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Abstract

In this paper we study the simplest deformation on a sequence of orthogonal
polynomials. This in turn induces a deformation on the moment matrix of the
polynomials and associated Hankel determinant. We replace the original (or
reference) weight wo(x) (supported on R or subsets of R) by wo(x)e . It
is a well-known fact that under such a deformation the recurrence coefficients
denoted as ¢, and B, evolve in t according to the Toda equations, giving rise to
the time-dependent orthogonal polynomials and time-dependent determinants,
using Sogo’s terminology. If wy is the normal density e, x € R, or the
gamma density x*e™, x € R,, « > —1, then the initial value problem of
the Toda equations can be trivially solved. This is because under elementary
scaling and translation the orthogonality relations reduce to the original ones.
However, if wy is the beta density (1 — x)*(1 + Noxel-1,1, a8 > —1,
the resulting ‘time-dependent’ Jacobi polynomials will again satisfy a linear
second-order ode, but no longer in the Sturm—Liouville form, which is to be
expected. This deformation induces an irregular singular point at infinity in
addition to three regular singular points of the hypergeometric equation satisfied
by the Jacobi polynomials. We will show that the coefficients of this ode, as
well as the Hankel determinant, are intimately related to a particular Painlevé
V. In particular we show that p, (n, t), where p, (1, t) is the coefficient of z"~!
of the monic orthogonal polynomials associated with the ‘time-dependent’
Jacobi weight, satisfies, up to a translation in ¢, the Jimbo-Miwa o -form of the
same Py; while a recurrence coefficient o, (¢) is up to a translation in ¢ and a
linear fractional transformation Py (a?/2, —B2/2, 2n+1+a+f, —1/2). These
results are found from combining a pair of nonlinear difference equations and
a pair of Toda equations. This will in turn allow us to show that a certain
Fredholm determinant related to a class of Toeplitz plus Hankel operators
has a connection to a Painlevé equation. The case with ¢ = 8 = —1/2
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arose from a certain integrable system and this was brought to our attention
by A P Veselov.

PACS numbers: 05.50.—a, 02.30.1k, 02.10.Yn, 05.20.—Y

1. Introduction

The study of Hankel determinants has seen a flurry of activity in recent years in part due to
connections with random matrix theory (RMT). This is because Hankel determinants compute
the most fundamental objects studied in RMT. For example, the determinants may represent
the partition function for a particular random matrix ensemble or they might be related to
the distribution of the largest eigenvalue or they may represent the generating function for a
random variable associated with the ensemble. Often there is an associated Painlevé equation
that is satisfied by logarithmic derivative of the Hankel determinant with respect to some
parameter. This is true, for example, in the Gaussian unitary ensemble and for many other
classical cases [34]. Once the Painlevé equation is found, then the Hankel determinant is
much better understood. Asymptotics can found via the equation, scalings can be made to
find limiting densities and in general the universal nature of the distributions can be analyzed.

Hankel determinants are also fundamental in the study of orthogonal polynomials and
the connections between the recursion coefficients for the polynomials and the determinants
are well known [33]. In this paper we utilize this relationship to compute the associated
Painlevé equations. One advantage of this method is that the steps are quite direct and one
derives immediately a second-order Painlevé equation without first encountering a higher
order equation and then needing to find a first integral to reduce the order. In addition as a
consequence of the method, but not surprisingly, we also show that the highest order non-trivial
coefficient of the orthogonal polynomial also satisfies a Painlevé equation.

To be more precise the Hankel determinants of interest are for a weight of the form

(1= +x)fe™

on the interval [—1, 1]. Here we take ¢ € R. We will call this a time-dependent Jacobi weight.
Our ultimate goal is to produce a nonlinear second-order differential equation that is satisfied
by the logarithmic derivative of D, (¢), where D, (¢) is the determinant of the Hankel matrix
generated from the moments of the weight:
1 n—1
D, (1) == det(ﬂj+k(f))ﬂl:0 = det </ A=)+ x)Pe ™ dx) ,
-1 Jj-k=0
and we shall initially assume «, 8 > 0.
The moments iy (f) can be evaluated as follows:

dk
() = (= DF o), k=0,1,2,...

where
wo()) =2 T+ DB+ D e M(B+1:a+ B +2; —21),
and M (a; b; z) is the Kummer function with parameters a and b. Because

dt (@)
—M(a; b; 7)) = —M k:b+k;z)),
O (a; b; 2) O (a+ +k;2)
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we find
K lk
() = 22"+ DB+ 1) e Z:(; (r> (=2)
XMM(,B+F+1'(¥+,3+I’+2‘—2I)
(@ +B+2), ’ ’ '

It is well known [28] that the Hankel determinant for this time-dependent weight is the
partition function for the random matrix ensemble with eigenvalue distribution

n
[T =[] =2 +x)f e dx .
1<j<k<n =1
When ¢ = 0, the partition function is known exactly. However, when the weight is deformed
this is not the case and something else needs to be done. In another interpretation the
determinant quotient D, (¢)/ D, (0) is the generating function of the random variable or as it is
sometimes called, the linear statistics

n
E Xj.
j=1

For other applications of Hankel determinants and RMT see [28, 32, 33]. For connections to
quantum gravity questions, see [20, 21].

Our main result is that p;(n, ), where p,(n, t) is the coefficient of 7"~ of the monic
orthogonal polynomials associated with the ‘time-dependent’ Jacobi weight, with a minor
change of variables, satisfies the o form of a second-order Painlevé V.

Theorem. Let

1 t
o(t) = Etpl(n,t/Z)—%+n(n+ﬂ). (1.1
Then o satisfies the second-order nonlinear ode
(te"? =[o —to'+2n+a+pB)o' > +4[c —nn+B) —ta'][(c")? — ac’]. (1.2)

Since, as we will also show,

d
, 1) = —log D, (1),
py(n, 1) 7 log (1)
D, (t) is related in a simple way to the t-function of the Py.

The paper is divided into sections as follows. In the next section we reproduce known
results that we call coupled Toda equations. We include them in this paper as reference and
the Toda equations are summarized in theorem 1. The reader familiar with these equations
may easily skip this section. In section 3 we consider ladder operators and derive fundamental
equations that are the basis for everything that follows. They give us coupled difference
equations and coupled Riccati equations in certain auxiliary quantities denoted as r, () and
R,(1).

The Ricatti equations allow us to find a nonlinear second-order differential equation that
is satisfied by the recurrence coefficient o, (¢). A rational change of variable applied to ()
is then a solution to a Painlevé V in standard form and can be found in section 4.

