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Yuri’s last mathematical work (and our last joint work)

Yuri I. Manin and Matilde Marcolli, Computability questions
in the sphere packing problem, arXiv:2212.05119 (December
9, 2022)

Yuri I. Manin and Matilde Marcolli, Cohn-Elkies functions
from Gabor frames, arXiv:2212.06778 (December 13, 2022)

These were supposed to be parts of a longer project.
I will focus only on the first part, that Yuri liked most
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The sphere packing problem:

Dimension n: identify packings P ⊂ Rn of spheres Sn−1 that
achieve maximal possible density ∆P

Special types of packings:

lattice packings PL: centers of spheres at points of a lattice
L ⊂ Rn

periodic packings PΣ: spheres centered at the points of a
periodic set (finite collection of translates of a lattice)

Σ = ∪N
i=1vi + L

size N =: σ(Σ) min number N of translations describing Σ
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densities δP := ∆P/Vol(Bn
1 (0))

δL =

(
`L

2

)n 1

|L|

`L shortest length of L; assume covolume |L| fixed

δΣ =
N `n

Σ

2n|L|
with `Σ = min

λ∈L,i ,j=1,...,N
‖λ+ vi − vj‖ .

Examples of Explicit Solutions (very rare)

dimensions 1, 2, 3, 8, and 24: optimal lattice packing is also
optimal packing

n = 3 Kepler conjecture (Hales); n = 8 E8-lattice (Vlazovska);
n = 24 Leech lattice (Vlazovska et al.)

dimension n = 10 known that the max density realized by
periodic packing with N = 40 translations
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The question
Sets of dimensions OPTA:

OPTLatt set of dimensions n ∈ N where max sphere packing
density realized by a lattice L ⊂ Rn

OPTPer set of dimensions n ∈ N where max sphere packing
density realized by a periodic set Σ ⊂ Rn

OPTPer,N set of dimensions n ∈ N where max sphere packing
density realized by a periodic set of uniformly bounded size
σ(Σ) ≤ N

OPTPer,F set of dimensions n ∈ N where max sphere packing
density realized by a periodic set Σ ⊂ Rn with σ(Σ) ≤ F (n)
for a total recursive function F : N→ N

Computability properties of these sets?

talk by Matilde Marcolli The Last Lecture



Expected behavior (Conjectural)

set OPTLatt is expected to be finite

(Zassenhaus conjecture) OPTPer is expected to be all N

if these hold then these two sets are computable, and question only
for intermediate sets OPTPer≤N

however not much is known about this expected behavior

Hales’ observation: when sphere packing solved, it is through
sufficient but very non-necessary condition... does not provide a
priori proof of decidability of sphere packing problem in a given
dimension

Undecidable problems related to tilings (and to formal languages:
e.g. comparing context free grammars) can affect comparing and
optimizing (classes of) sphere packings

how to investigate the computability properties of these sets?
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Kolmogorov complexity

Kolmogorov complexity K (x) is minimal length of a program
generating x in a Turing machine

any program that produces a description of x is an upper
bound on Kolmogorov complexity K (x): shortest description
of x is most compressed form

good computable upper bounds for Kolmogorov complexity:
using any data compression algorithms

but not lower bounds: non-computability, halting problem

list programs Pk (increasing lengths) and run through Turing
machine: if machine halts on Pk with output x then `(Pk ) is
an upper bound; but there can be earlier Pj on which the
machine hasn’t halted yet: K (x) computable if can tell
exactly on which programs Pk the Turing machine halts
(undecidable halting problem)

mild form of non-computability: (class Σ0
1 in the arithmetical

hierarchy, same non-computability as the halting problem)
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the problem of lower bounds for Kolmogorov complexity
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Computability question for error correcting codes

Yu.I. Manin, What is the maximum number of points on a
curve over F2? J. Fac. Sci. Tokyo, IA, Vol. 28 (1981),
715–720.

Yu.I. Manin, M. Marcolli, Error-correcting codes and phase
transitions, Mathematics in Computer Science (2011)
5:133–170.

Yu.I. Manin, A computability challenge: asymptotic bounds
and isolated error-correcting codes, in “Computation, physics
and beyond,” pp.174–182, Lecture Notes in Comput. Sci.,
7160, Springer, 2012.

