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PARABOLIC POINTS AND ZETA-FUNCTIONS OF MODULAR CURVES

UDC 511
Ju. 1. MANIN

Abstract. In this paper we obtain explicit formulas for the values at the center
of the critical strip of Dirichlet series connected with weight 2 parabolic forms of
the group T (N) In particular, these fomulas allow us to verify the Birch—Swinnerton-
Dyer conlecture on the order of a zero for uniformizable elliptic curves over certain
l-extensions. We also give applications to noncommutative reciprocity laws.

Introduction

Let X be an elliptic curve over the field Q, N its conductor, @ a Neron differ-
ential, and L(X, s) the canonical Dirichlet series. Further, let X, be the standard
modular curve over Q parametrized by the group ' |(N). Weil [16] con]ectured that
there exists a morphism ¢ : X»X over Q such that the differential ¢ @) lifted
to the uppper halfplane H has the same Fourier coefficients as the Dirichlet series
L(X, s) (see the precise formulation in §5.2 of this paper). We call such a morphism
Y a Weil uni formization of the curve X,

In this paper we show that the existence of a Weil uniformization for the curve X
allows us to give explicit formulas for the values of L(X, 1), and also L(X ® K, 1),
for all possible abelian extensions K D (. These explicit formulas have the structure
predicted by the Birch—Swinnerton-Dyer conjectures. Comparison with Mazur’s theory
[10] of elliptic curves over I'-extensions of () also shows a good agreement with the
Birch—Swinnerton-Dyer conjecture. In particular, Mazur's '‘anomalous prime numbers"’
appear in an analytic context.

The general idea for obtaining explicit formulas for LIX®K, 1) consists in the
following. Let ®(z)dz be the preimage of w on H, and let {0, i} be the path on
XN(C) which is the image of the imaginaty semiaxis on H. From the classical integral

representation for L(X, s), we find, after a suitable normalization of i, that

ioo
LX, )= [0@d= [ v@= | o
1} {O.ioo} w.{o.ioo}
Since ) (i =) is the zero point on X(C), it follows that L(X, 1) is the Abel-Jacobi
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argument of the image of 0 € H, i. e. of some parabolic point on Xy If the images of
0 and i coincided, then to compute L(X, 1) we would have to integrate @ over some
closed path in X(C) (and even X(R)), so that the number L(X, 1) would be an integral
multiple of the minimal real period of the differential w. In general this is not the case.
Nevertheless, we were able to find a technical device which allows us to reduce to in-
tegration over closed paths in X(C), Hecke operators are used to do this in the case of
ground field Q, and in the case of an abelian extension KD Q we use the expansion of
the series L(X®K, s) with respect to the characters x of the Galois group and the
Hecke-Weil lemma on Mellin tuanforms of the series L, (X, s). This device and the
resulting formulas make up the conceptual ceater of the paper; they are presented in
§83-5.

The homology classes in the group H, (X5 (C), Z) over which we must integrate
¥ (@) to compute L(X ® K, s) are fundamental arithmetic invariants of the curves X
and X,. Hence the paper begins by studying them: in §1 we prove a new theorem on
the structure of the first homology group of a curve uniformized by any subgroup G of
the modular group, and in §2 we specialize this theorem to the case G = FO(N).

§86 and 7 contain applications of these results. Namely, §6 is devoted to com-
paring them with the Birch—Swinnerton-Dyer conjecture. To make this comparison, we
must have independent information about the rank of X(K) and the order of the Tate-
Safarevi& group of the curve X®K, Mazur’s theory [10], [11] (see also [9]) obtains
several results of this type, and they actually lend themselves to detailed comparison
with our formulas.

In $7 we give new exact formulas for the coefficients of parabolic forms relative
to the group 1" (N), which call to mind the noncommutative reciprocity law or the
Eichler relations, where, however, we have an indefinite rather than a definite quater-
nion quadratic form.

Finally, $8 contains tables of arithmetic invariants and a discussion of them.

I am grateful to A. N. Andrianov, whose conversations with me stimulated some
new ideas for this paper.

I am also grateful to M. Z. Rozenfel'd, who computed vast tables of the functions
x¥ for the group [',(11) on the computer '‘System 4'" of the Institute for Control Prob-

lems of the Academy of Sciences of the USSR, and to V., Drinfel'd, who composed similar
tables for the groups I'j(N) with N = 14, 17, 19 and who kindly agreed to their publi-

cation in this article.
After completing this work, I learned that Professor Birch (England) has also ob-

tained some results close to ours, and that Professor Mazur (USA) and Professor

Swinnerton-Dyer (England) have independently examined the functions x%

§1. llomology of modular curves
1. 1. General information. For the duration of the paper we use the following
notation: H =1z € C|Imz > 0} is the upper halfplane; H =H {J Q U (o) is its com-

pactification with the usual topology;
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[ {zmaz—f-b

z-i-d

(: 5)esu2, Z)}

is the group of automorphisms of H, which we identify with PL(2, Z) = SL(2, Z)/(¢1)

and whose elements are written as the corresponding matrices.

Let G C I be a subgroup of finite index. The topological space XG(C) = G\H has
a natural structure of a smooth compact complex space of topological dimension 2. By
¢ : H » X [(C) we always designate the natural projection mapping.

Let i €H, i2 =~ 1; p=e™/3 €H. Points in the set ¢(Ii |J Tp) CX(C) are
called elliptic points, and points in $(Q | ti)) = ¢([(i ) C X ;(C) are called para-
bolic points. The map ¢ is unramified outside these points. Both sets are finite.

1. 2. The classes {a, Bl.. Let a, BE€H be two points such that ¢la) = ¢(B) €
X ;(C), or, equivalently, Ga = GB. Then any path from a to 8 on H becomes a closed
path on X -(C) whose homology class depends only on a and B. This homology
class will always be denoted by the symbol fa, B}, € H (X (C), Z).

More generally, integration allows us to associate a homology class with real co-
efficients to any pair of points a, B8 € H even if ¢(a) # ¢(B). We consider the differ-
entials of the first kind « € HO(XG(C), Q). Any class y € H,(X (C), Z) determines
a functional on the space of these differentials: vv‘—»fy . The group of such func-
tionals forms a lattice of maximal rank in the dual space of HO(XG(C), Q). Extending

this map by P-linearity, we obtain an R-isomorphism
H,(Xs(C), R) = Hom¢ (H°(Xc(C), Q"), C).

Consequently for any two points &, 3 € H the functional wmff ¢*(w) can be ident-
ified with a real first homology class, which we shall denote by la, ﬁ}G in the general
case, Obviously, if ¢(a) = ¢(8) this notation coincides with the earlier notation. We
shall sometimes write {a, Bl instead of {a, B}, and f{a,,@} w instead of fﬁ ¢* (w).

L. 3. First properties of the classes {a, Bl. Obviously, {a, al=0, {a, B} =
—{B, a}. The following properties are also obtained immediately from the definition:

a) fa, Bl + 1B, yl+ ly, al=0.

b) lga, gBl; = la, Bl forall g €G.

c) If the genus of X (C) is nonzero, then {a, Bl; € H (X (C), Z) if and only
if B € Ga or, equivalently, ¢ra) = (B).

(Sufficiency follows from the definition, and necessity follows from the Abel-
Jacobi inversion theorem.)

The following fact requires a somewhat more detailed discussion.

1. 4. Proposition. Let o € H. The map
G—~H,(Xs(C), Z) : g~ {a, ga}a

is a surjective group homomorphism which does not depend on the choice of a. The
kernel of this homomorphism is generated by the commutator, by the elliptic elements,
and by the parabolic elements of the group G.
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Proof. The fact that the map g v~{a, g a} is a homomorphism is easily obtained
formally by applying 1.3 a) and b):

{a, gha} = {a, ga} + {ga, gha} = {a, ga} + {a, ha}.

To prove the remaining assertions, we must use a direct geometric intel;pretation of this
homomorphism.

We first suppose that ¢(a) € X _(C) is neither an elliptic nor a parabolic point.
Let H? be the complement of I"'i |J I"p in H, and let Xg(C) be the complement of
the set of elliptic and parabolic points, The map ¢: H® & X%(C) is an unramified
covering with Galois group G. Consequently any point o. € H? determines a surjective
homomorphism =, (X2 (C), ¢(a)) » G. Its explicit description is as follows: suppose
we are given a closed path on X (C) starting at ¢(a). We life it to a path in H® start-
ing at &, The endpoint of this path has the form ga for a uniquely determined element
g € G. This element is what we associate to the class of the original path on Xg(C).

It is clear from this description that the composite map

1 (X5(C), 9 () — G— H,(Xs(C), Z)

(the second row takes g to {a, galG) coincides with the canonical homorphism of the fun-
damental group of the surface X OG(C) into the homology group of the compactification
XG(C)' This immediately implies that the map is surjective and does not depend on the
choice of the point a. Further, the structure of the group 7, is well known; using this,
we easily observe that the kernel of the homomorphism m, -+ H, is generated in m,
by the commutator and the circuits around the elliptic and parabolic points, which con-
tract in compactification. But the images of these circuits in G make up precisely the
elliptic and parabolic elements. This completes the discussion of the case a € H®,
Finally, let a € T(i, p, i =) and g € G. We choose a point &, € H? so close to
a that there exist open neighborhoods U, D (a, a ), U, > (ga, ga,) in H such that
the union of their images qS(Ul) U #WU,) in X (C)is simply connected. We choose
a path from a to ga and one from a, to ga,, which coincide outside U, |J U,.Since
their images on XG(C) coincide outside ¢(Ul) U ¢I(U2), it follows that the homology
classes of these paths are identical, so that {a, ga}‘G= {ag goglg - This completes
the proof, because all the required properties have been proved for the classes

lag, gayls.
1. 5. Distinguished classes. Let | = G\I' be the set of right cosets. We define

the map

£:/—-H (Xe(C), R)
as follows: if j € ] and g is any representative of rhe class j, then

(/) ={g(0), g(ico)}s. ¢9)
Obviously this class does not depend on the choice of the representative g (see 1.3 b)).
We have thereby defined a finite family of homology classes &J); we shall call its

elements distinguished classes. We note that, in general, they are not integral.
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L. 6. Proposition. a) Any class in HI(XG(C)’ Z) can be represented as a sum of
distinguished classes. In particular, the distinguished classes generate H (X -(C), R)
as an R-space.

b) The representation of any class h € H l(XG(C), Z) as a sum Emk{ak, ﬁkl of
distinguished classes can be chosen so that Zm (H(B,) - ¢(a,)) = 0 (as a zero-dimen-
sional cycle on XG(C)).

Proof. By Proposition 1.4, any class in H,(X(C), Z) has the form {o, g(0)},
where g € G. If g(0) = ioo, then this class is distinguished and (i =) - ¢(0) = 0.
Otherwise, let g(0) = b/a be a rational number in lowest terms, a > 0. Also let b > 0;
the case b <0 is treated similarly. We expand b/a as a-continued fraction and consider

the successive convergents in lowest terms:

b b b

b b b _by Pt by 0
a au’an—-l’“"ao 1, a-—-l O’a—z“i
(the last two "‘fractions’’ are added formally).
It is well known that b,a, , -~ b, 2, = (- D¥"1 so that
be (—1)*p—y
gk e ( ( )k‘l k—1 E F.
ar (—D" ap—y
Hence the classes
by b .
(=, = a0, oy
Qv G
are distinguished. Finally, by 1.3 a), ‘
n h n
b bpy by -
o2 = 5 {—~ el S £(Gaw. @
a k=1 Gy G P '

This representation obviously has the required properties, so the proof is finished.
1. 7. Relations between distinguished classes. The group I' acts on the right on
the set of right cosets | = G\T', In this group we consider the two special elements

S::((l) —(1)) and tr:({ _(1)) ; S2=12=id.

The element s takes (0, i =) to (i, 0) and successive application of ¢ takes

’

(0, i =) to (i, 1) and then to (1, 0). Using the definition of &) (see (1)) and prop-

erty 1.3 a), we find two types of relations between distinguished classes:
S)HEGS) =0, E()=0, if j=js; 3)
E()+5(H) +E(GY =0,  E())=0, if [=jt (4)

(the second relation in each group follows because there is no torsion). We show that
in some sense this system of relations is complete. In order to formulate the result pre-

cisely, we introduce some new notation.
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1. 8. a) Algebraic formulation. We let C designate the abelian group generated by
the symbols (j) for all j € G\ I, with the relations

() +(s)=0, (=0, if j=js. (3"

Ve call the elements of the group C G-chains. Let g €I" belong to the class j € ],
g= (: Z). By the boundary of the chain (j) we mean the difference between the two
parabolic points: @(g(i =)) — ¢(g(0)) = Ga/c - Gb/d. We consider this difference as
an element of the free abelian group generated by the set of parabolic points

G\@ U (i=)). Since s interchanges 0 and i, it follows from (3') that the boundary
operator extends to the entire group C by linearity, We designate its kernel by Z; the
elements of the kernel are called G-cycl'es.

