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PARABOLIC POINTS AND ZETA-FUNCTIONSOF MODULAR CURVES

UDC 511
Ju. I. MANIN

Abstract. In this paper we obtain explicit formulas for the values at the center
of the critical strip of Dirichlet series connected with weight 2 parabolic forms of
the group Γ«(Μ. In particular, these formulas allow us to verify the Birch— Swinnerton-
Dyer conjecture on the order of a zero for uniformizable elliptic curves over certain
Γ-extensions. We also give applications to noncommutative reciprocity laws.

Introduction

Let X be an elliptic curve over the field Q, Ν its conductor, ω a Ne'ron differ-

encial, and L(X, S) the canonical Dirichlet series. Further, let XN be the standard

modular curve over Q parametrized by the group ΓΛΝ). Weil [16] conjectured that

there exists a morphism φ : XN^X over Q such that the differential φ (ω) lifted

to the uppper halfplane Η has the same Fourier coefficients as the Dirichlet series

L(X, s) (see the precise formulation in §5.2 of this paper). We call such a morphism

φ a Weil uni formization of the curve X.

In this paper we show that the existence of a Weil uniformization for the curve X

allows us to give explicit formulas for the values of L(X, 1), and also L(X ® K, l),

for all possible abelian extensions Κ D Q. These explicit formulas have the structure

predicted by the Birch— Swinnerton-Dyer conjectures. Comparison with Mazur's theory

[10] of elliptic curves over Γ-extensions of Q also shows a good agreement with the

Birch-Swinnerton-Dyer conjecture. In particular, Mazur's "anomalous prime numbers"

appear in an analytic context.

The general idea for obtaining explicit formulas for L(X®K, l) consists in the

following. Let Φ{ζ)άζ be the preimage of ω on H, and let iO, i<x>\ be the path on

XN(C) which is the image of the imaginary semiaxis on H. From the classical integral

representation for L(Xy s), we find, after a suitable normalization of φ, that

L(X, 1) = ]φ(ζ)ώ= J ψ » = j ω.

Since φ^(·<χ>) is the zero point on V(C), it follows that L(,V, 1) is the Abel-Jacobi
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argument of the image of 0 6 H, i. e. of some parabolic point on X^. If the images of

0 and /oo coincided, then to compute L(X, 1) we would have to integrate ω over some

closed path in X(C) (and even X(R)), so that the number L(X, 1) would be an integral

multiple of the minimal real period of the differential ω. In general this is not the case.

Nevertheless, we were able to find a technical device which allows us to reduce to in-

tegration over closed paths in X(C),, Hecke operators are used to do this in the case of

ground field Q, and in the case of an abelian extension KD Q we use the expansion of

the series L(X®K, s) with respect to the characters χ of the Galois group and the

Hecke-Weil lemma on Mellin tranforms of the series L χ (Χ, s). This device and the

resulting formulas make up the conceptual center of the paper; they are presented in

§§3-5.
The homology classes in the group H{ (XN(C), Z) over which we must integrate

φ (ω) to compute L(X ® K, s) are fundamental arithmetic invariants of die curves X

and X^. Hence the paper begins by studying them: in §1 we prove a new theorem on

the structure of the first homology group of a curve uniformized by any subgroup G of

the modular group, and in § 2 we specialize this theorem to the case G = TJ.N).

§§6 and 7 contain applications of these results. Namely, §6 is devoted to com-

paring them with the Birch-Swinnerton-Dyer conjecture. To make this comparison, we

must have independent information about the rank of X(K) and the order of the Tate-

Saf are vie group of the curve X®K. Mazur's theory [10], [ll] (see also [9]) obtains

several results of this type, and they actually lend themselves to detailed comparison

with our formulas.

In §7 we give new exact formulas for the coefficients of parabolic forms relative

to the group 1"'QOV), which call to mind the noncommutative reciprocity law or the

Eichler relations, where, however, we have an indefinite rather than a definite quater-

nion quadratic form.
Finally, §8 contains tables of arithmetic invariants and a discussion of them.

I am grateful to A. N. Andrianov, whose conversations with me stimulated some

new ideas for this paper.

I am also grateful to Μ. Ζ. Rozenfel'd, who computed vast tables of the functions
x- for the group Γο(11) on the computer "System 4" of the Institute for Control Prob-
lems of the Academy of Sciences of the USSR, and to V. Drinfel'd, who composed similar
tables for the groups Γ0(Ν) with Ν = 14, 17, 19 and who kindly agreed to their publi-
cation in this article.

After completing this work, I learned that Professor Birch (England) has also ob-

tained some results close to ours, and that Professor Mazur (USA) and Professor

Swinnerton-Dyer (England) have independently examined the functions x~.

§ 1. Homology of modular curves

1. 1. General information. For the duration of the paper we use the following

notation: Η = \z € C|lmz > 0l is the upper halfplane; Η = Η (J Q (J (i«) is its com-

pactification with the usual topology;
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I az + b I fa b\
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is the group of automorphisms of H, which we identify with PL(2, Z) = SL(2, Z)/(± 1)

and whose elements are written as the corresponding matrices.

Let G C Γ be a subgroup of finite index. The topological space XG(C) = G\H has

a natural structure of a smooth compact complex space of topological dimension 2. By

ψ : Η -»XG(O we always designate the natural projection mapping.

Let i € tf, «2 = - 1; ρ = e 7 " 7 3 € W. Points in the set ^(Γί U I » C XG(C) are

called elliptic points, and points in <£(Q U (i«>)) = φ(Γ(ίοο)) C XG(C) are called para-

bolic points. The map φ is unramified outside these points. Both sets are finite.

1. 2. The classes {α, β\ο. Let a , β EH be two points such that φ(α) = φ(β) €
X_(C), or, equivalently, Ga = Gβ. Then any path from α to β on Η becomes a closed

path on XG(C) whose homology class depends only on α and β. This homology

class will always be denoted by the symbol (a, β\(- Ε Wj(XG(C), Z).

More generally, integration allows us to associate a homology class with real co-

efficients to any pair of points α, β € Η even if φ(α) ji φ(β). We consider the differ-

entials of the first kind ω € W°(XG(C), Ω1). Any class γ £ f/j(XG(C), Z) determines

a functional on the space of these differentials: ω •/V^>L· o>· The group of such func-

tionals forms a lattice of maximal ranjc in the dual space of /i°(Xc(C), Ω1). Extending

this map by P-linearity, we obtain an R-isomorphism

), R)~Homc(tf°(Xc(C), Ω1), C).

Consequently for any two points α, β Ε Η the functional <JJ*̂ ->j£ φ (ω) can be ident-

ified with a real first homology class, which we shall denote by | α , β\(, in the general

case. Obviously, if φ(α) = φ(β) this notation coincides with the earlier notation. We

shall sometimes write \a, β\ instead of (a, /3IG and fia a\ ω instead of f^a φ (ω).

I. 3. First properties of the classes ία, β\. Obviously, (α, α] = 0, ία, β\ =

- [β, α\. The following properties are also obtained immediately from the definition:

a ) | α , β}+{β, γ\+\γ, α } = 0 .

W Ι«α· εβ^α = ! α · 0 ! c f o r a 1 1 β e G·
c) If the genus of XG(C) is nonzero, then \a, /3|G € Wj(XG(C), Z) if and only

if β € Ga or, equivalently, φ\α) = φ(β).

(Sufficiency follows from the definition, and necessity follows from the Abel-
Jacobi inversion cheorem.)

The following fact requires a somewhat more detailed discussion.

1.4. Proposition. Let a G H. The map

, Z) :g*~{a, ga}G

is a surjective group bomomorpbism which does not depend on the choice of a. The
kernel of this homomorphism is generated by the commutator, by the elliptic elements,
and by the parabolic elements of the group G.
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Proof. The fact that the map g >*~{a, g a | is a homomorphism is easily obtained

formally by applying 1. 3 a) and b):

{a, gha} = {a, ga} + {ga, gha) = {a, go) + {a, Aa).

To prove the remaining assertions, we must use a direct geometric interpretation of this

homomorphism.

We first suppose that φ(α) € XG(C) is neither an elliptic nor a parabolic point.

Let Η be the complement of Γι U Γ ρ in Η, and let XG(C) be the complement of

the set of elliptic and parabolic points. The map φι H° -» XG(C) is an unramified

covering with Galois group G. Consequently any point α £ W° determines a surjective

homomorphism ffj (XG(C), φ(α)) -» G. It's explicit description is as follows: suppose

we are given a closed path on X G (C) starting at φ(α). We lift it to a path in H° start-

ing at a. The endpoint of this path has the form ga. for a uniquely determined element

g € G. This element is what we associate to the class of the original path on XG(C).

It is clear from this description chat the composite map

«i(XS(C), φία^-Ο-Ζ/^λοίΟ, Ζ)

(the second row takes g to la, ga\G) coincides with the canonical homorphism of the fun-

damental group of the surface XG(C) into the homology group of the compactification

XG(C). This immediately implies that the map is surjective and does not depend on the

choice of the point a . Further, the structure of the group n^ is well known; using this,

we easily observe that the kernel of the homomorphism n^ -»Wj is generated in π.

by the commutator and the circuits around the elliptic and parabolic points, which con-

tract in compactification. But the images of these circuits in G make up precisely the

elliptic and parabolic elements. This completes the discussion of the case α € Η .

Finally, let α € Γ(ΐ, ρ, ί °°) and g € G. We choose a point <xQ € Η so close to

α that there exist open neighborhoods U j D (a , aQ)., U2 D (ga, gdQ) in Η such that

the union of their images φ(ΐ) j) U φ(ϋ^) in XG(C) is simply connected. We choose

a path from α to ga and one from a Q to go-0, which coincide outside l/j |J U2.Since

their images on XG(C) coincide outside φ(υ j) U φ(ίΙ2), it follows that the homology

classes of these paths are identical, so that (a, ga( G = | a Q , g a Q i G . This completes

the proof, because all the required properties have been proved for the classes

1. 5. Distinguished classes. Let / = C \ F be the set of right cosets. We define

the map

as follows: if / € / and g is any representative of the class /, then

Obviously this class does not depend on the choice of the representative g (see 1. 3 b)).

We have thereby defined a finite family of homology classes £(/); we shall call its

elements distinguished classes. We note that, in general, they are not integral.
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1. 6. Proposition, a) Any class in Η ̂ X^i.0, Z) can be represented as a sum of

distinguished classes. In particular, the distinguished classes generate //j(XG(C), R)

as an TR-space.

b) The representation of any class h € Η ̂ X^C), Z) as a sum Στη^ία^, β^\ of

distinguished classes can be chosen so that Στη^φίβ^ - φία^) = 0 (as a zero-dimen-

sional cycle on X AC)).

Proof. By Proposition 1.4, any class in //j(Xc(C), Z) has the form JO, g(0) | ,

where g € G. If g(0) = i<», then this class is distinguished and φ(ί <») — ̂ (0) = 0.

Otherwise, let g(0) = b/a be a rational number in lowest terms, a > 0. Also let b > 0;

the case b <0 is treated similarly. We expand b/a as a continued fraction and consider

the successive convergents in lowest terms:

b Κ K-i b0 b0

 b-! 1 * - z 0

a ui, "ri-i a0

_ _ J
Γ β -ι 0 ' a_

(the last two "fractions" are added formally).

It is well known that b^ak_ } - bk_ ^a^ = (- l) , so that

Hence the classes

are distinguished. Finally, by 1. 3 a),

This representation obviously has the required properties, so the proof is finished.

1. 7. Relations between distinguished classes. The group Γ acts on the right on

the set of right cosets / = G\Y, In this group we consider the two special elements

- i ? - * ) - " " - ( ! -J) = --<•-•'·
The element s takes (0, i oo) to G'°c, 0) and successive application of t takes

(0, zoo) to (zoo, l) and then to (1, 0). Using the definition of £(/") (see (1)) and prop-

erty 1.3 a), we find two types of relations between distinguished classes:

0. e(/)=0, if / = /s; ( 3 )

ξ(/)+ξ(/Ο+Ι(/'2)=Ο, c(/)-0, if / = // (4)

(the second relation in each group follows because there is no torsion). We show that

in some sense this system of relations is complete. In order to formulate the result pre-

cisely, we introduce some new notation.
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1. 8. a) Algebraic formulation. We let C designate the abelian group generated by

the symbols (/) for all /' £ G\r, with the relations

(/) + (/s)=0, (/)=*0, if /=/s. (3')

We call the elements of the group C G-chains. Let g G Γ belong to the class ; € / ,

8 = (" j) · 3y the boundary of the chain (/) we mean the difference between the two

parabolic points: <£(g(r <*>)) - 0(g(O)) = Ga/c - Gb/d. We consider this difference as

an element of the free abelian group generated by the set of parabolic points

«\(β U Ο'1»))· Since s interchanges 0 and i~, it follows from (3*) that the boundary

operator extends to the entire group C by linearity. We designate its kernel by Z\ the

elements of the kernel are called G-cycles.

