
Lecture 18: An Introduction to Otto’s
Calculus

1 Otto’s Calculus

In the seminal papers [94, 95], Otto introduced a formal interpretation of the
Wasserstein distance as a Riemannian distance in P2(R

n), using this interpretation
as a guide to rigorous results on the large time asymptotics of solutions to porous
medium equations. To simplify the presentation, let us work in the subspace
Pa

2 (Rn) of absolutely continuous measures μ, identified with their densities �.
According to Otto’s calculus, elements s of the tangent space T�P

a
2 (Rn) are

thought as functions with null mean and gradient tangent vectors v = ∇φ are
coupled to tangent vectors s by solving the degenerate elliptic PDE

− div
(
(∇φ)�

) = s.

Notice that this picture is fully consistent with the structure of the continuity
equation, that we extensively discussed in the previous sections. Otto’s metric tensor
is then

〈s, s ′〉� :=
∫

Rn

〈∇φ,∇φ′〉� dx whenever − div
(
(∇φ)�

) = s, − div
(
(∇φ′)�

) = s ′.

(18.1)

Notice that the vector fields v are gradient vector fields and that, when � ∼ 1, this
metric is reminiscent of the flat H−1 metric on tangent vectors. The restriction to
gradient vector fields can be understood, for instance, on the basis of the fact that
optimal transport maps are gradients. In addition, the same holds for the natural
velocity field vt = t−1∇ψt attached to geodesics (see Sect. 2 in Lecture 16).
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In this perspective, the Benamou–Brenier formula can be precisely understood
as the fact that W2 is the Riemannian distance associated to this metric tensor,
as

∫
Rn |∇φt |2�t dx is precisely the Riemannian action of the curve �t solving a

continuity equation

d

dt
�t + div

(
(∇φt)�t

) = 0.

More generally, the close link between solutions of the continuity equations and
absolutely continuous curves inP2(R

n), proved in Proposition 17.9, shows that this
interpretation of P2(R

n) as a kind of infinite-dimensional Riemannian manifold is
fully consistent and goes beyond the class of absolutely continuous measures.

2 Formal Interpretation of Some Evolution Equations
as Wasserstein Gradient Flows

This section is devoted to discuss at a formal level the possibility of interpreting
some evolution equations as gradient flows of energy functionals with respect to the
Wasserstein distance, relying on Otto’s calculus and computing the “Wasserstein
gradient” ∇WE . In many cases the metric theory can then be used, among other
things, to make this interpretation fully rigorous and in Sect. 3 we will perform this
task for the heat equation.

Assume that an energy E : P2(R
n) → (−∞,∞] is given. We recall that any

gradient flow μt must be in particular an absolutely continuous curve with metric
derivative locally in L2. At this stage, thanks to Theorem 17.10 we can say that μt

is a solution of the continuity equation

d

dt
μt + div(vtμt ) = 0, (18.2)

for some velocity field vt such that ‖vt‖L2(μt )
∈ L1

loc(0,∞). Thus, if we are able to
identify the Wasserstein gradient of E , the condition

vt = −∇WE(μt ) forL 1-a.e. t ∈ (0,∞) (18.3)

turns the continuity equation (18.2) into

d

dt
μt = div(∇WE(μt )μt ). (18.4)

Let us compute then the Wasserstein gradients of the main examples of energy
functionals we introduced so far: internal energy, potential energy and interaction
energy.
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As we discussed in Lecture 13, having a metric tensor at our disposal, the
problem of computing the Wasserstein gradient of E at any � ∈ Pa

2 (Rn) is reduced
to the computation of the action of its differential d�E on any s ∈ T�P

a
2 (Rn), and

therefore to the computation of

d

dt

∣
∣
∣∣
t=0

E(�t ),

where �t is any absolutely continuous curve passing through � with velocity s at
time t = 0. To this aim we fix ϕ ∈ C∞

c (Rn) and we consider the vector field v =
∇ϕ. There are two natural choices for a smooth curve in the space of probabilities
with velocity v at time 0, namely

either �t := (id + tv)# � or �̃t := (Xt )# �,

where Xt is the flow map associated to v. It is easily seen (recall Lecture 16) that
the velocity field for the former is vt = v ◦ (id + tv)−1, while the velocity field for
the latter is time-independent, and equal to v.

Let us focus on the case of the internal energy functionalU associated to a density
U . As a consequence of the previous remarks, defining s := d

dt |t=0�t , we can
compute

d�U(s) = d

dt

∣
∣
∣
∣
t=0

U(�t ) = d

dt

∣
∣
∣
∣
t=0

(∫

Rn

U(�t ) dx

)

= −
∫

Rn

U ′(�) div(v�) dx

=
∫

Rn

〈∇U ′(�), v〉� dx .