In section 5 we identity the function which satisfies the continuous and discrete o-form
of our Py. As mentioned above, we show that the o -function of Jimbo, Miwa and Okamoto
is given by

o(f) = %pl(n, 1)2) — g: +n(n +B).
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In section 6 we show how the Hankel determinants can also be expressed as determinants
of finite Toeplitz plus Hankel matrices. This section does not depend on the others and the
derived identities are of independent interest. For some special cases, these latter determinants
are known exactly and hence so are our Hankel determinants. Thus we, in a round about way,
produce second-order differential equations that have solutions that are logarithmic derivatives
of Fredholm determinants. This should not come as a great surprise as this is a common
occurrence in random matrix theory for the classical ensembles.

Finally using known results for the Fredholm determinants we are able, in some special
cases, to write down asymptotic expansions for these determinants and make some predictions
about higher order terms.

2. Preliminaries: notations and time evolution

The purpose of this section is to derive two coupled Toda equations that involve the recursion
coefficients of the time-dependent Jacobi polynomials. This is not a new result. The rather
more general Toda-hierarchy can be found, for example, in [23, 29, 35]. Ours corresponds to
the first of the hierarchy. See [24] for a discussion of this in relation to Sato’s theory. See also
[1] for the ‘multi-time’ approach to matrix models.

We include the necessary computations here for completeness sake and to set the notations
to be used throughout this paper.

To begin we consider a sequence of polynomials { P;(x)} orthogonal with respect to the
weight wo(x) e™™ on [—1, 1]. The weight wy will be known as the ‘reference’ weight. The
orthogonality condition is

1
/ Pi(x) Pj(x)wo(x) e dx = h;()3; j, (2.1
—1
and the ¢ dependence through e~** induces ¢ dependence on the coefficients. We normalize
our monic polynomials as

Pi(2) =" +p (0, )" + -+ + P, (0), (2.2)

although sometime we do not display the ¢ dependence of coefficients of 7!,

An immediate consequence of the orthogonality condition is the three terms recurrence
relation

2Py (2) = Pun1 (2) + 0y Py (2) + B P11 (2) (2.3)
with the initial conditions

Po(z) =1, BoP-1(z) =0. 24
An easy consequence of the recurrence relation is

o, (1) =pi(n,t) —p(n+1,1), (2.5

and a telescopic sum of the above equation (bearing in mind that p, (0, #) = 0) leaves

n—1

= () =pi(n.1). (2.6)

j=0
Please note that in the above and in what follows we use the notation o, (¢), B, () (o, B,) for
the recurrence coefficients since this is the standard notation. The use of the also standard o
and B parameters for the Jacobi weights should not cause confusion since the Jacobi weight
parameters will never be subscripted with n and the recurrence coefficients always will be.

4
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First let us discuss the derivatives of o, (¢) and B, (¢) with respect to ¢, as this yields the
simplest equations, where we keep wq quite general, as long as the moments

1
wi (1) ::/ x wo(x) e du, i=0,1,... 2.7
~1
exist. Taking a derivative of &, with respect to ¢
1
h (1) = —/ wo(x) e x P2(x) dx = —a,h,, (2.8)
-1
ie.
(logh,) = —ay, 2.9)
and since B, = h,,/ h,—1, we have the first Toda equation
B = (@n—1 — )Py (2.10)
We define D, (t) to be the Hankel determinant
D, (1) = det(i; (D)) 7. 2.11)

It is well known that D, (t) = ]_[;:01 h;(t). This yields in view of (2.9) that
n—1

d
3 102 D) = =3 a;(®) =py(n,1).

j=0

—Ix
/ n n 1Wwo € dx

d
/ xP,P,_ywoe M dx + h,_ ld—pl(n 1)

Also,

—hy + hy tpl(n,t),

and therefore

d

— , 1) = Bu(1). 2.12

dtm(n ) = Bult) (2.12)
But since «, = p;(n) — p;(n + 1), we have the second Toda equation

o) = B — Bus- (2.13)

To summarize we have the following theorem.

Theorem 1. The recursion coefficients o, (t) and B, (t) satisfy the coupled Toda equations

ﬁ;t = (etp—1 — ) B, (2.14)
o) = By — Pu. (2.15)

It is also worth pointing out that in view of (2.11) we have the obvious Toda molecule
equation [32]

d2 _ _ Dn+1(t)Dn71(t)
i log D, (t) = —tpl(”’ 1) =B, = W
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3. Ladder operators, compatibility conditions and difference equations

In this section we give an account for a recursive algorithm for the determination of the
recurrence coefficients «,, B, based on a pair of ladder operators and the associated
supplementary conditions. The main result is contained in theorem 3. The ladder operators
describe below can be thought of as formulas that allow one to increase or decrease the index
n on the orthogonal polynomials. Such operators have been derived by various authors over
many years. Here we provide a brief guide to the relevant literature. See example [7-11, 13,
15, 20, 21, 26]. In fact Magnus in [26] traced this back to Laguerre. We find the form of the
ladder operators set out below convenient to use.

For a sufficiently well-behaved weight (see [15] for a precise statement) of the form

w(x) = e”V™ the ladder operators, or as they are also called, lowering and raising operators
are
P (2) = =B, (2) Py(2) + B An(2) Pro1(2), (3.1
P, 1(2) = [By(2) +V (D)1 Pu-1(2) — A1 (2) Pu(2), (3.2)
where
I ['V@) =V
@ = [ TEEE ) ay, (33)
n J—1 -
1 'V(z) V()
B,(2) == p f Py (y) Pai (y)w(y) dy. (34
n—1 J—-1 Z—)y

Here we have assumed that w(£1) = 0. Additional terms would have to be included in the
definitions of A,(z) and B, (z) if w(£1) # 0. See [13] and [15].

A direct calculation produces two fundamental supplementary (compatibility) conditions
valid for all z;

B1(2) + B, (2) = (2 — a) Ap(2) = V'(2) (S1)
1+ (z — an)(Bn+l(Z) - Bn(Z)) = ,3n+lAn+l (Z) - ,BnAn—l(Z)' (S2)

We note here that (S;) and (S,) have been applied to random matrix theory in [34]. It turns
out that there is an equation which gives better insight into the «, and g, if (S;) and (S,) are
suitably combined. See [17].