Finally, let B be the subgroup of C generated by elements (j) for all j € ] with
the condition j = jt, and by the elements (j) + (j) + (jt?) for the remaining j. We easily
see that B C Z; the elements of B are called G-boundaries.

The map £:G\I' > Hl(XG(C), R), defined in 1.5, extends to a homomorphism & :
C »H (X (C), R) because £() + £(js) = 0. Here £(Z) coincides with the jntegral
homology subgroup by Proposition 1.6 b), and £(B) = 0 by (4).

Thus we obtain a surjective homomorphism

Z|B—~H(Xc(C), Z). (5

b) Geometric formulation. The groups C, Z and B can be realized as the sub-
groups of l-chains (l-cycles, l-boundaries) of some cell complex K(G), which we shall
call a parabolic complex. Here is its description.

O-cells are the elements of the set of parabolic points G\(Q U ieo).

l-cells are in one-to-one correspondence with the set of orbits of the group (id, s),
which acts on the right on G\I'. Every such cell (j, js) joins two O-cells in the boundary
() (or (js)): Ga/c and Gb/d, if (: Z) belongs to the class j. If these O-cells coin-
cide, then the corresponding l-cell is a loop. We choose the orientation arbitrarily.

2-cells are of two sorts: two-sided and triangular. Let j € J, j = jt. Then the 1«
cell corresponding to (j, js), as described above, is a loop: if g € I' belongs to the
class j, then Gg(0) = Ggt(0) = G(i o). We glue this loop by a 2-cell: we call such cells
two sided.

Finally, let j € J, j # jt. Then the l-simplices (j, js), (jt, jts) and (jt?, jt’s),
form a triangle; we glue it with a 2-cell; we call such 2-cells triangular.

It is now clear that there exists a map C » C,(K(G)) which takes a G-chain (j) to
a K(G)-chain: “‘the simplex (j, js), oriented from Gb/d to Ga/c*’ (if (¢ %) belongs
to the class j). We easily see that this map induces an isomorphism Z/B =

H, (K(G), Z), which, together with (5), gives us a surjective map
Hl (K ((;)’ Z) - Hl (XG (C)v Z)' (6)
The following theorem is the fundamental result of this section. It gives a repre-

sentation of the group H (X (C), Z) by generators and relations which is convenient

for computation and is functorial in G.
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1.9. Theorem. The maps (5) and (G) are isomorphisms.

Proof. We construct a complex L of the space XG(C) and represent HI(XG(C)v Z)
as the factor group Z l(L)/B (L) of the l-cycles of L by the l-boundaries.

We then imbed the group Z in Z,(L) in such a way that z mod B,(L) = £(z) for
all z € Z,

Finally, we show that the boundary of any 2-cell of the complex L belongs to Z
(under the above imbedding ZC Z (L)) and coincides with one of the generators of the
group B of the form (j) (for j =jt) or (j) + (jt) + (jzz).

Obviously all these results and the surjectivity of £ give us the isomorphism
z/B =~ Z (L)/B (L) = H (X ;(C), Z), which we are trying to establish.

We realize this program in several steps.

a) Preparation for constructing the complex L. Let o, B € H be two points. We
let <a, B> designate the segment joining them along the geodesic oriented from a to
B. (We recall that the geodesics are semicircles and lines orthogonal to the real axis,)

The triangles, quadrilaterals, etc. which we refer to will be the figures on H
formed by geodesic segments joining the vertices of these figures, and also their
¢-images on X (C).

We let E” designate the interior of the triangle with vertices (0, 1, i ), and we
let E' designate the union of the interior of the quad-
rilateral with vertices (i, p, 1 + f, { ) and the side
<i, p>, except for the vertex i{. Each of the quadri-
laterals E',tE' and t’E' is a fundamental region for
the entire group I'. In addition, all the l-simplices in

 /+; Figure l—the half-sides and half-medians of the tri-
angle E”—imbed homomotphically into X 1 (C). (These
are both classical assertions.)

b) Description of L.

0-cells. These are all the parabolic points and all the

Iy
Z

i-elliptic points on X -(C), the images of the vertices
and the midpoints of the sides of the triangles gE”,
g€l

1-cells. These are the images of the half-sides of

Figure 1 the triangles gE", g € ', oriented “‘from the vertex to
the midpoint,”’ 1. e. from the parabolic point to the i-
elliptic point.
It is convenient to introduce a family of l-cells indexed by the classes j € G\I'

by setting
24(f) = image (g(io0), g(i))in X (C) (M
for any representative g € I” of the class ;.

Since I' is transitive on half-sides, it follows that any l-cell has the form e,(j)
for some j € J. On the other hand, the stationary subgroup of i in T’ is equal to
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(id, s); hence e () = ¢ (k) is only possible for k,j € ] if k =; or k = js; otherwise
e,(j) and e (k) have different endpoints. Moreover, for j # js we have el(]‘) £ el(js).
In fact, in this case the images of the classical fundamental region (- p, ie, p) and
its s-translation on X (C) are disjoint.

2«cells. They are of two types: two-sided and triangular,

The two-sided ez'(j) are indexed by the classes i €] for which jt = j: by defin-
ition, the cell e,(j) is ¢(gE'), where g € " is any representative of the class j. (The
interior of E' maps to ez' (7), and the half-median g<p, i> becomes a cut from the cen-~
ter to the boundary of this cell.) We orient ez' (7) in the usual way. Then

92y (j) = ey () — &y (fs). (8)

In fact, de, (j) consists of the images of the paths <g(i ), g()> and <g(l + i), gli o)>,
where g is a representative of j. According to (7), the first of them is e,(j), while the

second is equal to the image of
(gt (1 + i), g*(i o0)) =<g(i);g(0)> = <gs(i), gs(i oo)>,

i. e. ~e (js). Obviously e,(j) # e, (&), if j # k.

The family of triangles e;'(j) is indexed by the classes j€ | for which jt £ j.
By definition, the cell e; (j) is H(gE"), where g € I" is any representative of the
class j. (This is the cell: E' =E' (J tE' |J t’E', and all the classes j, jt and ji?
are distinct.) In the usual orientation induced by the complex structure, we have

z
des() = 3 (e (i) — ey (jt°s)) ©)
a=g
(this follows from the analogous formula for the boundary of E” on H, which the read-
er can easily verify). Obviously e; (j) = e, (k) < j = kt* for some a.

We easily see that L is a complex of the space X (C).
c) Conclusion of the proof of Theorem 1,9. Following the plan announced at the

beginning of the proof, we construct the groups C |, Z, and B, of l-chains, l-cycles,
and l-boundaries of the complex L, and we define the imbedding C » C, as follows:
the G-chain (j) corresponds to the L-chain e,(js) - e,(j). We easily see that this de-
finition is correct and commutes with the boundary homomorphism (the group of linear
combinations of parabolic points is naturally imbedded in the group of O-chains of L.

We show that the kernel of this homomorphism C » C is trivial. We consider a
nonzero G-chain En}.(j). Using the relations (7) + (js) = 0 and (j) = 0 for j = js, we
may assume this expression normalized so that n.n_ =0 for all j. This G-chain cor-
responds to the L-chain Enj(el(js) ~e (). If n; # 0, then j £ js, and hence, as
noted above, e,(j) # e, (js). In addition, if n.n, # 0, then j £ k, ks, so that all the
simplices el(;'), el(js), e (k) and ex(ks) are distinct, It hence follows that
an(el(/S) -e, () # 0.

We now assume that Z C Z| using the above imbedding. Then (j) mod B (L) =
&), because the chain e (js) - e (j) belongs to the homology class {g(0), gli o)}
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by (7), where g € I' is any representative of the class j. It hence follows by linearity
that z mod BI(L) = &z) forall z€ Z.

Finally, it is clear from (8) and (9) that all the generators of B,(L)—the boundaries
of 2-cells—belong to B C Z and have the form - (j) for j=jt and - (j) - (je) - (jtz)
for j # jt. Hence Z N BX(L’) = B.

This completes the proof of the theorem.

Remarks. a) The parabolic complex K(G) constructed in 1.8 b) has the same 1-
homology as L, but is more economic than L; of the O-cells of L only the parabolic
points are left, since a pair of l-cells of L with a common i-elliptic vertex corresponds
to a single l-cell in K(G). .

b) The construction of the G-complex in 1.8 a) is formally applicable to any sub-
group G CT', for example to the unit subgroup. Taking into account the possible inter-
est in studying the limits 1im H (X (C)) and lim H' (X ;(C)) over systems of subgroups
(Gi) C T, we mention the following algebraic situation: in the case G = {e}, the system
of equations (3) admits an explicit parametric solution. In order to construct it, we re-
call that " is the free product of its subgroups Z, and 23 , Which are generated by
s and t, respectively. Consequently any element of 1" can be uniquely represented
as a word es 20¢P0. .. s%n¢Pn where a,=0or 1and B; =0, 1 or2;in addition,
a, and /3'. can only be zero at the ends of a word.

By t-words we mean the word et?, and also all words with ,3n = 1; by t?-words

we mean all words with Bn = 2, except for et?; by s-words we mean all words with
Bn= 0 and a_ = 1. Every t?-word can be uniquely represented in the form g(st?)™,
where m > 0 and g is a t-word. Every s-word, except for es, can be uniquely repre-
sented in the form g(st%)™s, where m > 0 and g is a t-word.

We introduce a family of independeat variables U(g) indexed by all t-words g of
the group T,

1. 10. Proposition. The infinite system of equations (3) in the unknowns £(g),
g € T, bas the following general solution:

§e)=—U)—=U(#), &(s)=U@)+U(),
§(s8) =—U()—U)—=U(st), &(h)=U(h),

m—1

E(h(s?)") = > (—1)"7 U (h(st) st) - (—1)"U (n),

=0

E(h(st*)" 5) = —E(h(st)")
for any t-word b,

Proof. The relations &lgs) =~ &g) and &(gr?) = —&(gr) — £g) allow us inductively
to express all the & indexed by s-words and ¢%-words in terms of the ¢ indexed by
t-words. It can be immediately verified that &g) can be chosen independently for all

the f-words g, and that the above formulas are obtained as a result of induction.
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(Passing to a nontrivial subgroup G CT° naturally imposes additional relations on
the parameters U(g).)

$2. The curves Xy
2.1 From now on, we shall work with the subgroups G C T of the form

G =Ty (N) = {("“ 2) el|c= OmodN}

\C
For the most part we keep the notation of §1, but we write X N(C) Ha, Bly etc. instead
of Xro (N)(C) {a, ﬁ}r Ny Some of the results become trivial or require slight modi-
fications in the case when genus X (C) = 0; we usually exclude this case without ex-
plicit mention.

The basic purpose of this section is to specialize the results of $1 to the case of
the groups I'((N) and ‘‘explicitly’’ compute the groups H,(X,(C), Z). However, we
begin by describing the special properties of the Riemann surfaces X (C) which we
need later.

The principal property is the existence of a special smooth projective curve X
defined over Q for which the space XN (€)= FO(N) \H is canonically identified with
the set of C-points of X (also Xy(C) in the traditional notation).

We enumerate some features of the Q-structure and the induced R-structure on XN‘

Let j : H » C be the classical modular invariant; this is a holomorphic function
on H; we define j, by the condition jy(z) = (Nz). Let Q(j, j,) be the field of ration-
al functions generated by j and j,. It has transcendence degree 1, and Q is alge-
braically closed in it. The curve X, is a smooth projective model of this field.

We further set Y, = Spec Ql;, jn); this is an affine model of the field. The map
H 5 Y \(€) : 2w ((z), j(Nz)) extends to amap ¢ :H - XN(C) which, in turn, induces
an 1somorphxsm I (N)\HHX Q).

t /€ (G, /N) be a rational function on X ® C. Its lifting ¢ (/) to
H expands in aFourjer series Eanezn"’z with a fxmte number of coefficients a #£0
for n < 0. This function is defined over Q, i. e. it belongs to Q(, in), if and only if
a, € Q for all ». Analogously, the differential on X ® C with Fourier expansion on

H

Z b,e? 250 (i — 1) d m'z) == 27 >1 buezm‘lzz dz

is defined over Q if and only if bn(i Q for all n.
The local ring of the point ¢(i ) consists of all functions with Fourier coefficients

a =0 for n <0, so that, algebraically, e?™i% isa preferred formal parameter of this
. ‘ "

ring in the Q-structure. In particular, f(pli o)) = ¢ {f(i =) = a,. Hence the values at

the point &(i =) of all functions defined over Q belong to Q. This means that

Blix)E X (Q).

The map =z~~~ 1/Nz belongs to the normalizer of the group ro(r’\’), and hence
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induces an involution on FO(N)\FI. We easily see that this involution interchanges j
and jp, and thus comes from the canonical involution of the curve X, over Q. This in-
volution takes (i =) to $(0); hence also ¢(0) € X Q).