Finally, let Β be the subgroup of C generated by elements (;) for all / € / with

the condition / = ;'/, and by the elements (/) + (jt) + {jt2) for the remaining / . We easily

see that Β C Z; the elements of Β are called G-boundaries.

The map ζ : G\T -» Η j(Xc(C), R), defined in 1.5, extends to a homomorphism ζ :

C -»Hj(XG(C), R) because £(/) + £(js) = 0. Here ξ(Ζ) coincides with the integral

homology subgroup by Proposition 1.6 b), and £(B) = 0 by (4).

Thus we obtain a surjective homomorphism

, Z). (5)

b) Geometric formulation. The groups C, Ζ and Β can be realized as the sub-

groups of 1-chains (1-cycles, 1-boundaries) of some cell complex K(G), which we shall

call a parabolic complex. Here is its description.

0-cells are the elements of the set of parabolic points G\(Q |J too).

1-cells ate in one-to-one correspondence with the set of orbits of the group (id, s),

which acts on the right on G\r. Every such cell (;, js) joins two 0-cells in the boundary

(;') (or (js))'. Ga/c and Gb/d, if (" £) belongs to the class /. If these 0-cells coin-

cide, then the corresponding 1-cell is a loop. We choose the orientation arbitrarily.

2-cells are of two sorts: two-sided and triangular. Let / £ / , / = jt. Then the 1-

cell corresponding to (/, js), as described above, is a loop: if g Ε Γ belongs to the

class /, then Gg(0) = Ggi(O) = G{i «>). We glue this loop by a 2-cell: we call such cells

two sided.

Finally, let / € / , / ^ jt. Then the 1-simplices (;, js), (jt, jts) and (jt2, jt2s),

form a triangle; we glue it with a 2-cell; we call such 2-cells triangular.

It is now clear that there exists a map C -> Cj(K(G)) which takes a G-chain (/) to

a K(G)-chain: "the simplex (/, js), oriented from Gb/d to Ga/c" (if (" £) belongs

to the class /'). We easily see that this map induces an isomorphism Z/B ^*

Η ι (K(G), Z), which, together with (5), gives us a surjective map

C), Z). (6>

The following theorem is the fundamental result of this section. It gives a repre-

sentation of the group Η ΛΧG(C), Ζ) by generators and relations which is convenient

for computation and is functorial in G.
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1.9. Theorem. The maps (5) and (6) are isomorphisms.

Proof. We construct a complex L of the space XG(C) and represent //j(XG(C), Z)

as the factor group Ζ Ah)IB ^L) of the 1-cycles of L by the 1-boundaries.

We then imbed the group Ζ in Ζ X(L) in such a way that ζ mod Β j(L) = £(z) for

all ζ € Z.

Finally, we show that the boundary of any 2-cell of the complex L belongs to Ζ

(under the above imbedding ZC Zj(L)) and coincides with one of the generators of the

group Β of the form (;) (for / = jt) or (/) + (jt) + (jt2).

Obviously all these results and the surjectivity of ξ give us the isomorphism

Z/B =*» ZjUJ/BjiL) = //j(XG(C), Z), which we are trying to establish.

We realize this program in several steps.

a) Preparation for constructing the complex L. Let α, β Ε Η be two points. We

let <a, β> designate the segment joining them along the geodesic oriented from α to

β. (We recall that the geodesies are semicircles and lines orthogonal to the real axis.)

The triangles, quadrilaterals, etc. which we refer to will be the figures on Η

formed by geodesic segments joining the vertices of these figures, and also their

^-images on XG(C).

We let E" designate the interior of the triangle with vertices (0, 1, i °°), and we

let Ε designate the union of the interior of the quad-

rilateral with vertices (i, p, I + i, i °o) and the side

</, p>, except for the vertex i. Each of the quadri-

laterals E', tE' and t E' is a fundamental region for

the entire group Γ. In addition, all the 1-simplices in

Figure 1-the half-sides and half-medians of the tri-

angle E" — imbed homomorphically into Χ ρ (C). (These

are both classical assertions.)

b) Description of L.

O-cells. These are all the parabolic points and all the

/-elliptic points on XG(C), the images of the vertices

and the midpoints of the sides of the triangles g £ " ,

ger.
l-cells. These are the images of the half-sides of

Figure 1 the triangles gE", j £ F , oriented "from the vertex to

the midpoint," i. e. from the parabolic point to the z-

elliptic point.

It is convenient to introduce a family of 1-cells indexed by the classes / € G\V

by setting

<?1 (/) = image (g(ioo), g( i)>in XG(C) (7)

for any representative g € Γ of the class /.

Since Γ is transitive on half-sides, it follows that any 1-cell has the form e A.j)

lot some j €. } . On the other hand, the stationary subgroup of i in Γ is equal to
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(id, s); hence e fi) = e^k) is only possible for k, j € / if k = / or k = js; otherwise

ej(;) and ej(fc) have different endpoints. Moreover, for / Φ js we have e Aj) ^ e.(;.s).

In fact, in this case the images of the classical fundamental region (- p, zoo, p) and

its s-translation on XG(C) are disjoint.

2-cells. They are of two types: two-sided and triangular.

The two-sided e'2(j) are indexed by the classes j € J for which ft •= / : by defin-

ition, the cell e'2(j) is <j>(gE'), where g € Γ is any representative of the class ; . (The

interior of Ε maps to e'2 (j), and the half-median g<p, i> becomes a cut from the cen-

ter to the boundary of this cell.) We orient e2 (/') in the usual way. Then

(8)

In fact, de2(j) consists of the images of the paths <§(/<«), g(i)> and <g(l + z), g(i <*>)>,

where g is a representative of ;'. According to (7), the first of them is e,(/), while the

second is equal to the image of

0, gt2(i °°)> = <g(0.-i(0)> = <gs(i), gs(i οο)χ

i. e. -e j(/s) . Obviously e^'ij) Φ e2'(k), if ; Φ- k.

The family of triangles e'2'(j) is indexed by the classes / € / for which jt Φ j .

By definition, the cell e'2'(j) is φ(βΕ"), where g Ε Γ is any representative of the

class /. (This is the cell: £" = E' [j tE' |J t2E', and all the classes ;, jt and jt2

are distinct.) In the usual orientation induced by the complex structure, we have

(this follows from the analogous formula for the boundary of Ε on H, which the read-

er can easily verify). Obviously e2 (/) = e2 (k) ·<^ / = kta for some a.

We easily see that L is a complex of the space XG(C).

c) Conclusion of the proof of Theorem 1.9. Following the plan announced at the

beginning of the proof, we construct the groups C j , Z^ and S j of 1-chains, 1-cycles,

and 1-boundaries of the complex L, and we define the imbedding C -* Cχ as follows:

the G-chain (;) corresponds to the L-chain e x(js) - e fi). We easily see that this de-

finition is correct and commutes with the boundary homomorphism (the group of linear

combinations of parabolic points is naturally imbedded in the group of 0-chains of L').

We show that the kernel of this homomorphism C -» C ( is trivial. We consider a

nonzero G-chain Σκ .(;). Using the relations (/) + (;'.s) = 0 and (;') = 0 for / = js, we

may assume this expression normalized so that «.«.,= 0 for all ;'. This G-chain cor-

responds to the L-chain Ση (e^ijs) - e ^j)). If η /- 0, then / ^ js, and hence, as

noted above, e x(j) φ ex(js). In addition, if η ηk £ 0, then / Φ k, ks, so that all the

simplices e^ ; ) , e x(js), e ^(k) and e ^(ks) are distinct. It hence follows that

Σ Β ( i j i / s i - e j t / ) ) ^ 0.

We now assume that 7. C 7, χ using the above imbedding. Then (/) mod Bj(L) =

), because the chain e ^js) - e fi) belongs to the homology class lg(0), g(!<x=)|
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by (7), where g € Γ is any representative of the class /. It hence follows by linearity

that ζ mod Β j(L) = ξ{ζ) for all ζ C Z.

Finally, it is clear from (8) and (9) that all the generators of Bj(L)-the boundaries

of 2-cells-belong to Β C Ζ and have the form - (/') for / = jt and - (;') - (jt) - (jt2)

for j t jt. Hence Ζ f] Bj(L) = B.

This completes the proof of the theorem.

Remarks, a) The parabolic complex K(G) constructed in 1.8 b) has the same 1-

homology as L, but is more economic than L; of the 0-cells of L only the parabolic

points are left, since a pair of 1-cells of L with a common i-elliptic vertex corresponds

to a single 1-cell in K(G).

b) The construction of the G-complex in 1.8 a) is formally applicable to any sub-

group G C Γ, for example to the unit subgroup. Taking into account the possible inter-

est in studying the limits Hrn Hj(XG(C)) and lim Η (XG(C)) over systems of subgroups

(G.) C Γ, we mention the following algebraic situation: in the case G = |e}, the system

of equations (3) admits an explicit parametric solution. In order to construct it, we re-

call that Γ is the free product of its subgroups Z 2 and Z } , which are generated by

s and t, respectively. Consequently any element of Γ can be uniquely represented

as a word es a°ίβ° · · ·sa»t/3« , where a. = 0 or 1 and β. = 0, 1 or 2; in addition,

a ; and β{ can only be zero at the ends of a word.

By ί-words we mean the word et , and also all words with β = 1; by t -words

we mean all words with jS = 2, except for et ; by s-words we mean all words with

βη= 0 and a.n = 1. Every t -word can be uniquely represented in the form g(st2)m,

where m > 0 and g is a Z-word. Every s-word, except for es, can be uniquely repre-

sented in the form g(st^)ms, where m > 0 and g is a i-word.

We introduce a family of independent variables U(g) indexed by all /-words g of

the group Γ.

1. 10. Proposition. The infinite system of equations (3) in the unknowns

g € T , has the following general solution:

t(s) = U(t)+U(t*),

+(- 1)'"£/(A),

for any t-word h.

Proof. The relations 0,gs) = - ξ^) and £(gt2) = -£(g/) - ξ^) allow us inductively

to express all the ξ indexed by s-words and <2-words in terms of the <f indexed by

Z-words. It can be immediately verified that <f(g) can be chosen independently for all

the Z-words g, and that the above formulas are obtained as a result of induction.
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(Passing to a nontrivial subgroup G C Γ naturally imposes additional relations on

the parameters U(g).)

§2. The curves X,.

2.1 From now on, we shall work with the subgroups G C Γ of the form

Ξ Γ C~0mod#l

For the most part we keep the notation of § 1 , but we write XN(C), \a, β\Ν etc. instead

of Xr 0 (Nj(C), \a, β Ι Γ ο ( Λ ί ) · Some of the results become trivial or require slight modi-

fications in the case when genus XN(C) = 0; we usually exclude this case without ex-

plicit mention.

The basic purpose of this section is to specialize the results of §1 to the case of

the groups Γ0(Λ/) and "explicitly" compute the groups //j(XN(C), Z). However, we

begin by describing the special properties of the Riemann surfaces XN(C) which we

need later.

The principal property is the existence of a special smooth pcojective curve XN

defined over 0 for which the space X^ (C) = Γ0(Λ/) \Η is canonically identified with

the set of C-points of X^ (also X^(C) in the traditional notation).

We enumerate some features of the Q-structure and the induced R-structure on X^.

Let / : Η -> C be the classical modular invariant; this is a holomorphic function

on H; we define j N by the condition /N(z) = (Nz). Let Q(/, j N ) be the field of ration-

al functions generated by ;' and j N . It has transcendence degree 1, and Q is alge-

braically closed in it. The curve X^ is a smooth projective model of this field.

We further set ΥN = Spec Q[/, j N]; this is an affine model of the field. The map

Η -> ΥN(C) : z^-*{f(z), j(Nz)) extends to a map φ : Η -> XN(C) which, in turn, induces

an isomorphism Γ0(Ν)\Η—>X^(C).

Let / € C(/, jN) be a rational function on X^ ® C. Its lifting φ (/) to

Η expands in aFourier series Σα β

2ττ'ηζ with a finite number of coefficients an £ 0

for η < 0. This function is defined over Q, i. e. it belongs to Q(/, 7^), if and only if

a 6 Q for all n. Analogously, the differential on XN ® C with Fourier expansion on

Η

y t,iieM«>-D'd(einU) = 2m V b , ^ " " d z

is defined over 0 if and only if bn<i Q for all n.

The local ring of the point φ(ί °°) consists of all functions with Fourier coefficients

a = 0 for η < 0, so that, algebraically, e2n'z is a preferred formal parameter of this

ring in the Q-structure. In particular, /(φ(ί °=)) = Φ (/(/«=)) =aQ. Hence the values at

the point ό(ί *>) of all functions defined over Q belong to Q. This means that

0(ioc)e XN(Q).
The map zw—~ l/.V.~ belongs to the normalizer of the group Γ0(Λ;), and hence
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induces an involution on VQ{N)\H. We easily see that this involution interchanges ;'

and j N , and thus comes from the canonical involution of the curve XN over Q. This in-

volution takes φ(ί°°) to φ(θ); hence also φ(θ) € XN(Q).