Multiplying (S2) by A,(z), we see that the rhs. of the resulting equation is a first-order
difference, while the lhs., with (z — «,) replaced by B,41(z) + B,(z) + V'(2), is a first-order
difference plus A, (z). Taking a telescope sum together with the appropriate ‘initial condition’,

Bo(z) = A_1(2) =0,

produces
n—1
BX2) +V(@Bu(2) + Y Aj(2) = BuAn(@ An1 (2). (5))
Jj=0
This last equation will be highly useful in what follows. The reason that it is so useful is,
roughly, because the logarithm of a determinant is a sum and in order to get information about
the determinant we need to reduce the sum to something that depends on only a fixed number
of indices, rather than a sum from O to n. This will be the ultimate outcome of Sé.

6
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Equations (S)), (S2) and (S}) were also stated in [26], albeit in a different form. See also
[22]. The method described below is similar to that of [17] and [12].

If wois modified by the multiplication of ‘singular’ factors such as |[x —¢|“ ora+bH (x —t),
where H is the unit step function, then the ladder operator relations, (S1), (S2) and (S3), remain
valid with appropriate adjustments. See [4, 18, 19].

Let ¥(z) = P,(z). Eliminating P,_;(z) from the raising and lowering operators gives

Al (2)
Ay (2)

v (z) — (V/(Z) + ) V'(z)+ | B.(z) — B, (Z)ﬁ

, n—1
DS a0 v =0, 65
n(2) =0

where we have used (S7) to simplity the coefficient of ¥ in (3.5).
For the problem at hand, w(x) is the ‘time-dependent’ Jacobi weight, and now we must
suppose that ¢ > 0 and B > 0 so that our weight is suitably well behaved. Then

wx) = (1 —x)*(1+x)P e, x e[—1,1], (3.6)

v(z) := —alog(l —z) — Blog(1 +z) +1z,

/ o B

= —— +t
Vi(z) 1 a1 th
/ v
VO-VY) _ e B a7
=y (y=D@E-=1 G+DE+D
Substituting these into the definitions of A, (z) and B, (z) and integrating by parts produces

R, (¢ t+ R, (1 ra(t r.(t) —n

M) = — 2O RO g = 2O B0
=1 z+1 -1 z+1

where
a (' PX(y) ,
Ry(1) = - / 2 (1= e ey,
n J—1 -y
o /1 Py(y)Py_1(y)
hnfl -1 l_y

Substituting the expressions for A, (z) and B, (z) into (S;) and (S5), which are identities in z,
and equating the residues of the poles at z = 41, we find four distinct difference equations
and one which importantly performs the summation iR

ralt) i= (I—»*(1+y)fe™ dy.

—(rpr1 + 1) = o — Ry(1 — o) (3.8)
Fppl+1rp=2n+1+8 — (R, +)(1 + o) 3.9
r2+ar, = B.R,Ry_ (3.10)
(rn —n)* — Blra —n) = Bu(Ry +1)(Ry_y +1) (3.11)

:3_05 on = ,311
( 5 >r,, t - Fp(rn —n) — ;;Rj = —?[RH(R,,_I +1)+ (R, +)Ry_1].

(3.12)

We now manipulate equations (3.8)—(3.12) with the aim of expressing the recurrence
coefficients «,, B, interms of r,, R,, and of course n, t. Adding (3.8) and (3.9) yields
2R, =2n+a+B+1—1t—tay; (3.13)

thus, o, is ‘easily’ expressed in terms of R,,.
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Subtracting (3.8) from (3.9) gives

B—a+1—t t
Tpel ¥ =n+ ———— — | =+ R, | oy (3.14)
2 2
Eliminating 8, R, R,— from (3.10) and (3.11) we find
nn+pB)— Qn+ao+ By = Bult> +1(Ro_1 + R)]. (3.15)

Now with the aid of (3.10), replacing B, R, by (r? + ar,) /R, in (3.15) we find

tt+R)Br=nn+B)—Cn+a+p)r, — RL(V’% +otr,,), (3.16)

n
and this expresses B, in terms of R,,, r,, n, t. Itisimportant to note the absence of R,1; and
rn,+1. The reader will note that the above manipulations prove that we have expressed «;,, and
B, the recurrence coefficients in terms of auxiliary quantities r, and R,,.
This is summarized in the following.

Theorem 2. Withr,, R,, o, and B, as defined above and with o, > 0
ta, =2n+1+a+p —t—2R,, (3.17)

tt+R)Br=nn+B)—Cn+a+pP)r, — RL(V,% +otr,,). (3.18)

n

In what follows we will find two Riccati equations, one in r, with coefficients involving
R, and another with the roles of r, and R, reversed. We will first show that

n—1
d
alogD,,(t)=n—2r,,—,Bntz—zoaj(t)zpl(n,t). (3.19)
j=
Equation (3.19) can be derived as follows. Replace n by j in (3.17) and sum over j from O to
n — 1 to obtain
1

n—1
ZR_i=n(n2_1) n(a+,3+1—t)_%2
j=0 j=0

Now we can obtain from (3.12) another expression for ) j R;,

n—1

-« an t
ZRj = (ﬂT) Tn+ — —try —r3+nrn + %(Rn +Rn,1)+r5+o¢rn
j=0

2
i
= a+ﬁ+n—t r,,+ﬂ+’3 w+ Ry_1)
2 2 2
1
_nnrarh o Bl” (3.20)
2 2

where we have eliminated 78, (R, + R,,—) using (3.15). These last two equations yield
n—1

p(n,t) = —Zaj =n—2r, —tB,.

Jj=0
From this we also deduce that (see (2.5)),
oy :2(7n+1 _rn)+t(,8n+l _lgn) - 1L (321)
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Hence, in view of (2.12),

do,
273 :2(}",“,1 _rn) —t - l; (322)
dr
we find
do, — 1—1t¢ t
t * +o,+1=2 n+ﬁL— —+R, o, — 21, ],
dr 2 2
where r,,,; has been eliminated from (3.14) and (3.22). Finally,
do,,
t " +a,=2n+pB—a—t—(t+2R,))a, —4r,,
or replacing «,, in favor of R, from (3.17)
dR, 2
t 5 =at+2n+1+a+p —2t)R, — 2R, +2tr,. (3.23)

This is a Riccati equation in R, but with r,, appearing linearly. Now since

n—1

=Y i) =p(n,0)  and  pi(n,1) = B,(0),

j=0
see (2.6) and (2.11), we find, upon taking a derivative of (3.19) with respect to ¢,

2% g Sy,
dr dr ’
or
dr, t
i Bn + 5(%4 — ) B, (3.24)

where we have replaced 8, (1) by (,—1 — o) B, With the aid of the first Toda equation, (2.13).
A simple computation with (3.13) gives

t
E(an—l - an) =-1+ R, — R,_1;

hence,
S Ry = Ra)
dr — Pn n n—1
rl+ar,
= lgn R, —
B N ai+ B) = @nvas Pyry— (2 +ar) I+ ary (3.25)
=——|nn —2n+a r,— —(r;+ar,) | — ) .
t(t + Ry) R, " R,
which is a Riccati equation in 7, We summarize in the following theorem.
Theorem 3. The quantities r, and R, satisfy the coupled Riccati equations:
dR, 2
t ” =at+QCn+1+a+p —2t)R, — 2R, +2r,t, (3.26)
dr, R, to o, r2+ar,
—_— = +B8)—QCn+a+PBr,— — (ri+ar,) | — L——. 3.27
& G R) |:n(n B)— 2n+a+P)r R (rp +ary) R (3.27)

We end this section by pointing out that the above equations not only produce differential
equations in our various unknown quantities, but also a pair of coupled nonlinear first-order

9
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difference equations in R, and r,. If we substitute §, into (3.10), we obtain the following
result.