This last expression allows us to identify ∇W
U(�) with ∇U ′(�), since with this

choice we recover

〈∇W
U(�), s〉� = d�U(s),

which is the relation that a Riemannian gradient should satisfy.
With analogous computations one can formally compute the Wasserstein gradi-

ents also for the potential energy V (induced by a density V ) and for the interaction
energyW (induced by a density W ), obtaining

∇W
V(�) = ∇V and ∇W

W(�) = ∇ (W ∗ �) (= (∇W) ∗ �) .
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Combining all these ingredients one can consider the general case of an energy

E(�) =
∫

Rn
(U(�) + V � + (W ∗ �) �) dx

and the discussion above allows us to formally interpret the gradient flow of E in
(P2(R

n),W2) as a solution of the following evolution equation

d

dt
�t = div

(
(∇U ′(�t ) + ∇V + ∇(W ∗ �t ))�t

)
. (18.5)

We observe that the right hand side of (18.5) is given by a combination of a diffusion
term (induced by the internal energy), a transport term (associated to the potential
energy) and an interaction term (induced by the interaction energy).

The rest of this section is devoted to the discussion of a few explicit examples:
the heat equation, the Fokker–Planck equation, the porous medium equation and the
system of interacting particles.

Example 18.1 (The Heat Equation) If we consider the Wasserstein gradient flow
associated to the Shannon-Boltzmann logarithmic entropy Ent (i.e. the internal
energy associated to the density U(�) = � ln(�)) we can observe that

U ′(�) = 1 + ln(�) and ∇U ′(�) = ∇�

�
.

Thus, the formal computation of theWasserstein gradient we presented above allows
us to interpret (up to the usual identification between densities � and measures μ)
the heat flow as gradient flow of Ent, since

d

dt
�t = ��t = div(∇�t ) = div(

∇�t

�t
�t ) = div(∇WEnt(�t )�t ).

Let us briefly recapitulate the interpretations of the heat equation as a gradient
flow we introduced so far:

(i) in Lecture 13 we proved that the heat flow can be interpreted as gradient flow
of the Dirichlet energy

∫
Rn |∇�|2 with respect to the L2 metric;

(ii) in the same Lecture we proved that it can also be interpreted as gradient flow
of the energy

∫
Rn �2 with respect to the H−1 metric;

(iii) we just proved (formally, for the moment) that the heat flow admits an
interpretation as gradient flow of Ent with respect to the Wasserstein metric.

Example 18.2 (The Fokker–Planck Equation) Let us consider the energy E defined
by E(�) := Ent(�) + ∫

Rn V � dx, where V is any smooth potential such that∫
Rn e−V < ∞. Then, thanks to the discussion above,

∇WE(�) = ∇�

�
+ ∇V,
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thus we can say that any gradient flow �t of E in P with respect to the Wasserstein
metric is a solution of the Fokker–Planck equation we introduced in Lecture 13 (see
Eq. (13.3)). Indeed

d

dt
�t = div

(
(
∇�t

�t

+ ∇V )�t

) = ��t + div
(
(∇V )�t

)
.

To let the picture be more complete we recall that we already introduced an
interpretation of the Fokker–Planck equation as a gradient flow in Lecture 13. We
also remark that, according to (15.5) in Proposition 15.6, we can interpret E as the
relative entropy Entγ , where γ = e−VL n, hence we can see (FP) as the gradient
flow of Entγ with respect to the Wasserstein metric (still at a formal level).

At this point of the discussion some questions arise: why are these new
interpretations relevant? And can we get anything out of them?

First of all we remark that the interpretations presented above and their many
variants provide new contractivity estimates and rates of convergence for many
partial differential equations (starting from the seminal paper [95], see also [12] for
more details about this topic).We also point out that in theWasserstein interpretation
there is a clear separation between metric and measure (i.e. the entropy functional
depends only on the reference measure, while the Wasserstein metric depends only
on the underlying distance of the ambient space). In the Hilbertian interpretation
presented in Lecture 13 instead, both the distance and the reference measure are
involved in the definition of the Dirichlet energy.

To conclude this discussion, let us consider the specific case of the Fokker–
Planck equation (FP) when γ is the Gaussian measure: solutions converge to the
equilibrium γ as t → ∞. But, while the interpretation of (FP) as an Hilbertian
gradient flow in L2(γ ) does not provide a rate of convergence (because of the lack
of uniform convexity in L2), in the W2 picture the exponential rate of convergence
holds, and it comes as a consequence the 1-convexity of the relative entropy Entγ
guaranteed by (15.5). In particular, this provides the estimate

W2(wtγ, γ ) ≤ e−tW2(w0γ, γ ) ∀t ≥ 0.

