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Abstract

The six Painlevé equations (P—Py;) were first discovered about a hundred years ago by Painlevé and his
colleagues in an investigation of nonlinear second-order ordinary differential equations. Recently, there has
been considerable interest in the Painlevé equations primarily due to the fact that they arise as reductions of
the soliton equations which are solvable by inverse scattering. Consequently, the Painlevé equations can be
regarded as completely integrable equations and possess solutions which can be expressed in terms of solu-
tions of linear integral equations, despite being nonlinear equations. Although first discovered from strictly
mathematical considerations, the Painlevé equations have arisen in a variety of important physical applica-
tions including statistical mechanics, plasma physics, nonlinear waves, quantum gravity, quantum field theory,
general relativity, nonlinear optics and fibre optics.

The Painlevé equations may be thought of a nonlinear analogues of the classical special functions. They
possess hierarchies of rational solutions and one-parameter families of solutions expressible in terms of the
classical special functions, for special values of the parameters. Further the Painlevé equations admit symme-
tries under affine Weyl groups which are related to the associated Bécklund transformations.

In this paper, I discuss some of the remarkable properties which the Painlevé equations possess including
connection formulae, Backlund transformations associated discrete equations, and hierarchies of exact solutions.
In particular, the second Painlevé equation Py is used to illustrate these properties and some of the applications
of Py are also discussed.
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1. Introduction

In this paper, our interest is in the six Painlevé equations (P1—Pyr)
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where ' = d/dz and «, 8, y and 0 are arbitrary constants. The solutions of P—Pyy are called the
Painlevé transcendents. The Painlevé equations Pi—Py; were discovered about a hundred years ago
by Painlevé and his colleagues whilst studying a problem posed by Picard [71]. Picard asked which
second-order ordinary differential equations of the form

w' =F(z;w,w'), (1.7)

(1.6)

where F is rational in w' and w and analytic in z, have the property that the solutions have no
movable branch points, i.e., the locations of multi-valued singularities of any of the solutions are
independent of the particular solution chosen and so are dependent only on the equation; this is now
known as the Painlevé property. Painlevé et al. showed that there were 50 canonical equations of
form (1.7) with this property, up to a Mdbius (bilinear rational) transformation

a(z)w+ b(z)

WO = oy (=96 (1.8)
where a(z), b(z), c(z), d(z) and ¢(z) are locally analytic functions. Further, they showed that
of these 50 equations, 44 are either integrable in terms of previously known functions (such as
elliptic functions or are equivalent to linear equations) or reducible to one of six new nonlinear
ordinary differential equations, which define new transcendental functions (cf. [37]). Although first
discovered from strictly mathematical considerations, the Painlevé equations have arisen in a variety
of important physical applications including statistical mechanics, plasma physics, nonlinear waves,
quantum gravity, quantum field theory, general relativity, nonlinear optics and fibre optics. Further,
the Painlevé equations have attracted much interest since they arise in many physical situations and
as reductions of the soliton equations which are solvable by inverse scattering (cf. [1,4] for further
details and references).

The Painlevé equations can be thought of as nonlinear analogues of the classical special functions.
Their general solutions are transcendental, i.e., irreducible in the sense that they cannot be expressed
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in terms of previously known functions, such as rational functions or the special functions. However,
they possess many rational solutions and solutions expressible in terms of special functions for
certain values of the parameters (these special solutions are called “classical solutions” [82]), and
they possess Backlund transformations which relate one solution to another solution either of the
same equation, with different values of the parameters, or another equation (further details and
references are given in Section 2). The isomonodromy method has been developed for the study of
the Painlevé equations (cf. [14,15,17,38,40,42—44,65]) and in this sense they are said to be integrable.
The Painlevé equations have a plethora of other fascinating properties. For example, they can be
written in Hirota bilinear form [36] and have the following coalescence cascade (see, for example,
[37,41] for details)

PVI — PV — PIV

! !