Theorem 4. The quantities r, and R, satisfy the coupled difference equations

2t(Fpg1 + 1) = 4R,2, +2R,2t —2n—1—oa — B) — 2at (3.28)
nn+p)— Cn+oa+p)r —(r2+otr) i +L+ ! (3.29)
" § " Ran—l Rn Rn—l ’ .

together with the ‘initial’ conditions

ro = 0, (3.30)
R o+ B+ IMA+Ba+p+1; —21)
O T M+ Ba+pr2—20)

(3.31)

The initial condition for Ry can be found by direct integration. Observe that the
representation of Ry in terms of a ratio of the Kummer functions allows for the analytic
continuation of «, 8 down to @ = 8 = —1/2, due to the relation

;in(l)bM(a; b;z)=azM(a+1,2,2).

Hence,

. t (1L (21)
lim Ry(t) = = —-1]).
a—>—1/2.8—>-1/2 2 \ 1h(21)
Indeed, by formally continuing S sothat 8+ 1= —k, k=0,1,2..., we find

a LE 0 (<20
PO = 3
k

expressed as the ratio of Laguerre polynomials of degree k. It is clear that iterating (3.28) and
(3.29) with the above R, and ry = 0 will generate rational solutions (in the variable f) of our
Py derived in section 4. It is interesting to note that Ry is also a rational function of « and #;
therefore, for the values of the parameters stated above our Py is a rational function in « and ¢.

Also note that the above equations define the quantities r, and R, for all « > —1 and
B > —1. To verify our answers we return to the pure Jacobi case and let # = 0, then (3.13)
gives

R,=n+ Lﬂ-l—l’
2
and is consistent with (3.20) at + = 0. Now equating (3.10) and (3.11) at t = 0 gives
nn+p)
" a+ B+2n’
and
_ r3+otrn _ dnn+a)(n+pB)(n+a+p)
bn = R.R,.i QCun+a+B+DQ2n+a+B—DQRn+a+p)?"
With the R, given above, we find «,, from (3.13) att = 0,
B2 —a?

Y nta+rPnra+p+2)

These are in agreement with those of [15].

10
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4. Identification of Py

The idea is to eliminate r,(¢) from our coupled Ricatti equations to produce a second-order
ode in R, (¢). This is straightforward and messy and we omit the details. A further change of
variable,
t
1—y@)’
leaves, after some simplification,
p_ 3y—1

2y -1

where the last term is a particular rational function of two variables defined as follows:

Rn(t) = -

, Y
O - —+Rat(y, 1),

2y(y+1) 2@n+1l+a+ —D2[a? 2
Rat(y, 7) = — o )+ @n ‘ ﬁ)y+(y 2) [a—y—ﬂ—].
y—1 t t 2 2y
Therefore,
t)y: =1+
y(®) RO
satisfies
3y —1 ! +1 —1)? 2 2/2
ro L Y onstraspt =220 D O D F/2)
2y(y — 1) t t y—1 12 2 y

which is almost a Py. To fit the above into a Py, we make the replacement ¢+ — ¢/2 followed
by

y(t/2) =Y (),

and find
Yy’ = 3Y—_1(Y/)2 _Y +u I:a_zy — @]
2Y(Y — 1) t 12 2 Y
+(2n+1+a+ﬁ)z—lw, 4.1)
r 2 Y-1
which is

Py(a?/2, —B*/2.2n+1+a+B,d = —1/2).

The initial conditions are
1

Y(0) = 1, Y'(0) = T

It is well known that there is a Hamiltonian associated with Py. To identify it, we substitute
R,(t) :== —tq 4.2)
ra(t) == —pq(qg — 1) + pq, 4.3)

where p = p(t), g = q(¢) into (3.19), and choose p so that the resulting expression is a
polynomial in p and g. There are two possible p: p =n and p =n + g.

Casel. p=n
tpy(n,t) +n(n+a+p)—nt=pp+2)q(q—1) —2ntg+PBpg+aplg—1). “4.4)

11
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Casell. p=n+p
tpy(n, ) +n(n+a+p) —af —nt = p(p+2t)g(g — 1) +2(B —n)qt + Bpg +ap(q — 1).
4.5)

Replacing ¢ by 7/2 we see that the lhs of (4.35) and (4.36) are the two Hamiltonians #H; and
tH, for our Py. The Hamiltonian as presented in Okamoto [30] (see also [31]) is

tH=p(p+1)q(g — 1) +arqt —ozpg — a1 p(q — 1),

where
o? o2
a=7, =—7, c=0ay— s, dZ_E’ oag=1—0a; —a, —as.

Comparing with our #H;, while keeping in mind that the ¢ is in fact 7 /2, we find

o) = —n, a3 = —8, o = —ao, wp=n+l+a+p,
2 2 4.6)
a:a—, b:—ﬂ—, c=2n+l+a+p.
2 2
Comparing with our H,, we find
a =B —n, az = —p, a) = —a, ap=n+1l+a
2 2 4.7
az"‘? b:_%, c=2n+1+a+p.