Example 18.3 (The Porous-Medium Equation) Let us consider for any m �= 1 the
internal energy U(�) := ∫

Rn
1

m−1�
m. With this choice we have that

U(�) = �m

m − 1
, U ′(�) = m

m − 1
�m−1 and ∇U ′(�) = m�m−2∇� = ∇�m

�
,

therefore we can say that any W2 gradient flow of U is indeed a solution of

d

dt
�t = div(

∇�t
m

�t

�t ) = ��m
t ,

that is the porous-medium equation we already discussed in Lecture 13.
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Example 18.4 (A System of Interacting Particles) We are given a system of N

particles x1, . . . , xN ∈ R
n with weights m1, . . . ,mN such that

∑
mi = 1 and a

(smooth) symmetric potentialW : Rn → R. Assume for simplicity that∇W(0) = 0
(even though this assumption is not realistic for many applications) and that the
particles evolve according to the following system of first order ordinary differential
equations:

x ′
i (t) =

∑

j �=i

mj∇W(xi(t) − xj (t)) (18.6)

=
∑

j

mj∇W(xi(t) − xj (t)) i = 1, . . . , N. (18.7)

If we introduce the time-dependent empirical measures

μt :=
N∑

i=1

miδxi(t),

then (18.6) can be rephrased in the following terms

x ′
i (t) = ((∇W) ∗ μt) (xi(t)) i = 1, . . . , N. (18.8)

Thanks to the linearity with respect to μ of the continuity equation and the duality
results between solutions of (ODE) and (CE) we explored in Lecture 16, we can
conclude that the empirical measures μt solve the continuity equation

d

dt
μt = div(((∇W) ∗ μt) μt )

and finally that the system can be interpreted as a gradient flow of the interaction
energyW associated to the potential W .

Moving our attention to the second order problem

mix
′′
i (t) =

∑

i �=j

mimj∇W(xi(t) − xj (t)) i = 1, . . . , N, (18.9)

after the introduction of the empirical measure

μ̃t =
N∑

i=1

miδ(xi(t),x
′
i(t ))



3 Rigorous Interpretation of the Heat Equation as a Wasserstein Gradient Flow 217

(that is a measure in the phase space with variables (x, p) this time), we can see that
also this system evolves according to the continuity equation

d

dt
μ̃t = div(bt μ̃t ),

where now the velocity field bt is given by

bt(x, p) := (p,∇W ∗ μt (x)) .

In this Hamiltonian framework it is no more possible to get a gradient flow
interpretation of (18.9), since the vector field b is not a gradient.

3 Rigorous Interpretation of the Heat Equation
as a Wasserstein Gradient Flow

In this section we provide a rigorous interpretation of the heat equation on R
n as

gradient flow of the entropy functional in the Wasserstein space (P2(R
n),W2).

In this connection, it is worth to remember the paper [72] which provides another
justification of this fact based on the implicit Euler scheme.

We already know from Theorem 15.16 that Ent is geodesically convex on
P2(R

n), thanks to the fact that the energy densityU(�) = � ln� satisfies McCann’s
condition (MC). Observe also that, as we already pointed out, to give a meaning
to the EVI formulation of gradient flows we just need the metric structure of the
underlying space: the next results show exactly that the heat flow is an EVI gradient
flow of the entropy functional.

Let us recall that, for the heat equation in Rn with initial datum �̄ ∈ L1(Rn), one
has the explicit expression for the solution

�t (x) =
∫

Rn

pt (x, y)�̄(y) dy, (18.10)

where

pt(x, y) := (4πt)−
n
2 exp(− 1

4t
|x − y|2) (18.11)

is the so called heat kernel. Assuming that �̄ is a probability density with finite
quadratic moments, the aim of this section is to check that �t , seen as a curve
μt = �tL n in P2(R

n), is an EVI gradient flow. We will use in part the explicit
expression (18.10) of �t to justify some estimates and computations. First of all,
one can use the explicit expression to show that the properties of �̄, namely being a
probability density with finite quadratic moments, are preserved by the heat flow.
Therefore it does make sense to consider the curve μt = �tL n as a curve in
P2(R

n).
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Theorem 18.5 Let �̄ ∈ L1(Rn) be nonnegative, such that

∫

Rn

�̄(x) dx = 1,
∫

Rn

|x|2�̄(x) dx < ∞ and Ent(�̄) < ∞.

Then μt = �tL
n solves EVI in (P2(R

n),W2).

The proof of Theorem 18.5 will come as a consequence of some intermediate
results. First of all, in order to give sense to the EVI formulation of gradient flows,
we need to check that μt is (locally) absolutely continuous with respect to the
Wasserstein metric.

Proposition 18.6 Under the same assumptions of Theorem 18.5 the curve t �→ μt

belongs to AC2
loc ((0,∞);P2(R

n)).

