let FP be the category of finite probabilities, with
objects (X,P ) consisting of a finite set X with a probability measure P , and mor-
phisms S ∈ HomFP((X,P ), (Y,Q)) given by stochastic (#Y × #X)-matrices S,
namely matrices with Syx ≥ 0, for all x ∈ X, y ∈ Y and

∑
y∈Y Syx = 1 for all

x ∈ X, such that the probability measures are related by Q = S P .

As shown in [10], given a category C, one can construct a probabilistic version PC,
which can be viewed as a wreath product FP o C of the category C with the category
FP of finite probabilities.

The objects of PC and formal finite convex combinations

ΛC =
∑
i

λiCi

with Λ = (λi) a finite probability and Ci ∈ Obj(C).
Morphisms in HomPC(ΛC,Λ

′C ′) are pairs (S, f) : ΛC → Λ′C ′ with S a stochastic
matrix with SΛ = Λ′, and f = {fab,r} finite collection of morphisms fab,r : Cb → C ′a
with assigned probabilities µabr . These probabilities satisfy

∑
r µ

ab
r = Sab.

Morphisms (S, f) in PC can be interpreted as ways of mapping Cb to C ′a by ran-
domly choosing a morphism from the set {fab,r}, with probability µabr of choosing
fab,r.

We have the following simple characterization of isomorphic objects in probabilistic
categories.
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Lemma 3.1. Two objects ΛX =
∑

i λ
n
i=1Xi and Λ′X ′ =

∑m
j=1 λ

′
jX
′
j in a probabilistic

category PC are isomorphic if and only if n = m with Xi ' X ′σ(i) (isomorphic in C)

for some permutation σ and λi = λ′σ(i).

Proof. The isomorphism ΛX ' Λ′X ′ means that there is an invertible morphism
(S, f) : ΛX → Λ′X ′. In particular S with SΛ = Λ′ must be a stochastic matrix with
stochastic inverse, hence we have n = m and S is necessarily a permutation matrix.
Thus, λi = λ′σ(i) for a permutation σ. The collection of morphisms f = {fij,r} then

have probabilities µij,r satisfying
∑

r µij,r = Sij hence they can be nonzero only for
j = σ(i), with

∑
r µiσ(i),r = 1, and fi,σ(i),r : Xi → X ′σ(i) an isomorphism. �

For C a small category, it is also natural to assume that an object
∑

i λiCi of PC
where Ci = C for all i would be the same as the object C with probability Λ = {1}.
However, it is better to just require, more generally, that, whenever Ci ' C, the
objects

∑
i λiCi and C are isomorphic objects. This can be achieved by a localization

of the category PC.

Lemma 3.2. Let W be the class of morphisms is PC of the form ϕ :
∑

i λiCi → C
with ϕ = (S, f) with an n× (n+ k) stochastic matrix S of the form

S =



1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 1 0 0 0 · · · 0 0 0 · · · 0
0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 1 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 1 · · · 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 1

︸ ︷︷ ︸
`

0 0 · · · 0 ︸ ︷︷ ︸
k

0 0 · · · 0 0 ︸ ︷︷ ︸
n− `

0 · · · 1


and where the set f of morphisms consists of the identity idCi for i = 1, . . . , ` and
i = ` + k + 1, . . . , n + k, and of isomorphisms fi : Ci → C, for i = ` + 1, ` + k, all
of them occuring with probability 1. Then the localization PC[W−1] implements the
equivalence relation described above.

Proof. The category PC[W−1] is the localization of PC at W . Isomorphisms in
PC[W−1] are arbitrary compositions of the isomorphisms of Lemma 3.1 and mor-
phisms in W and their formal inverses. Thus, in this category we have isomorphisms
between an object

∑m
i=1 λiCi where the Ci for a subset i ∈ I ⊂ {1, . . . ,m} of indices

are all isomorphic to the same object C and the object (
∑

i∈I λi)C +
∑

i∈Ic λiCi. �

3.1.1. Probabilistic categories of functors. Of particular interest here is the case where
the category C is a category of functors C = Func(D,D′). In this case, when we
form the probabilistic category PFunc(D,D′), we want to interpret an object ΛF =∑

i λiFi in PFunc(D,D′) as a functor that to an object X in Obj(D) assigns Fi(X) ∈
Obj(D′) with probability λi. In order to make this heuristics precise, so that we
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can use it in defining swarm dynamics in categories, we need the following simple
statements.

