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INTBgDUCTION 

0.i. This article is an attempt to systematize and display the basic structures in a 

vast, beautiful, and important mathematical literature which has accumulated during the last 

decade as a result of the boom surrounding the Korteweg--de Vrles equation ut=6uu~mu=x. 

This equation was proposed and investigated in 1895 for describing long surface waves 

in a channel with rectangular walls. Korteweg and de Vries also obtained its first solutions: 

"cnoidal wave" -- an infinite periodic wave train moving with constant speed without changing 

form--and its limiting case -- the solitary wave or sollton (the terminology of Kruskal and 

Zabusky). 

As early as August 1834 Scott Russell observed a sollton on water. He subsequently 

described his observations in the "Report on Waves" (see the reference in [47]) which is 

these days widely cited everywhere from the SIAM Review to the Young Technician. The lively 

image of him galloping along the banks of a channel in pursuit of a solitary wave evokes in 

the modern reader a mild and pleasant nostalgia harmonious with the general style of a bygone 

era. 

It is not often that a single problem brings to life an entire theory. It seems that 

we are presenting its inception. The number of publications on this topic is now counted in 

the hundreds; what is more important, in the theory of nonlinear differential equations a 

clear shift of interests and a reevaluation of priorities are taking place. 

For the fundamental equations of classical fields, special hopes rest on the existence 

of soliton solutions and their peculiar nonlinear superpositions. The elementary particles 

are possibly related to such solutions. 

There are still no general notions of what soliton and multisoliton solutions really 

are, which classes of equations have them, and how they are related to the presence of an 

infinite sequence of conversion laws and the so-called B~cklund transformations. There is 

only a rich experimental material which remains to be sorted out. The word "experimental" 

is here meant in the broad sense to include direct observations, calculations on the computer, 

and investigation of particular interesting classes, of equations. It is clear that the 

deciphering of the structure of these phenomena must play a fundamental role in understanding 

them. A good and to considerable extent algebraic and geometric theory is needed, and this 

remains to be created. 

Translated from Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki, Vol. ii, pp. 
5-152, 1978. 

0096-4104/79/1101-0001507.50 �9 1979 Plenum Publishing Corporation i 



We shall briefly describe certain properties of the Korteweg-de Vries equation which may 

serve to clarify the plan of the present article. 

0.2. Derivation of the Equation. The usual linear one-dimensional wave equation is 

written in the f0r~ uH--c2tix~=0. Its general solution is a sum of two waves of arbitrary 

form u=f(x~-cl)d-g(x--ct) one of which moves to the left and the other to the right with con- 

stant speed c. We consider the equation ut-~-cu.~:=O, which distinguishes waves moving to the 

right. Among its solutions are the harmonic waves u=expi(col--kx) where the frequency c0 and 

the wave number k are related by r or for waves of both types by ~=c=k =, where c is 

characteristic of the medium. 

If the wave equation remains linear but includes derivatives of higher order, then the 

relation between the frequency and the wave ~ number of a harmonic wave may have the~more 

general form ,o~ where f is not necessarily a linear function. In the approximation 

of long waves, i.e., small k, we may restrict attention to the first two terms of the Taylor 

series for f and write ~,':'-~c2k~'-~--=k 1 or ~:,-~Ck~ 1 ek'~ Waves with this dispersion relation 
-- C ' " 

(dependence of the frequency on the wave number) are described by the equation ttt~-cu.,.-- 

2-c ltx'~x = 0 . 

On t h e  o t h e r  h a n d ,  t h e  s i m p l e s t  n o n l i n e a r i t y  e n t e r s  i f  i t  i s  assumed t h a t  t h e  s p e e d  

d e p e n d s  on t h e  a m p l i t u d e  u . F o r  waves  o f  s m a l l  a m p l i t u d e  i t  may be  assumed t h a t  t h e  d e p e n -  

dence  i s  l i n e a r ,  and th~ e q u a t i o n  can  be w r i t t e n  i n  t he  form u t - } - ( c - ~ - a U ) u x = O .  The d e p e n d e n c e  

o f  t h e  s p e e d  on t h e  a m p l i t u d e  f o r  s u i t a b l e  s i g n  o f  ~ may c a u s e  t h e  c r e s t  o f  t h e  wave to  move 

f a s t e r  t h a n  t h e  t r o u g h ,  i . e . ,  c u r l i n g  o f  t h e  f r o n t  o c c u r s  w i t h  s u b s e q u e n t  f o r m a t i o n  o f  b r e a k -  

e r s  and d e c a y  o f  t h e  wave .  