Hence, both H; and H, generate our Py, where
1

YO =1-— .
® )

5. The continuous and discrete o-form of Py

Recall from section 2 that

d
T log D, (t) = py(n, 1),

and
pi(n, 1) = Bu(1). (5.1
Now we come to the continuous o-form of Py satisfied by p,(n, t), with n fixed and ¢ being
the variable. The idea is to express B,, r,, r, in terms of p;(n, ¢t) and its derivatives with
respect to t. Let us begin with (3.19),
pi(n,t) =n—2r, —tB,
=n—2r, —tp|(n,1). (5.2)

From the last equality of (5.2) we have

1 d
rn(f)=§{n—a[lpl(n,l)]}- (5.3)
Under some minor rearrangements, equations (3.18) and (3.25) become
t
1B, R, + R—(rj +ar,) =nm+p) — Qn+a+p)r, —1*p, (5.4)
t
—1Bu Ry + R—(r,f +ar,) = tr), (5.5)

12
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respectively, which is a system of linear equations in 1/R,, and R,. Solving for 1/R, and R,
we find

%(’ﬁ-’-ar"):trr/l+n(n+13)_(2n+a+ﬂ)rn_t2,3n (56)
2B, R, = —tr, +n(n+B) — Cn+a+ B)r, — t*f,. (5.7)

Taking the product of the above we arrive at an identity free of R,:

4B, (r +ary) = [n(n+ B) — Qn+a + B)r, — B, 1> — (tr))*. (5.8)
To identify the o -function of Jimbo and Miwa [25], we replace ¢ by 7/2 so that
R,(t/2) = ————,
n(t/2) SA=T10)

and substitute the above in (3.26) in the variable ¢ /2. After a little simplification we find
dy
IE =1tY —2r,(t/2)(1 = Y)? — (Y — )(@Y +2n + B).

Comparing this with the first equation of (C.40) of [25], we have
z2(t) = —ra(1/2),

Bo — 01 + 0o
DT g,

2
30y + 61 + 6
0+ = —2n— B,

and consequently
1—6)—0,=2n+1+a+8=c,

consistent with the parameter ¢ of our Py. Furthermore, comparing (4.32) with (C.41) of [25],
we find a possible identification

90—91+900 90_61_900
¢O=— ==
2 2
and consequently
Oy = —n, 0p=—-—n—oa-—2p, O = a — B.

But since
d
ao(t) =z(t) = _rn(t/z),

and bearing in mind (5.3), we have upon integration and fixing a constant,

1 nt
o(t) = Etp](n,t/2)— ?+n(n+ﬂ). 5.9

The o-form of our Py is essentially a second-order nonlinear ode satisfied by p,(n, t), and
reads

(te"? =[o —to'+Cn+a+pB)o' > +4[c —nn+B) — ta'1[(c")?* — ac’], (5.10)
with the initial conditions
nn+p)
a+p+2n
After some calculations we find that (5.10) is in fact the Jimbo-Miwa o -form (C.45) with

o(0) =n(n+p), 0'(0) = =, (0) = —

vo =0, vV = —a, VvV, =n, v3=n+p. (5.11)

13
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To obtain (5.10) we first replace ¢ by 7/2 in (5.8), and substitute
ra(t/2) = =o' ()
d
PPk (t/2) = =" (1)
d[o@)+nt/2 —nn+p)]

d
ﬁn(f/2)=25p1(n,t/2)=4a ;

into (5.8) at ¢ /2. Furthermore, since p,(n, t) = (log D, (¢))’, we have
"o (2s) —n(n+pB)+ns ]
ds |,

N

D, (1) = D, (0) exp [/
0

where D, (0) given by (1.6) of [3].

We expect that there exists a discrete analog of the continuous o -form, namely a difference
equation in the variable n, satisfied by p, (n, ) with 7 fixed. To simplify notations, we do not
display the r dependence. The idea is similar to the continuous case; namely we express f,,,
r, and R, in terms of p;(n) and p; (n £ 1), and substitute these into (3.10), that is,

ri+ar, = BuRy Ry_i. (3.10)
To begin with, we note that (3.19) is linear in §, and r,, which we rewrite as
tB, +2r, =n —p,(n). (5.12)

We now find another linear equation in 8, and r,. First note that o, = p;(n) — p;(n + 1), and
from (3.13) we have

2Ry +t=2n+1+a+B+t[py(n+1) —p,(n)]. (5.13)
The sum (5.13) at ‘n’ and the same but at ‘n — 1’ leaves
Ri+Ry1+t=Q2n+a+p)+(t/2)[p/(n+1) —p;(n— D]
Substituting the above into (3.15) results the other linear equation mentioned above:
tBu2n+a+ B+ (/2Q)pn+1)—p(n—DI}+2n+a+P)r, =nmn+p). (5.14)
Solving for #8,, and 2r, from the linear system (5.13) and (5.14), we find
2 = /D —piMIlpi(n+1) —p;(n — D] —n(n +p)
n+(a+p)/2+/2)[p(n+1) —p(n —1)]

[n—piM]n+(a+p)/2l+n(n+a+p)
n+(@+p)/2+/Dp(n+1) —py(n— 1D’

(5.15)

1B, = (5.16)

and the discrete o -form results from substituting (5.13), (5.15) and (5.16) into (3.10).

Imagine for a moment that we leave our original problem behind and only consider the
functions Y and o that satisfy the two Painlevé equations (4.32) and (5.10) with the appropriate
initial conditions. Then our orthogonal polynomials P, (z, t) satisfy the linear second-order
ode

V' (z) + P()¥'(z) + Q2) ¥ (z) = 0, (5.17)
where

l+a 1+8 1

P(z) := + —t—
-1 z+1 Z—[1+YQ)]/[1 —Y(20)]

(5.18)

14
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Q@ =" @+ 1)
+[n+(1/2)% (1/2)%}
z+1 z—1
. |:2/(Y(2t) -1 N 2Y(2t)/(Y(2t) — 1) 3 1:| ' 1
z—1 z+1 z—[Y2t)+1]/[Y (21) — 1]
. (t2/2)(%t_1(0(2t) +nt —nn+p)) — (t/2)% —nn+a+p)/2
z—1
N nn+a+pB+2t)/2+ (t/2)% - (12/2)£t_1(a(2t) —nt —nn+ p))
z+1

(5.19)

This is a deformation of the classical ode satisfied by the Jacobi polynomials. When ¢t = 0,
this ode reduces to a hypergeometric equation.