The parabolic points on XN(C) other than φΝ(0) and φΝ(ί°°) do not necessarily

belong to XN(Q) (or even XN(R)).

In fact, complex conjugation acts naturally on X^(C). Denoting this action by a

bar, we have

φ(7) = φ ( — ζ).

In other words, reflection of Η relative to the imaginary axis becomes complex

conjugation on XN(C). This follows from the formula e2n" = e~27T'z and from the fact

that e πιζ, as an analytic local parameter, is defined over R. Hence to construct a non-

real parabolic point it suffices to find a rational number a € Q such that - a.0. Γ0(Ν)α.

Such numbers always exist if Ν is divisible by the square of a prime number > 3, as is

clear from the classical description given below of parabolic points.

Parabolic points. The parabolic points of X N(C) ate in one-to-one correspondence

with the classes F0(/V)\Q \J (i °°). In order to describe them we introduce the set Π(Ν),

which consists of pairs of the form [δ; α mod (δ, Νδ ~ )]. Here δ runs through all posi-

tive divisors of Ν, and the second coordinate of the pair runs through any invertible

class of residues modulo the greatest common divisor of δ and Λ/δ"1. If (δ, Α/δ"1) = 1

we sometimes put simply 1 in place of the second coordinate.

2.2. Proposition. Let 3\Ν,η,ν€Ζ; (u, νδ) = (ν, Λ/δ)"1 = 1. The map Q y

(ί «Ο -» ΠΟν) of the form

— — [6;«umod(o, NO" 1)], loo — [ W ; l ]
υδ

gives an isomorphism of the set of parabolic points on X», with Π(Λ/).

Proof. The substitution
1 1

Ν «+,.;ΞΓ·<*>
takes ί οο into Q, so that it suffices to examine the action of Γ0(Λ/) on Q. The sub-

stitution (Ĵ _ J) takes
iu an -f- bvd
•— t o .

ίΐδ Ncu -\- dvd

This fraction is irreducible, and δ = (Ncu + dv8, N), because (dv, Λ/δ"1) = 1. Finally,

(au -j~ bu&)(N6~1cu -\- du) ΞΞ aduv = uvmoA(b, Λ/δ*""1),

because ad - Nbc = 1 =» ad = 1 mod (δ, Ν8 ~ ). Consequently every class ΓΛΝ)υ/νδ

corresponds to the same element in Π(Λ/). The induced map ro0V)\Q(J (;<») -» Π(Λ/)
is obviously surjective; the fractions u/δ, (u, 8) = 1, cover all pairs with first coordi-
nate δ. Finally, this map can either be checked to be injective directly, or else we
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can refer to the fact that both sets consist of the same number of elements

^ δ \Ν Φ((δ, NS~ )). The proposition is proved.

Remark. The stationary subgroup of the point u/8 in Γ.(/ν) is generated by the

element

HI u"\ ; 1 e\ ι 6' — u'

κδ δ') [0 l) (—δ u

where e = N8~l/(8, Νδ~ι) and u8' =u"8=l.

2. 3. The set Γ 0 (Ν)\Γ. We define the set Pl(Z/(N)), " the projective line over

Z/(N)" using homogeneous coordinates.

Let c = c mod Ν, d = d mod Ν be two residue classes mod Ν which are repre-

sented by the relative prime integers c and d. We call two such pairs (c , d) and

(e, /) equivalent if there exists an invertible residue c las s u € (Z/(/V)) such that

(uc, ud) = (e, / ). We designate the equivalence class of the pair Q1, d) by the sym-

bol c : d. By definition, the set of these classes is P'(Z/(/V)).

The group Γ acts on the right on P'(Z/(N)) by the formula

c d

2.4. Proposition. The map Γ -> P1{Z/(N)), which associates the matrix (a b.)

to the point c : d is constant on the cosets V0{N)g and induces an isomorphism of

right resets

Proof. We immediately verify that the map

_ c:d

is constant on right cosets and commutes with the action of Γ. In addition, the group

Γ acts transitively on both sets ΓΛΝ)\Τ and Ρ (Ζ/(Ν)), the unit class goes to the

point ( 0 : 1 ) , and the stationary subgroups of these two elements coincide: they equal

Γ0(Λί). This completes the proof.

From now on, we shall often identify Γ0(Λ/)\Γ with Ρ (Ζ/(Ν)) by means of the

above isomorphism. We translate the structures in §1 connected with Γ0(/\')\Γ to the

language of P'(Z/(/V)). See 1.5 for the definition of the map ζ: we recall that

2 . 5 . C o r o l l a r y , a) The {unction ξ : \il(7.AN)) - Ιί χ(\χ(Ο. ft) has the formΓ ,V

Π0)
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where a, b, c, d are any integers with the conditions ad - be — \, c= c mod N,

d = d mod Ν (by definition, a/0 = i oo).

b) The action of the elements s and t on P!(Z/(/V)) is described by the formulas

(c:d)s = —d:7, (c:~d)t = (c — d):~c (11)

c) Complex conjugation (see the end of 2.1) acts on the distinguished classes

&c : d) by the formulas

l(c:d)=-Ud:c).

All these facts are verified directly from the definitions.

In 1.8 we define the "boundary" of any element in Γ'0(Λ/)\Γ: this is an element

of the free abelian group generated by the parabolic points of XN(C). Identifying the

set of parabolic points with Π(Λ/) as in 2.2, we describe the boundary map:

2.6. Corollary. The boundary of the "simplex" c : d equals

(13)d(c:d) —- Γδχ; -—rf M n o d ^ , Λ/δΓ1)] — Κ'2; — c J — m o d ( o 2 , Λ/δ- l)

where δ [ = (c, /V), δ 2 = (d, N).

Proof. It is clear from (10) and the definition of the boundary that the boundary is

equal to the difference between the classes FQ(N)a/c and TQ(N)b/d. By Proposition

2.2, the point a/c corresponds to the pair [δι ; a(c/Sj) mod ( δ ρ Νδ7')], and

ad - be - 1, so that ad = I mod ( δ } , Νδ~ ) and a = d~ . The second pair is computed

analogously, and this proves the corollary.

2.7. Theorem, a) Construct the maximal torsion-free abelian group generated

by the symbols (c : d), one for each point c' : d 6 P'(Z/(/V)), tia/& </be relations

(c:d) + (-d:c)=0,

(c : d) + {(c-d) : c) + (—d : (c—d))=0. (15)

Further, lei H(N) designate the subgroup in it which is the kernel of the boundary

homomorphsim (13). Then the map ξ : (c : d) -v"* \b • d, a/c lN, as in (10), induces an

isomorphism

ς://(/ν)~//,(.ΥΝ(Ο, Ζ),

b) Lc/

ill ^ _ir
' ' ' ' .;, ' fl,, i
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be the successive convergents of the rational number b/a > 0. Then

0,11 = ^ ( ( - 1 ) % : ί Ν ) . (16)

•(c)+ ξ(1-?-ΐ) + ξ ( j i ^ j ,= 0,

2.8. Special c a s e . Let Ν = p, a prime number. In this case there are two parabolic

points [ l ; l ] and [p; l ] in the notation of 2.2. The points of Pl(Z/(p)) have the form

c : 1 or 1 : 0 . The simplex in Κ(Γ( )(Ν)) corresponding to the pair 0 : 1 and 1 : 0 ,

joins [ l ; l ] and [p; l ] ; all the other simplices of the parabolic complex are loops which

begin and end at [ l ; l ] . Hence, introducing the affine coordinate system c" : 1 = c',

ΐ : 0 = ο», in ΡΗΖ/ψ)), we find that the map ξ: Z/(p) \J (~) - H^X^C), Z),

whose definition is provisionally completed by the conditions f(0) = f(oo) = 0, is the

universal function satisfying the functional equations:

(17)

(Universality holds in the class of such functions with values in torsion-free abelian

groups.) We note that ξ&) = !θ, \/c\ by (10) if c" φ 0.

§3. Arguments of parabolic points

In this section we give explicit expressions for the integrals / j a oj ω in the case

when the class ! α , β\ is not necessarily integral. To formulate and prove our results,

we need some elementary facts aboul: Hecke operators. We give them in the limited con-

text in which we need them.

3. 1. Hecke operators and parabolic forms. Let a, b, c, d Ε R, ad - be > 0. For

any function Φ on Η we set

Φ
a b·

c dl" ' \" + dJ dz\cz + d

This defines a right action of the group PL(2, R) on the space of functions on H. This

action extends by linearity to the entire group ring:

The following special elements of this ring are called Hecke operators:

Tm= Σ ( " l f ; ' ] . «ζ «ΕΞ Ζ, , Ο - Ο . (18)
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They satisfy the following relations on the space of functions on Η with period 1:
TJn = T

m n forG», » ) = 1 , and ΤpTpr =TpT + l +PTpf.1.

Let G C Γ be a subgroup of finite index. A function Φ(ζ) on Η is called a (/-para-

bolic form if there exists a differential of the first kind ω on the surface X r(C) such

that <£ (ω) = Φ(ζ)ί/ζ, where φ ι Η •* XG(C) is the canonical projection.

3.2. Proposition. // On, /V) = 1, then Τ takes the space of Γ0(N)-parabolic forms

ΡΝ into itself.

Thus the operators \T | (w, N) = 11 generate a commutative operator alegbra on the

space of rQ(N)-parabolic forms ΡN . They are Hermitian relative to the Peterson scalar

product. It is also worthwhile to keep in mind that the Q-subspace 4>N(H (X/y> ̂ )) is

invariant relative to Τ'm : this is clear either from the direct description of the action of

Τ on the Fourier coefficients (Atkin and Lehner [l], formula (3· 1)), or else from them

invariant definition of Τm using correspondences on X^ χ X^. In particular, Ρ Ν has

a basis of eigenfunctions for the Hecke algebra all of whose Fourier coefficients are

algebraic.

The theory of Hecke operators with indices not prime to Ν is more complicated.

We shall only indicate the operators U ρ prime:

In the article by Atkin and Lehner [l] it is shown that U (P ) C P., if p \ N, and that

the U commute with all the Tm, p^m.

We shall henceforth assume Ν fixed; ί α, β\Ν denotes the element in //,(XN(C), R),

defined in 1.2. In addition to the general properties of the classes {α, β\ we note that

{a + m, β + n\N = ja, β\Ν for all m, η 6 Ζ. This follows because the parabolic ele-

ment ( 0 ^ ) belongs to F0(yV) if we use Proposition 1. 4: the class I a, a + w i N =

1 a·, ( 0 7 ^ a ' ^ s e <3 u a l t o zero as the image of a parabolic element under the homomor-

phism To(/V) - f/jtX^iC), Z).

3.3. Theorem. Let the l\(N)-parabolic form Φ -- φ (ο>) /dz he an eigenfunction

for the Hecke operator Τ , U , N) = 1 : Φ | Τ = c Φ. Then

Φάζ r- V \ ω.
(/ dim \ ' b \ (20)

mn.xli/l"· J\

Comment. Since (m, V) •= 1, we have b/dC Γ0(,\')(θ) for all d\m by Proposition

2.2. Hence I 0, b/d\ e Η χ{Χ^(Ο, Ζ), so that the right side of (20) consists of integral

linear combinations of the fundamental periods of the differential ω with respect to

some integral homo logy basis. The coefficients of these linear combinations are com-

puted using the theory in § j ' l and 2 (see, in particular, formula (16)). In addition,
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^d\m ^ ~ cm ^ ° ^ o r sufficiently large m by the well-known growth estimates for the

coefficients of parabolic forms.

Thus we may assume that the expressions (20) give us an explicit form for the

arguments of the point φ(θ) under the Abel-Jacobi map of the curve XN(C) (with origin

φ{ί °°)) relative to the basis of differentials of the first kind for which the correspond-

ing parabolic forms are eigenfunctions for the Hecke operators.

Another point of view on formulas (20) emerges if we consider tn variable and

fix Φ. Then, under the assumption fi°° Φάζ £ 0, (20) and (16) give expressions

for the eigenvalues cm of the operators Τm on Φ in terms of the expansion in con-

tinued fractions of all numbers of the form b/d, d\m ., 0 < b < d - 1.

Both points of view lead to interesting number-theoretic results, which we shall

examine in greater detail below in § § 6 and 7.

3. 4. Proof of Theorem 3. 3. For any element g 6 PL(2, R) and function Φ on

Η we have

j (Φ | g)dz - j Φ (gz)d(gz) = J φ (z)dz.
a a e(o)

Using this, we obtain the following formulas for the action of the Hecke operators (18):
m b

\ (ΦI Tm) dz = V V (' Φάζ.
a dim 6=0 in b

We susbtitute a = 0, β = i <*> here and use the fact chat Φ| Τm- cm<&:

joo d—l/O iao\

that

as was to be proved.