Lemma 3.3. Functors F : C → C ′ extend to functors F : PC → PC ′ mapping
an object ΛC =

∑
i λiCi of PC to the object ΛF (C) =

∑
i λiF (Ci) of PC ′ and a

morphism (S, f) with f = {fab,r} and probabilities µab,r to the morphism F (S, f) =
(S, F (f)) with F (f) = {F (fab,r)} with probabilities µab,r.

This follows directly from the definition. Moreover, there is a functor between the
probabilistic category of functors PFunc(D,D′) and the category of functors between
the probabilistic categories Func(PD,PD′).

Lemma 3.4. There is a faithful functor PFunc(D,D′)→ Func(PD,PD′).

Proof. Let ΛF =
∑

i λiFi be an object in the probabilistic category PFunc(D,D′).
We first show that ΛF defines a functor in Func(PD,PD′). For ΩX =

∑
a ωaXa ∈

Obj(PD) we take ΛF (ΩX) =
∑

i,a λiωaFi(Xa) =: ΛΩF (X) in Obj(PD′), where

(ΛΩ)i,a = λiωa. For (S, f) : ΩX → Ω′X ′ in HomPD(ΩX,Ω′X ′), with f = {fab,r}
with probabilities µab,r, we set ΛF (S, f) : ΛΩF (X) → ΛΩ′ F (X ′) with ΛF (S, f) =
(S ′, f ′), where S ′ij,ab = δijSab, so that S ′ ΛΩ = ΛΩ′, and f ′ = {Fi(fab,r) · δij} with
probabilities µab,r. Consider then a morphism (R,α) in HomPFunc(D,D′)(ΛF,Λ

′F ′),
with a stochastic matrix R with RΛ = Λ′ and α = {αij,s} with probabilities νij,s
with

∑
s νij,s = Rij, and with αij,s : Fi → F ′j a collection of natural transformations

between functors in Func(D,D′). Then (R,α) defines a natural transformation of
functors in Func(PD,PD′), by taking, for each object ΩX ∈ Obj(PD) assigns the
morphism in PD′

(R,α)|ΩX : ΛF (ΩX)→ Λ′F ′(ΩX)

with stochastic matrix R and with the collection {αij,s|Xa} with probabilities νij,s,
where αij,s|Xa : Fi(Xa)→ F ′j(Xa) is the morphism in HomD′(Fi(Xa), F

′
j(Xa)) specified

by the natural transformation αij,s. The morphism (R,α) in PFunc(D,D′) uniquely
specifies this natural transformation. �

We can interpret the difference between viewing an object ΛF =
∑

i λiFi with
Fi ∈ Obj(E(C)) and Λ a probability distribution as objects of P(E(C)) or (through
the functor of Lemma 3.4) as objects in E(P(C)) as, respectively, the probabilistic and
deterministic interpretations of ΛF .

3.1.2. Other probabilistic conditions. We assume in this section that the category C
or resources, where summing functors Φ ∈ ΣC(S) take values, is a small category
endowed with a probability distribution P on the set Obj(C). This probability can be
seen as modeling the relative abundance or scarcity of resources.

Through the identification of summing functors in ΣC(S) with objects in Ĉn, with
n = #S, we then obtain an induced probability, which we also denote by P, on
Obj(ΣC(S)).
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Consider, as above, the subcategory Σadm
C (S). The condition

P(Obj(Σadm
C (S))) > 0

ensures that the set (F,X) of goals and valuations is not incompatible with the
availability of resources of type C.

Let Madm
(X,F )(Φ) ⊂ Obj(Σadm

C (S)) denote the set of all strict (F,X)-minorizations

of Φ ∈ Σadm
C (S). The condition that Φ is on the Pareto frontier is then that

Madm
(X,F )(Φ) = ∅. If the measure P has no non-empty sets of measure zero, then

λ(Φ) := P(Madm
(X,F )(Φ)) = 0 iff Φ is on the Pareto frontier.

3.2. Single particle. For the dynamics of a single particle, we initialize at time zero
by drawing an object Φ0 from Obj(Σadm

C (S)) uniformly at random with respect to
the probability measure P.