6. Toeplitz and Hankel determinants

In this section we introduce certain matrices that are combinations of finite Toeplitz and
Hankel matrices. There are identities that link these matrices directly to the Hankel moment
matrices that appear in the first section of this paper and define our quantity D,(t). We
will use these identities in some special cases to get exact formulas for D,(¢) and, as a by-
product, find Painlevé-type results for some other interesting determinants. We include the
Toeplitz/Hankel computations because as far as we know they are not written down explicitly
in this form in any other place. However, case 2 was established already by two of the authors in
[5, section 2]. The current derivation follows that in [5].
Given a sequence {ax}72 _ . of complex numbers, we associate the formal Fourier series
oo
a@’)y= > ae"’, e’ eT. 6.1)
k=—00

The n x n Toeplitz and Hankel matrices with the (Fourier) symbol a are defined by
Ty(a) = (a1} L H,(a) = (@jsks1)} 5 Lo- (6.2)

Usually a represents an L!-function defined on the unit circle T = {z € C : |z| = 1}, in which
case the numbers ¢, are the Fourier coefficients,

1 T . .
ar=— [ a@® e do, kelZ. (6.3)
2
Note that while the matrices H,(a) are classically referred to as Hankel matrices they are not
the same as the Hankel moment matrices considered in the previous sections of this paper. To
make the connection to Hankel matrices defined by moments, we write

-7

1! )
H,[b] = (bjs)} 7L, b= — / b(x)(2x)7* dx, (6.4)
—1

where b(x) be an L'-function defined on [—1, 1]. Note the difference in notation in comparison
to (2.7) and (2.11). Our goal in this section is to prove four identities. Let z = ¢!°. Then for
each n > 1 the following statements are true.

15
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(1) Ifa(e?) = b(cos0)(2 +2cos0)~'/2(2 — 2cos 8)~1/2, then
det(T,(a) — H,(z 'a)) = det H,[b].

(2) Ifa(e?) = b(cos0)(2 +2cos0)1/2(2 — 2 cos )72, then
det(7,(a) + H,(a)) = det H,[b].

3) If a(el?) = b(cos)(2 +2cos0)/>(2 — 2cos§)~!/2, then
det(7,(a) — H,(a)) = det H,[b].

@) If a(el?) = b(cos0)(2 +2cos0)/2(2 — 2 cos 9)'/?, then
1 det(T, (a) + H,(za)) = det H,[b].

In these identities the function a is always even, which means in terms of its Fourier
coefficients that @, = a_;. Moreover, in these formulas we assume that ¢ € L'(T), which
implies that (and in case 4 is equivalent to) b € L'[—1,1]. We also remark that cases 2
and 3 can be derived from each other by making the substitutions a(e'’) > a(e®*™)) and
b(x) = b(—x).

Our interest in the above formulas stems from the circumstance that they allow
us to use existing results [6] on the asymptotics of the Toeplitz+Hankel determinants
with well-behaved symbols a in order to derive the asymptotics of the Hankel moment
determinants.

In the above identities four types of finite symmetric Toeplitz+Hankel matrices as well
as a finite Hankel moment matrix occur. These finite matrices can be obtained from their
(on-sided) infinite matrix versions by taking the finite sections. It turns out that these infinite
matrices are related to each other in a very simply way; namely they can be transformed into
one another by multiplying with appropriate upper and lower triangular (infinite) matrices
form the left and right. These identities for the infinite matrices will be established in the next
theorem (and the remarks afterwards) in most general setting, where we do not assume that
the symbols are L'-functions.

Let us introduce the infinite matrices

1

These are just the well-known Toeplitz operators D1 = T (1 F z) and their transposes are

denoted by DI. We also need the infinite diagonal matrix R = diag(%, 1L1,...).

Theorem 5.  For sequences of numbers {a,};° _.., {a;}:i_oo, {an_}:i_oo and {af}> _
satisfying
- - #

An = Q—p, ar-:— = ain’ a, =a_,, a, =a_,,

define
o) + + + S
A= (aj—k = aj+is2) ] 1—0 AT = (aj—k + aj+k+1)j,k:()
A= = (a- - \® AF — (4 # oo (6.5)
= (4% = @jxa1) a0 = (@i + i) ji=o-

Then the following holds true.

(1) If af = 2ax — ak—1 — ag+1, then D.AD! = A*.
(2) If a; = 2ay + ax—y + a1, then D_ADT = A~.
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(3) If af = 2af +af_, +aj},,, then D_A*DT = RA*R.
(4) If af = 2a; —a;_, — a,,, then DA~ DI = RA*R.

Moreover, if we define a sequence {b, )2, and an infinite Hankel matrix by

l & n
=3 a (k> B = (bj+) o (6.6)
k=0

respectively, then

B = SyRA*RS] with Sy = | & o (@ ) 6.7)

Proof. Before we start with the actual proof, we remark that the various products of the
infinite matrices make sense in terms of the usual matrix multiplication because the left and
right factors are always (infinite) band matrices.

In order to prove the first statement (1) we consider the (j, k)-entries of the following
(products of) infinite matrices and compute as follows:

Qaj_x—ajk—1—aj_js1) — (@jris2 — 204001 +ajy) 0 j k21

[D+AD£]jk _ J @k = apr) = (@2 — Qran) ?f ] =0,k i 1
' (aj —aj_1) — (@j —aj1) it j>1,k=0
agp — ap if ] =k=0
a}Lk +aj+»+kJrl if j,k>1
_ at, +af, ifj:O,k}lz[A+]_
at+at, if j>1,k=0 7
aj +aj if j=k=0

Herein we use the fact that ay — ay_1 — ago +age1 = Qag — ax—1 — ags1) + Qags — ax — agyn),
a similar identity statement for j, and ag — a, = (2ap — 2a;) + (2a; — ap — a,). Moreover, we
use the assumption that a, = a_,,.

Similarly, we compute the (j, k)-entry for the product appearing in (2):

QRaj_x+ajx_1+aj_41) — @juks2 + 20401 +ajq)  if jk>1

[D_AD'] = (a_p +a_rs1) — (ka2 + aiy1) %f j =0,k>1
Jik (aj+aj,1)—(aj+2+aj+1) lf]}l,k:()

ap — ax if j=k=0

aj:k — aj_+k+1 if j,k>1

a_, —a,, if j=0,k>1 _

S e T B T =[ATl

a; —a;, if j>21,k=0

a, —a; if j=k=0
Here we used ag + g1 — Ay — Ay = (2ak +ag_1+ ak+1) - (2ak+1 +ay + ak+2), a similar

identity for j, and ag — ay = (2ag + 2a;) — (2a; + ap + a;), and again a, = a_,.

17
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As for statement (3) we consider

(205 + a7y + @) + (@ + 205 +afy ) 0 j k>

[D_A+DT] = (atk +aik+1) + (a/-:+1 +al‘:) if J = O’ k 2 1
—dik (a;-'+a;-'_])+(a;f+]+a;f) if j>1,k=0

ag +aj if j=k=0

af_k +af+k if j,k>1

1, # # e

>(@”, +a if j=0,k>1

=k S = [RA"R] 1.
E(aj+aj) if j>21,k=0
ilah+al) if j=k=0

. + o+ # __ #
Again, we used that a; = a”, and a), =a”,.