Proof We start from the observation that, as a consequence of the explicit expres-
sion of �t , we can say that �t ∈ C∞(Rn) ∩ Lp(Rn) for any p ∈ [1,∞], that �t > 0
and that the map t �→ �t is continuously differentiable in (0,∞), as a L2(Rn)-
valued map, with

d

dt
�t = ��t ∀t ∈ (0,∞). (18.12)

Thus, if we define

vt := −∇�t

�t

it follows that the continuity equation

d

dt
μt + div(vtμt ) = 0 (18.13)

holds in the sense of distributions.
Therefore, in order to prove the W2-absolute continuity of the curve μt , it will

be sufficient to apply Proposition 17.9, after proving that ‖vt‖2L2(μt )
is locally

integrable in (0,∞). Using the explicit expression

vt (x) = −
∫
Rn ∇xpt (x, y)�̄(y) dy
∫
Rn pt (x, y)�̄(y) dy

and arguing as in (17.6) one can prove that

∫

Rn

|vt |2(x) dμt(x) ≤
∫

Rn

∫

Rn

|∇xpt (x, y)|2
pt(x, y)

�̄(y) dx dy
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so that ‖vt‖L2(μt )
∈ L∞(ε,∞) for any ε > 0. However, we prefer to provide

another proof of integrability, inspired by Ambrosio et al. [14] (dealing with the
theory of heat flow in metric measure spaces) which provides a space-time sharp
estimate of ‖vt‖2L2(μt )

very much in the spirit of the EDI theory of gradient flows.

To this aim, for ε ∈ (0, e−1), in order to take care of the singularity at r = 0
of the density e(r) = r ln r , we define the regularized energy densities eε(r) as
follows:

{
eε(r) = (1 + ln ε)r in [0, ε]
eε(r) = r ln r + ε in [ε,∞).

Observe that e(r) ≤ eε(r) ≤ 1
2 r

2, eε(r) ↓ e(r) as ε goes to 0 and eε ∈ C1,1(0,∞).
Then extend eε to C1,1(R) convex densities ẽε writing ẽε(r) = eε(r) − (1 + ln ε)r

for r ≥ 0 and ẽε(r) = 0 for r < 0. Observe that ẽε(�̄) ∈ L1(Rn) and one can prove
that the map

t �→
∫

Rn

ẽε (�t (x)) dx

is locally Lipschitz on (0,∞), with the explicit expression for its derivative provided
by (18.12) and an integration by parts:

d

dt

∫

Rn

ẽε(�t (x)) dx =
∫

Rn

ẽ′
ε(�t )��t dx = −

∫

Rn

ẽ′′
ε (�t (x))|∇�t (x)|2 dx.

(18.14)

Recalling that the total mass is preserved by the heat flow, an integration in time
of (18.14) yields to

∫

Rn

eε(�T (x)) dx +
∫ T

0

(∫

{�t>ε}
|∇�t (x)|2

�t (x)
dx

)

dt =
∫

Rn

eε(�̄(x)) dx.

(18.15)
Passing to the limit as ε → 0 in (18.15) we conclude that

Ent(μT ) +
∫ T

0

(∫

{�t>0}
|∇�t (x)|2

�t (x)
dx

)

dt = Ent(μ̄) ∀T ≥ 0,

yielding in particular the stated local integrability in time of ‖vt‖2L2(μt )
, and

concluding the proof. ��
Remark 18.7 (The Heat Equation as an EDE Gradient Flow) Notice that, as stated
in Theorem 15.26, computations analogous to those in Theorem 15.25 (dealing with
the slightly simpler case of the relative entropy with respect to a Gaussian) show
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that
∫
{�t>0}

|∇�t (x)|2
�t (x)

dx coincides with the slope of the Entropy at μt . In addition,
the same quantity provides an upper bound for the metric derivative of the curve μt ,
thanks to Proposition 17.9. Therefore (18.15) implies

Ent(μT ) +
∫ T

0

1

2
|μ′

t |2 + 1

2
|∇−Ent|2(μt ) dt ≤ Ent(μ̄) ∀T ≥ 0,

namely the EDI formulation of gradient flows. However, our goal in this section is
to achieve the stronger EVI property.

The forthcoming Lemmas 18.8 and 18.10 encode the information about the
“Riemannian-like” behaviour of the Wasserstein distance and the geodesic convex-
ity of the entropy functional, respectively.

Lemma 18.8 If ν ∈ P2(R
n) has compact support then

1

2

d

dt
W 2

2 (μt , ν) =
∫

Rn

〈T ν
μt

− id,∇�t 〉 dx for L 1-a.e. t ∈ (0,∞), (18.16)

where T ν
μt

is the unique optimal transport map from μt to ν (with quadratic cost),
whose existence follows from Theorem 5.2.