The parabolic points on X 4(C) other than ¢,(0) and ¢y(i=) do not necessarily
belong to XN(Q) (or even XN(R))-

In fact, complex conjugation acts naturally on X,(C). Denoting this action by a

bar, we have

> ?(2) =p(—2).

In other words, reflection of H relative to the imaginary axis becomes complex

iz _ e~ 2z

conjugation on X y(C). This follows from the formula e and from the fact

iz a5 an analytic local parameter, is defined over R. Hence to construct a non-

that e
real parabolic point it suffices to find a rational number @ € Q such that -~ a £ FO(N) a.
Such numbers always exist if N is divisible by the square of a prime number > 3, as is
clear from the classical description given below of parabolic points.

Parabolic points. The parabolic points of X \(C) are in one-to-one correspondence
with the classes FO(N)\Q U (i ). In order to describe them we introduce the set (),
which consists of pairs of the form [8; @ mod (8, N5 ~!)]. Here & runs through all posi-
tive divisors of N, and the second coordinate of the pair runs through any invertible
class of residues modulo the greatest common divisor of 8 and N8~ !, If (§, N6~ 1) =1

we sometimes put simply 1 in place of the second coordinate.

2.2, Proposition. Let N, u, v € Z; (u, v8) = (u, N&)™! = 1. The map QU
(i ) > TiN) of the form

_U_‘;M,.[é; uvmod (8, N6 )], i 00~ [N 1]

gives an isomorphismof the set of parabolic points on X, with ).

Proof. The substitution

\

(/i/ N:—I,)EF‘)(N)

takes i into Q, so that it suffices to examine the action of I' (N) on Q. The sub-

stitution (§_ Z,) takes \
i au - bud
— to ———————— ,
v Ncu 4- dvb

This fraction is irreducible, and & = (Ncu + dv8, N), because (dv, N6~ 1) =1, Finally,
(aut -+ bvd) (N 'cut -+ dv) = aduv = uvmod (8, N3,

because ad — Nbc =1 = ad = 1 mod (8, N& ~!). Consequently every class UWN)u/vd
corresponds to the same element in (V). The induced map I’ ((N\NQ J (i =) » TT(V)
is obviously surjective; the fractions «/8, (u, 8) = 1, cover all pairs with first coordi-

nate 3. Finally, this map can either be checked to be injective directly, or else we
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can refer to the fact that both sets consist of the same number of elements
3 5IN #((8, N6~ 1), The proposition is proved.
Remark. The stationary subgroup of the point #/8 in Iy(N) is generated by the

w ouwy ] e") 8 —u
(6 a',) (0 1, (—-a u )
where e = N8~ 1/(5, N6~ 1) and u&' =u'8=1.

2.3. Theset T (N)\F We define the set PH(Z/(N)), “‘the projective line over
Z/(NY’ usmg homogeneous coordinates.

element

Let ¢ =c mod N, d =dmod N be two residue classes mod N which are repre-
sented by the relative prime integers ¢ and d. We call two such pairs (¢, d) and
(e, /) £quivalent if there exists an invertible residue class u € (Z/(N)) such that
(uc, ud) =(e f 7). We designate the equivalence class of the pair (¢, d) by the sym-
bol &:d. By definition, the set of these classes is PYZ/(N)).

The group I' acts on the right on P'(Z/(N)) by the formula

~~ {a b ~— ~
<e:f)f )=(ae+c ): 6 +2p).
(¢ d
2. 4. Proposmon The map T » PYZ/(N)), which associates the matrix (2 b)
to the point ¢ . d is constant on the cosets T’ olN)g and induces an 1somorpbzsm o/

right T'-sets
Lo (NINT = PHZ/(N)).

Proof. We immediately verify that the map

a b\ .. C:d
(c d)
is constant on right cosets and commutes with the action of ['. In addition, the group
I" acts transmvely on both sets T (N)\F and P1(Z/(N)), the unit class goes to the
point ©:1 ) and the stationary subgroups of these two elements coincide: they equal

[',(N). This completes the proof.

From now on, we shall often identify FO(N)\F with PI(Z/(N)) by means of the
above isomorphism. We translate the structures in §1 comected with W NI to the
language of PNZ/(N)). See 1.5 for the definition of the map £: we recall that

~ {0 -1 = (! ----1)
§ = (1 0) and f= (1 0
2.5. Corollary. a) The function &: P U7 AN - [i'l(t\"\,((l‘), RY has the form

i , (1)
¢ \

)= 12
Ec VR
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where a, b, c, d are any integers with the conditions ad - bc =1, €=c mod N,
4 =dmod N (by definition, a/0 =i o).
b) The action of the elements s and t on PYZ/(N)) is described by the formulas

C:d)ys=—d:c, (@:d)t=(c—d:c. (11)
¢) Complex conjugation (see the end of 2.1) acts on the distinguished classes

&c - d) by the formulas
E(c:d)=—E(d:c). (12)

All these facts are verified directly from the definitions.

In 1.8 we define the ‘‘boundary’’ of any element in I" (N)\F tlus is an element
of the free abelian group generated by the parabolic points of X, (C). Identifying the
set of parabolic points with II(N) as in 2.2, we describe the boundary map:

~

2.6. Corollary. The boundary of the “‘simplex” c : d equals

d(c:d) - [61; (—SC— d *mod (6, Nﬁfl)} — [&2; —c*"aimod (0, N(S?l)4 v (13)
1 2 p

where 51= (c, N), 52 =(d N).

Proof. It is clear from (10) and the definition of the boundary that the boundary is
equal to the difference between the classes I'j(N)a/c and I'y(N)Yb/d. By Proposition
2.2, the point @/c corresponds to the pair [3,; a(c/8,) mod (8,, N&T b1, and

ad - bc = 1, so that ad =1 mod (3, NSI‘I) and a =d~!. The second pair is computed

analogously, and this proves the corollary,

2.7. Theorem. a) Construct the maximal torsion-free abelian group generated
by the symbols (¢ : d), one for cach point ¢ :d € PUZ/(N)), with the relations

(c~ dy + (—d: C~) =0, (14)

(¢:dy+ ((c—d) : ¢) 4 (—d : (¢c—d)) =0. (15)

Further, let H(N) designate the subgroup in it which is the kernel of the boundary
N ~ ’
bomomorphsim (13). Then the map £ :(c’ :d) ~»lh.d, a/'cf,v. as in (10), induces an

isomorphism

HWN)TH (XL (C), D).

b) Let
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be the successive convergents of the rational number b/a > 0. Then

’0 —~} ZE((—I) ‘ay: agy). (16)

k=1

2.8. Special case. Let N = p, a prime number. In this case there are two parabolic
pomts (1; 1] ,and [p; 11 in the notation of 2.2. The points of PI(Z/(p)) have the form

:1or1:0. The simplex in K(I',(N)) corresponding to the pair 0:1 and 1 .0,
joins [1; 1] and [p; 1); all the other simplices of the parabolic complex are loops which
begm and end at [1; 1. Hence, introducing the affine coordinate system 1= c,
17:0 = o0, in PYZ/(p)), we find that the map &: 2/p) Y (=)~ H (X (C), 2),
whose definition is provisionally completed by the conditions £(0) = -f( ) =0, is the
universal function satisfying the functional equations:

E(C) +E(—c ) =0,
EQ) +E(1—c )+§(
E(0) =& (>) = 0.

) —0, (17)

(Universality holds in the class of such functions with values in torsion-free abelian
groups.) We note that E@) =10, 1/c} by (10) if ¢ £ 0.

§3. Arguments of parabolic points

In this section we give explicit expressions for the integrals f{a 8 @ in the case
’
when the class {a, B} is not necessarily integral. To formulate and prove our results,
we need some elementary facts about Hecke operators. We give them in the limited con-

text in which we need them.
3. 1. Hecke operators and parabolic forms. Let a, b, c,d € R, ad - bc > 0. For

any function ® on H we set

c (&) =D cz+d cz4-d)’
l\a b) ) <az+ ) <az+ b)

This defines a right action of the group PL(2, R) on the space of functions on H. This

(i}

action extends by linearity to the entire group ring:

(D‘ (Z agi) =3 ai‘l)(gf, @e=C, g =PL.

The following special elements of this ring are called Hecke operators:

& . —1 ' i
T, = }_ ( '”g Z\J , me=Z, m > 0. (18)
d/n N
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They satisfy the following relations on the space of functions on H with period 1:
T T,=T,, for (=, n)=1, and T,T,, =T 41 + pTpr-1.

Let G CT be a subgroup of finite index. A function ®(z) on H is called a G-para-
bolic form if there exists a differential of the first kind @ on the surface X (C) such

that ¢ “(@) = Vz)dz, where ¢: H - X c{C) is the canonical projection.
3.2. Proposition. If (m, N) =1, then T, takes the space of T, (N)-parabolic forms

P, into itself.

N
Thus the operators {T l (m, N) = 1} generate a commutative operator alegbra on the
space of I” (N) -parabolic forms P, . They are Hermitian relative to the Peterson scalar
product. It is also worthwhile to keep in mind that the Q-subspace ¢ (HO(XN, Q) is
invariant relative to T : this is clear either from the direct description of the action of
T, on the Fourier coefficients (Atkin and Lehner (1], formula (3. 1)), or else from the
invariant definition of T using correspondences on Xy x X. In particular, P, has
a basis of eigenfunctions for the Hecke algebra all of whose Fourier coefficients are
algebraic.
The theory of Hecke operators with indices not prime to N is more complicated.

We shall only indicate the operators Up, p prime:

Pl b) p 0)
! =Ty — . (19)
?_,)(0 pl (.o 1

In the article by Atkin and Lehner [1] it is shown that U, (Py)CPy if p|N, and that
the Up commute with all the T, ptm.

We shall henceforth assume N fixed; {a, ﬁ}N denotes the element in HI(XN(C), R),
defined in 1.2. In addition to the general properties of the classes {a, 8} we note that
ta+m, B+ ﬂ}N = la, B}N for all m, n € Z. This follows because the parabolic ele-
ment (] 7) belongs to I'(N) if we use Proposition 1.4: the class la, a+mly =

fa, (1 ’” Yal is equal to zero as the image of a parabolic element under the homomor-

phism FO(N) » H (X (©), L)

3.3. Theorem. Let the I' (N)-parabolic form @ = ¢*(m)/dz be an eigenfunction
for the Hecke operator T..» (m, N)=1: ‘l)l’l'm =c ®. Then

(Sa—e) g ¥ ) W

“dlm @ din ‘6
emod dl™ T

(20)

Comment. Since (m, N) = 1, we have b 'd € I",(N)(0) for all d|m by Proposition
2.2, Hence {0, b/dt € HI(XN((‘.), 7), so that the right side of (20) consists of integral
linear combinations of the fundamental periods of the differential w with respect to
some integral homology basis. The coefficients of these Jinear combinations are com-

puted using the theory in ‘§ ,,1 and 2(see, in particular, formula (16)). In addition,
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P Im d -c_ # 0 for sufficiently large m by the well-known growth estimates for the
coefficients of parabolic forms.

Thus we may assume that the expressions (20) give us an explicit form for the
arguments of the point ¢(0) under the Abel-Jacobi map of the curve X (C) (with origin
& (i =) relative to the basis of differentials of the first kind for which the correspond-
ing parabolic forms are eigenfunctions for the Hecke operators.

Another point of view on formulas (20) emerges if we consider m variable and
fix ®. Then, under the assumption Jf(;"” ®dz £ 0, (20) and (16) give expressions
for the eigenvalues ¢ of the operators T, on ® in terms of the expansion in con-
tinued fractions of all numbers of the form b/d, d|lm,0< b< d-1.

Both points of view lead to interesting number-theoretic results, which we shall
examine in greater detail below in §$86 and 7.

3. 4. Proof of Theorem 3.3. For any element g € PL(2, R) and function @ on
H we have

8 &(p)
[(@]g)d: m(gz)d(g )= | D(2)de.

a #(a)

=]

Using this, we obtain the following formulas for the action of the Hecke operators (18):

6 Py Lo
j ((D|Tm)dz = Z 2 5 O d:. (21)
a d/m b=0m +

g d

We susbtitute a = 0, B=ico here and use the fact that ®|T_=c_@:

ioo d—1 /0 {00,
n | Oz =3, Z(H}. )@dz
[ dim b=0\ b_ v
d

so that

b
1d
(%1d—cnl)s(Isz ;ES ié"d{o.{}}m’

as was to be proved.
More generally, this same device of “‘closing the path of integration

»’ allows us

to compute the arguments of any parabolic point.

Theorem. Under the conditions of Theorem 3.3, let a € Q. Then
ig

( Z d— Cm) j bdz = Z j e (22)
dim [0 d/m l“ m - b
tmodd iz YT

For every N there exist infinitely many values of m, (m, NY=1, such that

{a, ma/d? + b/d} € H (XN (C), Z) for all b. Hence if ® is an eigenfunction for
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all the Hecke operators T _, (m, N) = 1, then m can be chosen so that the right side of

(22) contains the periods of w over integral homology classes.