The dynamics then proceeds by making new random steps and comparing them
(“velocities” are here regarded as probabilistic jumps to a new position). Thus, at the
first step (time t = 1) a new draw of an element Φ1 is performed. With probability
λ0 = P(Madm

(X,F )(Φ0)) this new point improves the position with respect to Φ0, being

a strict minorization of Φ0. If it is not (with probability 1 − λ0) then one keeps the
same position Φ0. This means that the result of the first step is an object in the
probabilistic category PΣadm

C (S) of the form

(ΛΦ)1 := (1− λ0)Φ0 + λ0Φ1 .

At the second step (time t = 2), one makes another random draw Φ2. With λ1 =
P(Madm

(X,F )(Φ1)), one then obtains a new object in the probabilistic category of the
form

(ΛΦ)2 = (1− λ0)((1− λ0)Φ0 + λ0Φ2) + λ0((1− λ1)Φ1 + λ1Φ2)

= (1− λ0)2Φ0 + λ0(1− λ1)Φ1 + λ0(1− (λ0 − λ1))Φ2 ,

that describes all the possible relative positions of Φ0,Φ1,Φ2 with the respective
probabilities.

An inductive argument shows that one obtains the following behavior of this single
particle case.

Proposition 3.5. After n steps the outcome is an object of PΣadm
C (S) of the form

(ΛΦ)n =
n∑
k=0

cknΦk

with the probability Λn = (ckn)nk=0 satisfying the recursion (with c0
0 = 1)

(3.1)

{
ckn = ckk (1− λk)n−k 0 ≤ k ≤ n− 1

cnn =
∑n−1

k=0 λk (1− λk)n−1−k ckk
.
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Proof. We have c0
0 = 1 with c0

1 = 1− λ0 and c1
1 = λ0 as above. At the (n+ 1)-st step

we are comparing the new draw Φn+1 with each of the previous Φk: it will be better
than Φk (a strict minorization) with probability λk and not better with probability
1 − λk. When applied to the previous (ΛΦ)n we then obtain a new (ΛΦ)n+1 of the
form

c0
n((1− λ0)Φ0 + λ0Φn+1) + · · ·+ cnn((1− λn)Φn + λnΦn+1) ,

which gives c0
n+1 = (1 − λ0)n+1, c1

n+1 = λ0(1 − λ0)n, c2
n+1 = c2

2(1 − λ2)n−1, . . .,
cnn+1 = cnn(1− λn), and

cn+1
n+1 = c0

nλ0 + c1
nλ1 + · · ·+ cnnλn .

The first relations give ckn+1 = ckk(1−λk)n+1−k, while the last one combined with this
gives the second recursive relation of the statement. The recursion directly implies
that the normalization

∑
k c

k
n = 1 holds. �

We have the following easy reformulation of the recursion (3.1).

Corollary 3.6. The recursive relation for the probabilities cn = (ckn)nk=1 is imple-
mented by cn+1 = Sn cn, with the (n+ 1)× n stochastic matrix

Sn =


1− λ0 0 0 · · · 0

0 1− λ1 0 · · · 0
0 0 1− λ2 · · · 0
0 0 0 · · · 1− λn
λ0 λ1 λ2 · · · λn

 .

All the coefficients ckn are polynomials in the λi so they depend on Φ0, . . . ,Φn. The
coefficient ckn is the probability of having Φk as the “best position” of the particle dur-
ing the first n steps. More precisely, the coefficient ckn measures the probability that,
among the first draws {Φ0, . . . ,Φn} there is a subsequence of k strict minorizations
ending with Φk.

Simple numerical examples with different choices of a sequence λ0 ≥ λ1 ≥ · · · ≥
λn · · · show that this probability distribution Λn = (ckn)nk=0 can be very spread out:
it peaks somewhere in k, but not always at the end term and can be very non-
concentrated.

Lemma 3.7. For λ0 ≥ λ1 ≥ · · · ≥ λn · · · , the coefficients cnn satisfy the estimate

(3.2) ckk (1− λ0)n−k ≤ cnn ≤ ckk

for all k = 0, . . . , n− 1.