Proof Thanks to Proposition 18.6 we know that μt is locally absolutely continuous
on (0,∞) with respect to the W2 distance. It follows in particular that the map

t �→ 1

2
W 2

2 (μt , ν)

is differentiable L 1-a.e. on (0,∞). From now on we fix such a differentiability
point t and we use the fact, already pointed out in the proof of Proposition 18.6,
that (18.12) holds in the strong L2 sense. The differentiability of s �→ W 2

2 (μs, ν) at
s = t justifies the following expansion:

1

2
W 2

2 (μt+h, ν) − 1

2
W 2

2 (μt , ν) = h

2

d

ds

∣
∣
∣
∣
s=t

W 2
2 (μs, ν) + o(h) (h → 0) .

(18.17)
Thanks to the compactness assumption on ν we can find a Lipschitz Kantorovich

potential ϕ from μt to ν. From the optimality of ϕ we deduce that

1

2
W 2

2 (μt , ν) =
∫

Rn

ϕ dμt +
∫

Rn

Q1(−ϕ) dν,

while

1

2
W 2

2 (μt+h, ν) ≥
∫

Rn

ϕ dμt+h +
∫

Rn

Q1(−ϕ) dν.
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Hence

1

2
W 2

2 (μt+h, ν) − 1

2
W 2

2 (μt , ν) ≥
∫

Rn

ϕ d(μt+h − μt)

= h

∫

Rn

ϕ��t dx + o(h) (h → 0) (18.18)

= −h

∫

Rn

〈∇ϕ,∇�t 〉 dx + o(h) (h → 0),

where in the last two passages we used (18.12) and integrated by parts, respectively.
Notice that the integration by parts is justified by the boundedness of ∇ϕ and by the
fact that all derivatives of �t are rapidly decreasing at infinity.

By comparing (18.18) with (18.17) we conclude that

d

ds

∣
∣
∣∣
s=t

W 2
2 (μs, ν) = −

∫

Rn

〈∇ϕ,∇�t 〉 dx

and, after recalling the explicit expression T ν
μt

= id − ∇ϕ of the optimal transport
map in terms of the Kantorovich potential ϕ, we get the desired conclusion. ��
Remark 18.9 The heuristic interpretation of Lemma 18.8 is that if you want to
differentiate the square of the distance form a fixed point q along a curve σ on a
Riemannian manifold (at a differentiability point p = σ(t)) you just need to couple
with the metric tensor the speed of the curve σ̇ (t) and the speed γ̇ (0) of a geodesic
γ such that γ (0) = p and γ (1) = q . In the case of our interest T ν

μt
− id is the speed

at time 0 of the geodesic joining μt with ν, while the speed of the curve μt should
equal ∇�t

�t
if we expect the heat flow to be a gradient flow of the entropy functional.

Thus at the right hand-side of (18.16) we recover exactly their scalar product with
respect to the “Riemannian metric” ofP2(R

n) at the point μt .

Lemma 18.10 If μ, ν ∈ P2(R
n) are such that ν has compact support and μ =

�L n with � ∈ C∞(Rn), bounded and with a bounded integrable gradient, then

Ent(ν) ≥ Ent(μ) +
∫

Rn

〈T ν
μ − id,∇�〉 dx. (18.19)

In particular this holds with � = �t for all t > 0.

Proof Consider the unique constant speed W2 geodesic μs joining μ0 = μ with
μ1 = ν and recall that, defining T := T ν

μ and Ts := (1 − s)T + sid, we have
μs = (Ts)# μ. Thanks to Theorem 15.16, which yields the geodesic convexity of
Ent, we have that

Ent(ν) − Ent(μ) ≥ Ent(μs) − Ent(μ)

s
for any s ∈ (0, 1],
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thus, in order to get the desired conclusion, it suffices to prove that

lim inf
s→0+

Ent(μs) − Ent(μ)

s
≥

∫

Rn

〈T − id,∇�〉 dx.

To this aim we recall that Proposition 15.14 provides the explicit expression for the
density �s of the interpolating measure μs , namely

�s =
(

�

det∇Ts

)
◦ T −1

s ,

so that an application of the change of variables formula yields

Ent(μs) =
∫

Rn

ln

(
�

det∇Ts

)
� dx. (18.20)

Thanks to Brenier’s theorem and the compactness of the support of ν, T is given by
∇f , where f : Rn → R is a convex Lipschitz function. Moreover, by Alexandrov’s
Theorem 6.4, f is twice differentiable L n-a.e. (and then μ-a.e.), and also in the
sense of distributions. Denoting by div the pointwise divergence and by Div the
distributional divergence operators, as in the proof of the isoperimetric inequality
we use the inequality between measures

Div T = trD2f ≥ tr∇2fL n = divTL n .