Proof. (22) follows immediately from (21), as in the previous theorem.

To prove the second assertion, we set o = u/v8, where 8|N and (x, v8) =
(u,NS"l) = 1, and take for m any prime number [ with the conditions YN and I =
1 mod (5, N8~ 1). ‘

According to 1.3 ¢), integrality of the class {a, [o/d? + b/d} is equivalent to
the inclusion la/d% + b/d € I'g(N)a. Taking into account that d = 1 or I and using
Proposition 2. 2, we conclude that we must verify that, in the irreducible representation

of any of the fractions

_u+ bvd
Ivd

1 b
la_— —l—a*r—?

the product (numerator) x (denominator) 51 is congruent to %v mod 4, NS’I). We
must consider separately the cases when this fraction is reducible (then the greatest
common divisor of the numerator and denominator equals /) and when it is irreducible.
In both cases the required congruence follows from / =1 mod (3, N&~ ).

We note that all / ' N are suitable for square-free N, and that all / = 1 mod N.

The theorem is proved.

The case when the eigenvalues of T on ® are rational is especially interesting:
it then follows from (21) and (22) that the corresponding arguments of all the parabolic
points of XN(C) are rational linear combinations of the fundamental periods. Here is

the algebraic-geometric formulation of this fact:

3.6. Corollary. Let : X, > X be a morphism of curves over Q, and let the space
(//*(HO(X, QX)) be invariant relative to the Hecke operators T_, (m, N) =1, and have
a basis of eigenvectors for T~ with rational eigenvalues at least for some sufficiently
large m. Then for any two parabolic points x,y € X, (C) the divisor class lx) ~
Yly) on X ® C bas finite order. (1)

3. 7. Special case. Let ¢ : Xy ~ X be a morphism of X, onto an elliptic curve
X over (). We call this morphism a Weil uniformization for X (in the weak sense) if
Y © ¢ (i) is zero on X, and the one-dimensional subspace (¢ © @) *HO(X, Qb is
1avariant relative to the operators T ,(m, N)= 1, with rational eigenvalues.

The following assertions are easily deduced from the above:

a) If the curve X has a weak uniformization i : Xy = X, then there exists another
weak uniformization for which the images of all the parabolic points coincide with zero
on X.

In fact, it suffices to take the composition of ¢ with the multiplication X 2, x

for suitable n and then use 3. 6.

(1) Added in proof . V. Drinfel’d has shown me that Theorem 3. 5 easily implies that such
classes even have finite order on Y NE
A
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b) Let y: Xy ~ X be a weak uniformization, let w be a differential of the first
kind on X, and let ®(z)dz be its preimage on H. Further, let y* be a generator of
tbe subgroup of real (invariant relative to conjugation) classes in H (X, (C), Z),

w?* = [,+, and let t be the maximal period of a point of finite order in X(Q). Then
foo

Ddz =-W*, sel (23)

In fact,
¢°¢(l°°)

o.
‘90(9(0)

c""a

The second integral is taken over the image of the imaginary axis, which lies entirely
in X(R) and joins the point of finite order ¥ © $(0) € X (Q) with zero ¢ © p(iw) €
X(Q). This implies the assertion.

3.8. Finally, we give a somewhat strengthened result from the second chapter of -
[9], where the device of closing the path was first introduced in a somewhat different
context. Here we are not required to apply the Hecke operators, but, on the other hand,
the integrand contains parabolic forms of a special type arising in the Hecke-Weil theory
and in the study of zeta-functions of modular curves over abelian extensions of the
field Q.

Suppose that @ = zanezmnz

is a parabolic form relative to FO(N), m>1 m€E

Zilee x:2Z -5 C bea primitive Dicichlet character mod m. We set
b

l (=]
g(X) = Z X ( b)e ™ (Gaussin sum) and @, = Z X (n) ane™inz,

hmodm n=1

finally, let ®dz = ¢ (o).
3.9. Theorem. Let 8 = (m, N), and let (5, N6~ 1) = 1. Then

bmodm 1 PA (24)
TmEiN

and {-—-b/m, 1/5%N€ H (X (C), Z) for all b mod m, ;(_(b) £ 0.

Proof. In fact, by a well-known lemma (see Weil (16}, Ogg [12] or Manin [9]),

= b
0@ =0 3 T—no (42,

hmodm
so that
i - 2o _ w
| by dz = - ACIRRS I | @@~ AL 7(0) | @@
m — . m —
o bEmod m b pmoidm

.
Y 6
m m
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for any a € E, because meodm —)z(b) = 0 since the character y is primitive.

In particular, if (8, N8~ 1) =1, then for any b with ;(b) £0 i.e (b,m)=1, we
have b/m €T, (N)s-1! by Proposition 2.2. Hence {b/m, 1/8 }Ne HI(XN(C), Z), which
explains the choice a = 1/8. The theorem is proved.

In [9] we examine the case & = 1.

$4. L-series at the center of the critical strip

4.1. Let w be a differential of the first kind on X ® C. As above, we set
= qSN (0)/ dz = - 2mi Za_ e?™"Z and define the Dmchlet series L by the formula

Le(s) = Z a.n—s. (25)
n=1

It is well known that L (s) has an analytic continuation onto the entire plane given

by the formula

ey e
Lo(sy =— ;;IS(:)) D, Gy) ysrdy
and, in particular,
{oo
Lo(l)= j Dy (2) dz = j ® (26)
0 {u,ioo}N

(see, for example, Manin {9}, Lemma 9. 2).
This allows us to interpret the fundamental results of the last section in terms of
explicit formulas for the values of the series L  at the point s = 1, the center of their

critical strip; and we gather these formulas together here for more convenient reference.

4.2. Theorem. a) Under the conditions of 3.1, suppose that ®  is an eigen-form
for the Hecke operator T, > (m,N)=1, and that a, =1. Then

S d-an) o= X | o @

d/ d
m bmc/)?!ld {0“7_} N
b) Under the conditions of 3.1, let x be a primitive character mod m > 1, let
g(x) be the Gaussian sum, and let L (s} =3 x(nla n=° If (m,N)=3

(8, N6~ 1Y = 1, then

Lm x 1 B g(X) 2 X(b l\. . (28)

bmodm
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Proof. Formula (27) follows from (20) and (26) if we take into account that
(leTm =a_ ®_ for a, = 1. Formula (28) coincides with (24).

4.3. It is interesting to compare formulas (27) and (28) with the Birch—Swinnerton-
Dyer conjecture (see [8], [9] and [15]). In the next two sections we do this for Weil uni-
formized elliptic curves over Q and for some abelian extensions of Q. Here we shall
limir ourselves to a remark on the behavior of the curve Xy itself.

Let

oo
(Dm(k) — __Qniz a, (k) e-:n:iu;

n=1

be the family in P, consisting of the eigenfunctions for the Hecke operators with the
proper multiplicities (k =1, ---, genus Xys a,(k) = 1). Then the product
Hi‘:;“s Lw(k)(s) coincides with the Hasse-Weil series of the curve X, corresponding

to the one-dimensional cohomology of X, to within the Euler factors for p [N. It

appears that the precise form of these exceptional factors is not known: Serre suggests
characterizing them in terms of the [-adic representations connected with X > but these
are not sufficiently well known. On the other hand, Atkin and Lehner [1] introduced
the useful notions of "‘new forms’’ in P and the canonical partition of P, into two
terms. The first term is generated by the new forms; there a one-dimensional subspace
corresponds to every weight of the Hecke algebra. The second term is generated by the
“*old forms,”” which are constructed in a natural way from the new forms in P, for d|N.
A more detailed examination of this construction and its translation in
HI(XN(C)’ Z) (or, rather, H,(X, , Q)) should allow us to conjecture the correct form

of the L-function of the curve X and compute the exact value of L(1) using (27).

$5. Weil uniformization

5.1. Let X be an elliptic curve on Q. The following notation will be fixed for the
duration of this and the next sections: N is the conductor of X; @ is a Néron differ-
ential on X: L(X, s)= 2::1 ann's is the canonical Dirichlet sefies connected with X,
the fundamental part of the Hasse-Weil zeta-function of this curve, and L(X ® K, s) is
the analogous series for X over K if K 2 Q) is any finite extension. We emphasize that
the Euler factors of L at the points of degeneracy of X are assumed to be normalized
in the way that is now generally accepted, as described, for example, in Weil’s article
{16] and in the author’s survey article [9].

5. 2. Definition. A Weil uniformization (in the strong sense) of the curve X is a
morphism of curves ¢ : Xy » X over Q with the following properties:

a) oS H s N () + X(0) takes i~ to the zero point of N{Q).

by (& = &) "o O dr = 200 3% a4 e2TiRT 45 where (¢ ) ace the coefficients

_77::1 n
of the Dirichletr series LI\, $).
¢) The form ®(z) is an ¢igenfuncrion of all the Hecke operators Tm (see (18))
for (. N) = 1, of all the operators l’p for the primes p N (see (19)), and of the

1Y of the curve A\'N.

y

. , 9
standard involution operator (7“\
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It probably follows from a) and b) that ®(z) is a *‘new form’’ in the sense of Atkin-
Lehner (see [1]). Then properties c) are automatically fulfilled. In any case, conditions
a), b) and ¢) are not independent (see, for example, Cartier [4D.

Weil conjecture. Any elliptic curve over () admits a Weil uniformization in the
strong sense. ’

For discussions of this conjecture, see, in particular, the articles by Weil [16], by
the author [9], §10, and by Cartier (4]. In [16] and [9] it is shown that, for curves ad-
mitting a Weil uniformization, the L-series over { and over any abelian extension of
have analytic continuations onto the eatire plane, as in §4. In this section we give
formulas for the values of L-series at one (the center of their critical strip), and we de-
duce from them that the uniformization ¥ is unique.

5.3. Let the curve X, the differential © and the strong uniformization ¥ be fixed.
We introduce two fundamental number-theoretic functions connected with (X, @, ¢/).
Welet y* and y~ designate the generators of the groups of real classes and of purely
imaginary classes, respectively, in H ,(X(C), Z) and we set W o fyiw.

5. 4. Definition The functions x¥: Q |) (i) » Q are defined by the equations

b {—a, Oty = ¥, {o, O}y = x*= (@) 7=
(the signs are taken either all plus or all minus).

We recall that {a, 0 }N € H,(x,(C), R). x*(a) is rational by the results of 3.6
and 3.7. If the denominator of @ is relatively prime to N, then we even have x¥(a) €
Z. The functions x' ans x ~ have period 1; x * is even, and x ~ is odd. We have
normalized the signs in a way that is not entirely natural because of a desire to remain

compatible with the notation in [9].
Using these functions, we can explicitly distinguish irrationality in the formulas

for L(1).
5.5. Theorem. For all m, (m,N)=1, we bave

(a/zn.d_am)L(X' 1) =-~‘?( dZm x* (—Z—)) (29)
. bmodd

Proof. Formula (29) follows from (27) with k//*(w) in place of w, if we take into

account that the differential o is defined over R, so that L(X, 1) € R and

YV w@= | v
fo. -} o= 5}
d
Hence the real part of the sum on the right in (27), which is equal to half of its sum
with it complex conjugate, has the form

A R LRt ] AUEEE A R

pmoia [y, 2} + fo 2]
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as was to be proved.

To formulate the next result, we consider two abelian extensions K C K’ of the
field Q. Let the discriminants D and D' of these fields be relatively prime to N.
Further, let 7, be the number of real points of the field K, r, the number of purely
imaginary points, and 7 =7, +r,; let [, r; and r' have the analogous meaning for K'.
We let M designate the set of Dirichlet characters belonging to K’ but not to K; let my
be the conductor of the charater x; sign x = + if }{(~1) =1 and - if y{~1) = -

5.6. Theorem. In the above notation we bhave

LX®K,LXQK,s]|_,

1

D r—r - """ 1
== |z @y T L X aeex()). oo
M ‘bmodm My
Proof. We set L, (X, s) =2 x(n)a n"and use the formula

L(X®K,s)=HLx(X,s). ‘ (31)
where X runs through the Dirichlet characters associated with the field K (here we use
the fact that D and N are relatively prime: otherwise the product in the right side of
(31) may differ from the canonical Dirichlet series for X ® K by a finite number of
Euler factors; see [9], Lemma 7. 3). Dividing the formulas (31) corresponding to K'

and K by one another and substituting in the right side of expression (28), we find

LX®K, YLK DK, 9|, = L Lyx, 1

XM

= g‘*’( S x) ,;S. v ). (32)

&M My \bmodm, (2 o)
Further, we know that ”
1 L
R 2
[g(X)] zmg_amdn g _ + ’D-,
xEM My D

by the Hasse-Artin formula. Finally, the inner sum in (32) transforms as in the previous
theorem, giving

Z 7 (®) \“ ¥ () = W szlgn XA X\b)xS|an‘._) (33)

bmod {—_ b U} bmod m,,
m'

To complete the transisition from (32) to (30), it remains to note that the number of
even characters in M equals r' -r, and the number of odd characters equals r2' ~r.
The theorem is proved.