Ppm — Pp — P

2. Mathematical properties of the Painlevé equations
2.1. Asymptotic expansions and connection formulae

Consider the special case of Py (1.2) with « =0, i.e.,
w' =2w? +zw (2.1)
with boundary condition
w(z) — 0 asz— oc. (2.2)

The “classic problem” for (2.1) and (2.2) is given in the following theorem, proved in [34].

Theorem 2.1. Any solution of (2.1), satisfying (2.2) is asymptotic to k Ai(x), for some k, with
Ai(z) the Airy function. Conversely, for any k, there is a unique solution wi(z) of (2.1) which is
asymptotic to k Ai(z) as z — +oo, for some k. If |k| <1, then this solution exists for all real z
as z — —oo, and as z — —oo

w(z) =d|z|~"*sin{2[z]”* — 2d*log|z| — O} + o(|z|~"/*) (2.3)
for some constants d and 0y which depend on k.
If |k| =1 then
wi(z) ~ sgn(k)\/—iéz as z — —oo. (2.4)
If |k| > 1 then wi(z) has a pole at a finite z,, dependent on k,
wi(z) ~ sgn(k )z —z9)™'  as z | z. (2.5)

The specific dependent of the constants d and 6y in (2.3) on the parameter k£ is given as follows.
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Theorem 2.2. The connection formulae d and 6, in the asymptotic expansion (2.3) are given by

d*(k)=—n""In(1 — k?), (2.6)

Oo(k) = 3d*In2 + arg{I'(1 — iid*)} — im. (2.7)
with I'(z) the Gamma function.

The amplitude connection formula (2.6) and the phase connection formula (2.7) were first conjec-
tured, derived heuristically and subsequently verified numerically in [3,75]. Some years later Clarkson
and McLeod [11] gave a rigorous proof of (2.6), using the Gel’fand-Levitan—Marchenko integral
equation (2.9). Suleimanov [77] derived (2.6) and (2.7) using the isomonodromy problem (2.13)—
see also [38,39]. Subsequently, Deift and Zhou [14,15] rigorously proved these connection formulae
using a nonlinear version of the classical steepest descent method for oscillating Riemann—Hilbert
problems. Recently, Bassom et al. [8] have developed a uniform approximation method, which is
rigorous, removes the need to match solutions and can leads to a simpler solution of this connection
problem for the special case of Py given by (2.1). Numerical studies of this boundary value problem
are discussed in [58,59,74], which also arises in a number of mathematical and physical problems,
as discussed in Section 3.2.

2.2. Integral equations

The Painlevé equations P;—Py; arise as similarity reductions of partial differential equations solvable
by inverse scattering (cf. [1-4]). For example, if we make the scaling reduction u(x,t)=(3t)""3w(z),
with z = x/(3¢)'3, in the modified Korteweg—de Vries (mKdV) equation

Uy — 6u2ux + Uy = 07 (28)

then after integrating once, w(z) satisfies Py (1.2) with « the arbitrary constant of integration [2,3].
Consequently, certain solutions of Painlevé equations can be expressed in terms of solutions of
linear integral equations. Consider the integral equation

K(z,é)zkAi(Hzé> +%k2 /ZOO /ZOOK(Z,S)A1<S;”> Ai(t—;€> ds di (2.9)

with Ai(z) the Airy function, then it can be shown that w;(z) = K(z,z), satisfies (2.1), i.e., Py with
o =0, with the boundary condition

wi(z) ~ k Ai(z) as z — oo. (2.10)

Integral equation (2.9) is derived by making a scaling reduction of the Gel’fand-Levitan—-Marchenko
integral equation for solving the mKdV equation (2.8) by inverse scattering (see [1-3] for further
details). The construction of the one-parameter transcendental solution of P;; with o = 0 satisfying
the boundary condition (2.10) in [3] through the linear integral equation (2.9) is the first such
construction for a Painlevé equation.
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2.3. Isomonodromy problems

Each of the Painlevé equations P;—Py; can be expressed as the compatibility condition of the linear
system

Y, =A(z; V)Y, Y.=B(z L)Y, (2.11)
where A and B are matrices. The equation W,;, =¥, is satisfied provided that
A, — B, + AB — BA =0, (2.12)

which is the compatibility condition of (2.11). For example, Py (1.2) arises for the matrices 4 and
B given in [17] (see also [19])

—i(422 42w +z2)  4iw + 2iw + ajw —il w
A(z; M) = , B(z;A)= . (2.13)
. . 2 2 .