S i m u l t a n e o u s  c o n s i d e r a t i o n  o f  d i s p e r s i o n  and n o n l i n e a r i t y ,  l e a d s  to  t h e  e q u a t i o n  
g 

Ut-~-CUx--,,UUx--.]Ttt.~.xx~O . If we go over to a system of coordinates moving to the right with 

speed c, the term cux drops out, and we arrive at the Korteweg--de Vries equation up to a 

normalization constant which can be changed by scaling ~, x, f (Making use of this fact, in 

the main text we shall often write this equation with different coefficients.) 

This derivation is good in that it nowhere appeals to hydrodynamics and indicates the 

universal applicability of the Korteweg-de Vries equation to one-dimensional media where the 

essential features are only weak dispersion and weak nonlinearity. 

0.3. Cnoidal Waves and the Soliton. We shall seek a solution of the Korteweg-de Vries 

equation ut=6uu~--u m in the form of a traveling wave u(x,t)=U(x--vt), where U is the wave 

form and v is a constant speed (we recall v is really the speed by which the traveling wave 

exceeds the wave speed in the simplest approximation ut-~cux=O). 

For U we obtain the equation --~U'--6UU'--U'. Integrating we obtain --vU=3U 2- 
U2 

U"-~a , where a is a constant. Multiplying by U' and integrating again, we find --v T= 
l Ua,~U '2 -4-aU~b , where b is a new constant, or U'~=2U3-~vU~-~aU--b. Up to a normaliza- 

tion constant, the general solution of this equation is the Weierstrass function 6f(x--~t)~ 

c1(P(x--vt)~-c2, the periods of which are the periods of the elliptic curve F: F'=2Xa~-vX~ - 



aX+k ; here c~, and c2 are suitable constants. This is a cnoidal wave train if the dis- 

criminant of the curve is different from zero; the perio~ of the wave train is the real 

period r , i.e., I~.) , where o)=dX(2Xa+vX2+aX+b) 2 ,and 7 is a real cycle on the 

Riemann surface of F ~" 

The soliton is obtained for the curve with a double point at the origin: Y2=2Xa+vX2, 

a=b=0 The explicit formula for it has the form U(x--~t)=---~ch -~ --T-(x--or). This 

is the solitary wave (in the present normalization it is rather a "solitary well") with 

trough at the point x=vt . The depth of the well is proportional to its speed which may be 

arbitrary. The soliton is the limit of the cnoidal wave train when its period tends to 

infinity. 

0.4. Superposition of Solitons and Quasiperiodic Solutions. Since solitons decrease 

at infinity and large solitons move faster than small ones, we may attempt to consider the 

solution of the Cauchy problem for which u(x, 0) is the sum of two widely separated solitons 

of which the left is larger than the right and therefore begins to move almost independently 

of the right soliton and strives to overtake it. After this occurs a period of essentially 

nonlinear interaction ensues, and it is of interest to consider what form the solution may 

have at a later time. Contrary to usual expectations, numerical experiment showed that 

after a rather long time the solution is nearly the sum of the same two solitons of which 

the greater has already overtaken the smaller, and the result of the collision is found only 

in a shift of phase but does not affect their form or speed. 

This provoked attempts to analytically prove the existence of the superposltion of soli- 

tons. Lax in [42], which had a great effect on the subsequent development of the theory, 

established, in particular, the existence of the two-soliton solution, and almost simultaneous- 

ly explicit formulas were found for the superpositlon of any number of N solltons. 

02 
These formulas have the form u(x, t)=--2-~-zlogdet(E+A), where E is the N)<N identity 

matrix and the element A of the matrix ij is cicj(=i+uj)-lexp[(=~+a~)t--(=i+=j)x], =t~O, 

i=I ...... N, ai~= ] for i~j . Asymptotically for [tl-+oo this solution decays into a sum of 

N solitons arranged in order of decreasing (as t-+--oo ) or increasing (as t-+o o) amplitudes 

and speeds. 

After some time solutions were discovered which are related to the N-soliton solutions 

in the same way as cnoidal waves are related to the single soliton solution (for the history 

of this discovery see the survey of Dubrovin, Matveev, and Novlkov [8]). They were found to 

be related to the Riemann theta function for hyperelliptic curves of genus N (with equation 

Y2=F (X), where F is a polynomial of degree 2N+ 1 ). The explicit formulas have the 
02 

form g(x, t) ~-----2-~ilog0(x=+t,B+7)+consi , where ~, ~, 7 are certain N-dimensional complex 

vectors. (For the details see the review of Matveev [44] and Sec. 7, Chap. 4 of the present 

work.) The N-sollton solutions are obtained in the limit as the hyperelllptic curve de- 

generates to a rational curve with N double points. Partial degeneration (with reduction 

of the genus) leads to a "multisoliton solution on the background of a quasiperlodlc solution." 