We note that, since the ficlds K and K’ are normal over (, it follows that only
the following three combinatiens of the numbers r and r' are possible: either 7, =
=0, or 7, =0, ’2' = Yr'orelse ry = ', ré = Y.

o
2
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5.7. Theorem. If a Weil uniformization (more precisely, a pair (X, w)) exists for

the curve X, then it is unique.

Proof. The values of L(X, 1) and L, (X, 1) are uniquely defined and are character-
ized by formulas (29) and (33), in which the numbers x¥(a) can be computed from any
uniformization. We consider all characters x with prime conductor 14 2N. Then (30)
allows us to compute the sum X, ., x* (b/1), and (33) allows us to compute all the
sums %, ., x(b)x *(b/1) with nonprincipal characters mod ! in terms which do not
depend on the choice of uniformization. Consequently the numbers x*(b/I) for I 4+ 2N
do not depend on the choice of uniformization ). These numbers determine the values
of the homomorphism of homology groups ) : H,(X(C), Z » H,(X(C), Z) on the homol-
ogy classes of the form {0, 4/1 lN , as is clear from Definition 5. 4. Suppose that these
classes generate the entire group H (X (C), Z). Then it follows from the above that
the homomorphism Y« is uniquely determined. But ¢ is also determined uniquely from
Y« if we require, as in 5.2 a), that the distinguished points of the curves X,y and X
corresponds to each other. Hence it remains to prove the following fact:

5.8. Lemma. The homology classes 10, b/} € H (X, (C), Z) generate the en-
tire homology group when 112N runs through the prime numbers and b runs through

a complete system of residues mod [.

Proof. We use a method of Weil [16]. Let (§_ Z, ) €'y (N) be any element. We

have

(a b‘) 1 x :/* * \
Ne d (0 l) (* Nex +d)

N

By Dirichlet’s theorem, x can always be chosea so that the number Ncx + d is a prime
# 2; obviously it does not divide 2N. Hence ['j(N) is generated by the elements and
by the matrices having a prime ! 12N in the lower right-hand corner.

Setting a = 0 in Proposition 1. 4, we now immediately obtain the assertion of the
lemma, and with it the uniqueness theorem.

Remark. Another variant of the uniqueness theorem (with a completely different

proof) is contained in Cartier’s report [4].

$6. The Birch—Swinnerton-Dyer conjecture and Mazur's theory

We keep the notation of the last section; in particular, X is an elliptic curve over
Q, N isits conductor, and ¥ : XN -+ X is a Weil uniformization in the strong seanse.

In this section we compare formulas (29) and (30) with the Birch—~Swinnerton-Dyer
conjecture. Its complete formulation in the form convenient for us is given in [9]. Here
we limit ourselves to several special cases with which our results may be directly com-
pared.

All of these special cases, along with the conditional resuits whose proofs use the
Birch—Swinnerton-Dyer conjecture and the conditional formulas of this type, are marked
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in the text with an asterisk.
6. 1. Conditional formula -for L(X, 1):

0, ifrank X(Q)>0,

FOD =y B o @ L (X mod (34
X Q12 pIN

In this and the other formulas, the following notation is used: [G] is the number of
elements in the set G; lll is the Safarevi¥-Tate group of the curve X; ?(’(Q) is the
group of Q-points of finite order; 7y (X(R)) is the group of connected components of
the real points of X; and T (X mod p) is the group of connected components of the
closed fiber of the Néron model of the curve X over the point p.

In comparing (34)* with (23) and (29), the following circumstances deserve mention:

a) The general structure of the formulas is the same: L(X, 1) is the product of
W* by a rational number. However, in our formula the denominator of this number divides
[‘((Q)] and even the maximal period of the points of finite order in X(Q) This evi-
dently means that the local factors in (34)* must strongly cancel with [X(Q)]2 Ligozat
[8] computed these factors for all twelve curves Xy of genus 1. Accordmg to his com-
putations, the product of the local factors is always exactly equal to [X(Q)] and the
hypothetical value of [lll] equals 1.

b) The condition L(X, 1) =0 expresses a simple topological property of the uni-
formization map ¢ 9 : H » X(C). This is the property that i ©¢ takes the imaginary
semiaxis to a closed path which is homotopic to zero in X(R). In particular, in this
case there are branch points of ¥ ©¢ on the imaginary semiaxis, namely the zeros of
the form (Y © @) *w. Do they have any relation to the points of infinite order in X(Q)
whose existence is predicted by the Birch~Swinnerton-Dyer conjecture?

6. 2. Conditional formulas for L(X® K', s)/L(X ® K, s) |s_;. With the conditions
and notation of Theorem 5. 6, we further suppose that X(K") = X(K): the group of
rational points of X does not increase when going from K to K' Then the Birch—

Swinnerton-Dyer conjecture leads to the following expression (for the details, see [9]):
1

2 ey fo—T s ri—r
W W [ (X (R))

LXK, VLXK, =2

M 170 (X mod o))

S YN [’} . (35)*
“' [, (X mod v)] [H]
ufN

The notation here is similar to that used in (34) *, except that [lll] denotes the order
of the Safarevi&Tate group of the curve X ® K and [{l'] denotes the same for the
curve X ® K', and so on. In the case when rk X(K') >tk X(K), we must have zero on
the right in (35)*, while if the index [X(K") : X(K)] is finite, then the right side is

multiplied by a rational number, which we do not write out explicitly here.
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Comparing (30) and (35)* again shows a good structural agreement of the formulas
and allows us to derive a hypothetical formula for the ratio of the orders of the

Yafarevi&-Tate groups under the above conditions:

H [rto (X mod v))

my u/N b *
X (b)xsignx . (36)
MW e X RN ][ (7 (X mod v xl;IM 2 (bmg;m ®) ( ))

v’[/N

The left side must be the square of a rational number by Cassels’ theorem. We

can independently prove the following assertion about the right side being a square.
6. 3. Proposition. Le! M= {x € M|y is not real}. Then

xgwé( S x(b)xsngnx( ))—Asa (37)

bmod my

where A and S are integers and A consists only of ramified primes in the value field
of the characters x € M.

Proof. According to 5.2 c), the standard involution zw— ~1/Nz also induces an
involution on the curve X. Let this involution act on the homology of X by multipli-
cation by - C = +1 (the sign is chosen to agree with Weil’s notation in [16]).

We now compute its action directly It acts on the group I'j(N) by matrix conju-

gation (_g (1)) and hence takes ( Zc g Vo CF g )~ L. Thus the class

oo G A2

goes to the class

)l -9

(we are using Proposition 1.4). But ¢ =~ N"15"! mod 4, because @d - Nbc = 1.
Turning now to Definition 5. 4, we find from this a functional equation for the func-
tions x*
oyt
Xr (_b_) - Cxi' I/,.:..,_‘V__..___b In_o_.__.d a ) ,
a a

so that

. - , -1 R

Z. X (b)x= (/—ﬁ—) = E x(— N mod m) x= ( ‘_/Y___hn__mﬂﬂ )

b : [ i

(38)
=CT(—ND X (b)x= (m)

b
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(here m =my, b runs through the residue classes mod m, and x Yis chosen correspond-
ing to sign X ). Thus, combining the sums in (37) corresponding to complex conjugation
characters and bringing all factors outside, we obtain

xlelﬁé( DRTOTS (,—?;))=erf, -

bmod my

wher;_ € is a root of unity and T is an integer in the value field of the characters
X € M (T is integral because (m,, N) =1 by assumption, because x t(b/m) € Z, and
finally because the functions b o x(b)x5182% (b/m x) are even functions, so that the

sums % contain each term twice).

bmodm
On the other hand, erM is an ordinary integer, because all of the conjugates

over ) appear with every sum under the product sign. Formula (39) shows that ad-
joining a square root of this number (divided by ¢) to (} does not take us outside the
value field of the characters x. Consequently, only primes whi¢h ramify in this value
field appear with odd exponent in the left side of (32). (This argument was mentioned
to me by A. N. Andrianov.)

The proposition is proved.

Remark. Of course, formula (38) is also applicable to real characters y; it is
trivial in the case Cy( - N) =1, and in the case Cx(—=N)= —1 it shows that
meodm
form to actually construct forms of the curve X over quadratic extensions (correspond-
ing to real ) whose L-series vanishes at s =1 (see, for example, the appendix to
Birch [2]). .

6. 4. We now compare the behavior of the right sides of (30) and (35) aver cyclo-
tomic [ -extensions K of the field Q. In this case we have Mazur’s results [10], [11],
[9] concerning the behavior of the groups X(K) and llI(X ® K) obtained using Iwasawa’s

theory of I'-modules. Our formulas agree very well with the conditional interpretation

x (&)x ¥(6/m) = 0. This argument was used earlier in a somewhat different

of Mazur’s theory in the language of L-functions, and they also allow us to make some
predictions in the cases when the I"-module technique has so far been insufficient.

We introduce the following notation. Let [ be an odd prime, [ 4 2N (the case [ =2
differs in inessential details, and the case [ | N requires separate consideration, which
we shall not go into here). Let G = fe€ Z, | e!=1=1}. The group G acts on the field

) ¢ o~
Q(Cn) . én = 2mi/in 4"\/«»—’ é’f;, g€G. Weset K = O(C'Hl) » K, U":__I K, .
Obviously Q = K, C K, C ...CK_. The Galois group I' = GalK_ /Q is canonically
isomorphic to (1 + IZI)* 125 Z,. We set r = '™, then Gal (Kn/Q)ér/Fn o

~
z,/1".
The extension K __, /Q corresponds to the primitive Dirichlet characters
modulo 1, - -, " whose values are roots of 1 of order 1%, All of these characters are

even. Let M__ | be the subset of them which are associated with the field K _, but

not with the field K _,.
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We set

M=l ( 2 X (b)x*( )) (40)
XEMy_y bmodi*
According to (30), A _1 is the nontrivial additional factor in the value of L at one
which appears in going from K, _, to K _, . If X(K ) = X(K -1) then, by (36) ,
this same number must also be the nontrivial factor in the expression for the order of
W _,. As has already been noted, A € Z.
We further set A = L(X, 1)/W+; this is a rational number (possibly zeto). We re-

call that (an) are the coefficients of the canonical series L(X, s).

6.5. Theorem. a) A, =0 mod ! if and only if either a, = 1 mod !, or I divides
the numerator of A (all primes divide zero).

b) For n> 2 we bhave A =0mod [ if and only if either a, =lmod !, or a; =
0 mod I, or [ divides the numerator of A

In particular, for all other | we bhave /\n £ 0 forall n.

Proof. Let I be a prime divisor of [ in Q({n), If my=1", then x(b)ln—l -1
for all b, (b, 1) =1, sothat x(b) = 1 mod ln-l' Consequently

e || %( 3w (%))modlz(% > x*'(i))w(‘m—l)modl. (1)

I3
xmodl bmod it b.0)=1 [
N (b l)=1

Hence we must clarify the behavior of 14 X *(b/1") mod l. To do this we set

=1 ¥

= I[" n>2, in formula (29):
{ \\ b l Y’; i\ “
TRt
bmod I ’ \ =y
isn

Subtracting formula (42) _, from (42),,, we find

b

x* (——) =(a,. —ap1—") A

1
Ly L
- od

(43),

Fi

In the sum on the leftthe obstacle is the residue classes & = 0 mod /; in order to

remove them, we again subtract (43) _, from (43) :

. b
> xt (7'1) =@ — 2y s — 1" R (44)
bmod
(=1

{
2

We now consider the cases n =2 and n > 2 separately.

The case n = 2. Since a,, = a

) ]2 -1, we find from (44) that

[ \
1y \(—”-) a1 (a1 =) A
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It is immediately clear from this that if /|\ or I](a,~1), then /|A|. Conversely, if
I{Ay bue ! ‘,'(al - 1), then / must divide the numerator of A. This proves assertion a).
The case n > 2, We have

al" == alal"_l -—-'laln_z = atal"—l n]od l,

so tlzxat al,,zs a;' mod [. Hence the coefficient of A in (44) is congruent to

ay” (af 1)? mod /. It is hence clear that if .al(al— 1) = 0 mod ! and ! does not appear
in the denominator of A, or if /|A, then we have l|A"__1. We now suppose that

al(a1- 1) =0 mod /, but that / appears in the denominator of A. The number

(@, - 1) A is an integer by (43),; ar-1-1 # 0, because this is the number of points

on the reduction of X mod /; finally, @, —1 -/ is divisible by no higher than the first
power of [ for I >2 by the Weil estimate ]all <2 \/l_ Consequently the denominator
of A is not divisible by /° and @, = 1 mod /. On the other hand, if we twice use the

formula a,, = 4,1~ /), -2, we easily obtain
a{l — ‘2(11,,__1 -+ ﬂ‘ n—y = (al"—l )2‘1:"—2 —1 (atalu——s -+ azﬂ-—‘z - 2(1,;——"3)«

Hence the coefficient of A in (43) is divisible by lz, so that the left side of (43) and
A _, are divisible by 1.
Conversely, if I divides /\n__1 but does not divide the numerator of A, then it is

clear from (44) that [ divides
Qp— 20—y + Ao =07 (a— l)ymod .