Proof. By the recursion (3.1) we have

cnn =
n−2∑
k=0

ckk(1−λk)n−kλk+cn−1
n−1λn−1 ≤ (

n−2∑
k=0

ckk(1−λk)n−1−kλk)(1−λn−1)+cn−1
n−1λn−1 = cn−1

n−1

while similarly we also get cn−1
n−1(1 − λ0) ≤ cnn. Iterating these estimates we get

(3.2). �
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In particular we have the rough estimate cnn ≥ (1 − λ0)n ≥ (1 − λ)n, where λ0 =
P(Madm

(X,F )(Φ0)) and λ = P(Obj(Σadm
C (S))).

In a similar way, we can compute other relevant probabilities. For example we have
the following.

Lemma 3.8. The probability that, among the first draws {Φ0, . . . ,Φn}, the subse-
quence {Φ0,Φ`1 , . . . ,Φ`k} with 0 ≤ k ≤ n is the maximal subsequence consisting of
strict minorizations is given by

π`1,...,`k := (1− λ0)`1−1λ0(1− λ`1)`2−`1−1λ`2 · · · (1− λ`k−1
)`k−`k−1−1λ`k−1

(1− λ`k)n−`k .

Proof. This follows directly from the recursive construction of the (ΛΦ)n discussed
above. �

The expressions π`1,...,`k(λ0, λ`1 , . . . , λ`k) of Lemma 3.8 describe the probability that
in a random draw of a sequence {Φ0, . . . ,Φn} of objects in Σadm

C (S) we can form a
longest chain of strict minorizations

{Φ0,Φ`1 , . . . ,Φ`k} ,

hence diagrams in Diagrα of the form

Fα(Φ0) //

**

Fα(Φ`1) //

##

· · · // Fα(Φ`k)

zz

· · ·

Xα

where the sequence λr = P(Madm
(X,F )(Φr)) in this case must satisfy λ0 ≥ λ`1 ≥ · · · ≥

λ`k , since in the case of successive minorizations Madm
(X,F )(Φ`r) ⊆Madm

(X,F )(Φ`r−1).

3.2.1. Single particle and colimits. Consider the case where a sequence {Φk}∞k=0 of
objects in Σadm

C (S) forms an infinite system D of strict minorizations in Diagrα of the
form

(3.3) Fα(Φ0)
ϕ0→ Fα(Φ1)

ϕ1→ · · · → Fα(Φn)
ϕn→ · · ·

that has a colimit Lα(D) in Dα.

Proposition 3.9. (1) The system (3.3) induces a system in PDα of the form

(3.4) · · · →
n∑
k=0

ckn Fα(Φk)
(Sn,ϕn)
→

n+1∑
k=0

ckn+1 Fα(Φk)→ · · ·

with the Sn are as in Corollary 3.6 and the set ϕ
n

consists of the maps idFα(Φk)

for k = 0, . . . , n with probability 1−λk and ϕk,n+1 = ϕn◦· · ·◦ϕk with probability
λk.
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(2) A collection of M cocones in Dα given by commutative diagrams

(3.5) Fα(Φ0)
ϕ0
//

f0,r

**

Fα(Φ`1)
ϕ1

//

f1,r

$$

· · · // Fα(Φ`k)
ϕk

//

fn,rzz

· · ·

Yα,r

for r = 1, . . . ,M , together with a sequence of M × n stochastic matrices S̃n
with columns equal to the uniform distribution 1/M on the set r ∈ {1, . . . ,M},
induces a cocone in PDα with commutative diagrams

(3.6) · · · //
∑n

k=0 c
k
n Fα(Φk)

(Sn,ϕn)
//

(S̃n,fn)

))

∑n+1
k=0 c

k
n+1 Fα(Φk) //

(S̃n+1,fn+1
)

��

· · ·

Λ̃Yα

where Λ̃Yα =
∑M

r=1 λ̃rYα,r with Λ̃ = (λ̃j = 1/M) the uniform probability
distribution 1/M . The set of morphisms f

n
consists of the fk,r : Fα(Φk) →

Yα,r, for k = 0, . . . , n, each occurring with probability 1/M .

Proof. (1) This follows from the fact that the maps ϕk,n+1 = ϕn ◦ · · · ◦ ϕk satisfy the
properties of a directed system ϕn+2,m+1 ◦ ϕk,n+1 = ϕk,m+1 and ϕk,k = idFα(Φk).