0.5. The Conservation Laws. A conservation law for the evolution equation ut~- 

K ( u ,  u' ,  . . . .  u ~N~) (u "~= a~u/ Oxi] is a relation of the form Tt+Xx=0 where T and X are func- 

tlons of g(J), ]>0 , which follows formally from the equation, if u Ss a solution of the 

equation which is rapidly decreasing at infinity, then ~ i Tdx =- I Xxdx=O' so that T 

is the density of a quantity conserved in time. The first three conservation laws for the 

Korteweg-de Vries equation are obtained without difficulty: they have the form 

u, + ( -  3u 2 + u;A.,- O; 
(u2),  + ( - -  4tP + 2uux - -  u~ )x  = O; 

I ,,2'~ 

They can be interpreted as the laws of conservation of mass, momentum, and energy. However, 

the Korteweg-de Vries equation has an infinite sequence of conservation laws which are poly- 

nomials in the uU~ They were first written out by the method of undetermined coefficients; 

this work was practicable up through the ninth law. According to Miura [47], "in the summer 

of 1966 the rumor circulated that only nine conservation laws exist." Miura killed this 

rumor by spending a week of summer vacation computing the tenth law; after this a machine 

program was written which computed the eleventh law consisting of 45 terms. (With the pre- 

vious program all storage capacity was used already at the sixth conservation law.) Very 

transparent proofs of the theorem on the existence of an infinite sequence of laws and results 

on their structure were then obtained in connection with important theoretical progress: the 

discovery Of the Lax representation and the applicability of the technique of the inverse 

scattering problem. 

0.6. The Lax Representation and the Inverse Problem. Lax [42] observed that the Korteweg-- 
02 

de Vries equation can be written in the form Lt-[P, L], where L=--0x~+Uix, t) and P= 

a a' ~ o i  a _k. o._a__ 
l U(X, t) ~(X, t)). Here [P, LI is the commutator in the ring of linear dif- 

ferential operators; tt is the coefficientwise derivative of L with respect to the "param- 

eter" t . Equations of this form for flows in Lie algebras have been known for a long time; 

the best known of these is the Sehr~dinger equation in the Heisenberg representation where 

P is the energy operator of the system and i is any observable. Classical Hamiltonian 

equations in the Lie algebra of functions on phase space with the Poisson bracket and also 

the equations for the rotation of asolid body can be written similarly. 

There is a simple formalism of conservation laws connected with such equations: if there 

is a linear representation ~ of the Lie algebra and a "generalized trace" function Tr on 

it which is zero on the commutators, then Tr~(t ~) for n~0 is conserved in time, since 

(Tr~(tn))t=Tr~([P, L"]) =0. 

It is, however, far from obvious how to carry through this formalism for a Lie algebra 

of differential operators. This development led to the formulation of the extremely important 

method of inverse scattering theory. In general outline it reduces to tracing the evolution 



in t of the space of solutions of the linear problem i~=~.~ ( ~ a constant) in terms of the 

"scattering data." The scattering data consist of the discrete part of the spectrum of t , 

the normalization constant of the elgenfunctions, and also the scattering matrix for the 

(rapidly decreasing) potential u from the continuous part of the spectrum. For further 

details see the survey of Faddeev [23], the extensive literature, and also Sec. 4 of Chap. 4. 

0.7. The Variational Formalism and the Hamiltonian Property. The Korteweg--de Vries 

O 6 (Us_ ~ ~r ! ,  where ~-~--~X(-- l ) i@i i s  t he  equation can also be written in the form ut 0x 6# . T i>0 

Euler--Lagrange operator or the variational derivative. This is a somewhat unusual Hamiltonian 

form: the standard form of the equation of a Hamiltonian evolution for a vector-valued func- 

f 0 where E is the (~X~) identity matrix ]-/~- tion ~ of dimension 2~ is ut~-~ B~! ~H 

6H .' fiH 8H ,~t 
H (u/))  i s  s  H a m i l t o n i a n ,  and ~ - -  ~ ~ui . . . . .  6u,, )"  

V a r i o u s  a s p e c t s  o f  t h e  H a m i l t o n i a n  p r o p e r t y  were  i n v e s t i g a t e d  in  t h e  i m p o r t a n t  work  o f  

G a r d n e r  [ 3 6 ] ,  Lax [ 4 3 ] ,  and Z a k h a r o v  and Faddeev  [ 1 2 ] ;  i t  was shown,  i n  p a r t i c u l a r ,  t h a t  t h e  

c o n s e r v a t i o n  l aws  commute in  the  s e n s e  o f  t h e  H a m i l t o n i a n  f o r m a l i s m .  E q u a t i o n s  o f  t h e  fo rm 

d 6T 
l t t=O.r  8u , where  T t - k X . r = 0  i s  some c o n s e r v a t i o n  l aw f o r  ut=6tzux-:a.~x.~,  h a v e  r e c e i v e d  t h e  

name o f  h i g h e r  Kor teweg--de  V r i e s  e q u a t i o n s .  The s o l u t i o n s  d e s c r i b e d  i n  p a r t  0 . 4  w e r e  c h a r -  

a c t e r i z e d  i n v a r i a n t l y  as  f l o w s  i n d u c e d  by  t h e  Kor teweg-Me V r i e s  e q u a t i o n  on t h e  s t a t i o n a r y  

6r n manifolds of conserved quantities defined by the ordinary differential equation 6u--~. 