The inequality above comes from Theorem 6.4, since the nonnegativity of D2f

guarantees also the nonnegativity of the singular part of D2f with respect to the
Lebesgue measure, whose trace is the difference trD2f − tr∇2fL n. We conclude
that, in the sense of distributions,

Div(T − id) ≥ div(T − id)L n . (18.21)

Alexandrov’s theorem ensures us also that the first order expansion

det∇Ts(x) = 1 + s div(T − id)(x) + o(s) (s → 0) (18.22)

holds for μ-a.e. x ∈ R
n.

Applying Fatou’s lemma and taking into account (18.22), (18.20) and (18.21),
we get

lim inf
s→0+

Ent(μs) − Ent(μ)

s
≥ −

∫

Rn

div(T − id)� dx

≥ 〈Div(T − id), �〉

=
∫

Rn

〈T − id,∇�〉 dx.
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Notice that the first inequality above is justified by boundedness and continuity of �.
The second one can be justified by approximating � with the family �R = �ψ(·/R),
where ψ ∈ C∞

c (Rn) is identically equal to 1 on the unit ball. ��
Remark 18.11 As for Lemma 18.8, also Lemma 18.10 admits a Riemannian inter-
pretation. Indeed, for a geodesically convex (smooth) function f on a Riemannian
manifold M , one has

f (q) ≥ f (p) + 〈∇f (p), γ̇ (0)〉,

where p, q ∈ M and γ : [0, 1] → M is a geodesic joining p to q . As before, at the
right hand-side of (18.19), we can identify all the ingredients which appear in the
smooth context, since ∇WEnt(μ) = ∇�

�
and we already observed that T ν

μ − id is the
speed at time 0 of the geodesic joining μ to ν.

Proof of Theorem 18.5 Applying Lemmas 18.8 and 18.10, we obtain that

Ent(ν) ≥ Ent(μt ) + 1

2

d

dt
W 2

2 (μt , ν)

for any ν ∈ P2(R
n) with compact support. By a simple approximation procedure

we can drop the compactness assumption on the support of ν and conclude that μt

is the EVI gradient flow of Ent starting from μ̄. ��

4 More Recent Ideas and Developments

Here and throughout the last lecture we will briefly present some more recent ideas
and developments about Optimal Transport.

Contractivity via Action Estimates We first want to illustrate the idea, appeared
in [97] and then refined in [44], that one can obtain contractivity estimates on a
semigroup S via action estimates (see also [24] for similar ideas in the context of
semigroups induced by conservation laws, where contractivity occurs with respect
to L1-like distances).

We are given a length space (X, d) and a semigroup St , t ≥ 0, on X. We recall
the definition of quadratic action of an absolutely continuous curve γ : [0, 1] → X

A(γ ) = 1

2

∫ 1

0
|γ ′(s)|2 ds.

If we assume that the action estimate

A(γ t ) ≤ e−2ktA(γ ) t ≥ 0 (18.23)
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holds, where γ t is the deformation of the curve γ induced by St , namely γ t (s) :=
Stγ (s), then one can prove that S is k-contractive, namely

d(Stx, St y) ≤ e−ktd(x, y) ∀x, y ∈ X and ∀t ≥ 0. (18.24)

Indeed, for any absolutely continuous curve γ joining γ (0) = x to γ (1) = y, the
curve γ t provides an admissible curve between Stx and Sty, thus

1

2
d2(St x, Sty) ≤ A(γ t ) ≤ e−2ktA(γ ).

Therefore, since (X, d) is a length space, passing to the infimum among all the
admissible curves γ joining x to y, and taking the square roots of both sides, we
conclude that (18.24) holds. Notice also that, conversely, contractivity immediately
implies the action estimate (18.23), so that the two properties are equivalent.

We illustrate the validity of the method in the particular case of the heat
semigroup in R

n, with (X, d) = (P2(R
n),W2). This example is also propedeutic

to the next lecture, where we are going to investigate the deep relations between
contractivity of the heat flow in the space of probability measures and many other
geometric and analytic concepts.

Let pt (x, y) be the Euclidean heat kernel in (18.11) and, as in Sect. 3, define the
heat flow starting from f ∈ L1(Rn) with the classical formula:

Ptf (x) :=
∫

Rn

pt (x, y)f (y) dy t > 0. (18.25)

We already remarked in that Section that, since sign and total mass are preserved by
the evolution, the heat flow can also be seen as an evolution problem in the space
of absolutely continuous probability measures with finite quadratic moments, when
identified with their densities.