(2) In order to obtain commutative diagrams the sequence of stochastic matrices S̃n
must satisfy the recursive condition S̃n+1 ·Sn = S̃n, or equivalently (1−λk)(S̃n+1)rk+
λk(S̃n+1)r n+1 = (S̃n)rk, for k = 1, . . . , n. This recursive condition S̃n+1 · Sn = S̃n is
solved by the stochastic matrices S̃n with columns given by the uniform distribution
1/M on r ∈ {1, . . . ,M}. Thus, we obtain commutative diagrams

· · · //
∑n

k=0 c
k
n Fα(Φk)

(Sn,ϕn)
//

(S̃n,fn)

))

∑n+1
k=0 c

k
n+1 Fα(Φk) //

(S̃n+1,fn+1
)

��

· · ·

Λ̃Yα

where Λ̃Yα =
∑

r λ̃rYα,r, with the probability measure Λ̃ determined by S̃ncn = Λ̃,

where the left-hand-side is independent of n by the conditions S̃n+1 · Sn = S̃n and
Sncn = cn+1. For S̃n as above this gives that Λ̃ is the uniform distribution 1/M . This
diagram defines a cocone in PDα. �

Corollary 3.10. Consider a diagram (3.3) with colimit Lα(D) in Dα, and the class
of cocone diagrams in PDα of the form (3.6) obtained as in Proposition 3.9. This
class of cocones, seen in the localization PDα[W−1], has colimit isomorphic to Lα(D).
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Proof. For each diagram we have canonical maps from the system to the colimit and
from the colimit to the tip of the cocone

Fα(Φ0)
ϕ0
//

**

%%

Fα(Φ`1)
ϕ1

//

%%

��

· · · // Fα(Φ`k)
ϕk

//

yy

��

· · ·

Lα(D)

��

Yα,r

As in Proposition 3.9 this gives induced diagrams in PDα with Λ̃ the uniform prob-
ability distribution,

· · · //
∑n

k=0 c
k
n Fα(Φk)

(Sn,ϕn)
//

''

��

∑n+1
k=0 c

k
n+1 Fα(Φk) //

vv

~~

· · ·

Λ̃Lα(D)

��

Λ̃Yα

hence we can identify Λ̃Lα(D) with the colimit of this class of cocones. By view-
ing these induced diagram in the localization PDα[W−1] we obtain an isomorphism
Λ̃Lα(D) ' Lα(D). �

In particular, consider the case of finite diagrams in D of strict minorizations in
Diagrα, with Φn on the Pareto frontier,

(3.7) Fα(Φ0) //

**

Fα(Φ1) //

##

· · · // Fα(Φn)

{{

Xα

where we have λ0 ≥ λ1 ≥ · · · ≥ λn−1 and λn = 0, since Φn is on the Pareto frontier,
hence Madm

(X,F )(Φn) = ∅. We obtain in this case, by the same argument above, that

the colimit of the induced finite diagrams of the
∑

k c
k
mFα(Φk) with 0 ≤ m ≤ n, is

given by the object Λ̃Fα(Φn) with Λ̃ the uniform distribution. This is isomorphic to
Fα(Φn) in the localization PDα[W−1].

This shows that our probabilistic single particle model still computes the same
colimit over a sequence of minorizations in Diagrα, so it does identify the Pareto
frontier, both in the case of finite and of infinite chains of minorizations.

However, because of the fact that the probability distribution cn = {ckn}nk=1 tends
to be very spread out, the single particle model does not provide an efficient com-
putational method. Moreover, we have not established yet a method of construction
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of successive approximations to the Pareto frontier using sequences of random draws
{Φn}n≥0 and their associated probabilistic objects

∑
k c

k
nΦk. We will address these

in the next section.

4. Swarms in categories

In order to address approximation, we need to assume additional structure on
the target categories Vα of the valuation functors. In particular, we introduce a scale
parameter in the Vα so that we can consider these target objects as varying at different
scales. We then use the changes of scale to introduce a notion of proximity, in the form
of the associated interleaving distance, [1], [2]. This is a way of measuring proximity
between Vα-type resources by checking whether resource conversion can be inverted
after a sufficiently small change of scale. This provides a convenient measurement of
approximation and convergence to the Pareto frontier, with respect to which one can
evaluate possible approximation algorithms. In particular, we will discuss analogs in
this setting of the swarm intelligence algorithms for multi-objective programming.