There are other equations. Practically all the effects described above for the Korteweg-- 

de Vries equation were subsequently found for a large number of physically interesting equa- 

tions including the sine-Gordon equation, the nonlinear Schrbdinger equation, the equations 

for self-induced transparency, etc. For other "suspect" equations part of the properties 

have been verified sometimes by numerical experiment. 

0.8. The Plan of the Article. In the vast majority of studies pertaining to the 

Korteweg-de Vries equation and its analogues, a substantial role is played by a system of 

purely algebraic structures connected with these equations which do not depend on assumptions 

of analytic character, the choice of function spaces, existence and uniqueness theorems, etc. 

The principal aim of this article, as previously mentioned, consists in displaying and system- 

atically expounding the origins of the theory of these structures. This objective has deter- 

mined thechoice of the material as well as the order in which it is introduced. 

The first chapter is devoted to the foundations of the variational calculus with higher 

order derivatives which is necessary for the natural introduction of the conservation laws 

and the Hamiltonian structure. Here an attempt is made to follow the invarlant interpretation 

of the variational calculus in terms of differential forms and vector fields on spaces of 

jets withoutwhich the formulas, which become more complex with increasing order of the deriva- 

tives, are hard to interpret and work with in a practical manner. Special attention is 

focussed on the basic facts of the Hamiltonlan and Lagrangian formalisms. 



In the second chapter a detailed study is made of the structure of general Lax equations 

as well as of an enigmatic system of wave equations of Benney which displays many of the 

features of the systems described above but so far does not fit into the general theory. We 

consider it an interesting object for future investigations. 

The third chapter is devoted to the Lax equations of multisoliton and quasiperiodic 

type. Here we have also strived to display in the clearest possible way the mechanism of the 

appearance of the algebrogeometric structures in the theory of the equations without writing 

out explicit formulas for their solutions which is done in a number of other surveys and is 

briefly considered in Sec. 6 of Chap. 4. Exceptions are the "solitons of higher rank" which 

are here obtained by algebrogeometric methods for the first time. One common feature of all 

problems solved should be emphasized: the introduction of an auxiliary fiber bundle over an 

algebraic manifold and the interpretation of the equation as the problem of finding a con- 

nection in this bundle with certain additional properties. Recently the problem of "instanton" 

solutions of the Yang-Mills equations (more precisely, the duality equations) in Euclidean 

field theory with the group SU(2) has been reformulated and advanced in this manner (Atiyah 

following preliminary work of Penrose, t' Hooft, A. S. Shvarts, Polyakov, and others). It 

reduces to the classification Of two-dimensional complex vector bundles over P3(C) , which 

are trivial on a certain class of lines in p3 . 

Finally, facts regarding particular interesting constructions and methods which have 

not yet been sufficiently thought out or subjected to systematization are collected in the 

fourth chapter. The exposition here follows the sources cited in the corresponding sections; 

proofs for the most part are omitted. The only exception which deserves mentionis thebeginning 

of Sec. 3 of Chap. 4 where an attempt is made (not entirely successful) to invariantly define 

a very interesting Lie algebra introduced by Estabrook and Wahlquist in connection with their 

theory of "prolongation structures" and generalized conservation laws. 

The reader should not take the scattered references and credit of authorship for various 

results too seriously. Many similar works were done almost simultaneously and almost in- 

dependently; many approaches revealed a parallelism unknown to their authors; many ideas hung 

in the air and continued to hang in the air some time after formal first publications. The 

history of our question, if it deserves such, remains to be written. 

In spite of the length of the article, many interesting facts have remained beyond its 

scope. First of all, the analytic theory of the method of inverse scattering has been omitted 

completely in spite of its importance and the fact that it motivated the inception of many of 

the purely algebraic constructs described here. Regarding this question, the reader may find 

abundant information in the literature cited. Secondly, very little attention is devoted to 

specific solutions of particular equations or to their physical interpretation. Third, we 

have left untouched the interesting parallel theory of discrete systems such as the "Toda 

lattice" and such of its principal applications as the explanation of the Fermi--Pasta--Ulam 

paradox. Fourth, interesting investigations of flows of Lax type in finite-dimensional Lie 

algebras and the many-particle problems related to such algebras have been omitted. The 



informed reader will probably discover still more omissions voluntary or involuntary. Among 

the results not contained in this work but naturally related to it mention should be made of 

the investigation of Bogoyavlenskil and Novikov [I] and of Gel'fand and Dikli [3] on restrict- 

ing Hamiltonian flows to stationary manifolds of conservation laws. They are of basic im- 

portance for understanding the relation between solltons and conservation laws and merit 

generalization to the multidimensional case. 