In addition, one has

pt(x, ·) is a Gaussian probability density for all (t, x) ∈ (0,∞) × X (18.26)

and it is easily seen that, in measure theoretic terms, (18.25) can be read as

PtfL n =
∫

Rn

(
pt (x, ·)L n

)
f (x) dx. (18.27)

Lemma 18.12 Let f, g be probability densities of measures in P2(R
n). Then

W2(PtfL
n, PtgL

n) ≤ W2(fL
n, gL n). (18.28)
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Remark 18.13 (Alternative Proofs) We notice that one could try to prove this result
directly using the identity (18.27) for PtgL n. Indeed, if T is the optimal map from
fL n to gL n, one has

PtgL
n =

∫

Rn

(
pt (y, ·)L n

)
g(y) dy =

∫

Rn

(
pt (T (x), ·)L n

)
f (x) dx.

This, together with the observation thatW2(pt (x, ·)L n, pt (T (x), ·)L n) = |T (x)−
x| (since the optimal map is the shift by the vector T (x) − x) provides the
contractivity property arguing as in (19.22).

Furthermore, since the heat flow satisfies the EVI property (see once more
Sect. 3) another, more abstract, proof would follow by the general theory of EVI
gradient flows in metric spaces. Indeed, in Lemma 11.13 we proved that EVIK
gradient flows on Hilbert spaces are K-contractive and in the last part of the proof
we already pointed out that the conclusion holds even for general metric spaces.

Here we give instead a proof where the monotonicity of the action is employed.

Proof of Lemma 18.12 Let �s be a geodesic in P2(R
n) from fL n to gL n. If the

equation

d

ds
�s + div(vs�s) = 0,

is satisfied for some velocity field vs then, letting �t
s = Pt�s andμt

s = �t
sL

n (which
is a curve from PtfL n to PtgL n), we would like to define a velocity field vt

s in
such a way that

d

ds
�t

s + div(vt
s�

t
s) = 0 . (18.29)

Then Proposition 17.9 would give

W 2
2 (PtfL n, PtgL

n) ≤
∫ 1

0
|(μt

s)
′|2 ds ≤

∫ 1

0

∫

Rn

|vt
s |2�t

s dx ds. (18.30)

Moreover, as illustrated in Sect. 4, if our vector field vt
s satisfies the (pointwise)

action monotonicity property

∫

Rn

|vt
s |2�t

s dx ≤
∫

Rn

|vs |2�s dx, (18.31)

for all s ∈ (0, 1), by integration of (18.30) we get

W 2
2 (PtfL n, PtgL

n) ≤
∫ 1

0

∫

Rn

|vs |2�s dx ds.
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Finally, choosing the optimal velocity field vs , see Theorem 17.10, we get (18.28).
Thus, we need to determine a velocity field vt

s with properties (18.29)
and (18.31). Understanding the action of the semigroup on vector fields
componentwise, we have

− div(vt
s�

t
s) = d

ds
�t

s = Pt
d

ds
�s = −Pt div(vs�s) = − div(Pt (vs�s)). (18.32)

Therefore any admissible velocity field vt
t should satisfy

vt
s = Pt(vs�s)

Pt (�s)
= Pt (vs�s)

�t
s

(18.33)

up to a vector field G/�t
s , with G solenoidal. Choosing vt

s exactly as in (18.33), we
can now check that (18.31) holds. Indeed, let ψ ∈ Cc(R

n;Rn) be a test function.
Using the fact that Pt is self-adjoint in L2(Rn), we have

∣
∣
∣
∣

∫

Rn

〈vt
s , ψ〉�t

s

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

Rn

〈Pt (vs�s), ψ〉
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

Rn

〈vs , Ptψ〉�s

∣
∣
∣
∣ (18.34)

≤ ‖vs‖L2(�sL n)‖Ptψ‖L2(�sL n).

Hence, taking (18.27) into account, by Jensen inequality we obtain

∫

Rn

(Ptψ)2�s dx ≤
∫

Rn

Ptψ
2�s dx =

∫

Rn

ψ2�t
s dx = ‖ψ‖2

L2(�t
sL

n)
. (18.35)

Thus, by (18.34) and (18.35) and by duality, we obtain

‖vt
s‖L2(�t

sL
n) ≤ ‖vs‖L2(�sL n).

��
When we move from the Euclidean space to Riemannian manifolds (and even

more general spaces) we lose the commutation property between divergence and
semigroup crucially used in (18.32). Therefore curvature comes into play and a
deeper analysis is necessary: this will be the topic of the last lecture.