More generally, this same device of "closing the path of integration" allows us

to compute the arguments of any parabolic point.

3. 5. Theorem. Under the conditions of Theorem 3. 3, let α 6 Q. Then

d-'in

= Σ J ω · (22)
dim ( m , b 1

fcmodd Ι α ·5ΐ " τ 5"Ι,γ

For every Ν there exist infinitely many values of m, (m, N) = 1, such that

l a , ma/d2 + b/d\NC H^X^O, Z) for all b. Hence if Φ is an eigenfunction for
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all the Heche operators Τ , (m, N) = 1, then m can be chosen so that the right side of

(22) contains the periods of ω over integral homology classes.

Proof. (22) follows immediately from (21), as in the previous theorem.

To prove the second assertion, we set α = u/v8, where 8\N and (a, vS) =

(ιι,Νδ" 1) = 1, and take for m any prime number / with the conditions / ι Ν and / =

1 mod (5, Ν δ'1).

According to 1. 3 c), integrality of the class ! a., lo/d + b/d\ is equivalent to

the inclusion la/d + b/d Ε VQ(N)CL. Taking into account that d = 1 or / and using

Proposition 2. 2, we conclude that we must verify that, in the irreducible representation

of any of the fractions

, lu 1 b u + bvd
la = —, — α \ !

νδ Ι
, α \

νδ Ι ι Ιυδ

the product (numerator) χ (denominator) δ~ is congruent to uv mod (δ, Νδ~ ). We

must consider separately the cases when this fraction is reducible (then the greatest

common divisor of the numerator and denominator equals /) and when it is irreducible.

In both cases the required congruence follows from / = 1 mod (δ, Νδ~ ) .

We note that all I \ Ν are suitable for square-free N, and that all 1 = 1 mod N.

The theorem is proved.

The case when the eigenvalues of Τ m on Φ are rational is especially interesting:

it then follows from (21) and (22) that the corresponding arguments of all the parabolic

points of XN(C) ace rational linear combinations of the fundamental periods. Here is

the algebraic-geometric formulation of this fact:

3. 6. Corollary. Let φ: X„ -> X be α morphism of curves over Q, and let the space

ψ (Η (Χ, Ω^)) be invariant relative to the Hecke operators Τ , (m, /V) = 1, and have

a basis of eigenvectors for Τ with rational eigenvalues at least for some sufficiently

large m. Then for any two parabolic points x, y 6 XN(C) the divisor class φ{χ) -

ψ(γ) on X ® C has finite order. (!)

3. 7. Special case. Let φ : XN -» X be a morphism of XN onto an elliptic curve

λ" over Q. We call this morphism a Weil uniformization for X (in the weak sense) if

φ ° φ(ίοο) is zero on X, and the one-dimensional subspace (φ ° φ) Η (Χ, Ω ) is

invariant relative to the operators Τm, (m, N) = 1, with rational eigenvalues.

The following assertions are easily deduced from the above:

a) // the curve X has a weak uniform tzation φ : λ' ν -> X, then there exists another

weak uniformization for which the images of all the parabolic points coincide with zero

on X.

In fact, it suffices to take the composition of φ with the multiplication X —» .V

for suitable η and then use 3. 6.

( Μ Added in proof.. V. Drinfel d has shown me that Theorem 3. 5 easily implies that such

classes even have finite order on Λ' , .
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b) Let φ : XN -> X be a weak uniformizatiqn, let ω be a differential of the first

kind on X, and let <t>(z)dz be its preimage on H. Further, let y+ be a generator of

the subgroup of real {invariant relative to conjugation) classes in Hj(XN(C), Z),

W = / r + ω, and let t be the maximal period of a point of finite order in X{Q). Then

= jW+, SEE Ζ. (23)

α

In fact,
iao ψοφ(ιοο)

f Φ at = Ι ω
J · J

The second integral is taken over the image of the imaginary axis, which lies entirely

in X(R) and joins the point of finite order φ ° φ{0) Ε X (Q) with zero φ ° φ(ί«ο) €

X(Q). This implies the assertion.

3. 8. Finally, we give a somewhat strengthened result from the second chapter of

[9], where the device of closing the path was first introduced in a somewhat different

context. Here we are not required to apply the Hecke operators, but, on the other hand,

the integrand contains parabolic forms of a special type arising in the Hecke-Weil theory

and in the study of zeta-functions of modular curves over abelian extensions of the

field Q.

Suppose that Φ = Σ α e

2 i T l n z j s a parabolic form relative to Γ0(Α/), m > 1, m 6

Z; let χ : Ζ -» C be a primitive Dirichlet character mod m. We set
znlt ο»

g (X) = y\ X (b) e m (Gaussin sum) and Φ χ =
b tnod m n==i

finally, let Φάζ = φ (ω).

3.9. Theorem. Let 8={m,N), and let (δ, /νδ~ 1 ) = 1. Then

Mb) f
^ L ) (24)
in' β I,V

ewrf i - him, l/(5! N e WjiX^iC), Z) /or all b mod m, χ(ί>) Φ 0.!N

Proof. In fact, by a well-known lemma (see Weil [l6], Ogg [12] or Manin [9]),

imodm

so that

f φ = e_0lL V
m •<-J

/.•raod»i
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for any a €. H, because ^bmo^m x(b) = 0 since the character χ is primitive.

In particular, if (δ, Λ/δ"1) = 1, then for any b with χθ>) ^ 0, i. e. (b, m) = 1, we

have b/m € Γ0(Ν)δ~1 by Proposition 2.2. Hence \b/m, l/8 \N e Hj(XN(C), Z), which

explains the choice α = ΐ / δ . The theorem is proved.

In [9] we examine the case 5 = 1.

§4. L-series at the center of the critical strip

4. 1. Let ω be a differential of the first kind on XN ® C. As above, we set

Φ ω = φΝ (ω)/'dz = - 2ni Σ α ^ 2 " ' " 1 and define the Dirichlet series L ω by the formula

inn-s. (25)
n = l

It is well known that LJ^s) has an analytic continuation onto the entire plane given

by the formula

and, in particular,

| j ω (26)j
{ ( ' > £ o o } l V

(see, for example, Manin [9], Lemma 9. 2).

This allows us to interpret the fundamental results of the last section in terms of

explicit formulas for the values of the series Lω at the point s = 1, the center of their

critical strip; and we gather these formulas together here for more convenient reference.

4.2. Theorem, a) Under the conditions of 3. 1, suppose that Φ ω is an eigen-form

(or the Hecke operator Τ , (m, N) = 1, and that a ̂  = 1. Then

Σ Ι" ω. (27)
dim 1 % ι

b) Under the conditions of 3. 1, /ei χ be a primitive character mod m > \, let

g(x) be the Gaussian sum, and let L() %(s) = Σ ° ^ 1 x(n)ann~s. If (m, Ν) = δ,

(δ, Νδ~]) - 1, then

2 X W ! ω. (28)
ft mod m | _ 6 ι |

• m ' "6" I A'
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Proof. Formula (27) follows from (20) and (26) if we take into account that
Φω\Ττη = α

π,
Φω f o r a l = 1- Formula (28) coincides with (24).

4. 3. It is interesting to compare formulas (27) and (28) with the Birch-Swinnerton-

Dyer conjecture (see [8], [9] and [15]). In the next two sections we do this for Weil uni-

formized elliptic curves over Q and for some abelian extensions of Q. Here we shall

limir ourselves to a remark on the behavior of the curve X^ itself.

Let

n = l

be the family in PN consisting of the eigenfunctions for the Hecke operators with the

proper multiplicities (k = 1, · · ·, genus X^; a^k) = 1). Then the product
jjg e n u sgenus L^ f c )(s) coincides with the Hasse-Weil series of the curve X^ corresponding

to the one-dimensional cohomology of X^, to within the Euler factors for p | N. It

appears that the precise form of these exceptional factors is not known: Serre suggests

characterizing them in terms of the /-adic representations connected with X.., but these

are not sufficiently well known. On the other hand, Atkin and Lehner [ l] introduced

the useful notions of "new forms" in Ρ„ and the canonical partition of P» into two

terms. The first term is generated by the new forms; there a one-dimensional subspace

corresponds to every weight of the Hecke algebra. The second term is generated by the

"old forms," which are constructed in a natural way from the new forms in P. for d \N.

A more detailed examination of this construction and its translation in

//j(X^(C), Z) (or, rather, Wj(X^ , Q)) should allow us to conjecture the correct form

of the L-function of the curve X^ and compute the exact value of L(l) using (27).

§5. Weil uniformization

5. 1. Let X be an elliptic curve on Q. The following notation will be fixed for the

duration of this and the next sections: Ν is the conductor of Χ; ω is a Ne'ron differ-

ential on X; L(X, s) = Σ*. |β n " s is the canonical Dirichlet series connected with X,

the fundamental part of the Hasse-Weil zeta-function of this curve, and L(X ® K, s) is

the analogous series for X over Κ if Κ D Q is any finite extension. We emphasize that

the Euler factors of L at the points of degeneracy of X are assumed to be normalized

in the way that is now generally accepted, as described, for example, in Weil's article

[l6l and in the author's survey article [9].

5. 2. Definition. A Weil unijormization (in the strong sense) of the curve X is a

morphism of curves ΰ : Λ\, ~> X over Q with the following properties:

a) ι.'/ ° ώ : Η •* Χ., ((..'.) · X (C) takes i <χ> to the zero point of X(Q).

b) (ώ ° ό ) 'ω Φ(Γ)(·/- •--= - 2πι Ί*_] a?ie
2n'nz dz, where (a ) are the coefficients

of the Dirichlet series L(\, s).

c) The form Φ(ζ) is an eigenfunction of all the Hecke operators Τm (see (18))

for {m. S) -• 1, of all the operators (•' for the primes (> ,V (see (19)), and of the

standard involution operator ( _v -. ) of the curve \^..
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It probably follows from a) and b) that Φ(ζ) is a "new form" in the sense of Atkin-

Lehner (see [l]). Then properties c) are automatically fulfilled. In any case, conditions

a), b) and c) are not independent (see, for example, Cartier [4]).

Weil conjecture. Any elliptic curve over Q admits a Weil uniformization in the

strong sense.

For discussions of this conjecture, see, in particular, the articles by Weil [16], by

the author [9], §10, and by Cartier [4]. In [16] and [9] it is shown that, for curves ad-

mitting a Weil uniformization, the L-series over Q and over any abelian extension of Q

have analytic continuations onto the entire plane, as in §4. In this section we give

formulas for the values of L-series at one (the center of their critical strip), and we de-

duce from them that the uniformization φ is unique.

5. 3. Let the curve X, the differential ω and the strong uniformization φ be fixed.

We introduce two fundamental number-theoretic functions connected with (Χ, ω, φ).

We let γ and γ designate the generators of the groups of real classes and of purely

imaginary classes, respectively, in Η l(X(C), Z) and we set W ± = L±o>.

5.4. Definition The functions χ : Q U (i <») -» Q are defined by the equations

ψ ({ — α, 0},ν ± ψ, {α, 0}ΛΤ = χ ± ( α ) γ ±

(the signs are taken either all plus or all minus).

We recall that i a , 0 IN € //j(XN(C), R). x±(a) is rational by the results of 3.6

and 3. 7. If the denominator of α is relatively prime to N, then we even have χ (α) (

Ζ. The functions χ ans χ have period 1; χ is even, and χ is odd. We have

normalized the signs in a way that is not entirely natural because of a desire to remain

compatible with the notation in [9].

Using these functions, we can explicitly distinguish irrationality in the formulas

for JL(1).

5.5. Theorem. For all m, (m, N) = 1, we have

Ί - ! /Ill1

(29)
dim J ώ I dim

\ bmodd

Proof. Formula (29) follows from (27) with φ (ω) in place of ω, if we take into

account that the differential ω is defined over R, so that L(X, 1) C R and

Hence the real part of the sum on the right in (27), which is equal to half of its sum

with it complex conjugate, has the form

2 ,t/m ,J - dim "
bmodd ( „ . * - ! + (o .- ~\ bmodd '•'f hmodd
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as was to be proved.

To formulate the next result, we consider two abelian extensions Κ C K' of the

field Q. Let the discriminants D and D' of these fields be relatively prime to N.

Further, let rj be the number of real points of the field K, r2 the number of purely

imaginary points, and τ = τχ + r2 ; let rj, r'2 and r' have the analogous meaning for K'.

We let Μ designate the set of Dirichlet characters belonging to K' but not to K; let m

be the conductor of the charater χ; sign χ = + if χ{~ l ) = 1 and - if χ(- l ) = - 1.