47w = 21w + a/w (44" + 2w" + 2) w il

These are derived through a scaling reduction of the Lax pair of the mKdV equation (2.8) [17].
Matrices A and B for P—Py; satisfying (2.13) are given by in [43], though these are not unique.

2.4. Hamiltonian structure

The Hamiltonian structure associated with the Painlevé equations Pi—Pvy; is #; = (¢, p,Hy,2),
where Hj, the Hamiltonian function associated with Hj is a polynomial in ¢, p and z. Each of the
Painlevé equations P;—Py; can be written as a Hamiltonian system

d J0H d oH

4 _% P (2.14)

dz 0dp dz 0q
for a suitable Hamiltonian function Hj(g, p,z) (cf. [70]). Further the function oj(z) = Hj(g, p,z)
satisfies a second-order, second-degree ordinary differential equation, whose solution is expressible
in terms of the solution of the associated Painlevé equation.

For example, the second Painlevé equation Py; (1.2) can be written as the Hamiltonian system
[66]

dq aHll 2 1 dp aHn 1

—=——=p—q° — = —=——=2 =, 2.15

dz 0dp P—4q4 —3% dz oq qp+oc+2 (2.15)
where the (nonautonomous) Hamiltonian Hy(g, p,z; o) is given by

Hi(g, p.z;0) =3 p* — (¢ + 32)p — (0 + 1)g. (2.16)
Eliminating p in (2.15) then ¢ = w satisfies Py (1.2) whilst eliminating ¢ yields

pr" =3PV +2p —zp” — L+ 1), (2.17)

which is known as P34, since it is equivalent to [37, Eq. (XXXIV) Chapter 14]. Further, if ¢
satisfies Py (1.2) then p=¢q' + ¢*> + %Z satisfies (2.17) and conversely, if p satisfies (2.17) then
g=(p' —a— %)/(2 p) satisfies Py (1.2). Thus, there is a one-to-one correspondence between solutions
of Py (1.2) and those of P34 (2.17). The function o(z; o) = Hy(q, p,z; ) defined by (2.16) satisfies
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the second-order, second-degree equation

(6") +4(c')y +20'(za' — 0) = L(a + 1) (2.18)
Conversely, if o(z; ) is a solution of (2.18), then
q(z;0) = (30" (z;0) + gu+ )/a'(z;0),  p(zi0) = ~20'(z;0) (2.19)

are solutions of (2.15).
We remark that Eq. (2.18) is equation SD-I.d in the classification of second-order, second-degree
equations which have the Painlevé property in [12], an equation first derived in [9].

2.5. Bicklund transformations

The Painlevé equations Pj—Py; possess Backlund transformations which relate one solution to
another solution either of the same equation, with different values of the parameters, or another
equation (cf. [5,7,18,23,31,40,48,60—62,66—69] and the references therein).

For example, if w = w(z;a) is a solution of Py (1.2) then

S ow(z;—a) = —w, (2.20)

200+ 1
2w £ 2w +z
are also solutions of Py (1.2), provided that o # :F% [26,52]. Umemura [83] discusses geometrical

aspects of the Backlund transformations of Py (1.2). Gambier [26] also discovered the following
special transformation of Py (1.2):

1 2713 dw
w <C> E 8) - W(Z, O) 5(290)5

wi(z;0)=2""7 {W2 <«:; % g> - gCLVZ (g; % s) + % g}, (2.22)

where { = —2'3z and & = #1 (see also [10]). Combined with the Bicklund transformation (2.21),
transformation (2.22) provides a relation between two Py equations whose parameters o are either
integers or half odd-integers. Hence, this yields a mapping between the rational solutions of Py,
which arise when o =n for n € Z and the one-parameter Airy function solutions, which arise when
oc:n—l—% for ne”.