Yu.I. Manin, M. Marcolli, Kolmogorov complexity and the
asymptotic bound for error-correcting codes, Journal of
Differential Geometry, Vol.97 (2014) 91–108
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(Manin 1981): existence of asymptotic bound in the
geography of error correcting codes (code parameters (R, δ):
good encoding/decoding)

(Manin-M. 2011): characterization of asymptotic bound as a
phase transition (dense code points with infinite multiplicity
below, isolated code points with finite multiplicity above)

(Manin 2011): computability question for asymptotic bound

(Manin-M. 2012): non-computability of asymptotic bound
can only be as bad as Kolmogorov complexity (bound
computable given an oracle that orders codes by their
Kolmogorov complexity)

Key idea: use the same method to show that any
non-computability that may occur in the sphere packing problem is
of the same nature (oracle-computable given Kolmogorov
complexity)
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key idea: asymptotic bound existence
spoiling operation on codes and controlling quadrangles

R = αq(δ) continuous decreasing function with αq(0) = 1 and
αq(δ) = 0 for δ ∈ [ q−1

q , 1]
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key argument in the case of codes

given computable sets X ,Y with computable enumerations
νX , νY , and a computable (total recursive) function
f : X → Y

sets Yfin and Y∞ with finite/infinite preimage are
oracle-computable given an oracle that orders the points of X
by increasing Kolmorogov complexity

can algorithmically construct these sets by replacing at each
step an infinite search for a next preimage with a finite search
among points of X with Kolmogorov complexity bounded by a
function of νY (f (x)): for

n(x) := #{x ′ ∈ X | ν−1
X (x ′) ≤ ν−1

X (x) and f (x ′) = f (x)}

there is a unique xm ∈ X with y = f (xm) and n(xm) = m, and
a constant c > 0, such that

K (xm) ≤ c ν−1
Y (y)m log(ν−1

Y (y)m)
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Spherical Codes: intermediate step between codes and sphere
packings

spherical code: finite set X of points on unit sphere
Sn−1 ⊂ Rn

spherical code X has minimal angle φ if ∀x 6= y ∈ X

〈x , y〉 ≤ cosφ

A(n, φ) = max number of points on Sn−1 minimal angle φ

Space of code parameters

usual error correcting codes (R, δ) ∈ [0, 1]2 ∩Q
spherical codes:

code rate R = n−1 log2 #X
minimum angle φ = φX (or cosφ)
space R+ × [0, π]

unbounded: φ smaller maximal number of points A(n, φ)
grows, so R unbounded near φ→ 0
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spherical codes

asymptotic behavior for large sphere dimension n
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Asymptotic bound

Yuri I. Manin, Matilde Marcolli, Asymptotic bounds for
spherical codes, Izv. Math. 83 (2019), no. 3, 540–564.

There is an asymptotic bound for spherical codes

Γ = {(R = α(φ), φ) |α(φ) = sup{R ∈ R+ : (R, φ) ∈ U} }

with α(φ) = 0 if {R ∈ R+ : (R, φ) ∈ U} = ∅ boundary of region
of points surrounded by a 2-ball densely filled by code parameters

U = {P = (R, φ) | ∃ε > 0 : B(P, ε) ⊂ A}

similar argument (spoiling operations on codes)
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characterization of region U
code point P = (R, φ) /∈ Γ is in region U if and only if it there
exists a sequence Xk of spherical codes Xk ⊂ Snk−1 with
nk →∞ and (RXk

, φXk
) = (R, φ)

equivalent description: SC set of spherical codes,
PSC := R+ × [0, π] set of code parameters, P : SC → PSC
maps spherical codes to code parameters P(X ) = (RX , φX ),
dimension function D(X ⊂ Sn) = n

U = PSC∞,N = {(R, φ) ∈ PSC |#D(P−1(R, φ)) =∞}
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Main difference: spherical codes have continuous parameters unlike
ordinary q-ary error correcting codes

Γ not boundary of full region of accumulation points

asymptotic bound only nontrivial in the “small angle region”
small angles region: 0 ≤ φ ≤ π/2
large angle region: π/2 < φ ≤ π

in large angle region Rankin bound just gives for n→∞

R =
log2 #X

n
≤ log2 A(n, φ)

n
→ 0, π/2 ≤ φ ≤ π

in small angle region Kabatiansky–Levenshtein bound

R ≤ log2 A(n, φ)

n
≤ H(φ)