5. 6. Theorem. In the above notation we have

,Vr'on'*"" Π {( Σ χ(*)·^«(^)). (30)
D 2 V \ m ) J

Proof. We set ί χ (X, s) = Σ ^ x;(n)anK~sand use the formula

where χ runs through the Dirichlet characters associated with the field Κ (here we use

the fact that D and Ν are relatively prime: otherwise the product in the right side of

(31) may differ from the canonical Dirichlet series for Χ ® Κ by a finite number of

Euler factors; see [9], Lemma 7. 3). Dividing the formulas (31) corresponding to K'

and Κ by one another and substituting in the right side of expression (28), we find

L (X <g> Κ, s)/L(X ® K, s) | s = 1 = Π Lx(X,l)

_= Π *ί ϊΙ f Σ U) .f Ψ* (ω)) · (32)
xGM m \ 6 d j b j /

Further, we know that

f
my4 \6modm x j _ b__ _ j

D_

D'

by the Hasse-Artin formula. Finally, the inner sum in (32) transforms as in the previous

theorem, giving

f ψ(*)-=~-ΧΣ ^(b)xsisnxi~). (33)
i'tnotl.viv ι ft ι bmoAmx "'X.'

To complete the transisition from (32) to (30), it remains to note that the number of

even characters in Λ1 equals r' - r, and the number of odd characters equals r^ - r.

The theorem is proved.

We note that, since the fields Κ and K' are normal over Q, it follows that only

the following three combinations of the numbers r and r' are possible: either r2 =

r[ = 0 , or r 2 - 0, r[ = Η r 'o r e l s e r-, = '<£ r , r'2 = V2r' .
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5.7. Theorem. If a Weil uniformization (more precisely, a pair (Χ, ω)) exists for

the curve X, then it is unique.

Proof. The values of L(X, 1) and L (X, 1) are uniquely defined and are character-

ized by formulas (29) and (33), in which the numbers χ (α) can be computed from any

uniformization. We consider all characters χ with prime conductor /i2/V. Then (30)

allows us to compute the sum 2 ^ m o d / χ (b/l), and (33) allows us to compute all the

sums 2j m o ( j j x(b)x (b/l) with nonprincipal characters mod / in terms which do not

depend on the choice of uniformization. Consequently the numbers **(£>//) for / \ 2N

do not depend on the choice of uniformization φ. These numbers determine the values

of the homomorphism of homology groups ψ * : //j(Xw(C), Ζ -» Η j(.X(C), Ζ) on the homol-

ogy classes of the form {0, b/l\N, as is clear from Definition 5.4. Suppose that these

classes generate the entire group H^X^C), Z) . Then it follows from the above that

the homomorphism φ* is uniquely determined. But φ is also determined uniquely from

ψ* if we require, as in 5. 2 a), that the distinguished points of the curves XN and X

corresponds to each other. Hence it remains to prove the following fact:

5.8. Lemma. The homology classes (0, b/l\N € H^X^C), Z) generate the en-

tire homology group when I Τ 2/V runs through the prime numbers and b runs through

a complete system of residues mod /.

Proof. We use a method of Weil [16]. Let ("Nc * ) € Γ ο (Λ/) be any element. We

have

la b\i\ x\a b\i\ x \ f . *
Ncx

By Dirichlet's theorem, χ can always be chosea so that the number Ncx + d is a prime

Φ 2; obviously it does not divide 2/V. Hence Γ0(Ν) is generated by the elements and

by the matrices having a prime / Τ 2/V in the lower right-hand corner.

Setting d = 0 in Proposition 1. 4, we now immediately obtain the assertion of the

lemma, and with it the uniqueness theorem.

Remark. Another variant of the uniqueness theorem (with a completely different

proof) is contained in Cartier's report [4].

§ 6 . The Birch— Swinnerton-Dyer conjecture and Mazur's theory

We keep the notation of the last section; in particular, X is an elliptic curve over

Q, Ν is its conductor, and φ : X„ •* X is a Weil uniformization in the strong sense.

In this section we compare formulas (29) and (30) with the Birch-Swinnerton-Dyer

conjecture. Its complete formulation in the form convenient for us is given in [9]. Here

we limit ourselves to several special cases with which our results may be directly com-

pared.

All of these special cases, along with the conditional resuits whose proofs use the

Birch—Swinnerton-Dyer conjecture and the conditional formulas of this type, are marked
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in the text with an asterisk.

6.1. Conditional formula for L(X, 1):

0, if rank X (Q) > 0,

w+ TOi5 l * ° ( X (R))1 ^ f n ° ( X mod p)l (34)*
In this and the other formulas, the following notation is used: [G] is the number of

elements in the set G; HI is the Safarevic-Tate group of the curve X; X(Q) is the

group of Q-points of finite order; »70(X(R)) is the group of connected components of

the real points of X; and nQ (X mod p) is the group of connected components of the

closed fiber of the Neron model of the curve X over the point p.

In comparing (34) with (23) and (29), the following circumstances deserve mention:

a) The general structure of the formulas is the same: L(X, l) is the product of

W by a rational number. However, in our formula the denominator of this number divides

[X(Q)] and even the maximal period of the points of finite order in X(Q)· This evi-

dently means that the local factors in (34)* must strongly cancel with [X(Q)] . Ligozat

[8] computed these factors for all twelve curves XN of genus 1. According to his com-

putations, the product of the local factors is always exactly equal to [X(Q)1, and the

hypothetical value of [III] equals 1.

b) The condition L{X, 1) = 0 expresses a simple topological property of the uni-

formization map φ °φ: Η -> X(C). This is the property that φ °φ takes the imaginary

semiaxis to a closed path which is homotopic to zero in X(R). In particular, in this

case there are branch points of φ ° φ on the imaginary semiaxis, namely the zeros of

the form {φ ° φ) ω . Do they have any relation to the points of infinite order in X(Q)

whose existence is predicted by the Birch—Swinnerton-Dyer conjecture?

6. 2. Conditional formulas for L(X® K1, s)/L{X ® K, s) \s_l • With the conditions

and notation of Theorem 5.6, we further suppose that X(K') = X(K): the group of

rational points of X does not increase when going from Κ to Κ. Then the Birch—

Swinnerton-Dyer conjecture leads to the following expression (for the details, see [9]):

L{X<%K', s)/L (X <gi K, s) l i = 1 =

[[ [ir0(XmodO]

} J [n0 (X mod v)]
u/,V

( 3 5 ) *

The notation here is similar to that used in (34) , except that [Hi] denotes the order

of the Safarevic-Tate group of the curve Χ ® Κ and [HI'l denotes the same for the

curve X ® K', and so on. In the case when rk λ'(Κ') > rk X(K) , we must have zero on

the right in (35) , while if the index [Χ(Κ') : X(K)] is finite, then the right side is

multiplied by a rational number, which we do not write out explicitly here.
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Comparing (30) and (35) again shows a good structural agreement of the formulas

and allows us to derive a hypothetical formula for the ratio of the orders of the

Safarevic-Tate groups under the above conditions:

Π [π0 (X mod ν)}

Ji*n = ^ ~U-( Έ χ(*>*"«-«f~))- «ο*
l*^J [ji0 (X (/?))] I I [rtu (X mod v')] xeM \bmoamy. \ %H

υ'ΙΝ

The left side must be the square of a rational number by Cassels' theorem. We

can independently prove the following assertion about the right side being a square.

6. 3. Proposition. Let Μ = \χ 6 ΛΙ | χ is not real \. Then

(37)

where Δ and S are integers and Δ consists only of ramified primes in the value field

of the characters χ Ε Μ.

Proof. According to 5. 2 c), the standard involution ΖΛ^->- I/NZ also induces an

involution on the curve X . Let this involution act on the homology of X by multipli-

cation by — C = + 1 (the sign is chosen to agree with Weil's notation in [16]).

We now compute its action directly. It acts on the group T^iN) by matrix conju-

gation (_N 0 ) and hence takes ( ^ d ).to ( J^ ^ )~ . Thus the class

i l ο\ ·-/-Α ( a

C d

goes to the class

a c\( c
a'\Nb

(we are using Proposition 1.4). But c -Ξ — Ν b~ mod a, because ad - Nbc = 1.

Turning now to Definition 5. 4, we find from this a functional equation for the func-

n ^ ( — ,V~ lb~~1 mod a

t ions χ ~:

x

a
so that

>' X (b)x^ (—) = V X (— -V "'//" lmod m)χ± [' —
/. \ 111 I '

(1
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(here m = m%, b runs through the residue classes mod m, and χ ± i s chosen correspond-

ing to sign χ). Thus, combining the sums in (37) corresponding to complex conjugation

characters and bringing all factors outside, we obtain

where e is a root of unity and Τ is an integer in the value field of the characters

χ € Μ (Τ is integral because (m%, N) = 1 by assumption, because χ ±(b/m) 6 Z, and

finally because the functions b *~x(b)xsleaX (b/mx) are even functions, so that the

sums ^bmodm c o n t a ' n each term twice).

On the other hand, u ^ g ^ is an ordinary integer, because all of the conjugates

over Q appear with every sum under the product sign. Formula (39) shows that ad-

joining a square root of this number (divided by e) to Q does not take us outside the

value field of the characters χ. Consequently, only primes which ramify in this value

field appear with odd exponent in the left side of (32). (This argument was mentioned

to me by A. N. Andrianov.)

The proposition is proved.

Remark. Of course, formula (33) is also applicable to real characters χ; it is

trivial in the case C χ{ - Ν) = 1, and in the case C χ{ — N) = - I it shows that

Σ , xib)x (b/m) = 0. This argument was used earlier in a somewhat different

form to actually construct forms of the curve X over quadratic extensions (correspond-

ing to real χ) whose L-series vanishes at s = 1 (see, for example, the appendix to

Birch [2]).

6. 4. We now compare the behavior of the right sides of (30) and (35) over cyclo-

tomic Γ-extensions Κ of the field Q. In this case we have Mazur's results [10], [ l l ] ,

[9] concerning the behavior of the groups X(K) and IU(.V ® K) obtained using Iwasawa's

theory of Γ-modules. Our formulas agree very well with the conditional interpretation

of Mazur's theory in the language of L-functions, and they also allow us to make some

predictions in the cases when the Γ-module technique has so far been insufficient.

We introduce the following notation. Let / be an odd prime, / -f" 2N (the case / = 2

differs in inessential details, and the case / | Ν requires separate consideration, which

we shall not go into here). Let G = i t 6 Z ; | el~ l = 1 I. The group G acts on the field

QiCn):Cn =e2"'/ln,CTi^Ce

n,geG. We set *„ = Q(<, + 1 ) C , K J - , Κ , .
Obviously Q = KQ C K, C •••CK00. The Galois group Γ = G a l K ^ / Q is canonically

i somorphic to (l + / Z , ) * '~ 8 Z , . We set Γ η = Γ ' " ; then Gal (Κ,/Q) » Γ / Γ , a

2, /I" •

The extension Κ j /Q corresponds to the primitive Dirichlet characters

modulo 1, · · · , / " whose values are roots of 1 of order lk. All of these characters are

even. Let Μ , be the subset of them which are associated with the field Κ . but

not with the field Κ _ 7 .



PARABOLIC POINTS AND ZETA-FUNCTIONS 45

We set

Π {( Σ
xeMa-l

 l \4mod4modJ»

According to (30), Λ _j is the nontrivial additional factor in the value of L at one

which appears in going from K n _ 2

 fo ^ n _ i · If ^ ( Κ π _ 2 ) = ^ ^ n - l ^ ' t n e n > ky (36) ,

this same number must also be the nontrivial factor in the expression for the order of

[1] .. As has already been noted, Λ € Ζ .
ΤΙ "~ Ι η

We further set λ = L(X, l)/W ; this is a rational number (possibly zero). We re-

call that (an) ate the coefficients of the canonical series L(X, s).

6.5. Theorem, a) Aj = 0 mod / if and only if either a. = 1 mod/, or I divides

the numerator of λ {all primes divide zero).

b) For η > 2 we have Λη Η 0 mod / // and only if either a. = 1 mod /, or a. =

0 mod I, or I divides the numerator of λ

In particular, for all other I we have Λ 4- 0 /or «// n.

Proof. Let ln be a prime divisor of / in £?(£„)• If mx = l", then x(b)1" = 1

for all 6, (6, /) = 1, so that \{b) = 1 mod lft_l. Consequently

Λ~= Π {/ Σ W-i-VlmodMj 2 , · ( ^
xmodi 2 \ b m o d l n \ ' 1 I v 2 (ft./)=i V '

•v (6,Z)=1 /

Hence we must clarify the behavior of % Σ. ^ χ (b/ln) mod /. To do this we set

m = l",n>2, in formula (29):

λ·

Subtracting formula (42) j from (42) , we find

I, IIIIKI I " "

In the sum on the left the obstacle is the residue c las ses b = 0 mod /; in order to

remove them, we again subtract (43) _ j from (43) :

7 Z 1 * Ι --,Ϊ j =- (fl,« — 2a/rt__! f at .„.. — / -f- / ') λ. (44)
fcmod;" '

We now consider the cases η - 2 and w > 2 separately.