The solutions w, = w(z; o), w,+1 = w(z;o + 1) also satisfy the nonlinear three-point recurrence
relation

200+ 1 200—1
_|_

Woil + Wy Wy + Wy—1

T+ wizyatl)=—w (2.21)

+ 4wl +22=0, (2.23)

a difference equation which is known as an alternative form of discrete P; [20]. This is analogous
to the situation for classical special functions such as Bessel function J,(z) which satisfies both a
differential equation and a difference equation. We remark that for Py (1.2), the independent variable
z varies and the parameter o is fixed, whilst for the discrete equation (2.23), z is a fixed parameter
and « varies.
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2.6. Affine Weyl groups

The parameter space of Py—Py; can be identified with the Cartan subalgebra of a simple Lie
algebra and the corresponding affine Weyl groups Ay, Ca, As, A3, D, act on Py—Pyy, respectively,
as a group of Backlund transformations (cf. [63,64,66-69,83]). An affine Weyl group is essentially
a group of translations and reflections on a lattice. For the Painlevé equations, this lattice is in the
parameter space.

The Bécklund transformations % (2.20) and 9 4 (2.21) are affine transformations &(o) = —«
and 7 (o) =a = 1, for € C. Consider the subgroup % of the affine transformation group on C
generated by (¥,7 ,,7 ). Then ¥*=4, 7, =9 _F,=.9 and T , =T _¥, with .S the
identity transformation, and so (%) = Z/27, the Weyl group of the root system of type A;, and
(7 +,7 _) =2 Z. Therefore, 4 = 7/27 < 7, the Weyl group of the affine root system of type A;.

2.7. Exact solutions

The generic solutions of the Painlevé equations are transcendental in the sense that they cannot
be expressed in terms of known functions. However, for special values of the parameters, Py—Py;
possess rational solutions, algebraic solutions and solutions expressible in terms of special functions
(cf. [1,5,16,23,25,29,31,40,48,56,57,60—62,66—69] and the references therein). These special solutions
are called “classical solutions” [82].

2.7.1. Rational and algebraic solutions

The Painlevé equations Pp—Py; possess hierarchies of rational solutions and Py, Py and Py; also
possess algebraic solutions for special values of the parameters. These hierarchies are generated
from “seed solutions” using the Backlund transformations and often are expressed in the form of
determinants. This is illustrated for Py.

Theorem 2.3 (Vorob’ev [86], Yablonski [88]—see also Fukutani et al. [25], Taneda [78]). Rational
solutions of Py (1.2) exist for a =n€ Z and have the form

. _ i anl(z)
w(z;n) = P {ln [ 0.) ] }, (2.24)

where the polynomials Q,(z), for n = 1, satisfy
0n11(2)0n—1(2) = 205(2) +4[0,(2)) — 40,(2)0;(2) (2.25)
with Qo(z) =1 and Q,(z) =z.
The polynomials Q,(z) are monic polynomials of degree %n(n+l) and referred to as the Yablonski—

Vorob’ev polynomials. The first few of these polynomials and the associated rational solutions w(z; n)
of Py (1.2) are given below. Fukutani et al. [25], see also [78], prove that the polynomials Q,(z)
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have simple roots and that for a positive integer n, O,(z) and Q,+1(z) do not have a common
root.

" 0,(2) w(zn)
1 z —1/z
1 322
2 +4 .
o z zZ+4
3z° 6z%(z* + 10)
6 4+ 20x° — 80 _
’ = 2 4+4  z6420z3 — 80
1 2(23 41 5,344
4 219 4 6027 + 11200z 1 6 +10) 92°(z> + 40)

z 2642023 —80 2%+ 60z6 + 11200

Kajiwara and Ohta [47] have derived a determinantal representation of rational solutions of Py;.

Theorem 2.4. Let pi(z) be the devisme polynomial defined by

kzzg pr(2)2¥ =exp <z/1 — g /13> (2.26)
with pi(z) =0 for k <0, and 1,(z) be the n x n determinant
Pn(2) Pri1(z) o pa—a(2)
Pn—2(2)  pa—i(z) o0 pan3(2)
T.(z) = . . ' ' , nx=1 (2.27)
P—n2(z)  p-ni3(z) -+ pi(2)
Then
. _ i ‘En_l(Z)
w(z;n) = P {ln [ o2) ]}, n>=1 (2.28)

satisfies Py (1.2) with « = n.