4.1. Scale structure. As described above, we consider an additional scale parame-
ter, that we incorporate in the target categories, by replacing the Vα with categories

of functors V(R,≤)
α = Func((R,≤),Vα) from the thin category (R,≤) to the category

Vα. Thus, objects in V(R,≤)
α are determined by a family Yα(s) of objects in Vα, pa-

rameterized by s ∈ R, and a family of morphisms ϕs≤s′ : Y (s) → Y (s′). Morphisms
HomV(R,≤)

α
(Y, Y ′) are natural transformations, determined by collections of morphisms

ϕ(s) : Y (s)→ Y ′(s) in Vα satisfying the compatibility ϕ(s′)ϕs≤s′ = ϕs≤s′ϕ(s).

We consider, as before, valuation functors Fα : ΣC(S) → V(R,≤)
α and target ob-

jects Xα = ((Xα(s))s∈R, ϕs≤s′) in V(R,≤)
α . Thus, in this setting the target objects

vary with the scale parameter s ∈ R. Similarly, using the natural identification of
functors in Func(ΣC(S),Func((R,≤),Vα)) with functors in Func(ΣC(S)× (R,≤),Vα),
we can think of the valuation functors themselves as dependent on a scale factor
Fα = (Fα,s)s∈R with Fα,s : ΣC(S)→ Vα.

On the category V(R,≤)
α there are “change of scale” functors, which are a special case

of the more general flow/coflow structure we recall in §4.2 below. For each ε ≥ 0,

there are endofunctors Tε : V(R,≤)
α → V(R,≤)

α with T0 = id and TεTε′ = Tε+ε′ with
TεX(s) = X(s+ ε) and Tεϕs≤s′ = ϕs+ε≤s′+ε.

Note that colimits of functors are evaluated pointwise, so if colimits exist in Vα
then they also exist in V(R,≤)

α . The functors Tε preserve colimits, namely the colimit
of the image diagram is the image of the colimit.

4.2. Categories with coflow. We consider here the case where the target categories
of the valuation functors are categories with coflow in the sense of [4], see also [5], [7].
Examples of categories with flows (and dually coflows) include persistence modules
and derived sheaves ([5], [7]). We recall briefly the main properties of categories with
flows and coflows that we need to use in the following.
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A flow on a category V is a functor T : [0,∞) → E(V) from the thin category
([0,∞),≤) to the category E(V) of endofunctors of V , with natural transformations
µε,ε′ : TεTε′ → Tε+ε′ and µ0 : idC → T0, so that µ0,εµ0idTε : Tε → T0Tε → Tε and
µ0,εidTεµ0 : Tε → TεT0 → Tε are the identity and µε,ζ+δidTεµζ,δ = µε+ζ,δµε,ζIdTδ and
Tε+ζ≤δ+κµε,ζ = µδ,κTε≤δTζ≤κ, with Ts≤s′ the natural transformation in E(V) associated
to the morphism s ≤ s′ in [0,∞), see Definition 1 of [4].

A coflow on a category is defined dually. Namely (V , T ) is a category with coflow iff
(Vop, T op) is a category with flow. (The opposite functor T op acts as T on objects and
morphisms, but natural transformations between opposite functors have the reversed
direction.) The special case of the “change of scale” functors on a category V(R,≤)

described in §4.1 are an example of a strict flow, where T0 = id and TεTε′ = Tε+ε′
instead of having natural transformations between them. While we will work here
mostly with this special case, we recall here the more general setting, as most of what
we will discuss generalizes easily to more general categories with coflows.

The main advantage of a flow or coflow structure on a category V is that it deter-
mines on X = Obj(V) an extended-pseudo-metric. We assume here that X is a set.
By extended-pseudo-metric we mean a function d : X ×X → R≥0 ∪ {∞} with

(1) d(x, y) ≥ 0 for all x, y ∈ X, with d(x, y) = 0 if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

So unlike an actual metric d can take value ∞ and can also take value 0 on some
pairs of non-coincident points. The extended-pseudo-metric structure determined by
a flow or coflow is called the interleaving distance. It is defined as follows.