Tie case η = 2. Since α μ = a f - /, we find from (44) that

1 V 1 ' / h N - ( a / — 1 : - / ) ( « / — 1 - / ) λ .
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It is immediately clear from this that if / | λ or l\(arl), then l \ \ l . Conversely, if

/1 Aj but / f ( a / - 1), then / must divide the numerator of λ. This proves assertion a).

The case η > 2. We have

atn = afltx-x — 7α/η-2 Ξ apvl-1mod I,

so that a[n = a" mod /. Hence the coefficient of λ in (44) is congruent to
a"~ ^ F ^ m o c * '• I I IS h e n c e c l e a r that if afaC 1) ΕΞ ° mod ' and * does not appear

in the denominator of λ, or if / | λ, then we have /1 Λ ,. We now suppose that
αΓαΓ Ξ ^ m o c * ' ' ^ u t ^ a t ' appears in the denominator of λ. The number

(a[ - l) λ is an integer by (43)!; «,-/-! Φ 0, because this is the number of points

on the reduction of X mod /; finally, a, - 1 - / is divisible by no higher than the first

power of / for / > 2 by the Weil estimate \at\ < 2 yjl. Consequently the denominator

of λ is not divisible by / and «̂  = 1 mod /. On the other hand, if we twice use the

formula a[n = a[aln_l - fo/n-2> w e easily obtain

Hence the coefficient of λ in (43) is divisible by / , so that the left side of (43) and

Λ , are divisible by /.

Conversely, if / divides Λ η _ } but does not divide the numerator of λ, then it is

clear from (44) that / divides

ain — 2a /,«_! + a[n.-i = a"'1 (at — 1) mod /.

The theorem is proved.

We derive several conditional corollaries from the theorem, using the Birch—

Swinnerton-Dyer conjecture, and we compare them with Mazur's unconditional results.

We recall that / ι 2/V and that primes / for which al = 0 mod /, are called super-

singular for X (Deuring), while those for which β ; Ξ 1 mod /, are called anomalous

for X (Mazur).

6.6. Corollary . // [X(Q)] < <*>, and if I does not divide the numerator of λ =

L(X, l)/W+ and is neither anomalous nor supersingular for X, then the group Χ{Κχ)

is finite, and the l-component of the groups W(X ® K^) has bounded order as η -» °o.

In fact, according to Theorem 6. 5, under the conditions of the corollary we have

L(X ® Κ 1) Φ 0 for all n, so that rkX(Kn) = 0. On the other hand, as Mazur showed,

the group X(K ) is finite. Finally, the ratio of local factors in (36) becomes 1 as

s -> Μ to within a 2-component, and by Theorem 6. 5 the new factors in Π χΟ/ί-Σ) are

not divisible by /.

This corollary is conditional, but this very result is proved precisely in Mazur's

theory under the assumption that / does not divide

[Ul(X)]Il[na(X mod p)\
P/'V

instead of the numerator of A: this agrees well with (34) .
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*6. 7. Corollary . // [X(Q)] < <» and I either divides the numerator of λ or is a super-

singular or anomalous prime for λ, then

as

In fact, if the quotients L(X ® Kn, s)/L{X <8> K n _,, s) | 5 l equal zero for infi-

nitely many values of n, then rk X (K ) -» «>; otherwise)

Ξ 0 mod.
[Ill (Χ® *„_,)]

for all η >nQ by Theorem 6. 5 and formula (36) , if we take into account the stabilization

of the local factors.

The parallel unconditional result in Mazur's theory was only proved for anomalous

primes, and asserts the following: if a =\ mod / then either rk X (K^) > 0 (and this

rank is necessarily finite), or [UJ(X ® Κ ) '] --» °° , or else both hold together.

Thus, in this place Mazur's theory partially overlaps Corollary 6.7*,but partially

complements it: combining both results , we find for a^ = 1 mod / we must have

[UI(X ®K )U)] - «>.
η

The supersingular primes have so far resisted the Γ-module technique; hence it
might be interesting to note a partial result relating to them:

6. 8. Corollary . // [X(Q)] < <» , and if I is supersingular and does not divide the

numerator of λ, then the group X(K^) is still finite.

In fact, Theorem 6. 5 b) shows that L(X ® K^ , 1) Φ 0. For anomalous numbers /

with the condition L(X. 1) Φ 0 there are no apparent reasons why L(X ® Κj, 1) cannot

vanish, but the author does not know any examples where it does vanish .

6. 9. Corollary * // rk X(Q) > 0, then for all I -f 2/V

rk X (Ka) + IIII (X (g> Knf] -> oo.

The reasoning is the same as in the proof of Corollary 6. 7, since in this case we

must have λ = 0, so that Λ Η 0 mod / for all η and /.
η

Mazur [10] conjectured that the rank of X(Kn) remains bounded (at least for non-

supersingular /).

The parallel conjecture under our conditions is the following:

6.10. Conjecture. Λη φ 0 for all n>nQ(X, I).

I am unable to prove this result in any case except those which are included in

Theorem 6. 5. Possibly investigating A^ p-adically for p i Ν could give useful infor-

mation.

In certain special circumstances we can prove that the numbers A are divisible

by certain special primes. In order to formulate the result precisely, we introduce the

following

6. 11. Definition. An isogeny χ : X -> Υ of elliptic curves over Q is called
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admissible if, for any prime p, it induces a separable raorphism of the connected com-

ponents of the closed fibers of the Neron models of the curves X and Υ over p.

The following two properties of admissible isogenies can be proved without dif-

ficulty:

a) Let χ :X -> Υ be an admissible isogeny, and let ωγ be a Neron differential.

Then χ ( ω ν ) is a Neron differential on X.

In fact, χ (ωγ) is regular on the Neron model of X, and a divisor of zeros can only

include the components of the fibers where the isogeny χ is inseparable.

b) If an admissible isogeny χ : X ••> Υ exists, then the conductors and the canon-

ical L-series of the curves X and Υ coincide.

We need only verify that the divisors of the conductor and the Euler factors of the

L-series coincide at the points of degenerate reduction, and this is proved directly from

the definitions.

Let χ : X -> Υ be an isogeny, and let γχ and γγ be the generators of the real

(+) and imaginary ( - ) homology classes of the curves X and Y, respectively. We shall

say that χ has type (q+, q~) if χ*()/χ) = qtyY .

6. 12. Proposition. Let χ : X -* Υ be an admissible isogeny of curves of type

(.q*, q ) , and let Ν be their common conductor.

a) // φ : XN -» X is a Weil uniformization of the curve X, then its composition

with χ is a Weil uniformization of the curve Y.

b) Let Xy be the functions associated to the curve Υ according to Definition 5.4.

// the denominator of the number α C Q is relatively prime to N, then

xy (α) Ξ 0mod q+, XY (a) = 0mod q~. (45)

Proof. Assertion a) is obtained from properties 6. 11 a), b) and the definition of

uniformization in 5.2: we need only choose the Neron differentials on X and Υ com-

patibly. Assertion b) follows from Definition 5.4 and the definition of type (q , q~).

6. 13. Corollary. Let K' 3 Κ be abelian extensions of the field Q with discrim-

inant relatively prime to N, and let M, r, r., etc. be defined as they were before

Theorem 5. 6. Then

XeM 2 Umodmjj

Using formula (36) , we can derive from this conditional corollaries concerning

the behavior of ί1Ι(Χ ® K') and X(K' ), if we only ensure no cancellation of q and

q~ with the local factors in the right side of (36) . For example, this result is

obtained for the curve V by precisely the same reasoning as in Corollary 6. 7.

6. 14. Corollary! Let Q C Κχ C · • · C K^C • • · be a T-extension corresponding

to the prime I \lN. Then either the rank of Y(Kn) increases without bound, or else the

order of [111(7 ® Κ )] is divisible by (q +iK» : Q^~con s t as η -> <*>.
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(The constant in the exponent of q appears because the group X(Kn) can grow in

the first few steps of the Γ-extension, and also the contribution of the local factors in

(36) does not manage to stablize to 1.)

This result can be compared with Proposition 9- 1 in Mazur's article [10].

6. 15. Examples and remarks, a) The existence of admissible isogenies is a rather

exceptional phenomenon. (The multiplication X -2-» X is not admissible for η > 1!) If

the kernel of χ : X -» V is cyclic and is generated by a rational point χ of order q,

then for (q, N) = 1 admissibility follows from Lutz's theorem that the "coordinates of

χ are integers," i.e. the reduction of the kernel of χ does not become trivial. However,

the case of common divisors of q and Ν requires special investigation.

Here is the data on the existence of admissible isogenies of curves XN of genus

one; q = 1, so that we only give q :

Λ' 11 14 15 17 19 20 21 27 49

</+ 5 3 4 4 3 2 4 3 2

Corollary 6.14 for the curve X u was proved by Mazur [10] for / = 5; in this

case the rank of V(Kn) equals zero for all n.

b) Assertion (45) relates to the behavior of the functions χγ constructed for the

image Υ of an admissible isogeny. However, observing lengthy tables of the functions

χ for the curve X J J compelled us also to suggest some regularity in the behavior

mod q of the functions χχ constructed for the domain X of the admissible isogeny.

More precisely, the following assertion is fulfilled in the tables (X = X 1 1 ; q = 5) :

the residue class x^ I— j mod 5 depends only on a (47)

{for all a £0 mod 11 and (b, a) = 1).

The analogous property is observed for Ν = 17, 19, 27; see §8.

Although this assertion seems to have the same nature as property (45), I have not

been able to prove it. The assertion is rather striking, since in the computation of

XJJ (b/a) the denominators of the convergents to b/a are operated on modulo 11, and

not modulo 5.

A natural generalization of the conjecture (47) is the conjecture that the residue

classes xx(a/b) mod q± are constant with respect to h.^) We note that the con-

gruence (46) would also follow from this assertion, which is weaker than (45), because

Σ& )(•(&) = 0 for any nonprincipal character χ.

Evidence for (47) is noted in the commentary on the tables in §8.

§7. Noncommulative reciprocity law

As the basic result of this section, in 7. 3 we formulate a special case of Theorem

(') Added in proof. Drinfel d has proved an assertion of this type with another
interpretation of the numbers q ~. Swinnerton-Oyer has obtained an analogous fact.
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7. 9 on the coefficients of parabolic forms, which can be derived from formula (20). The

features of a noncommutative reciprocity law emerge in this special case.

We begin by formulating the necessary concepts.

7. 1. Admissible solutions. Let d > 1 be an integer. A solution of the equation

d = ΔΔ' + δδ' is an ordered quadruple of numbers (Δ, Δ1 , δ, δ ' ) satisfying this equa-

tion. A solution is called admissible if k consists of integers satisfying the addition

conditions

(Δ,δ) = (Δ',δ')-1, Δ>δ>0, (48)

and also

either Δ'^>ό'^>0, (49)

orelseo' = 0, Δ = d, Δ' = 1, 0 < ό < ~ . ( 5 0 )

We call the solutions (50) boundary solutions.

The set of admissible solutions of the equation d = ΔΔ' + δδ' determines a finite

family of pairs (Δ, δ) which appear in these solutions. We shall later need to sum func-

tions of pairs of integers over the terms of this family. Hence for practical purposes it

suffices to think of this family of pairs (Δ, δ) as the set of different pairs, each equip-

ped with a multiplicity.

We shall also call such pairs (Δ, δ) J-admissible.

7. 2. Let X be an elliptic curve over Q with conductor Ν which has a Weil uni-

formization in the strong sense. Let L(X, s) be its canonical Dirichlet series, and let

a be the nth coefficient.
Tl r\_, r\j r\.

If Δ is an integer, we set Δ = Δ mod Ν. If (Δ, δ) == 1, then Δ : δ denotes a point

of the projective line Pl(Z/(/V)), as in 2.3.

With this notation we have the following

7. 3. Fundamental Theorem. Suppose that L(X, 1) 4- 0. Then there exists a func-

tion y : P'iZ/GV)) -> Q depending only on X such that the following holds for any

prime I 1 2/V:

1 - a , - H = 2 y(A:Z),

where the summation on the right is over the family of all l-admissible pairs (Δ, δ).

Remarks, a) The function y can be expressed explicitly in terms of the function

x+ for the curve X (see formula (74) in 7. 10).

b) The left side of (51) is the number of Z/(/)-points on the reduction of X mod /,

and the right side is some sum over the solutions of the equation / = ΔΔ' + δδ' taken

mod N. The general form of this symmetry:

(an equation depending on N, taken mod /)
J

(an equation depending on /, taken mod N)
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brings to mind a reciprocity law. It relates explicitly to noncommutative extensions,

since ct. in (51) is the trace of the Frobenius automorphism of the fields obtained by

adjoining to Q the points of finite order on the curve X (see Shimura [14]).