We have not endeavored to compile a complete bibliography. In place of this the bibliog- 

raphy includes surveys with large bibliographies and collections devoted to specific aspects 

of the theory [2, 8, 23, 26, 33, 44, 47, 50, 53]. Beyond this, papers having a direct rela- 

tion to the question touched on here have been selected as have several works to which we do 

not refer but which, in our opinion, deserve special attention. 

0.9. It is impossible to overestimate the role that the author's many conversations 

with I. M. Gei'fand and also the work of Gel'fand and Dikii [2-5] played in the design and 

plan of this paper. 

The selection of material for the paper was made during a special course which the 

author gave in the mechanics and mathematics department of Moscow State University in 1975/ 

1976 and from the introduction to a seminar in 1976/1977. The participants in the course and 

seminar provided the author with a great deal of material which directly or indirectly af- 

fected the content of the paper. 

In particular, a large part of the new results of Chap. I belong to B. A. Kupershmidt; 

their presentation is based on his published papers and notes which were kindly given to the 

author before their publication. The investigation of Benney's equations in Chap. 2 was 

carried out jointly by B. A. Kupershmidt and the author. The algebraic reworking of the 

Gel'fand--Dikii theory in Chap. 2 derives from a report of M. $. Shubin in the seminar in 

which the simplicity of the formalism of pseudodifferential operators over a one-dimensional 

base was revealed. The role of bimodules and connections to which Chap. 3 is devoted was 

clarified by V. G. Drinfel'd. From the report of S. I. Gel'fand the author first understood 

the technique of Estabrook and Wahlquist, while the exposition of the results of Lax in Sec. 

5, Chap. 4 is based on the notes of I. Ya. Dorfman. Finally, conversations with B. A. Kuper- 

shmldt, M. A. Shubin, V. G. Drinfel'd, V. E. Zakharov, I. Ya. Dorfman, and D. R. Lebedev were 

very useful to the author. I am happy to express my deepest gratitude to them all. 

CHAPTER I 

THE VARIATIONAL FORMALISM 

i. Differential Equations: Three Languages 

i.I. The Classical Language. In this language we first of all choose a notation for 

the independent variables, say, xl .... ,x m , and for the unknown functions, say ul ..... gn. 
m 

Let k=(kl ..... kin) where kl>O 

Olklu~ g~k) the derivative 
Ox~t . . .  Ox~ m 

are integers, and let J k[=~ k i. We denote by the symbol 
I--I 

A system of differential equations relative to {gl} is a 



collection of relations of the form 

F j ( x ~  . . . . .  x ~ ;  u~ . . . . .  u . ;  u~ k> . . . . .  u~q=O, (1) 

where the F 1 are some functions. 

It is sometimes convenient to distinguish one of the variables, say, t (the "time" as 

opposed to the spatial coordinates x, .... , Xm), and to consider a system of evolution equa- 

tions of the form 

Ou/ 
Ot =gLt--'--FI(Xl . . . . .  X . ,  t ;  u l  . . . . .  gn; u~ k) . . . . .  U~)) .  ( 2 )  

We point out that F/ does not depend on the derivatives of u i with respect to t;j=l ..... n. 

1.2. The Language of Differential Algebra. Let A be a ring, and let 7%4 be a left A- 

module. We recall that a differentiation of A into 7W is any additive mapping 0:A-+/%| with 

the property O(ab)=aOb+bOa for all a, b6A. 

The algebraic analogue of the system of equation (I) is a structure consisting of a 

ring A, some Lie algebra D with a differentiation into itself, and an ideal t'cA, for which 

D~c]. More precisely, we suppose that F/ in (i) is infinitely dlfferentiable in all its 

arguments and set A-----~ C~(xb.. x,,;u(k) il~<j..<n, iki<~l) , where the u~ k) are formal indepen- 
l=O " ' J 

m 

dent variables. Let f,,rther D=~Aa/, where a/ takes x~ into ~i/, and ul k> into rz~ ~+~/~ , 
7=i 

=.:=(0...I .... 0) (i sits at the J-th place), and let ! be the ideal in A, generated by all 

Of'...O%nF I . The structure (A, D, I) corresponds to (I). Any smooth solution of (i) corre- 

sponds to a homomorphism A-->C~176 ..... Xm)--A e, which is the identity on K, contains ! in 
0 

its kernel, and takes 02 into 0x--/ 

If the right sides of (2) do not depend on t explicitly, then the algebraic analogue 

of (2) in this context can be constructed by not introducing t explicitly: it consists of 

(A, D) and the additional differentiation of "evolution" X:A-,-A , defined by the conditions 

[X, aj]=0 for all ], and Xu~=Fj (the right sides of (2) for ]=I ..... n). Any smooth solution 

of (2) corresponds to a K-homomorphism A-+C~(x, ..... xm, t), which takes @j into @/Oxj, and 

X into a/Ot. 