We remark that Flaschka and Newell [17], following the earlier work of Airault [5], expressed
the rational solutions of Py (1.2) as the logarithmic derivatives of determinants.

2.7.2. Special function solutions

The Painlevé equations Py—Py; possess hierarchies of solutions expressible in terms of classical
special functions, for special values of the parameters through an associated Riccati equation. These
hierarchies of solutions, which are often referred to as “one-parameter solutions” since they have one
arbitrary constant, are usually generated from “seed solutions” using the Bécklund transformations
and like the rational solutions, often are expressed in the form of determinants.
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The second Painlevé equation Py (1.2) can be written as
e(ew + w4+ 1z) =2w(ew +w + 1) +a+1ie =1

Hence if o = %s, then special solutions of P;; (1.2) can be obtained in terms of solutions of the
Riccati equation

ew +w?+1z=0. (2.29)
Setting w = ¢’/ in this equation yields

¢" + 329 =0, (2.30)
which is equivalent to the Airy equation and has general solution

o(z) = C1 Ai(&) + O Bi(¢), &¢=-27"2 (2.31)

where Ai(¢) and Bi(¢) are Airy functions and C;, C, are arbitrary constants.

Theorem 2.5 (Airault [5], Flaschka and Newell [17], Okamoto [66]). Let ¢(z) be the solution of
(2.30) and 1,(z) be the n X n determinant

o) 9 - et
P'z) 9z - P

,(z) = ‘ ' ' , n=1, (2.32)

o" V@) o) - ePTR(2)
where @™ (z) =d"¢p/dz", then
1 d Tn—l(Z)
A > X
w<z,n 2) i {1n[ @) ]}, n=l1 (2.33)

satisfies Py (1.12) with o =n — %

If we set @(z) = ¢'(z)/p(z), with ¢(z) given by (2.31), then the first few solutions in the Airy
function solution hierarchy for Py (1.2) are given below.

o w(z; o)
+3 F0
1

+3 +@

2 T2 12
i N 229 + @ + 22 1

403 1 20— 1 202 42

" 48 4 82202 4 282 + 423 — 9 2B 4 D+ 3

2 2(820% + 160° 1 82207 1 820 + 225 —3) | 40> + 220 1 | z
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Special function families of solutions of Py (1.3) are expressed in terms of Bessel functions J,(z)
[50,55,60,62,69,85], of Pry (1.4) in terms of Weber—Hermite (parabolic cylinder) functions D,(z)
[7,30,49,61,66,84], of Py (1.5) in terms of Whittaker functions M, ,(z), or equivalently confluent hy-
pergeometric functions F(a;c;z) [51,28,68,87], and Py (1.6) in terms of hypergeometric functions
2Fi(a,b;c;z) [23,53,67].

3. Applications of Painlevé equations
3.1. Combinatorics

Let Sy be the group of permutations m of the numbers 1,2,...,N. For 1 <i; <--- <i; <N, then
n(iy),n(iz),...,n(iy) is an increasing subsequence of m of length £ if n(i;) < n(ix) < --- < n(iy).
Let /y(m) be the length of the longest subsequence of ® and define

gn(n) = Prob(/y(m) < n). (3.1)

The problem is to determine the asymptotics of gy(n) as N — oo, which Baik et al. [6] expressed
in terms of solutions of Py; (see Theorem 3.1 below). Define the distribution function F,(s) by

Fo(s) = exp {— /oo(z — )W (z) dz} , (3.2)

which is known as the Tracy—Widom distribution first introduced in [79], and w(z) satisfies (2.1),
the special case of Py (1.2) with oo =0, and the boundary conditions

Ai(z) as z — oo,
w(z) ~ (3.3)

—1z asz— —00

with Ai(z) the Airy function. Recall from Theorem 2.1 that Hastings and McLeod [34] proved there
is a unique solution of (2.1) with boundary conditions (3.3). Baik et al. [6] proved the following
theorem.