Another point of view regarding equation (51) is that it gives information on the

representations of / by the indefinite quadratic form ΔΔ' + δδ' . Eichler [5] gave a

general technique for obtaining such formulas for representations by positive forms

(using theta-functions). It seems that our result has another nature.

7. 4. The plan of proof for Theorem 7. 3 and its generalization is as follows.

Formula (20) gives an expression for 1 - a^ + I in terms of integrals over the homology

classes iO, b/l\N,0< b < I — 1. Formula (16) allows us to represent each class

JO, b/l\N as a sum of distinguished classes f (c : d) whose arguments are (up to sign)

the ratios of the denominators mod Ν of the successive convergents of b/l. Finally,

a lemma of Heilbronn [6] allows us to go from continued fractions to solutions of the

equation.

We begin the proof by giving Heilbronn's lemma.

7. 5. Formal continued fractions. Following Heilbronn [6], we introduce the poly-

nomials Q{E /ATl , · · · , Tn, · · · ] , ! > - 1, by the inductive formulas

Q-1 = 0, Qn = 1., Qn = T,,Qn_, -J- Q,_, for η > 1.

Obviously, Qn € Z[Tj , · · · , T^], so that we may write 0^ (and its particular values)

as a polynomial in η arguments for η > 1. We shall also apply this same notation for

« = 0, — 1, but then we do not pay attention to any arguments.

It is easy to verify that

Qn(Ti Tn)=Qn(Tn, . . . , Γ,). (52)

The following formula gives the connection with continued fractions:

<Γ(Γι Γ,) % _, Ϊ · (53)

•γ
1 η

It remains valid for η = 0 if we take the right side equal to zero in this case.

The successive convergents to (53) are defined by the formulas

Γ« » C i . . . . . Tn) Qm (Tu . .., Tm) Qx' Q,

The index of a convergent is the index of its denominator. We have

Qm-i(T2, ..., Tn^)Qm^l(T1 Γ,η_!)

- Q» (Ά Tm) Qm_2 (72 Tm_s) = (-I)" 1 " 1 . ( 5 5 )

The connection with the equation d = ΔΔ' + δδ' will be established in 7. 7 u.ing the

fundamental formula
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Tn)
(Tu ..., Tmr-i) Qn-m-i (Tm+t, ..., Tn), (56)

which makes sense and remains valid for all 0 < m < n. It is proved by induction, de-

creasing m from the obvious cases m = η and tn = » — 1.

7. 6. Expansion of rational numbers in continued fractions. Let 0 < α < % be a

rational number. It uniquely determines an integer η •= η(α) > 1 and positive integers

c j , · · · , c n such that c j > 2, c^ > 2 and

α = ( 5 7 )

"η

The number η is called the length of the (continued fraction) expansion of a, and the

numbers Cj , · · ·, cn are called the partial quotients of a. Substituting Cj , · · · , c

for T j , · · · , Τn in (54), we obtain the successive convergents of a, and also their

numerators and denominators.

7. 7. Heiibronn's Lemma. Let d > 2 be an integer. The following two families of

ordered pairs of integers coincide:

a) The pairs of neighboring denominators {from larger to smaller) in the sequence

of convergents of all possible rational numbers of the form b/d. (Jb, d) = 1, 1 < b < d/2.

b) The pairs (Δ, δ) taken for all possible admissible solutions of the equation

</ = ΔΔ' + δ δ ' .

(Coincidence of families means coincidence of sets and multiplicities: see 7.1.)

Proof. The first family of pairs is indexed by the set consisting of elements of

the form

[the fraction α =—f(b, d) = 1 and 1 <*?< — Y, the integer 1 < m <«(o) ·(58)

This element corresponds to the pair [mth denominator, (m - l)th denominator of the

convergents of a] in the family a).

The second family of pairs is indexed by the set

admissible solutions of the equation d = ΔΔ' + δδ'. (59)

We shall construct mutually inverse maps of the sets (58) *-* (59) which preserve the

pairs in the families a) and b).

The map (58) -> (59). Let (εχ , · · · , cj be the partial quotients for a, and let

1 < m < η = η(α). We set

Δ = Qn (Cu . . . . Cm), δ = Qm-t (Clt ..., C m _ i ) ,

Δ' = Qn-m (Cm+i ft,), 6' = Qn-m-1 (cm+i ft.). (60)
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It is clear from (53), (56) and (57) that d = ΔΔ' + δδ'. Since the cj. are positive, it

follows from the recursion relations for Q that Δ > δ > 0 and Δ' > δ' > 0. From (55)

we have (Δ, δ) = (Δ1, δ') = 1. It remains to verify that the admissible boundary solutions

are obtained for δ' = 0. But if δ ' = 0, then m - «, since Δ = d and Δ' = 1; finally,

1 < δ Δ d/2, because cn > 2 (apply the recursion relation Δ = cm 8 + Qm_2)·

The map (59) -> (58). Let (Δ, Δ', δ, δ') be an admissible solution. If it is a

boundary solution, we set

m = η = the length of the expansion of δ/Δ = 8/d;

we define the numbers c , , · · · , c by the formula

— = — ( cn ^ 2, Cj ^ 2, (61)

c 4- 4- —

and the number α by the formula

α = ί _j. . ( 6 2 )

The denominator of α equals «'; this follows from (61), (62) and (52). The numerator

of α does not exceed d/2; this follows because 8/d < %=»c > 2, if we use the recur-

sion relations for Q together with (53).

The nonboundary solutions give the pairs (58) with m < « ( a ) . If (Δ, Δ', δ, δ') is

not a boundary solution, we define Cj , · · · , c and m by the formulas

Δ - i . C^Z, (63)

δ' 1
•, Cn ^ 2 ,

A' ~ c , J _ ' Ln" ' (64)

and we set

a =

The denominator of a. obviously equals d\ this follows from (63), (64) and (56). In ad-

dition, 0 < α < V2< since c} > 2.

It is automatically verified that these set maps are mutually inverse and preserve

the pairs which interest us, The lemma is proved.

Remark. It is clear from the proof that if the pair (Δ, δ) corresponds to the pair

[rath denominator, (m - l)th denominator ], then

m = the length of the expansion of δ/Δ = «(δ/Δ) (65)

(see (63)).
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7. 8. We now proceed to formulate a theorem which contains Theorem 7. 3 as a

special case. Let Φ(ζ) = Σ~ = , ane
2ninz be a ro(A/)-parabolic form which is an eigen-

function relative to all Hecke operators Τm with (m, N) = 1. We suppose that αχ = 1;

then Φ | Γ = α Φ for all w, (w, N) = 1.

Further, for any point c : d € Ρ /(/V)) set

η(?:5)=|(ί:ί)-ξ(ί':?), (66)

where the classes £(c" : 2) € r / jU^C), R) are defined in 2. 5. Finally, if
loo

J Φ(«)ώ= j ω^ο,
0 • fo.iool

where ω is the differential of the first kind on XN(C) corresponding to Φ, then we define

the function y : Ρ (Z/(/V)) -» C by the formula

:d )= f ω/ f ω. (67)

We note that η(— c ; d) = JJ(C : rf), so that y is an even function.

7. 9. Theorem. Wi/zb i^e notation and assumptions of the last subsection, for any

m, (tn, 2N) = 1, we have

7) Σ *(ϊ:3).
α

(7) (68)

where r{m) is the number of divisors of m, and the (Δ, S) in the inner sum run through

all d-admissible pairs.

Proof. According to formula (20) of Theorem 3. 3,

ί^ά-αΛ J ω =2 2 j ω.
I • d ι

Each irreducible fraction hid on the right obviously appears r(m/d) times in the form

bb/dl for all possible δ/hn/d). The contribution from the sum with d = 1 equals zero,

since ίθ, h\ = 0 for fo € Z. Consequently

.[ (f) 2 j" ω. (69)
1 ^ d>i (M)=ilD '7(

The inner sum on the right is the integral of ω over the class l(b_rf) = 1 10, 6/rf|. Using

the fact that

Γ
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we represent this c lass in the form

° } + { ° } J

Let d = dn , · · ·, dQ be the successive denominators of the convergents of b/d. Accord-

ing to formula (16) of Theorem 2. 7,

> 7 } = Σ δα-Ι)*"1^:^-!).

Since the class (0, b/d\ is complex conjugate to ίθ, - b/d\, it follows from (12) that

{0, --*-} - - jj Ki-l)*-1^:^). (72)

Combining (70), (71), (72) and (66), we find, after summing over b, 1 < b < d/2, (b, d) =

1, and applying Heilbronn's lemma, that

Σ \ϊΛ}-= Σ Π (Δ: δ), (73)

where the sum on the right is taken over admissible solutions. The sign ( - l )*" 1 in

(72) disappears because η is even.

It is now clear that, combining (69) and (73), we obtain formula (68): we need only

divide through both sides of (69) by Jj0 i o oj ω and recall the definition (67) of the func-

tion y. The theorem is proved.

7. 10. Remarks, a) Under the conditions of Theorem 7. 3, it is not hard to express

the function y in terms of χ . Namely, if ad — be = 1, then

y (c : d) = 2 \ C> ^d> . (74)
x* (t 00)

In fact, then

Using the definition of χ , we find

Since, in addition, !θ, i °c i = - Vjx + (; oc) y*t it hence follows that (74) holds.

b) It is natural to write abelian reciprocity laws in the form ^lSj = 1, where the

S^ are certain symbols and / runs through the prime numbers and 00. We can formally
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derive an analogous relation from (51). Let L(X, sj = Π ;ί,,(Χ, s), where L, are the

local factors of the L-series. We suppose that Π, ί^Χ, 1) = L(X, 1) in the sense of

some type of (nonabsolute) convergence. For / ΊΆ/ we have L.(X, 1) = (1 -a + / ) / / .

Hence from (51) we find

Π Μ*. 1) Π (\ 2 y(A:6))L(X, l)-»=l. (75)
1/2Ν 14[2Ν\ ' /=ΛΔ'+Λβ' /

Here it is natural to associate the factor L(X, I ) " 1 to the point at infinity in the field

Q

c) It is interesting to connect formula (51) with the Sato-Tate conjecture on the

distribution of (βρ as / -» <*> (see, for example, Serre [13]). The right side of (51) could

possibly be treated by an independent statistical investigation.

In fact, the sums S^<^Wfc, d/t_l), where (d^) are the successive denominators of

the convergents to a, have been studied before. Levy's book [7] contain facts on the

distribution almost everywhere of such sums, for irrational α as well (some natural

conditions ensuring convergence are imposed on φ). We are interested in the mean of

such sums over all rational a with fixed denominator / and in the distribution of this

mean when / -» <*>. It was to solve such a problem that Heilbronn [6] proved Lemma 7. 7:

he was interested in the function φ = 1, and he obtained the principal term of its

asymptotic behavior. In our case the principal term is known in advance: it is / + 1,

and a. is a "random error."

A natural approach to studying the sums (51) is to expand the function y in terms

of some elementary functions. For example, for Ν prime it would suffice to study the

distribution of the sums over admissible solutions of the form

Σ
where χ is any multiplicative character mod N.

d) We would like to note a similarity between the considerations of this section

and the constructions in Chapters V and VI of Venkov's book [3]. Comparing these re-

sults may lead to a better understanding of them.

e) The condition ^°°Φ{ζ)άζ ^ 0 is only used to go from continued fractions to the

equation / = ΔΔ' + δδ'. If we do not insist on this, Theorem 3. 5 allows us to give

explicit formulas for the coefficients of any parabolic forms.

§8. Tables, their computation Bind use

The basic content of this section is tables of the functions χ (α) for a £ Q,

constructed for curves XN of genus 1 for Ν = 11, 17, 19 and 27. Before proceeding to

a discussion of the method used to compute these tables and the possibilities for using

them, we shall bring together in one place and recall all the notation needed here, which

was introduced in various places in the article.
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8. 1. Notation and definitions. The integer Ν > 0 is fixed, Η is the complex upper

halfplane, H=H U Q U ('«») a " d XN(C) = Γ0(Λ/)\λ7. For any α, β Ε Η the symbol

ία, β \Ν € //j(XN(C), R) designates the homology class of the path on XN(C) which is

the image of a path on Η from a to β. Further, P'iZ/OV)) = {classes of pairs "c" : d \c

= c mod N,d = d mod N, (c, d) = l l .The function ξΝ : PHI/IN)) - if , 0 ^ ( 0 , R)

is defined by the equation

IN (c:d) = i— , —X for any ad — bo s= 1.

Now let the genus of X^(C) equal 1. Then the subgroup of classes in Η j(XW(C), Z)

invariant (anti-invariant) relative to conjugation is infinite cyclic; let γ (γ ) be any

generator of this group.