The theorem is proved.

We derive several conditional corollaries from the theorem, using the Birch—
Swinnerton-Dyer conjecture, and we compare them with Mazur’s unconditional results.

We recall thar /12N and that primes [ for which 4, =0 mod [, are called super-

singﬁlar for X (Deuring), while those for which a; =1 mod l, are called anomalous

for X (Mazur).

6.6. Corollary " If [X(Q)] < o, and if | does not divide the numerator of A =
L(X, 1)/W" and is neither anomalous nor supersingular for X, then the group X(Kw)
is finite, and the l-component of the groups (X ® Kn) bas bounded order as n » oo,

In fact, according to Theorem 6.5, under the conditions of the corollary we have
L(X® K, ’«,l) # 0 for all n, so that rk X(Kﬂ) = 0. On the other hand:kas Mazur showed,
the group X(K_) is finite. Finally, the ratio of local factors in (36) becomes 1 as
n > o to within a 2-component, and by Theorem 6.5 the new factors in Hx(l/zz) are
not divisible by /.

This corollary is conditional, but this very result is proved precisely in Mazur’s
theory under the assumption that !/ does not divide

() I 11 [o(X mod p) |
DIN

ok
instead of the numerator of A: this agrees well with (34) .
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6.7. Corollaryf If IX(Q) < o and | either divides the numerator of A or is a super-
singular or anomalous prime for X, then
tk X (Kn) 4- [T (X ® K)")— 00 as n— oc.
In fact, if the quotients L(X ® K_, s)/L(X ® K__, s)|
nitely many values of n, then rk X(K ) » o; otherwise

((X®K,)
(X ® K,_,)]

s €qual zero for infi-

=0 mod{

for all » > ng by Theorem 6.5 and formula (36)*,‘ if we take into account the stabilization
of the local factors.

The parallel unconditional result in Mazur’s theory was only proved for anomalous
primes, and asserts the following: if a, =1 mod ! then either tk X (K_)) >0 (and this
rank is necessarily finite), or [W(X ® Kn)“)] = o, or else both hold together.

Thus, in this place Mazur’s theory partially overlaps Corollary 6.7*,bu:‘ partially
complements it: combining both results, we find for @, =1 mod / we must have
wx ® K )P - o,

The supersingular primes have so far resisted the I'-module technique; hence it

might be interesting to note a partial result relating to them:

6.8. Corollarygt< If [XWQ)< «,andif | is supersingular and does not divide the
numerator of A, then the group X(Kl) is still [inite.

In fact, Theorem 6.5 b) shows that L(X ® Kl, 1) £0. For anomalous numbers [/
with the condition L(X, 1) # 0 there are no apparent reasons why L(X ® K,, 1) cannot

vanish, but the author does not know any examples where it does vanish .

6.9. Corollary*. If tk X(Q) >0, then for all 112N

rk X (Ks) + [L (X @ Kn)"] — o0.

The reasoning is the same as in the proof of Corollary 6.7, since in this case we
must have A = 0, so that /\n = O0mod !/ forall n and .

Mazur [10] conjectured that the rank of X(Kn) remains bounded (at least for non-
supersingular /).

The parallel conjecture under our conditions is the following:

6.10. Conjecture. A £ 0 forall n>n (X, D),

I am unable ro prove this result in any case except those which are included in
Theorem 6. 5. Possibly investigating z\” p-adically for p !N could give useful infor-
matjon.

In certain special circumstances we can prove that the numbers /\n are divisible
by certain special primes. In order to formulate the result precisely, we introduce the
following

6. 11. Definition. Anisogeny x : X - Y of elliptic curves over Q is called
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admissible if , for any prime p, it induces a separable morphism of the connected com-
ponents of the closed fibers of the Néron models of the curves X and Y over p.

The following two properties of admissible isogenies can be proved without dif-
ficuley:

a) Let X :X = Y be an admissible isogeny, and let ©, be a Néron differential.
Then x y» y) is @ Néron differential on X.

In fact, X (wY) is regular on the Néton model of X, and a divisor of zeros can only
include the components of the fibers where the isogeny X is inseparable.

b) If an admissible isogeny X : X - Y exists, then the conductors and the canon-
ical L-series of the curves X and Y coincide.

We need only verify that the divisors of the conductor and the Euler factors of the
L-series coincide at the points of degenerate reduction, and this is proved directly from
the definitions.

Let x : X - Y be an isogeny, and let y; and y;t, be the generators of the real
(+) and imaginary (-) homology classes of the curves X and Y, respectively. We shall
say that x has type (¢, ¢7) if X*(}’;) = qt)’\i,-

6.12. Proposition. Let x : X » Y be an admissible isogeny of curves of type
(q%, q ), and let N be their common conductor.

a) If ¢y Xy » X is a Weil uniformization of the curve X, then its composition
with y is a Weil uniformization of the curve Y.

b) Let x‘i, be the functions associated to the curve Y according to Definition 5. 4.
If the denominator of the number a € () is relatively prime to N, then

x¥ (@) = Omodg*, v (@) =Omodq™. 45

Proof. Assertion a) is obtained from properties 6. 11 a), b) and the definition of
uniformization in 5.2: we need only choose the Néron differentials on X and Y com-

patibly. Assertion b) follows from Definition 5.4 and the definition of type (g Y0

6.13. Corollary. Let K' D K be abelian extensions of the field Q with discrim-
inant relatively prime to N, and let M, 1, 1., etc. be defined as they were before

Theorem 5. 6. Then

ILL( 3 xome(

}) = 0mod (4"~ ()" (46)
xEM Jbmodmy S 2
Using formula (36)T we can derive from this conditional corollaries concerning
the behavior of W(X ® K') and X(K'), if we only ensure no cancellation of g and
* - -
g~ with the local factors in the right side of (36) . For example, this result is

obtained for the curve Y by precisely the same reasoning as in Corollary 6.7

6. 14. Corollaryf Let QCK,C...CK C... beal-extension corres ponding
to the prime [ Y ON. Then either the rank of Y(Kn) increases without bound, or else the
order of [lII(Y ® K")] is divisible by (g HlKn :Ql=const 45, o



PARABOLIC POINTS AND ZETA-FUNCTIONS 49

(The constant in the exponent of ¢ appears because the group X(K,) can grow in
the first few steps of the I -extension, and also the contribution of the local factors in
(36)*does not manage to stablize to 1.)

This result can be compared with Proposition 9.1 in Mazur’s article [10].

6. 15. Examples and remarks. a) The existence of admissible isogenies is a rather
exceptional phenomenon. (The multiplication X % X is not admissible for n > 11) If
the kernel of X : X » Y is cyclic and is generated by a rational point x of order ¢,
then for (g, N) = 1 admissibility follows from Lutz’s theorem that the "‘coordinates of
x are integers,’’ i.e. the reduction of the kernel of ¥ does not become trivial. However,
the case of common divisors of ¢ and N requires special investigation.

Here is the data on the existence of admissible isogenies of curves Xy of genus

one; 4~ = 1, so that we only give ¢

N U1 14 15 17 19 20 21 27 49
g5 3 4 4 3 2 4 3 2

Corollary 6. 14 * for the curve X, was proved by Mazur [10] for I = 5; in this
case the rank of Y(Kn) equals zero for all n.

b) Assertion (45) relates to the behavior of the functions x;t, constructed for the
image Y of an admissible isogeny. However, observing lengthy tables of the functions
x% for the curve X, ccompelled us also to suggest some regularity in the behavior

mod g% of the functions x)i( constructed for the domain X of the admissible isogeny.
+

More precisely, the following assertion is fulfilled in the tables (X = X119 =5):
the residue class x3; (—?-) mod 5 depends only on a (47)
a

(for all a £0 mod 11 and (b, a) = 1).

The analogous property is observed for N = 17, 19, 27; see $8.

Although this assertion seems to have the same nature as property (45), I have not
been able to prove it. The assertion is rather striking, since in the computation of
x1+1 (b/a) the denominators of the convergents to b/a are operated on modulo 11, ard
not modulo 5.

A natural generalization of the conjecture (47) is the conjecture that the residue
classes x;, {a/b) mod qi are constant with respect to b.(1) We note that the con-
gruence (46) would also follow from this assertion, which is weaker than (45), because
S‘b x(b) = 0 for any nonprincipal character x.

Evidence for (47) is noted in the commentary on the tables in §8.
$7. Noncommutative reciprocity law

As the basic result of this section, in 7.3 we fomulate a special case of Theorem

(1) Added in proof. Drinfel'd has proved an assertion of this type with another
interpretation of the numbers 3. Swinnerton-Dyer has obtained an analogous fact.
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7.9 on the coefficients of parabolic forms, which can be derived from formula (20). The
features of a noncommutative reciprocity law emerge in this special case,

We begin by formulating the necessary concepts.

7. 1. Admissible solutions. Let d > 1 be an integer. A solution of the equation
d=AA" + 88" is an ordered quadruple of numbers (A, A', 8, &') satisfying this equa-
tion. A solution is called admissible if it consists of integers sati,sfyi;lg the addition

conditions
(A, 8)=(A, 8) =1, A>§>0, (48)
and also
either A" >8>0, (49)
orelse 8 =0, A=d, A' =1, 0<8< 4, (50)

We call the solutions (50) boundary solutions.

The set of admissible solutions of the equation 4 = AA' + 88’ determines a finite
family of pairs (A, 8) which appear in these solutions. We shall later need to sum func-
tions of pairs of integers over the terms of this family, Hence for practical purposes it
suffices to think of this family of pairs (A, 8) as the set of different pairs, each equip-
ped with a multiplicity.

We shall also call such pairs (A, 8) d-admissible.

7.2. Let X be an elliptic curve over  with conductor N which has a Weil uni-
formization in the strong sense. Let L(X, s) be its canonical Dirichlet series, and let

a, be the nth coefficient. N ‘
If A isaninteger, we set A=AmodN. If (A, 8)=1,then A:8 denotes a point

of the projective line PYZ/(N)), as in 2.3.
With this notation we have the following

7. 3. Fundamental Theorem. Suppose that L(X, 1) # 0. Then there exists a func-
tion y : PHZ/(N)) » Q depending only on X such that the following holds for any
prime [ 1 2N:

1 —a+1= y(A:%),
: [-=AAZ'+66’ ( ‘) GD

where the summation on the right is over the family of all l-admissible pairs (A, 8).

Remarks. a) The function y can be expressed explicitly in terms of the function
x ¥ for the curve X (see formula (74) in 7. 10).

b) The left side of (51) is the number of Z/(/)-points on the reduction of X mod /,
and the right side is some sum over the solutions of the equation [ = AA' + 88" taken

mod N. The general form of this symmetry:

(an equation depending on N, taken mod /)

L)
(an equation depending on [, taken mod N)
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brings to mind a reciprocity law. It relates explicitly to noncommutative extensions,
since @, in (51)is the trace of the Frobenius automorphism of the fields obtained by
adjoining to Q the points of finite order on the curve X (see Shimura [14]).

Another point of view regarding equation (51) is that it gives information on the
representations of I by the indefinite quadratic form AA’ + 88’ . Eichler [5] gave a
general technique for obtaining such formulas for representations by positive forms
(using theta-functions). It seems that our result has another nature.

7.4. The plan of proof for Theorem 7. 3 and its generalization is as follows.
Formula (20) gives an expression for 1 - a, + [ in terms of integrals over the homology
classes {0, b/l }N,OS b<l~1. Formula (16) allows us to represent egch class
fO, b/”N as a sum of distinguished classes f(g : d) whose arguments are {up to sign)
the ratios of the denominators mod N of the successive convergents of b/Il. Finally,

a lemma of Heilbronn [6] allows us to go from continued fractions to solutions of the
equation.

We begin the proof by giving Heilbronn’s lemma.

7.5. Formal continued fractions. Following Heilbronn [G), we introduce the poly-
nomials Q€ Z[T1 gores Tyyene 1, i > - 1, by the inductive formulas

Q—-—l = O, Qo = ” Qn = uo_n~l - Qu—~2 for n _> 1.

Obviously, Q" € Z[Tl sttty Tn], so that we may wricé Qn (and its particular values)
as a polynomial in n arguments for n > 1. We shall also apply this same notation for
n =0, — 1, but then we do not pay attention to any arguments.