Variations are possible in the definition of the ring A. For example, if the Fj in 

(I) do not depend explicitly on xi and are polynomials in ui ~k), it is possible to set 

A=~[ui ~m] and consider the algebraic object modeling (i) to be a minimal ideal in A, which 

is D-closed and contains Fj It is also posslble to take A to consist of analytic func- 

tions, meromorphic functions, germs of functions,etc., depending on the properties of Fj and 

the solutions of interest to us. 

1.3. The Geometric Language. Here we start with some locally trivial, smooth (i.e., 

class C" ) fibration ~:N-~M. The role of the independent variables xl ..... Xm in (i) is 

played by a point on A4 , and the role of the unknown functions ul ..... Un is assumed by a 

smooth section s:M-+N of the fibration ~. In order to define a geometric object correspond- 



ing to the system (i) it is necessary to introduce the tc~er of Jet spaces of the flbration 

. We recall the corresponding definitions. 

let s, and s2 be local sections of the flbration x �9 They are tangent to one another 

at a point ~6N to order k~0, if they pass through this point and their Taylor series in 

any local coordinate system for ~(~) coincide through order k . A k-jet at the point ~ is 

the equivalence class of local sectials which are tangent to one another at the point ~ to 

order k. Let Jk= be the set of all k-jets. It is equipped with a natural smooth manifold 

structure and there is a tower of smooth fibrations ...jkx_+jk-i~_+. _+i0x=N_+M . An 

analogue of system (I) is then a closed subset in a suitable story of the tower jka , pre- 

scribed by the vanishing of the right sides of (i). 

More precisely, the connection of the classical notation (i) with geometry is realized 

by means of a choice of consistent local coordinate systems on all the spaces ~= . We begin 

with a choice of a pair of neighborhoods ~EVcN and =(~)EU==(~cM, such that the restric- 

tion z.:V-+U is diffeomorphically equivalent to the projection R~+"-+R ~ . The choice of this 

diffeomorphism is a local chart for =; prescribing it is equivalent to prescribing a local 

coordinate system in N of the form (~,~ .... ,t~,:; x~ ..... x m) such that the restrictions of (u~) 

to each fiber of = give a local chart in this fiber, and the (xl) are lifts from the base. 

With respect to this local chart a local chart is canonically constructed in each jk= with a 

coordinate system which is denoted by (tt~ t~, xiI[ll~<k)and is uniquely defined in the following 

manner. Let s be some local section of =Iv , which is represented in a local chart of = 

by the functions u~ ..... u,sEC~(xl ..... x,.). Its k-jet is a point of Jkz.. The value of the 

Oll!u~ 
coordinate u~ O at this point is by definition , ~m" Obviously the collection of k-Jets 

Ox~'...Ox m 

of the section s at all its points is a smooth section of jt~ ; it is called the lift of s 

to Jkr. , and we denote it by the same letter s . The lifts of sections are compatible with 

the projectiolts of the Jet spaces. 

It is now clear that the system (I) defines some subset �9 in jk=, and its solutions 

are those sections of =, whose lifts lie in ~. 

The connection of the geometric language with the language of differential algebra is as 

follows: A = ~  C~~ (imbeddings with respect to the natural projections), D-~-D c is the 
k=O 

Lie algebra of "horizontal" differentiations of A (for the precise definition see the follow- 

ing section), ]cA is the ideal of functions which vanish on the"lifts @" (the geometric 

definition of a lift is most simply introduced by the condition of differential closedness 

of the corresponding ideal). 

1.4. A Comparison of the Languages. The three languages briefly described are not 

equivalent either mathematically or esthetlcally; each has its advantages and shortcomings. 



The classical language makes the fewest explicit assumptions on the form of the func- 

tions fj, the sense of the derivatives uj (k~, the domains of existence of solutions, etc. It 

affords the freedom of interpreting, e.g., the uj as various types of generalized solutions 

(and therefore, possibly, not elements of any natural ring). It also permits when necessary 

accentuating other algebraic structures which are essential for investigating the system and 

its solutions, for example, linear topological structures. However, this language is not 

suitable for Investlgating global properties of solutions related to the topology of the 

manifold of independent variables and fibrations of the unknown functions. Further, this 

language may poorly express the invariant properties of Eqs. (i) and (2) and their conse- 

quences. 