After choosing y+ and γ~, the functions x^ : Q |J (i; oo) -»Q are defined by the

equations

The fundamental functions to be tabulated, which we first introduce here, are

ξ * : PHZ/OV)) -» Q, which are defined by the formulas

') . (76)

If we have at our disposal a table of the functions ζ* (their domain of definition con-

sists of NH.<N (l + l/p) points, and their range is the rational numbers with rather

small numerators and denominators), it is not hard to compute an arbitrarily long table

of the functions xN by using the formula

(77)

where α π = a, an_ j , · · · , « 0 = 1 are the denominators of the successive convergents

of b/a (equation (77) is derived from the definitions and formula (16)). We further re-

call that the χ have period 1 and that χ is even and χ is odd, so that we may limit

ourselves to the arguments 0 < b/a < l/2.

If in addition ζN (0 : 1) ^ 0 (this holds for all Ν for which the genus of XN equals

one), then we can tabulate the function yN : Ρ (Z/(/V)) -» Q, which is defined by the

formula

c: d) = 2 ^ J (78)

(and so it is proportional to ζΝ. Nevertheless, it is instructive to tabulate it separately

from ζΝ , because it is used for different purposes).

8. 2. Use of the tables, a) The fundamental function ζΝ in the tables is necessary

for computing .r^.
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b) The functions x* are used to compute L(XN ® K, 1) over abelian extensions

Κ C Q, and also to compute the individual factors of these components corresponding to

the different Dirichlet characters. Using the Birch-Swinnerton-Dyer conjecture, we can

then make hypothetical estimates from below for the rank of the group X(K) (which, of

course, must be verified independently). Thus, for example, we can collect experimental

data on questions which remain unsolved in Mazur's theory (the presence of jumps in the

rank in a Γ-extension tower; the behavior of the rank for supersingular /, etc.).

c) The function yN is used to compute the coefficients of L(X, s) in any quantity

using formula (31).

In addition, the tables can simply be looked over with the idea of trying to observe

anything curious.

8. 3. Computation of the tables. The compilation of the tables of the functions

έ;Ν is in the first place based on Theorem 2. 7 (and formula (12), which is necessary to

choose y and γ ). This theorem alone is sufficient to compute ζ (c : d) for all "c

and d which are not divisors of-zero in Z/(N). In particular, if Ν is prime, then we

obtain in this way all values of ζ , except for the values at the points 1 : 0 and 0 : 1

(here and later we shall omit the tilde over the numbers, since no ambiguity can arise

if Ν is fixed). To compute the missing values of ζ we must then use Theorems 3. 3 and

3. 5 (if Ν is prime Theorem 3. 3 suffices) for any prime value of m, m Τ Ν. For this

purpose we must know in advance several coefficients of the canonical L-series.

The general plan is as follows.

a) To compile a list of the points Pl{Z/(N)).

b) To solve the system of equations (14) and (15), i.e. to find integral linear ex-

pressions for the symbols (c : d ) in terms of independent parameters. The general

number of parameters equals

2(genus of X.,) + (number of parabolic points on X^) — 1.

The parameters must be chosen so that only 2(genus of X..) parameters appear in the

expression for (c : d) with c and d not divisors of zero, i.e. 2 parameters appear in

the case genus X^ = 1, which is the case we shall work with.

For Ν not very large (less than a hundred), the system (14)—(15) can easily be

solved by hand if we successively examine the 3-equations of (15) and the 2-equations

of (14) which " l ink" these 3-equations. Each time, if we solve the next 3-equation in

which at least one of the unknowns has already been found using the previous 2-equation,

either we obtain a new free parameter or else we obtain a relation among the old param-

eters; if we use a reasonable procedure, the latter possibility rarely occurs.

c) To choose y+ and γ~ from among the linear combinations of the symbols

(c' : d) with c" and d not divisors of zero, and to compute ζ ~(c : d) for these points

c : d.

d) To compile a rather large table of the functions .v *(*>/«) for (a, N) = (b, N) = 1,

using formula (16). The "extra" parameters which may appeair in the separate terms of the sum
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(16) because (« t , N) > 1 automatically cancel out in the sum, so that the result is ex-

pressed in terms of γ and y .

e) To compute several coefficients of L(X, s), which are necessary in order to

apply Theorems 3. 3 and 3. 5.

f) Using Theorems 3. 3 and 3- 5, to compute £*(?" : d) for the missing values of

c : «/. Here formulas (20) and (22) must be considered as equations for the classes

iO, i°°\N and Ια, i <χ>\Ν , respectively. The coefficients of these classes are computed

using e), and the classes in the right side of (20) and (22) are computed as in d).

The curve X

Equation: y2 = t (/3 - 20/ 2 + 56t - 44).
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3

1

*
+
(a)

Jf(o)

13
27

3

1

1
28

2

0

3
28

3

1

5
28

2

0

9
28

3

1

u
28

3
1

13

28

3

1

1
29

—1

—1

2

29

-1

1

3
29

—1
1

4

29

—1

—1

5
29

—1
1

6

29

—1

|

7

29

—1

1

8

29

j

1

9
29

4

2

*
+
(α)

-ν («)

10
29

—1

1

π
29

—1

1

12

29

4

2

13
29

4

0

14
29

4

0

1
30

1

I

7
30

-4

2

11
30

1

1

13
30

6

0

Here we only publish the part of the tables compiled for Γ.(11). The values of

χ were computed for all 11-integral rational numbers with denominators < 83, and also

with denominators 19 and 29 (19 and 29 are supersingular primes for ^ I J ) .

In these tables χ Kb/a) mod 5 always depends only on a. In addition, in the tables

|x + | < 9 and |x~| < 5.

The curve X
17

Equation: y + xy = χ - Ax + 4x - 15.

Ρ
1
 (Ζ (17))

11

V —

1 : 0

I
1

1

2

0

0: 1

1

1

~2~

0

1 : 1

0

0

0

4

_2

0

3 : 1

2

-1

1

|4:l

0

0

0

I
5
:>

2

|

I

6 : 1

—2

1

t

7 : 1

2

1

1

8 : 1

—4

2

0

'.· =
—-i

2

0

10 : 1

2

1

j

11 : 1

—2

1

1

12 : 1

2

1

—1

13:1

0

I)

0

14 : 1

2

J

1

15 : 1

4

2

0

Ιΰ : 1

I)

1)

II
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α

x+(a)

χ- ία)

α

*+(α)
χ-(a)

1

2

2

0

1

11

—1

- 1

3

1

1

2

11

f

1

1

4

0

0

3

11

—1

1·

1

5

1

1

4
11

3

1

2

5

1

1

δ

Π

3

1

1

6

—1

1

1

12

1

—1

1

7

j

1

δ

12

1

1

2

7

— 1

1

1
1»

0

0

3

7

3

1

2

13

0

0

1

8

2

0

3

13

0

0

3

a

2

0

4

13

0

2

1

9

—2

0

δ

13

0

0

2

9

2

0

6
13

4

0

4

9

2

0

1
14

1

— 1

1

10

— 1

- 1

3

14

1

1

3

10

^

1

δ

14

1

^

α

* + (α)
χ-(α)

1

15

2

0

2

15

- 2

0

4

15

- 2

0

7

"Ϊ5

2

ΰ

1

16

0

0

3

16

0

2

5

16

0

2

7

16

4

0

In these tables x*{b/a) mod 4 depends only on a.

The curve X,
19

Equation: y2 = t(t5 - I6t2 + 64t + 76).

P· (Z.(19) )

y

ξ-

ι : 0

—2

2

3

0

0 : 1

2

2

~~ 3

0

1 : 1

0

0

0

2 : 1

6

—2

0

3 : I

6

2

0

4 : 1

3

1

1

5 : 1

- 3

1

1

6 : 1

- 6

2

0

7 : 1

0

0

0

8 : 1

0

0

0

9 : 1

—6

2

0

10 : 1

- 6

2

0

Ρ1 (Ζ (19) )

[Ι

11 : 1

0

ΰ

0

1 2 : 1

0

0

ιι

13 : 1

- β

2

0

14 : 1

1

- 1

15 : 1

3

--1

— 1

16 : 1

b

—2

0

17: 1

6

—2

0

18 : 1

0

0

0

- («)

2

2

(Ι

1

3

2

II

ι
4

1

Ι

1

5

- 1

1

ό

2

II

1

6

2

0

1
7

η

0

0

7

3

Ι

3

0

0

1

8

0

0

3

f

(ι

0

1

9

—2

η

2

9

1

1

•1

9

1

1

1

10

2

0

3

10

4

0

1

11

0

0
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α

*+(α)
χ-(α)

2

11

—3

1

3

11

3

1

4

11

0

0

s
11

3

1

1

12

0

0

6

12

0

0

1

13

2

0

2

13

2

0

3

13

1

1

4

13

4

0

δ

13

1

1

6

13

4

0

1

14

- 1

—1

3

14

—1

1

5

14

2

0

1

15

1

—1

2

IS

- 2

0

α

χ* (a)

χ-(a)

4

15

1

1

7

15

4

0

1

16

2

0

3

16

j

1

5

16

2

0

7

16

J

1

1

17

2

0

2

17

—1

1

3

17

- 4

0

4

17

—i

•ι

5

17

5

1

6

17

2

0

7

17

2

0

8

17

2

0

1

18

0

0

5

18

3

- 1

7

18

3
Λ

In these tables x+{b/a) mod 3 depends only on a.

The curve X 2 7

Equation: y 2 = 4x5 + 1 (curve with complex multiplication).

Ρ · ( Z / ( 2 7 ) ) | 1 : 0 | 0 : 1 | 1 : 1 | 2 : 1 | 3 : 1 | 4 : 1 | 5 : 1 J6 : 1 | 7 : 1 | 8 : 1 j 9 : 1 | l 0 : 1 | l l : 1 | 12 : 1

y

l+

i-

—2

2

3

0

2

2

~ 3

0

0

0

0

6

—2

0

3

—1

1

1

3

1

1

3

j

1

0

0

2

3

- 3

1

1

0

0

0

f

1

3

1

3

0

0

0

—3

1

1

- 3

1

1

3

P' (Z/(27)) | 13 : 1 | 14 : 1 | 1 5 : 1 | 16 : 1 | 17 : 1 18 : 1 19 : 1 | 20 : 1 | 21 : 1 | 22 : 1 | 23 : t

y

V

r

—6

2

0

- 6

2

0

3

1

1

—3

1

—1

0

0

ΰ

—1

1τ
1

~~ 3

0

0

0

ο

1

—1

0

0

2

~~ 3

3

|

—1

3

j

—1

P> (Z/(27))

y

% τ
ri

I"

2 4 : 1

3

ι

1

~ 3

2 5 : 1

6

—2

0

26 : 1

0

0

(I

1 : 3

- 3

1

1

3

2 : 3

3

1

~ 3

4 : 3

0

0

2

~~ 3

5 : 3

0

0

2

3

7 : 3

3

|

1

3

8 : 3

_ 3

1

1

~ 3

1 : 9

1

3

" 3

]

3

2 : 9

1

1

~ 3

1

" 3
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1

2

2

0

1

4

1

1

1

5

1

1

2

5

1

1

1

'

-1

1

2
7

2

ϋ

3

7

2

0

1

8

0

0

3

8

0

0

1

10

0

0

3

10

0

0

1

11

J

1

2

11

|

1

3

11

2

0

4

11

2

0

5

11

2

0

1

13

2

0

*-(•)

2

13

1

1

3

13

1

1

4

13

1

1

5

13

1

1

G

13

1

1

1

14

2

ΰ

3

14

1

1

5

14

1

1

1

16

—1

—1

3

16

|

1

5

16

2

0

7

16

2

0

1

17

0

0

2

17

0

0

3

17

0

0

4

17

0

0

5

17

0

0

6

17

0

0

α

Α·
+
 (•)

χ-(α)

7

17

3

1

8

17

3

1

1

19

0

0

2

19

0

0

3

19

0

0

4

19

0

0

5

19

3

1

6

19

0

0

7

19

0

0

8

19

3

1

9

19

3

1

1

.20

t

|

3

20

Λ

1

7

20

2

0

9

20

2

0

1

22

1
4

α

*"(*)

3

22

2

0

5

22

1

1

7

22

1

1

9

22

1

1

1

23

1

-1

2

23

—2

0

3

23

—2

0

4

23

1

1

5

23

1

1

6

23

1

1

7

23

1

1

8

23

1

1

9

23

1

1

10

23

1

1

11

23

4

0

χ
+
 (=0

Α - (7)

1

25

2

0

2

25

-1

1

3

25

—1·

1

4

25

—1

1

(Ί

25

—1

1

7

23

2

1

8

2

0

9

"23

ο

0

11

_>ί

2

0 η

1

26

0

0

3

2U

0

0

5

21)

0

2

7

2(j

ο

1

9

26

0

0

π
213

3

1

In these tables x (b/a) mod 3 depends only on a.

Received 10/OCT/71
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