Statement (4) can be proven in the same way as statement (3). In fact, if we assume all the
hypotheses in (1)—(4), then (4) follows with a little algebra from the previous three statements
(and from the fact that D, and D_ commute).

In order to prove formula (6.7) first observe that

(L) it
Sy = (3, J))ii=os §G, j)=4 °

i>j and i— jeven

0 otherwise.

Putrg = 1/2and r, = 1 forn > 1. Then the identity B = Sy RA*RS] can be rephrased as

i+l i l

1 [+
5 Do (l; ) =2 D _EG & brjri(aj +aj.,)
m=0

j=0 k=0

(6.8)

to hold true foreach i, / > 0. These identities are valid if for each integer s > 0, the coefficients
for a¥ = a* _ are the same on the left and right-hand side.

First assume s > 0. On the right-hand side, the coefficient for a” = a”  is equal to the
sum N; + N, + N3, where

o i l
Ny = E, DEW, B)rjry = Fi—oul1—2v,
! u)\v
0<j<i 0<u<if2
0<k<! 0<v<Ii2
s=j—k s=i—2u—1+2v
.. i\/[(!
N, = E G, HEU, B)rjry = E 2 )\ -t
0<j<i 0<u<i/2
0<k<! 0<v<I2
s=k—j s=—i4+2u+l—2v
.. i\ /[l
N; = E, DEW, B)rjry = Ficouli—2v.
! u)\v
0<j<i 0<u<i/2
0<k<! 0<v<Ii2
s=j+k s=i—2u+l—-2v

Therein, we made a change of variables j — u = (i — j)/2 and k — v = (I — k)/2. The
summation is over integer pairs (u, v). In the above expressions for N; and N, we make
another change of variables v +— [ — v and u +— i — u to get the expressions

i\ /(!
E ( >< >ri2ur2vl and
u v
o0<u<i/2
12<v <!
s=i—2u+l—2v
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Since there are no indices (u, v) satisfyingi/2 <u <i,l/2<v<lands =i —2u+1—2v,
we obtain that N; + N, + N3 equals

i\ (! . (,iztlx) if s<i+l and 1i+[—seven
E =E&EG+1,s)= 2
u v 0

0Sngi otherwise.
0<v <!
s=i—2u+l-2v
(6.9)
This is the desired result since the coefficient for a* = a* on the left-hand side of (6.8) is
zeroif i +1 — s is odd and

1 i+1 i+1 i+1
5\ iwtms | 7 U intas | ) =\ it
2 2 2
otherwise.

In the case s = 0, the coefficient for the term afi on the right-hand side of (6.8) equals
N := N; + N3 = N, + N3, while it equals %S (i +1, 0) on the left-hand side. The manipulation
of the expressions N; can be done in the same way, with the only difference that in the end
there are indices (u, v) satisfyingi/2 <u < i,1/2 < v < [,i+] = 2(u+v). This corresponds
to a term N4, which happen to be equal to N3. Thus, N = %(Nl +---+Ngy) with Ny +---+ Ny
equaling (6.9). This settles the case s = 0.

Hence, we have shown that identity (6.8) holds, and this implies formula (6.7). O

In regard to the first part of the theorem we remark that the hypotheses in (1)-(4) are
compatible to each other in the sense that the hypotheses in (1) and (3), as well as those in (2)
and (4) imply that

ap =2a; — ar—2 — Qe
Correspondingly, we have
DAD" = RA*R with D =D,D_=D_D,.
Elaborating on formula (6.7) we remark that assuming the hypotheses in (1)—(4), one can

express the coefficients b, in terms of a,f and gy as well. We record the corresponding results
for completeness sake:

b= (0 )@ st ad ). B=SAMT S =80 (6.10)
k=0 k
by = Z . (@, o = dyp11-4) B=S-A"SL. 5. =SiDs ©.11)
k
k=0
bn = Z " (aank - a2n+27k)s B = SAST? S = S#D (612)
k=0 k

The matrices S+ and S are evaluated as follows:

S+

Il
N N N N
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o)
()
()

(o)
()

G

)

=L 0 -0 6 ’
G -0 O -0
©)
0 (.

|o-6 o ?)

=l o -0 o ¢
G- o H-(O o

Finally we remark that the recurrence relation (6.6) allows us to express the coefficients a’ in
terms of b,

4 s o X n—k n—k—1
a, = 2by, a, =a_, = Z(—l) bn_ok k + k—1 ,
k=0

Let us now proceed with establishing the identities for the determinants of the finite
matrices. We restrict to the cases where the symbols are L'-functions because this is what is
of interest to us.

n=>l1.

Theorem 6. Leta,a*,a”,a* € L'(T) be even, and let b € L'[—1, 1]. Assume that
(1) a(e?) = b(cos0)(2 +2cos6)"'/2(2 —2cos )~ 1/2,
(2) a*(e?) = b(cos0)(2 +2cos0)~/2(2 —2cos0)!/?,
(3) a— () = b(cos0)(2+2cos0)/2(2 — 2cos)~/2,
(4) a*(e?) = b(cos0)(2 +2cos0)/2(2 — 2cosH) /2.
Then, for eachn > 1,
det H,[b] = det(T},(a) — H,(z"'a)) = det(T,,(a™) + H,(a"))

= det(T,,(a”) — Hy(a")) = L det(T, (a") + H(za")). (6.13)

Proof. We first note that the hypotheses on the coefficients stated in (1)—(4) of theorem 5 can be
rephrased in terms of the corresponding generating functions (see (6.1) and (6.3)) as follows:
a*@) =a@1 -1 -z, a” () =a@)(+2)(1+z7"),

a'@) =a* @0+ +z7h, a'@=a @0 -2 —z".
Here z = ¢? e T. Incidentally, the relations between a, a*, a~, and a* implied by the

assumption 14 above are precisely those in (6.14).
Now assume 4 and compute

-1 b4
lf b(x)(2x)"dx = l/ b(cos0)(2cosH)" sin(0) d
T )i T Jo

_ i /2n a#(eie)(eie + efi(?)n do = l i (l# n
47T 0 2 — n—2k k ’

which is precisely the condition (6.6).

(6.14)

b, =
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In order to use the results of theorem 5 we take the finite sections of the various identities
(i.e. we consider the n x n upper-left corners of the infinite matrices),

D,ADT = A", D_ADT = A",

D_A*D” = D,A"D] = RA*R, B = SyRA*RS],

and then take the determinants. The crucial point is that D,, D_ and Sy are lower triangular
and have ones on their diagonals. The diagonal matrices R give a factor % in the determinants.
Now it just remains to check that the finite sections of the infinite matrices (6.5) and (6.6) are
indeed the matrices occurring in (6.13). But this follows from the definitions (6.2) and (6.4).