As in [4], [5], we say that two objects A,B in X = Obj(V) are ε-interleaved if there
are morphisms α : A→ TεB and β : B → TεA in V with a commutative diagram

T0A

��

Aoo

α

$$

B
β

zz

// T0B

��

TεA
Tεα

$$

TεB
Tεβ

zz

T2εA TεTεAoo TεTεB // T2εB

Then define the interleaving distance as

d(V,T )(A,B) := inf{ε ≥ 0 |A and B are ε-interleaved} ,
were the value can be equal to ∞ if no ε-interleaving occurs for any ε ∈ R≥0. The
distance is zero if A and B are isomorphic.

We also recall the following result of [4].

Proposition 4.1. Let (V , T ) be a category with a coflow with the following properties:

(1) all diagrams D of shape • → • → • → · · · have colimits in V;
(2) for all ε > 0, the functor Tε preserves the colimits, namely if TεcolimD '

colimTεD.
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Then (Obj(V), d(V,T )) is metrically complete.

4.2.1. Scale and conversion of resources. In the categorical theory of resources [3],
[6], one interprets morphisms as processes of conversion of resources. Thus, two
isomorphic objects represent resources with the property that there is a conversion
process from one to the other that is fully reversible. Based on this idea, and on the
interleaving distance recalled above, we can describe proximity of resources through
the existence of a conversion process that becomes reversible at a different scale.

Namely, if our category of resources is of the form V(R,≤) (or is more generally a
category with a coflow that we can think of as implementing changes of scale), we say
that resources A(s) and B(s) are ε-convertible if there are conversion processes αs,ε :
A(s)→ B(s+ ε) and βs,ε : B(s)→ A(s+ ε) that form an ε-interleaving diagram. We
say that A(s) and B(s) are ε-close if their interleaving distance d(V(R,≤),T )(A,B) ≤ ε,
with respect to the change of scale functors T .

One can think of this condition, for example, in a setting where higher scales
correspond to a coarsening of the system with fewer averaged out variables, as in a
renormalization procedure in statistical physics, for example. In such a setting. one
can have a conversion of resources A(s) → B(s) at a certain scale s, where B(s) is
not sufficient to fullly reconstruct A(s) but sufficient to reconstruct an averaged out
version at a larger scale A(s + ε). In a different setting, one can instead think of a
situation where the system at lower scales is run by simpler variables but at higher
scales it involves more complex emergent phenomena, with a conversion at higher
scale not being fully reversible, but still sufficient to reconstruct the simpler systems
at lower scales. In this second case s 7→ s+ ε zooms in to lower scales rather than to
higher scales: we should in general think of s as an order of magnitude and some λs

with λ > 0, either smaller or larger than 1, as the actual scale parameter.

Definition 4.2. In a category of resources of the form V(R,≤), with a scale parameter
s ∈ R, we say that a conversion of resources given by a morphism ϕs : A(s)→ B(s) is
ε-reversible if there is a βs,ε : B(s)→ A(s+ε) such that βs,ε◦ϕs = Tε : A(s)→ A(s+ε).

Remark 4.3. An ε-reversible morphism ϕs : A(s)→ B(s) fits into an ε-interleaving
diagram obtained from the two commutative diagrams

A(s)
Tε◦ϕs

//

T2ε

77
B(s+ ε)

βs,ε
// A(s+ 2ε)

and

B(s)
βs,ε
//

T2ε

77
A(s+ ε)

Tε◦ϕs+ε
// B(s+ 2ε) .
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4.3. Colimits and approximation. Consider as before a diagram D in Diagrα
consisting of a sequence of minorizations as in (3.3). Now all the objects are in V(R,≤)

α

so we write the scale dependence explicitly

(4.1) Fα,s(Φ0)
ϕ0,s→ Fα,s(Φ1)

ϕ1,s→ · · · → Fα,s(Φn)
ϕn,s→ · · ·

with colimit Lα,s(D), for s ∈ R.

Proposition 4.4. Given a diagram as in (4.1), if for all ε > 0 there is an n0 ∈ N
such that, for all n ≥ n0 there are maps υn,ε : Fα,s(Φn+1)→ Fα,s+ε(Φn) that fit into a
commutative diagram

Fα,s(Φn)

Tε
��

ϕn,s
// Fα,s(Φn+1)

Tε
��

υn,ε
ww

Fα,s+ε(Φn) ϕn,s+ε
// Fα,s+ε(Φn+1)

then the sequence {Fα,s(Φk)} converges in the interleaving distance to the colimit
Lα,s(D) of the diagram (4.1).