The language of differential algebra is better suited for expressing such properties 

and puts at the disposal of the investigator the extensive apparatus of commutative algebra, 

differential algebra, and algebraic geometry; this is especially true if the fj in (I) and 

(2) are polynomials, and we are interested in special classes of solutions. The numerous 

"explicit formulas" for the solutions of the classical and newest differential equations 

have good interpretations in this language; the same may be said for conservation laws. How- 

ever, the language of differential algebra which has been traditional since the work of 

Ritt does not contain the means for describing changes of the functions uj and the variables 

xi and for clarifying properties which are invariant under such changes. This is one of the 

main reasons for the embryonic state of the theory of so-called "B~cklund transformations" 

in which there has been a recent surge of interest. 

The geometric language is especially well suited for formulating and clarifying global 

and invariant properties of general systems of equations and for applying to them the theory 

of differential-geometric constructs and ideas. Its main drawback is its generality which, 

on the one hand, requires a rather lengthy development of foundations without concrete 

applications and, on the other hand, creates the risk of overlooking interesting properties 

of special classes of equations connected with fortuitous additional structures. 

For these reasons the present paper is written in a broken and somewhat eclectic Jargon 

in which modes of expression from all three languages are mixed in those proportions which to 

the author seemed most suitable for the object of study. Equivalent or comparable formula- 

tions of the same facts and constructions in different languages are often presented. 

1.5. The Lagrange and Hamiltonian Equations. The classes of equations which will be 

of main interest to us in this work are engendered either by a Lagrangian or Hamiltonian 

formalism. Their choice and investigation is strongly motivated by the flnite-dimensional 

case which corresponds to the projection ~:N-~ (point). In this case the analogue of our 

"Lagrange" problem consists in choosing a smooth function L'N-+R and finding its stationary 

points grad L-----0, i.e., from a general point of view it is not intrinsically a problem in 

differential equations. The "Hamiltonian" problem is obtained if a Hamiltonian structure is 

given on N which makes it possible for each Hamiltonian H:N-~R to construct the appropriate 

vector field X~ on N; it is required to investigate the properties of its trajectories. 
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If the base M is not a point then the role of the finite-dimensional configuration (or 

phase) is taken over by the infinite-dimensional space of sections s:M-+N of the fibration 

, and the first problem is to choose a suitable class of functionals on the sections from 

which the Lagrangian and Hamiltonian can be selected. Here we adopt the point of view of 

the classical variational calculus according to which the initial functionals have the form 

~(S)=~s , where ~ in a local chart has the fo1~n L(xi; u~k))dxl/\...AdXm.and ojs is the 

restriction of ~ to the corresponding lift s. (If M is not compact oT(s) are defined on 

all ~ with compact support or -- for a particular ~ -- on sufficiently rapidly decreasing 

sac tions. ) 

In the Lagrange problem ~ is called a Lagrangian density (or simply the Lagrangian), 

~(s) is the action (for the section s ), and the problem consists in finding those s, for 

which the action is stationary: ~s=O in classical notation. 
M 

In the Hamiltonian problem it is, in addition, necessary to give a Hamiltonian structure: 

~g$ , where X$ is the differentiation of evolution corresponding to the Hamiltonian ~. 

Not every such (linear) mapping defines a Hamiltonian structure. In analogy with the 

finite-dimensional case, we introduce on [~} the Poisson bracket by the formula {~i, ~2)=X~?~=, 

and we require that the mapping $~f~ be a Lie-algebra morphism: X{~,.$.}=[Xg,X~,] (the 

commutator of the evolution fields). 

It is well known that by means of integration by parts the condition ~s~-0 reduces 
M 

to a system of differential equations (the vanishing of the variational derivatives or the 

Euler--Lagrange operators of the form ~ ). This same mechanism works in studying the Poisson 

bracket X~2 �9 The formalism of the variational calculus is based on the fact that essential- 

ly all computations are carried out with the integrands, i.e., in the algebra of certain 

operators on forms on the space of Jets. Since for us Lagrangians and Hamiltonians with 

derivatives in xi of arbitrarily high orders are essential, it is important to clarify the 

invariant meaning of the classical constructions and formulas;, dealing with these objects 

becomes complicated as the order of the derivatives increase, while invariance under change 

of coordinates is almost not amenable to verification. This is the basic objective of the 

first chapter. In Sac. 8 we restrict our consideration to the case of a one-dimenslonal base 

and introduce the class of Hamiltonian structures which are important in the sequel. 

In conclusion we remark that the choice of the class of functionals {~} on the sections 

is not the only possible one nor even the most important. In field theory, for example, the 

class of functionals of basic importance are those generated by integral transformations of 

polynomials of the form P(us(x 0)) ..... u;(x(N))) , where (x (b ..... x(~))EMX ... XA4=M ~ , and u s 

are the coordinates of the section. They include, say, Fourier transformations of the co- 

ordinates, and, if generalized kernels are admitted, also all functionals of the form J . 

Moreover, they form a ring, while funetionals of the form ~ constitute only a linear space. 