O

It is apparent from the proof that if we are only interested in an identity between two
types of determinants featuring (6.13), then it is enough to assume that only the corresponding
symbols are L!-functions and that the appropriate relationships between these symbols hold
(see also (6.14)). For instance, if we assume a*, a~ € L'(T) and

ad@U+)(l+z Y =a @U -1 -z,
then we can conclude that
det(T, (a™) + H,(a")) = det(T,,(a™) — H,(a")). (6.15)

By the way, this relationship between these two types of determinants is not the trivial one
featuring the ‘equivalence’ between cases 2 and 3, which has been pointed out earlier.

7. Results from the Toeplitz theory

The idea for this section is that if the « and S are any combination of £, then we may choose
an operator of the form 7, (a) + H, (b) from our list of identities 1—4 that has, in a certain
sense, a nice symbol and find an explicit formula for the determinants of the associated Hankel
matrices, H,[b]. This is because for these values of the parameters and the right choice of
operator, we lose the square root singularities. Fortunately in [6] exact formulas for the types
of Toeplitz plus Hankel determinants that appear in the previous theorem were found. If we
specialize the results to the cases at hand we can state the exact formula of the determinants
of the matrices H,[b]. The four different determinants all have the form

Glal"Flaldet(I + 0, K Q). (7.1)

where F[a] and G[a] are certain constants that depend on our choice of parameters for o and
B. The last operator determinant involves orthogonal projections Q,, = I — P,, where the
projections P, acting on 7)), 7, = {0, 1,...,}, are defined by

Pn(a()valv "') = (a()valv "'1an71701 0» "')'

The operator K, acting on £%(Z), is a certain (trace class) semi-infinite Hankel operator.

The precise reference for result (7.1) is proposition 4.1 and the remark afterward in [6].
Propositions 3.1 and 3.3 in [6] also have to be considered. For the sake of clarification we
remark that our cases 1-4 correspond to cases I-IV in [6] as follows: 1 =1I[,2 =1,3 =11,
4 =1V, where in case 4, the operators differ by a constant.

In our case the symbol is (up to a constant) a@®) = e whence Y =
a;l(ei9)5+(eig) = e*i"?  which occurs in the definition of the operator K. The Fourier
coefficients v (k > 0) are precisely equal to the value of the Bessel function Ji (¢) of order j

—tcos6
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with the argument ¢. The precise description of K is as follows

(1) Leta = % B = %, then K = K, where K| has (j, k)-entry —J;42(2).
2) Leta = —%, B = %, then K = K, where K has (j, k)-entry Jj ;41 (2).
3) Leta = %, B = —%, then K = K3, where K3 has (j, k)-entry —J ;41 (2).
(4) Leta = —1, p = —1, then K = Ky, where K, has (j, k)-entry J; ().

Here j, k > 0. It is known that the operator K is trace class. This is not hard to see since
for fixed # the entries in the Hankel matrix tend to zero very rapidly. We state the four cases
below. In all cases our function a in the previous identities is e 7 °°*¢ times a factor of a power

of 2.

Theorem 7. Let b(x) = (1 — x)%(1 +x)P e~
(1) Leta = 3, B = 3, then
det H,[b] = 27" " /S det(I + 0, K1 Q,).
(2) Leta = —%, B = %, then
det H,[b] = e /3 det(I + 0, K20,).
(3) Leta = %, B = —%, then
det H,[b] = e /3% det(I + 0, K3Q,,).
(4) Leta = —%, B = —%, then
det H,[b] = 2"~ e /8 det(I + 0, K40,).
This does not quite give us the identity of the original D, (¢) since the above Hankel

was defined with some extra constants of = and 2. So first we adjust for these to yield the
following.

Theorem 8. Let b(x) = (1 — x)*(1 + x)fe ",
(1) Leta = 3, B = 1, then
D, (t) = 27" D ) e’ B det(I + 0, K, 0,).
(2) Leta = =1, B =1, then
D, (t) =27 )" e 12 det(I + 0, K20,).
(3) Leta = %,,8 = —%, then
D, (t) = 27" Q)" " /2 det(I + 0, K30,).
(4) Leta = —3, B = —3, then
D, (1) = 27" D=1 oy e B det(I + 0, K40,).
Since @, tends to zero strongly and the operator K is trace class, the term det(/ + 0, K Q)

tends to one and the asymptotics are given by the previous factors in each case of the above
result.
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More precisely, we obtain the following result.
Theorem 9. Let b(x) = (1 — x)%(1 +x)P e .
(1) Leta = 3, B =3, then

D, () ~ 271D o yn o8,
(2) Leta = —%, B = % then

D, (1) ~ 27" Q)" e /312,
(3) Leta = 5, B = —3, then

D, (t) ~ 27" 2" e /8+1/2,
(4) Leta = —%, B = —%, then

D, (1) ~ 27D gy /B,

If we expand det(I + O, K; Q) using the fact that logdet(/ + A) = trlog(/ + A) using

just the first couple of terms, it seems reasonable to conjecture that, for example,
2 « /2>2n+2 0 1
D, (1) ~ 27"V 2y e /B ety Ol

Similar conjectures can be made in the other cases.

Before ending this section, we conjecture, with the aid of the linear statistics formula in
[16] and [3] obtained through the heuristic Coulomb fluid approach [14], that for ‘general’
values « and $ and for large n

2
10g(D”(t)> LA Bt

where

G( 1+z;+/3 )G2(2+o£+;3 )G(3+(;+ﬂ)

Gl+a+B)G(l+a)G(1+p)

D, (0) ~ 2—n(n+a+ﬁ) n(a2+ﬁ2)/2—1/4 (27[);1

Here G (z) is the Barnes G-function [2].
Finally, we have as a consequence of the previous sections the following remark: Let
o= %, B = %,andlet
d
¢=ty log(1 + @, K (/2)Qn).

Then the function

2t t
(1) = TR <n, 5) ,
and thus also satisfies a related Painlevé equation. A similar expression can be obtained for
the other three cases. This once again demonstrates that the most fundamental quantity in the
theory is the coefficient p; (n, t).

After the completion of our manuscript it was brought to our attention that a result
similar to (1.1) was obtained in [27, theorem 2.2]. However, our main results, expressing
the o function in terms of p,(n, t/2), the coefficient of z"~! of our ‘deformed’ orthogonal
polynomial, and consequently expressing R, (), r, (1), o, (t) and B, (¢) all in terms of the same
quantity, are distinct from the result in [27], where several t- functions are involved.
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