It is easy to verify that

Qﬂ(Tiv R T’n)':'Qn(Tn, ey Ti) (52)

The following formula gives the connection with continued fractions:

Qi (To - T 1
Qn(Tl, e ey Tn) _.Tl +___1_i_ . (53)
T2+ ...'7?_

n
It remains valid for » = O if we take the right side equal to zero in this case.
The successive convergents to (53) are defined by the formulas

Qn——-l (Tz, e vy T"_) Qm—l (T2v | Tm) &] Q—l
QT ..., Ty 7

.3 =% 9
Qn(T1, .-\ T,) Q' Q 1

The index of a convergent is the index of its denominator. We have
Qm“l(T2, ey Tm) Qm—l (Tla cvy Tm—l)
—QuTy, ooy Ta) Qua (T, ..., Tmy) = (—1)"N, (55)

The connection with the equation d = AA’ + 88" will be established in 7. 7 using the

fundamental formula
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Qe (Ty, ..., Th) = Qm Ty, ..., Tpm) Qn-—m(Tm-H. ceny T)
+ va-! (Tlr vy Tym-—l) Qn—m—-x (Tm+ By ecey TII)’ (56)

which makes sense and remains valid forall 0 < m <. It is proved by induction, de-
creasing m from the obvious cases m = n and m =n — 1.

7.6. Expansion of rational numbers in continued fractions. Let 0 <a <Y be a
rational number. It uniquely determines an integer n =n(a) > 1 and positive integers

c »+, ¢, such that c122,c"22 and

12"

Qe i) _ s

Qu(cl»---wcu) Cl+---+%-
n
The number 7 is called the length of the (continued fraction) expansion of a, and the
numbers ¢, -- -, ¢, are called the partial quotients of a. Substituting CrstresC

N n
for T, .-+, T, in (54), we obtain the successive convergents of a, and also their

numerators and denominators.

7.7. Heilbronn’s Lemma. Let d > 2 be an integer. The following two families .of
ordered pairs of integers coincide:

a) The pairs of neighboring denominators (from larger to smaller) in the sequence
of convergents of all possible rational numbers of the form b/d, (b, d)=1,1<b <d/2.

b) The pairs (A, 8) taken for all possible admissible solutions of the equation
d=AA" + 8%,

(Coincidence of families means coincidence of sets and multiplicities: see 7.1.)

Proof. The first family of pairs is indexed by the set consisting of elements of

the form R

[the fraction @ = %((b, d=1andl <b %), the integer ] <<m <n(a)]- (58)

This element corresponds to the pair [mth denominator, (m — 1)th denominator of the

convergents of alin the family a).
The second family of pairs is indexed by the set

admissible solutions of the equation d = AA’ + 88'. (59)

We shall construct mutually inverse maps of the sets (58) «» (59) which preserve the

pairs in the families a) and b).
The map (58) » (59). Let (¢, .-+, c ) be the partial quotients for a, and let

1 <m<n=nl{a). We set
A =Qm (Cl, “eay Cm), 6 =Qm—-1(ch s ey Cm—l),
A" = Qu-m(Cmt1, -+, Cn) 8 = Qa—m—1(Cm-+t1, -+ Cn). (60)
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It is clear from (53), (56) and (57) that d = AA" + 88" Since the c; are positive, it
follows from the recursion relations for Q_ that A>8>0 and A’ >8' > 0. From (55)
we have (A, 8) = (A", 8") = 1. It remains to verify that the admissible boundary solutions
are obtained for &' = 0. But if 8'= 0, then m =n, since A=d and A' = I; finally,
1<8Ad/2 because c >2 (apply the recursion relation A=c _8+0 _,).

The map (59) - (58). Let (A, A’, 5, 8') be an admissible solution. If it is a

boundary solution, we set

m =n = the length of the expansion of 8/A = 8/d,

we define the numbers ¢, .-+, ¢ by the formula

8 1

:: - 1 Cfl>2r Cl>2: (61)

Cpt - ‘C'l-
and the number a by the formula
1
¢=— 1" (62)
(%] + . + _C;_

The denominator of a equals d; this follows from (61), (62) and 752). The numerator
of a does not exceed d/2; this follows because 8/d < ‘/§=»cn > 2, if we use the recur-
sion relations for Qn together with (53).

The nonboundary solutions give the pairs (58) with m <n(a). If (A, A', 8, &) is

not a boundary solution, we define Clsvreyc, and m by the formulas
) 1
Z— = -——————1 , € > 2, (63)
s R
51
&’ 1
A B tn>2, (64)
"m+1+ ‘e —1-7

and we set

0=—“————1.
c1+...+7n

The denominator of a obviously equals d; this follows from (63), (64) and (56). In ad-
dition, 0 < a <Y, since c, > 2

It is automatically verified that these set maps are mutually inverse and preserve
the pairs which interest us, The lemma is proved.

Remark. It is clear from the proof that if the pair (A, 8) corresponds to the pair

[mth denominator, (m — 1)th denominator 1, then
m = the length of the expansion of 8/A = n(8/A) (65)

(see (63)).
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7.8. We now proceed to formulate a theorem which contains Theorem 7.3 as a
special case. Let ®(z) = 2% a e?"in% pe o I oN)-pacabolic form which is an eigen-
function relative to all Hecke operators T, with (m N) =1. We suppose that a, = 1;
then (DtT =aq (Dforallm(m N)=1.

Further, for any point ¢ .d € P1/(N)) set

n(c:d)y=g(c:dy—t(d: ), (66)

where the classes &(c¢ : d) e Hl'(XN('C)‘, R) are defined in 2. 5. Finally, if
i

j(D(z)dz: [ e=+o,

{o.loo}

where @ is the differential of the first kind on X (C) corresponding to ®, then we define
the function y : PYZ/(N)) - C by the formula

ye:d= [ o/ [ o (67)

nedy ! {vis)

We note that p{-c: d) = p(c : d), so that y is an even function.
7.9. Theorem. With the notation and assumptions of the last subsection, for any
m, (m, 2N) = 1, we have

Zd—am=ZT(T-) 2 y@&:9), (68)

d/m aim  \ 4/ g=anriss
d>1
where 7{m) is the number of divisors of m, and the (A, 8) in the inner sum run through

all d-admissible pairs.

Proof. According to formula (20) of Theorem 3. 3,

(Bd=ar) [0=2 3 | o

dfm {osix} d/mbmodd {0' z_}

Each irreducible fraction b/d on the right obviously appears r(m/d) times in the form
b8/d¢& for all possible 8/(m/d). The contribution from the sum with d =1 equals zero,

since {0, b} =0 for b € Z. Consequently

(Z d———a,,,) Y © = r(—'Z—) > \ o. (69)

R T

The inner sum on the right is the integral of @ over the class 2(b,d)=1 {0, b/d}. Using

the fact that
d—b

e B L
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we represent this class in the form

(03, -3,

1< <"‘
(bﬂ=l

Let d=d_, ..., d, be the successive denominators of the convergents of b/d. Accord-

ing to formula (16) of Theorem 2. 7,

{o —} Z E((—1) " "de: dosy). 1)

k=1

Since the class {0, b/d} is complex conjugate to {0, - &/d}, it follows from (12) that

fo, -2} =~ gla((—lf“ik_l:’&k)- 72)

Combining (70), (71), (72) and (66), we find, after summing over b, 1 <b <d/2, (b,d) =
1, and applying Heilbronn’s lemma, that

R {c —} = 3 a1@:5%), (73)

d=AA'184’
156<d

where the sum on the right is taken over admissible solutions. The sign (- 1% jn
(72) disappears because 7 is even.

It is now clear that, combining (69) and (73), we obtain formula (68): we need only
divide through both sides of (69) by f{o,ioo} w and recall the definition (67) of the func-
tion y. The theorem is proved.

7.10. Remarks. a) Under the conditions of Theorem 7.3, it is not hard to express

the function y in terms of x*, Namely, if ad — bc =1, then

L)

B R Lo

Using the definition of x*, we find

W (¢ (2) - (2)

Since, in addition, 10, i} = - Yx i) },.*‘ it hence follows that (74) holds.
b) It is natural to write abelian reciprocity laws in the form HISI = 1, where the

§,; are certain symbols and / runs through the prime numbers and 0. We can formally
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derive an analogous relation from (51). Let L(X, s) = nlLI(X' s), where L, are the
local factors of the L-series. We suppose that HILI(X, 1) = L(X, 1) in the sense of
some type of (nonabsolute) convergence. For 11N we have LI(X, 1)=(1 —a; + n/l.
Hence from (51) we find

11 Lux, 1)H(1 h) y(K:B))L(x, It =1. (75)

112N 1N\ L p=anry a0

Here it is natural to associate the factor L(X, 1)~! to the point at infinity in the field
0. .
c) It is interesting to connect formula (51) with the Sato-Tate conjecture on the
distribution of (al) as | » « (see, for example, Serre [13]). The right side of (51) could
possibly be treated by an independent statistical investigation,

In fact, the sums Zk qS(dk, dk- 1)’ where (dk) are the successive denominators of
the convergents to @, have been studied before. Lévy's book [7] contain facts on the
distribution almost everywbhere of such sums, for irrational a as well (some natural
conditions ensuring convergence are imposed on ¢). We are interested in the mean of
such sums over all rational @ with fixed denominator ! and in the distribution of this
mean when / 5 0. It was to solve such a problem that Heilbronn [6] proved Lemma 7. 7:
he was interested in the function ¢ =1, and he obtained the principal tem of its
asymptotic behavior. In our case the principal term is known in advance: itis ] + 1,
and @; is a '‘random error.”’

A natural approach to studying the sums (51) is to expand the function y in terms
of some elementary functions. For example, for N prime it would suffice to study the

distribution of the sums over admissible solutions of the form

2 X(A)X(®),

=AM+ 88’
where x is any multiplicative character mod N.
d) We would like to note a similatity between the considerations of this section
and the constructions in Chapters V and VI of Venkov’s book [3]. Comparing these re-

sults may lead to a better understanding of them.

e) The condition [(*®(z)dz # 0 is only used to go from continued fractions to the
equation / = AA' + 85'. If we do not insist on this, Theorem 3.5 allows us to give

explicit formulas for the coefficients of any parabolic forms.

$8. Tables, their computation and use

The basic content of this section is tables of the functions x*a) for a € Q,
constructed for curves X, of genus 1 for N =11, 17, 19 and 27. Before proceeding to
a discussion of the method used to compute these tables and the possibilities for using

them, we shall bring together in one place and recall all the notation needed here, which

was introduced in various places in the article.
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8. 1. Notation and definitions. The integer N > 0 is fixed, H is the complex upper
halfplage, H=H |J Q J () and X NO =T (N)\H Forany o, BE€H the symbol
fa, B 1y € H,(Xy(C), R) designates the homology class of the path on X, (C) whlch is
the image of a path on H from a to B. Further, PY(Z/(N)) = {classes of pairs ¢’ .d &
= ¢ mod N, d = d mod N, (c, d) = 1}. The function EN PUZ/(N)) > H (X C), R)

is defined by the equation

EN(&E):’{%'%}N forany ad—bo = I.

Now let the genus of X, (C) equal 1. Then the subgroup of classes in H,(X\(C), Z)
invariant (anti-invariant) relative to conjugation is infinite cyclic; let -y+ (y") be any
generator of this group.

After choosing y* and y~, the functions x Ifl :Q U (=) »Q are defined by the

equations

{—a, 0}y = {&, 0}y =x=(a)7™.

The fundamental functions to be tabulated, which we first introduce here, are
t_f:, : PYZ/(N)) » Q, which are defined by the formulas

v FEv(d:0 =E5 (i d) v (76)
If we have at our disposal a table of the functions rf; (their domain of definition con-
sists of N HpIN (1 + 1/p) points, and their range is the rational numbers with rather

small numerators and denominators), it is not hard to compute an arbitrarily long table

of the functions x by using the formula
2 k-17
g(r)=7 3 (= ) .

where a, =a, a,_1s°ry 8y = 1 are the denominators of the successive convergents
of b/a (equation (77) is derived from the definitions and formula (16)). We further re-
call that the x* have period 1 and that x* is even and x” is odd, so that we may limit
ourselves to the arguments 0 <b/a <}4.

If in addition £7(0 : 1) #0 (this holds for all N for which the genus of X, equals
one), then we can tabulate the function y, : PYZ/(N)) > Q, which is defined by the
formula

yN(C'2)=2M (78)
EF @)

.« . . + . . N .
(and so it is proportianal to éN' Nevertheless, it is instructive to tabulate it separately
+ - .
from £N , because it is used for different purposes).
8.2. Use of the tables. a) The fundamental function f:, in the tables is necessary

: +
for computing x .
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b) The functions xﬁ are used to compute L(X, ® K, 1) over abelian extensions
K CQ, and also to compute the individual factors of these components corresponding to
the different Dirichlet characters. Using the Birch—Swinnerton-Dyer conjecture, we can
then make hypothetical estimates from below for the rank of the group X(K) (which, of
course, must be verified independently). Thus, for example, we can collect experimental
data on questions which remain unsolved in Mazur’s theory (the presence of jumps in the
rank in a I'-extension tower; the behavior of the rank for supersingular [, etc.).