Proof. We obtain from the commutative diagram above an ε-interleaving diagram as
in Remark 4.3, with

Fα,s(Φn)
Tε◦ϕn,s

//

T2ε

66
Fα,s+ε(Φn+1)

υn,ε
// Fα,s+2ε(Φn)

and

Fα,s(Φn+1)
υn,ε
//

T2ε

55
Fα,s+ε(Φn)

ϕn,s+2ε◦Tε
// Fα,s+2ε(Φn+1)

We then have the following commutative diagram, where ψn,s are the morphisms to
the colimit, and the morphisms ωα,ε : Lα,s(D)→ Fα,s+ε(Φn) are uniquely determined
by the universal property of the colimit,

Fα,s(Φn)

Tε

��

ϕn,s
//

ψn,s

++

Fα,s(Φn+1)

Tε

��

υn,ε

~~

ψn+1,s

''

Lα,s(D)
ωα,ε

ss

Fα,s+ε(Φn) ϕn,s+ε
// Fα,s+ε(Φn+1)

This similarly determines ε-interleaving diagrams

Fα,s(Φn)
Tε◦ψn,s

//

T2ε

66
Lα,s+ε(D)

ωα,ε
// Fα,s+2ε(Φn)
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and

Lα,s(D)
ωα,ε
//

T2ε

66
Fα,s+ε(Φn)

ψn,s+2ε◦Tε
// Lα,s+2ε(D)

Thus, we obtain that the interleaving distance d(Fα(Φn), Lα(D)) ≤ ε. �

4.4. Particle swarm algorithm. We can then consider a possible particle swarm
algorithm designed in the following way. We are assuming that, given two objects

Y, Y ′ in a target category V(R,≤)
α , the morphisms HomV(R,≤)

α
(Y, Y ′) are explicitly known.

The algorithm also requires the existence diagrams in Diagrα with ε-reversible strict
minorizations for sufficiently large n. We can then map an ε-neighborhood of the
Pareto frontier with the following swarm algorithm, using a large number n of draws
for each particle and a large number N of particles.

• Choose an approximation level ε > 0.
• Initialize a swarm of N probabilistic particles, by random draws of their initial

positions Φ
(1)
0 , . . . ,Φ

(N)
0 in Σadm

C (S).
• For each i = 1, . . . , N proceed as in the case of the single particle of §3 through

successive draws of positions Φ
(i)
k in Σadm

C (S), for k = 1, . . . , n.

• At each successive draw Φ
(i)
k check if the (F,X)-strict minorization condition

HomV(R,≤)
α

(Fα(Φ
(i)
` ), Fα(Φ

(i)
k )) 6= ∅ holds for previous draws Φ

(i)
` , 0 ≤ ` < k.

• If the strict minorization condition holds, check if the ε-reversibility, namely
the existence of morphisms as in Proposition 4.4, reversing the minorization
direction up to a scale shift.

• If a strict minorization with ε-reversibility exists, then the new draw Φ
(i)
k is

in an ε-neighborhood of the Pareto frontier. The chain of minorizations from

Fα(Φ
(i)
0 ) to this Fα(Φ

(i)
k ) gives a corresponding ε-approximation to a diagram

in Diagrα.
• If ε-invertibility is not satisfied, select a longest chains of strict minorizations

in the sequence {Fα(Φ
(i)
0 ), . . . , Fα(Φ

(i)
n )}. Let Fα(Φ

(i)
k ) be the last term of this

sequence.

• Search for chains of strict minorizations starting at Fα(Φ
(i)
k ) among the set

{Fα(Φ
(j)
k )}Nj=1 of the other swarm particles positions at the same time.

• For each strict minorization check ε-invertibility. Whenever an ε-reversible
strict minorization is found the corresponding particle position is in an ε-
neighborhood of the Pareto frontier.
• For all the chains of strict minorizations that do not satisfy ε-reversibility

among the Fα(Φ
(j)
k ) continue the search with the new draws Fα(Φ

(j)
k+1) and

repeat the process.

This procedure alternates between new draws Φ
(j)
k+1 for each particle and searching

for best positions for a given particle up to a given time n and comparing positions

of different particles Φ
(j)
k , i = 1, . . . , N at a fixed time k, as in the case of the original
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swarm intelligence algorithm. Multiple runs of the algorithm will identify points in
an ε-neighborhood of the Pareto frontier.
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