Convexity from EVI The following result, taken from [44], conveys the idea that
any energy admitting an EVI gradient flow is automatically (geodesically-)convex.
We state the result in a simplified form, see the original paper for the more general
and useful statement dealing with lower semicontinuous functions with values in
(−∞,∞].
Theorem 18.14 (EVI Implies Convexity) Let (X, d) be a geodesic space and let
F : X → R be a lower semicontinuous energy functional. Assume there exists an
EVI gradient flow St of F starting from any x ∈ X. Then F is convex along all
geodesics.
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Sketch of Proof Fix any γ ∈ Geo(X) and any intermediate time s ∈ (0, 1). Define,
as before, γ t : [0, 1] → X by γ t (s) := Stγ (s). Here, as in Lemma 11.13, we
can use the lower semicontinuity of F to write the EVI differential inequality in a
pointwise sense, namely

F(w) ≥ F(Sru) + d

dt

+∣
∣
∣
∣
t=r

d2(Stu,w) ∀r ≥ 0,

where d
dt

+
denotes the upper right derivative. Applying EVI with u = γ (s), r = 0

and with test points w = γ (0), w = γ (1) we obtain that

F(γ (0)) ≥ d

dt

+∣
∣
∣∣
t=0

1

2
d2(γ t (s), γ (0)) + F(γ (s)) (18.36)

and

F(γ (1)) ≥ d

dt

+∣
∣
∣
∣
t=0

1

2
d2(γ t (s), γ (1)) + F(γ (s)). (18.37)

Multiplying (18.36) by (1 − s) and (18.37) by s and adding the two expressions we
end up with

(1 − s)F (γ (0)) + sF (γ (1)) − F(γ (s)) ≥

(1 − s)
d

dt

+∣∣
∣
∣
t=0

1

2
d2(γ t (s), γ (0)) + s

d

dt

+∣∣
∣
∣
t=0

1

2
d2(γ t (s), γ (1)).

The subadditivity of the upper right derivatives gives

(1−s)F (γ (0))+sF (γ (1))−F(γ (s)) ≥ d

dt

+∣∣
∣∣
t=0

(
(1 − s)d2(γ (0), γ t (s)) + sd2(γ t (s), γ (1))

)
.

(18.38)

Observe now that the triangle inequality gives (see also (16.13))

(1 − s)d2(x,w) + sd2(w, y) ≥ s(1 − s)d2(x, y),

with equality when w = γ (s) is the s-intermediate point of γ , therefore the right
hand side in (18.38) is nonnegative and we obtain the convexity inequality. ��
Monotonicity of Action and Energy Implies EVI The action estimate (18.23) has
been cleverly modified in [44] into a differential inequality (with different roles of
the deformation parameter t and the interpolation parameter s) involving action and
energy which turns out to be sufficient for the validity of the EVI property.

In this case, the deformation scheme used to prove contractivity has to be
modified as follows: we keep v ∈ X fixed and, if γ (s) is a continuous curve in [0, 1]
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connecting v to u, where u plays the role of the “test” point in the EVI formulation,
we define

γ t (s) := Sst (γ (s))

instead of St (γ (s)). With this notation, the following result (stated for simplicity
only in the case EVI = EVI0, i.e. λ = 0) holds:

Theorem 18.15 (A Differential Criterion for EVI) Assume that a continuous
contraction semigroup S in a length space (X, d) and a lower semicontinuous func-
tion F : X → R satisfy the following assumptions for all γ ∈ AC2([0, 1]; X):

(i) s �→ F(γ t
s ) is absolutely continuous in [0, 1] for all t > 0;

(ii) the maps r �→ d+
dr d2(Sr (γ (s)), γ (s)), s ∈ [0, 1], are equi-integrable in all

intervals [0, T ];
(iii) for all t > 0 one has

1

2

d+

dt
|(γ t )′+(s)|2 + d

ds
F (γ t

s ) ≤ 0 for L 1-a.e. s ∈ (0, 1), (18.39)

where d+/ dt denotes, as usual, the upper right derivative, while |(γ t )′+(s)|
denotes the upper, right metric derivative.

Then St (v) satisfies EVI and therefore it is the gradient flow of F .

Proof By the semigroup property, it is sufficient to check EVI in the pointwise
form (11.13) at t = 0. We fix γ ∈ AC2((0, 1); X) connecting v to u. For all t > 0,
by integration of (18.39) with respect to s we obtain

1

2

d+

dt
A(γ t ) ≤ F(γ t

0) − F(γ t
1) = F(v) − F(St (u)).

Notice that we have been able to pull the upper right derivative out of the integral
thanks to Fatou’s lemma and to the equi-integrability of the family of maps
s �→ |(γ t )′(s)|2 in L1(0, 1) (in turn, this equi-integrability is guaranteed by the
contractivity of the semigroup S, together with (ii)).

Now, an integration with respect to t gives

1

2
d2(St (u), v) − 1

2
A(γ 0) ≤ A(γ t ) − A(γ 0)

≤ tF (v) −
∫ t

0
F(Sr(u)) dr.

Since (X, d) is a length space and γ is arbitrary, we can replace A(γ 0) = A(γ ) by
d2(u, v) in the inequality. Dividing both sides by t , the lower semicontinuity of F

and the continuity of S yield (11.13). ��
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