H(φ) =
1 + sinφ

2 sinφ
log2(

1 + sinφ

2 sinφ
)− 1− sinφ

2 sinφ
log2(

1− sinφ

2 sinφ
)

so asymptotic bound in this undergraph
(unbounded region for φ→ 0)
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Spherical codes and sphere packings

code density ∆X of spherical code X ⊂ Sn−1 fraction of area
of Sn−1 covered by #X spherical caps of angular radius φX/2

∆X =
#X · S(n, φX )

Sn

with Sn = nπn/2/Γ(1 + n/2) = Area(Sn−1) and spherical cap
area

S(n, φ) = Sn−1

∫ φ/2

0
sinn−2(x)dx

∆X depends on X through code parameters (RX , φX )
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max density given φ is

∆(n, φ) = A(n, φ)
S(n, φ)

Sn

limit density
∆codes

n := lim
φ→0

∆(n, φ)

related to maximal sphere packing density

∆codes
n = ∆max

n−1

family Xk of spherical codes Xk ⊂ Sn−1 with φXk
→ 0 as

k →∞ is an asymptotically optimal family if

lim
k→∞

#Xk

A(n, φk )
= 1 or equivalently lim

k→∞

∆Xk

∆(n, φk )
= 1 .
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constructions of optimal families: wrapped spherical codes

given a sphere paking P ⊂ Rn−1 can map annular regions of
Rn−1 to annular regions on Sn−1 with low distortion
(depending on a choice of angles ϑ)

when applied to a rescaled family Pd with d → 0, with
constant density ∆P gives a family of spherical codes XPd ,ϑd

with
lim
d→0

∆XPd ,ϑd
= ∆P

if P is a sphere packing that realizes the maximal density then
XPd ,ϑd

is an asymptotically optimal family

lim
d→0

∆XPd ,ϑd
= ∆max

n−1

J. Hamkins, K. Zeger, Asymptotically dense spherical codes. I.
Wrapped spherical codes, IEEE Trans. Inform. Theory, 43:6
(1997), 1774–1785.
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Computability in metric spaces

Can still ask computability question for the asymptotic bound for
spherical codes: but continuous parameters

metric space (M, d) open set U ⊆ M recursively enumerable if
∃ computable sequences {xk}k∈N ⊂ M and {rk}k∈N in R∗+

U =
⋃

k∈N
Bd (xk , rk )

closed subset S ⊆ M recursively enumerable if ∃ computable
sequence {xk}k∈N ⊂ M dense in S

open or closed A computable if A and M r A recursively
enumerable
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computable metric space (M, d , µ) with metric space (M, d)
and sequence µ : N→ M dense in M with computable

dµ : N2 → R with dµ(i , j) = d(µi , µj )

in (M, d , µ) Cauchy name for a point x ∈ M: function
p : N→ N such that d(x , µp(k)) < 2−k , for all k ∈ N
Cauchy names determine partially defined function
δX : Dom(δX ) ⊂ NN → X with δX (p) = x iff p is a Cauchy
name for x

function f : (M, d , µ)→ (M ′, d ′, µ′) is computable if there is
a computable function Φf : Dom(Φf ) ⊂ NN → NN that maps
a Cauchy name for x to a Cauchy name for f (x)
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useful facts of computable analysis:

Note: computable function f : N→ M, with (M, d , µ) a
computable metric space, if open or closed computable subset
A ⊂ M then f −1(A) ⊂ N computable set in the usual sense

effectively locally connected computable metric space
(M, d , µ): any x ∈ M any open ball Bd (x , r), effectively
(through algorithm/computable function) find connected open
set U with x ∈ U and U ⊆ B(x , r)

graph theorem f : (M, d , µ)→ (M ′, d ′, µ′) with (M, d , µ)
effectively locally connected then f computable iff
Γ(f ) ⊂ M ×M ′ computable

talk by Matilde Marcolli The Last Lecture



oracle-computability with Kolmogorov complexity

(X , dX , µX ), (Y , dY , µY ) and (Z , dZ , µZ ) computable metric
spaces

computable functions f : X → Y and g : X → Z (metric
sense) with f (µX ) ⊂ µY and g(µX ) ⊂ µZ

sets
Yfin,Z = {y ∈ f (X ) |#g(f −1(y)) <∞}

Y∞,Z = {y ∈ f (X ) |#g(f −1(y)) =∞}

closed sets µ̄Y ,fin,Z = µY ∩ Yfin,Z and µ̄Y ,∞,Z := µY ∩ Y∞,Z
are computable, given the existence of an oracle that orders
the points of µX by increasing Kolmogorov complexity.
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computable metric space of spherical codes

space of all spherical codes

SC =
⊔
n

SCn =
⊔
n

Config(Sn−1) =
⊔
n,N

ConfigN(Sn−1)