Theorem 3.1. Let Sy be the group of all permutations of N numbers with uniform distribution
and let £n(m) be the length of the longest increasing subsequence of me Sy. Let y be a random
variable whose distribution function is the distribution function F,(t). Then, as N — oo,

. /n(m) —2VN oy

AN - N1/6
in distribution, i.e.,
: {y —2VN
ngl(l)O Prob (]\11/6 < S) = F5(s),

for all s € R.
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The Tracy—Widom distribution function F,(s) given by (3.2) arose in random matrix theory were
it gives the limiting distribution for the normalised largest eigenvalue A, in the Gaussian unitary
ensemble (GUE) of N x N Hermitian matrices [79]. Specifically, for the GUE

Jim_Prob((Zmax — V2N)V2NYe < 5) = Fi(s), (3.4)

with F,(s) given by (3.2). See [13,24,80], and the references therein, for discussions of the appli-
cation of Painlevé equations in combinatorics and random matrices.

We remark that the solution of (2.1) satisfying the boundary conditions (3.3) also arises several
other applications including: (i) spherical electric probe in a continuum plasma [34]; (ii) Gortler
vortices in boundary layers [32,33]; (iii) nonlinear optics [27]; (iv) Bose—Einstein condensation
[81]; (v) superheating fields of superconductors [35]; (vi) universality of the edge scaling for non-
Gaussian Wigner matrices [76]; (vii) shape fluctuations in polynuclear growth models [72,73]; (viii)
distribution of eigenvalues for covariance matrices and Wishart distributions [45].

3.2. Orthogonal polynomials

Suppose p,(x), n =0,1,...,00, is a set of orthonormal polynomials with respect to the weight
function w(x;z) on (a, f§), with —oco < o < ff < o0,
B
/ @) PaWC2) dx = By mm=0,1,... . (35)
Then p,(x) satisfy the three-point recurrence relation (cf. [54])
an1(2) pr1 (x) = [x = bu(2)] pa(x) — an(z) pp—r(x), n=1,2,... . (3.6)
For example, consider the weight function w(x;z) = exp(—ix4 —zx?), so
& 1
/ Pm(x) pu(x) exp <— xt — zx2> dx = O (3.7)
oo 4
Here o = —o0, =00, b, =0, since w(—x) =w(x), and u, = a> satisfies
du
d "= un(unfl - Z’ln-H)a (38)
z
which is the Kac—van Morebeke equation [46], and
(tpy1 + up + ty—1))u, = n — 2zuy, (3.9)
which is discrete P; equation (dP;) [21,22]. From (3.8) and (3.9) we obtain
1 du,
Qg =2 — 2 9y, (3.10a)
u, u, dz
1 du,
Qup = = oy (3.10b)

u, u, dz

Letting n — n+ 1 in (3.10b) and then eliminating u,,; in (3.10a) yields Piy (1.4) with («, ) =
(—%n, —%n2). Further, Fokas et al. [21,22] demonstrated a relationship between solutions of Py (1.4)

and dP; (3.9) in the context of two-dimensional quantum gravity.
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4. Discussion

This paper gives an introduction to some of the fascinating properties which the Painlevé equations
possess including connection formulae, Backlund transformations, associated discrete equations, and
hierarchies of exact solutions. I feel that these properties show that the Painlevé equations may be
thought of as nonlinear analogues of the classical special functions.

Some important open problems relating to the Painlevé equations are: (i) asymptotics and con-
nection formulae for the Painlevé equations using the isomonodromy method, (ii) Bécklund trans-
formations and exact solutions of Painlevé equations, and (iii) the relationship between affine Weyl
groups, Painlevé equations, Backlund transformations and discrete equations. The ultimate objective
is to provide a complete classification and unified structure for the exact solutions and Backlund
transformations for the Painlevé equations and the discrete Painlevé equations—the presently known
results are rather fragmentary and nonsystematic.
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