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Figure 1.1 The solution graphs and phase
line for X = ax for a > 0. Each graph
represents a particular solution.
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Figure 1.2 The solution graphs and
phase line for X = axfor a<0.

stability of qualitative behavior of solutions with respect to real
parameter a
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Figure 1.3 Slope field, solution graphs, and phase line for X = ax{1— x).
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Figure 1.4 The graph of the function
fix) = ax(1 — x) with a=3.2.

Logistic population growth model
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Figure 1.5 Slope field, solution graphs, and phase line for X =x-x3.
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Figure 1.6 The graphs of the function Figure 1.7 The bifurcation diagram for
fog =1 =) = h. fhig = (1= x) — h.
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Phase portrait of plane linear systems
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Figure 3.1 Saddle Figure 3.2 Saddle
phase portrait for phase portrait for
X=-xy=y. X =x+3y, Y =x—y.

Saddle points
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Phase portrait of plane linear systems
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Figure 3.3 Phase portraits for a sink and a source.

Sinks and sources
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Phase portrait of plane linear systems
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Figure 3.4 Phase
portrait for a center.

Figure 3.5 Phase portraits for a spiral sink and a
spiral source.

Centers and unstable/stable spirals
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Phase portrait of plane linear systems
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Figure 3.6 Phase
portrait for a system with
repeated negative
eigenvalues.
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Trace-Determinant Map
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3D examples
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Figure 6.1 Stable and unstable subspaces of a saddle in
dimension 3. On the left, the system is in canonical form.

Figure 6.2 A sinkin three
dimensions.
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3D examples
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Figure 6.3 Phase portrait for a spiral
center.
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3D examples
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Figure 6.5 Typical spiral saddle
solutions tend to spiral toward the
unstable line.
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Kronecker foliation on the torus
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Figure 6.8 Poincaré map on the
circle 61 =0 in the 616;-torus.
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Nonlinear systems: equilibria

Figure 8.1 Phase plane for
X =x+y2,y =—y. Note the
stable curve tangent to the
y-axis.
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Nonlinear systems: equilibria

\v

Figure 8.2 Phase plane for
r= %(r—IB),G,:'I.
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Nonlinear systems: equilibria
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Figure 8.3 Phase plane for
X=x2y =-y.
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Bifurcations
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Figure 8.7 Bifurcation diagram for
a pitchfork bifurcation.
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Figure 8.6 Bifurcation diagram for a
saddle-node bifurcation.
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Figure 8.8 Saddle-node bifurcation when a<0, a=0, and a> 0.
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Bifurcations
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Figure 8.9 Global effects of saddle-node bifurcations when a <0,
a=0,and a> 0.
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Bifurcations

Figure 8.10 Hopf bifurcation for a<0 and a > 0.
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Nonlinear systems: nullclines

Ny

Figure 9.3 Nullclines and
phase portrait for X = y— x2,
Yy =x-2.
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Nonlinear systems: nullclines
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Figure 9.4 Nullclines and phase portrait for ¥ = x% —1,

Y =-xy.
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Figure 9.5 Nuliclines and phase plane when a0 after the
heteroclinic bifurcation.
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Nonlinear pendulum
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Figure 9.6 Phase portrait for the
ideal pendulum.
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Gradient flows

Figure 9.10 Level sets and phase portrait for the gradient
system determined by V(x,y) = x2(x — 1)2+ y2.
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Hamiltonian systems
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Figure 9.11 Phase portrait for
X=yy=-x+x

A Hamiltonian function is
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Nonlinear systems: closed orbits and limit sets
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Figure 10.1 The phase plane
forr' = %(r— ), 0 =1.
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Figure 10.2 The w-limit set of any
solution emanating from the source at
(/2,7 /2) is the square bounded by the
four equilibria and the heteroclinic
solutions.
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Nonlinear systems: return maps

Figure 10.6 Two solutions crossing a straight line. On
the left, Xp, X1, X, is monotone along the solution but not
along the straight line. On the right, Xp, X1, X is
monotone along both the solution and the line.
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Figure 10.7 Solutions exit
the region Dthrough T.
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Nonlinear systems: return maps
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Figure 10.8 The solution
through X cannot cross Vq Figure 10.11 The region
and V; infinitely often. Ais positively invariant.
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