Config(Sn−1) =
⊔

N≥1

ConfigN(Sn−1)

ConfigN(Sn−1) = ((Sn−1)N r ∆N)/Sn

round metric dSn−1(xi , yi ) on Sn−1 normalized to diameter 1

dn,N(X ,Y ) =
1

N

N∑
i=1

dSn−1(xi , yi )

then d(X ,Y ) = 1 if X ,Y not same N or not same n and
d(X ,Y ) = dn,N(X ,Y )

µSC codes with rational angular coordinates
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computable spherical code parameters

space PSC = R+ × [0, π] of code parameters of spherical
codes, Euclidean metric and µPSC computable subset of
points P = (R, φ) with R ∈ Q log2 N and φ ∈ Q
function P : SC → PSC mapping a code X to its code
parameters P(X ) = (RX , φX ) is a computable (in metric
sense)

dimension function D : SC → N code dimension
D(X ⊂ Sn) = n also computable
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oracle computability of the asymptotic bound for spherical codes

use characterization of U in terms of computable functions P
and D

U = {(R, φ) ∈ PSC |#D(P−1(R, φ)) =∞}

oracle that orders the codes in µSC by Kolmogorov complexity

get oracle computability of U and of its boundary, the
asymptotic bound

Γ = {(R, φ) |R = α(φ)}

also oracle computability of sublevel sets U ∩ Γε

Γε = {(R, φ) |R ≥ α(φ)− ε}
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Sphere packings and the asymptotic bound of spherical codes

P ⊂ Rn−1 non-optimal sphere packing: discrepancy 1− γ

γ :=
∆P

∆max
n−1

for small d and large n code points of wrapped codes
P(XPd ,ϑd

) are in Γ− log2 γ
n

+ε

RXPd ,ϑd
∼

log2 A(n, φXPd ,ϑd
)

n
+

log2 γ

n
∼ α(φXPd ,ϑd

) +
log2 γ

n
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Sphere packings and metric computability

space SP of sphere packings is a computable metric space,
with choice of metric and µSP compatible with wrapped
codes (using a computable dense set of ϑ)

dSP(P,P ′) = sup
ϑ

dSC(XP,ϑ,XP ′,ϑ)

collection of maps Pn,ϑd
: SPn−1 → R+ × [0, π] (sphere

packings to code point of wrapped code)

Pn,ϑd
(P) = P(XPd ,ϑd

) = (RXPd ,ϑd
, φXPd ,ϑd

)

these maps a computable (in the metric sense)
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computable sequence ϑdk
→ 0

oracle-computable closed set Γε = {R ≥ α(φ)− ε}
also an oracle-computable set

Pn :=
⋂

k≥k0

P−1
n,ϑdk

(Γε) ⊂ SPn−1

for computable maps Pn,ϑdk
: SPn−1 → PSC
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A ∈ {Latt,Per ≤ N,PerF ,Per} and SPA
n−1 be the space of

sphere packings of type A

SPA,max
n−1 ⊂ SPA

n−1 subset of packings that maximize density

among those of type A, with SPA,max = ∪nSPA,max
n−1

SPLatt,max
n−1 identified with algorithmically computable

(Voronoi algorithm) set of vertices of Ryshkov polytope Rn

for N-periodic sets generalized Ryshkov polytopes RN,n

conjecture (Andreanov-Kallus): generalized Ryshkov polytope
RN,n has finitely many vertices, that can be algorithmically
determined
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oracle computability of the OPTA sets

for A ∈ {Latt,Per ≤ N,PerF ,Per}

OPTA = {n ∈ N | SPA,max ∩Pn 6= ∅}

computability of SPA,max (conditional to Ryshkov polytope
computability) and oracle computabiity of Pn give oracle
computability of image under computable dimension function
D : SP → N hence of OPTA

Computability or non-computability? need to distinguish different
A, case of Per ≤ N seems most interesting to look at
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