¢) The function ¥y is used to compute the coefficients of L(X, s) in any quantity
using formula (51).

In addition, the tables can simply be looked over with the idea of trying to observe
anything curious.

8. 3. Computation of the tables. The compilation of the tables of the functions
‘fN is in the first place based on Theorem 2.7 (and formula (12), which is necessaty to
choose y and y"). This theorem alone is sufficient to compute fi(c d) for all ¢
and d which are not divisors of-zero in Z/(N). In particular, if N is prime, then we
obtain in this way all values of £ except for the values at the points 1: 0 and 0:
(here and later we shall omit the tilde over the numbers, since no ambiguity can arise
if N is fixed). To compute the missing values of fi we must then use Theorems 3. 3 and
3.5 (if N is prime Theorem 3. 3 suffices) for any prime value of m, m 1 N. For this
purpose we must know in advance several coefficients of the canonical L-series.

The general plan is as follows.

a) To compile a list of the points PXZ/(N)).

b) To solve the system of equations (14) and (15), i.e. to find integral linear ex-
pressions for the symbols (¢ : 'db) in terms of independent parameters. The general

number of parameters equals
2(genus of Xy ) + (number of parabolic points on Xy)- L

The parameters must | be chosen so that only 2(genus of X ) parameters appear in the
expression for (¢ : d) with ¢ and 4 not divisors of ze 1o, i.e. 2 parameters appear in
the case genus X =1, which is the case we shall work with.

For N not very large (less than a hundred), the system (14)~(15) can easily be
solved by hand if we successively examine the 3-equations of (15) and the 2-equations
of (14) which "link’’ these 3-equations. Each time, if we solve the next 3-equation in
which at least one of the unknowns has already been found using the previous 2-equation,
either we obtain a new free parameter or else we obtain a relation among the old param-
eters; if we use a reasonable procedure, the latter possibility rarely occurs.

c) To choose y and )/ from among the linear combmauons of the symbols

( d) with ¢ and d not divisors of zero, and to compute £ e . d) for these points

¢ :d.
d) To compile a rather large table of the functions Y b/a) for (a, N) =(b, N) =1,

using formula (16). The “‘extra’’ parameters which may appear in the separate terms of the sum
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(16) because (a,c , N) > 1 automatically cancel out in the sum, so that the result is ex-
pressed in terms of y+ and y~.

e) To compute several coefficients of L(X, s), which are necessary in order to
apply Theorems 3.3 and 3. 5.

f) Using Theorems 3.3 and 3.5, to compute £(c : ) for the missing values of
& :d. Here formulas (20) and (22) must be considered as equations for the classes
{0, ioolN and {a, iw}y, respectively. The coefficients of these classes are computed
using e), and the classes in the right side of (20) and (22) are computed as in d).

The curve X 1

Equation: y2 =t (t3 = 20¢2 + 561 - 44).

1’1‘:{——-—;’—,0}1{—;—, 0}.

Pz 1o oo | e f s e ann s | e |rin ] sen fora | nen
Y —2 2 0 10 5/ —b|—10}|—10}| -5 +5| 10 0
+ —2— __—2— 0 | —2 —1 1 2 2 1] —1.1 —2 0

5 5
&= | o ol 0] o 1 1| o] of|—t] —1| o] o
i oyl e syt eys a3ty e '_l_ ill 5
¢ JelE el 33l T | 7|l 718819177 |w|16l12]12
xt@ |21 |—1| —2 3|—2|—1] —} 4| 1 1| 2|3 2[0|0|0]|5
x{a) |01 11 0o 47 0 —1 1t 0| —14 1 O 1 010201
tl2]3{als)s6]1]3ls 1\2‘_4_ _7_|_|_\3|_§_|_7_|_1_
¢ BBl BlolBIB | Hlwlw BB 1T 6|16l E!
t
xt{) | 2|3 —3| 2 2 1) -4 14— 1 —1 4| -2—23| 3-—-2
@) (o1 1] 2 0 0 1 —1 1 0 0 oft{—1 0
2l3[4|s |6 7|81 |s|7]1|2]|3|sa|5]|6]|7]s
¢ W M| T T 17 ) 8| 184 18 19 70| 10} 15 | 19| 15] 18|19
x* (o) 3—2 —2 —21 3 3 1 —1} 4 1 —4 —4 1111|686
x~(a) [—1 0o 2§ 2/ ¢t 4} —4 41 4} 2} —1f 1 o 9 0
o !;J |3__4:1¢’3'¢_5 8 | 10 ‘ll\ili‘ilsl
Pl |l w|wla|z| AT (Tl B| Bl BB BB
x+ (e) 123 2} 2{ 0| 0 0 0y 0] O 0l 0|50
() |—4 0] —1] 2| 0} O 0 21 0] 0 0O 20 122
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a Bl sjol | szt 2lalajselr]s I 9
23] 23| 23| 23| 24| 90 | 24| 22| | 6| 2B | H| | B | B/ B
xt(a) 0 5 510 2 (--3([-3| 211 1 1j—41 1 1 1 1
x~ (@) 2 1 |11 0 0 |- 110} 4 | —1|- 0 i 1 i
P IR TY T N R R N T D N R N I T
%) 5] 6| %] W] BIBI BT |G| TIH| T W] I
x+ (&) 111114 |—1]—t|l—1}]4]|—2]3|—2|—2]—2{—2]3 ]| 3
(@) {—1] 1 0 |~ i 11 0 of 1 |—2| o] 2 2] 1 1
13] 1 3) s) oy n|lmli]2|3j4]s6]6]7]8]0
a | %| W] =B B| %] s w9 BT B H| %] W| W
xt(a) 3 |—2/3!—-213 3 3 -t -4 |41} 4
x~ (@) i 01 01 1 11— 1 11— 1] —1 1 1| 2

a i) n 12 “ 13 M 1 z Rl 18

% | 29 29 79 25 30 30 30 30

x*@ || —1 | 4 4 4 | —4 | 1 6

X (@) 1 1| 2 0 0 | -1 2| 1 0

Here we oaly publish the part of the tables compiled for T (11).

x:t

with denominators 192 and 29° (19 and 29 are supersingular primes for X

The values of

were computed for all 11-integral rational numbers with denominators < 83, and also

1)

In these tables x*(b/a) mod 5 always depends only on <. In addition, in the tables
x*1<9 and |#7] < 5.

Equation: y2

+xy:x3—-

The curve X17

4x% + 4x - 15.

I+

et

Pozan fi:of oi |1 2;1|3:|]4:1!5:1|&:1]7:1|s:|'|9:1lm:1|n:1112:1!13:1[14:1|15;1|15:1
: :
Y ,~-1 110 4.‘ 21 0 .“2——2—-2'——~4 —4 —2 ——2' 21 0 2 41 0
.. 1 1 |
Khs -‘2‘ *"5 0 [—2|—1} 0 {—1] 1 11 2| 2 1 t)—1l 0| —t]—2¢ «
£ 0 0 l——i O |~ 0 a

()f 1| [ i 1 1i 0 ()’———1 -1|
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N DN B - e 8 \ RN R l 2lAaf L] s
a 2 3 4 5|5 6 7‘7 7'3‘3 9| 9 glollo
x+ o) 2 1 0 1 1 {—1|-—-1{—1] 3 {—2| 2 |—2]2 2 |—1f—1
o) 0 1 0 1 1 1 i 11 1 0} 0 _ 010 0 _-—1 1
T 2| 3| 4] 8| |51 )|213|4|8]8]|1}13]l8
a Tl ] gl e 12! 13' 3|l ul
xt@ | —1]—1|—1] 3| 3] 1/1{0ofofojojof4]| 1
@ |—1| 1| 1| 1] 1]t |{ofo]o]|2 0 |—1
]2 4 7 1 315 2
¢ 15 15 15 | 1B 16 16 ’ 16 I 16
x* (o) 2 { -2 -2 2 0 0 0 4
x~ (o) 0 0 0 0 0 2 2 0

In these tables x *(b/a) mod 4 depends only on a.

The curve X19

Equatian: y? =103 - 16:2 + 64t +76).

F= —%,O}i{%,O}.

PI(ZS(IQ))l 1:0 | 0:1 Il:l 2:1| 3:1 I4:1 , 5:1 !G:l | 7:1 | 8.1 '9:1 |]0:l
y —2 21 0 6 6 31 -3 | —6 0 0 —6 | —6
- LA B PN Y RS ISPR I APA B 2

3 3 - 0 2
13 0 0] 0 0 0 1 1 0 0 0 0 0
P! (Z(19)) | 1 : 1 ] 12:1 [ 1301 I 14:1 ] 15:1 | 16 :1 | 17:1 ] 18:1
I l 1] 0 —0 —3 3 6 6 0
& 0 0 2 1 —1 —2 —2 0
o 0 07 0 ! —1 0 0 | o
At Ly At a2ty 1 3 |1

annEEGEEEE R

o) {22 fl 1’ 2 ol olalofala «2' 111 |—2041]0

() | O ui ! lll 0 6ot g0 ll 0 01 )1 D040
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xt(@ |—3{3{0] 3] 0] 0 |—2(-2]1]4
x~ (@) tf11j0j 11 04| O 0 oj1j0fl1}0|—4] t]O]|—4] O

N PRA IR A A D ) A8 81152

¢ 1515116 164 6| 16| vl ar i lar [ a7 [ ar s [1s | 18
xta) j1{412|—1] 212|114 {—1]5]212]2/|0 3] 3
x(@ [1]0]0 11 0 11 0 11 0] 1{110]0f[0| 0 —1f—1

In these tables x'(b/a) mod 3 depends only on a.

The curve X27

Equation: y? = 4x3 +1 (curve with complex multiplication).

eeft e (i)

przzem |0l oin fiir 2 3:1|4:1|5:116:|]7:1[8:1!9:1|10:1|u:1|12:1
Y —2 2 0 6 3 3 310 {—-310 |—1|O0 |—3|—3
£+ 2h 20 ettt o | 1o X ]o] 1] 1

3 3 3
£- 1 ) 1 1
* 0 0 0 0| — 1 1] — 110 — 0 1| —
3 3 3 3

P‘(Z/(27))IIB:I|14:I| 15:1 |16:l|l7:l| 18:1 '19:['20:ll2l:l|22:l|23:t

Y —6 —6 —3 —3 0 —1 0 —3 0 3 3
1
g+ 2 | 2 1 1] o 5 |0 1] 0 | —1 |—t
- ¢ 0 i 1 a i‘ 0 1 —2" 1 i
: R 3 - E A
Pl(l/(27))|24:ll25:l'26:l'1:3'2:3'4:3 5:3[7:3[8;3] 1:9 i2:9
y 30 6] 0o |=3] 3] 0| 0 3 | —3 1 1
z 1 2 0 1 t 0 0 1 1 3 ’1‘
° T - N
1 1 1 2 2 1 1 1 1
£ — 1] { — | — —_— | —— — ——
® 3 3 3 3 3 3 3 3
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11121133__3__'.3_1__21_1‘11
¢ |TlT|F|F 77 T|® B |w w0 [T ||| T E
xt (a) 2 1 1 1 |—1) 2 21010 010 | —1{—1| 2 2 2 [--2
x~ () 0 1 1 1 11 0 0 0]0 0 0 1 1] 0 0 0 0
2|3 |a|lslslalals|als{s|7|a]2]|3|4ai{s]|s
o Bl B |B|B|B|R|ig|elEl|w |16 |6 |17 |17 |17 |7|17]|17
x* (a) 1 1 ] 1 |—1}—1] 2 2 0 0 0] 0 0
1 (a) 1]1 1[0 t{—1ft|lo]ofolofo]o 0
AREEREIEE A 3 7 9 | 1
@ Il |B|e|iejgiwe|@ | |® |®|»n |3 |7
xt() | 3 3 0 0 0 (U 3 0 0 3 3 —1 ] -1 . 2 2 1
@it ]1]ololololt]olol ]| 1| 1| 0] o0 |—1
3 5 7 0o | 1o 3 | 4 5 16| 718t oalin
¢ e lmg|wlw ] m|m |5 | 5|5 |5 |5 |5|5|5 |5
at (x) —2 1 1 1 1] —2 -2 t 1 1 1 1 1 1 4
x~(2) 0 1 1 1 —1 0 0 1 1 1 1 1 1 1 0
’ 1 2 3 4 * __f). »l _8.‘ I 2_ l IL [ 12 l 1 3 5 7 9 11
R O B = Bl U B e o Bl o B el e e
@ 2 | —tl =t —tf=t|2]2]2]l2]2lo]lojo]s|ols
x~(7) 0 1 , 1 1 1 1 0 0 0 0 0 0 2 1 0 1

In these tables x*(b/a) mod 3 depends only on «.
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