A systematic development of the variational formalism in this class has apparently not been 

carried out in spite of the importance of this problem. 
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w Fields and Forms on the Space of Jets 

2.1. The Basic Model. We consider a fibration N-~JW, locally diffeomorphic to the 

projection ~"+~-+~ , and we describe a number of concepts and constructions related to 

differential forms and vector fields on various stories of the tower of Jets. The defini- 

tions and formulations of results are given in invariant terms which automatically ensures 

their consistency in local models (an exception is the Legendre operator for which see Sec. 

4). For this reason computations may be carried out in local coordinates if desired which 

clearly indicates the connection�9 the classical formalism. We thus introduce a number 

of bundles and homomorphlsms between them, hut we carry out almost all computations in a 

single local chart (=v:V-+U and a dlffeomorphlsm with projection R"+m-+R"), and we assume 

as in Sea. 1 that K=C~(~, A~=C~(Jlzv), i>0, and A,,=KCAocA, c .... A section $:UI+V 

we identify with the induced homomorphism A-+~:P~P ;. In a local chart we have Ai= 

01kl ~; for any s. 

2 . 2 .  V e c t o r  F i e l d s  on J e t s .  I f  L i s  a smoo th  m a n i f o l d ,  B=C| , we deno t e  by D(B) 
t he  L i e  B - a l g e b r a  o f  v e c t o r  f i e l d s  on L, c o n s i d e r e d  as d i f f e r e n t i a t i o n s  o f  B i n t o  i t s e l f .  

I f  C-.-,-B i s  a homomorphism i n d u c e d  by a smooth mapping We d e n o t e  by D(B/C) the  s u b a l g e b r a  

of fields of D(B), which are trivial on the image of C. 

For k>i a field Xk@O(Ak) is called an extension or llft of a field Xi6D(Ai), if 

Xk [A~=Xi �9 Since Jk=v~-J~=v~R"~ , any field X~ extends to D(A~), We denote by D(Ai, Ak)C 

D(A~) the submodule generated over A~ by all elements of D(AI) in D(A~). Finally, we 

denote by D(A) the set of all differentiations X:A-+A , such that for each i there exists 

a k > i ,  f o r  which X]A~.D(A i,A~). 

D(A~) i s  a f r e e  A i-module f r e e l y  g e n e r a t e d  by the  p a r t i a l  d e r i v a t i v e s  In a local chart 

slvely restricting X 

element of D(A) can we written uniquely as an infinite linear combina- 

0 . 
Qk,,OU--~kl>, Pp Qk,IEA, The coefficients P;~ Qk./ are determined by succes- 

to A~ with i-+ ~. Obviously, Pj=Xx l, Q~.t~-Xu(~ O. It is easily 

verified that D(A) forms a Lie A-algebra. 

2.3. LEMMA. Let P6A be such that Ps-----O for all sections s. Then 

Proof. If P(xp u(~l~)~O , then there exist ~], ~(k"~R, such that P(~], ~k(O)~A0. 

for functions u~K , such�9 that at the point (~]) we have (01tl/0x~ .... Ox~m)~(~j)~_~l). 

a section $, for which PESO. 

P~0 o 

We look 

They define 

2.4. LEMMA. There exists a unique mapping D(K)~D(A):X~ such that for all sections 

s:U-+V and for all X~D(K), P6A we have (XP)s=XPs. It is an imbedding of Lie K-algebras. 

@ 
Proof. D(K) is freely generated over ~ by the fields O/Oxi �9 We set O/OxL-----Oi=~u 

~(k*'i)@/Ou(ib)~m(A),where ,i=(0...|...O) (one sits at the i-th place) and we extend this 
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2.6. LEMMA. 

algebra in D(A). 

with AD (Ao). 

d e f i n i t i o n  by g - l i n e a r i t y  to a l l  of D(/r Obviously O,l,<=O/Ox,, 
�9 ' OXl  ~ I " " 

From the fact that p~,ps is the identity on K' and from formal properties of derivatives it 

follows that (~p)s___Xps for all X6D(K) and P6A. 

The uniqueness of X follows from Lemma 2.3. 

The fact that X~X" is a Lie-algebra homomorphism follows from the computation 

I X ,  r l  P~ = X Y P s  - -  r x P ~  = X ( T p )  �9 - -  Y ( ~ P ) ~  = 

= (~?-p )~  - ( Y X p ) ~  = ( ix ,  YI P)~ 

and the uniqueness of [. ,~q-~ . 

Obviously, O 1 is the "total derivative" with respect to x I in the classical terminology. 

We denote by D~cD(A) the image of D(A') under the imbedding X~-~X . It is clear that ADc 

forms a L~'e subalgebra in D(A). In a local chart we shall write P(t)~---Oi'...0t~P. This is 

consistent with the notation u~:) and the homorphisms pw.ps. 

2.5. LEMMA. There exists a unique imbedding of AD(Ao/IO into D(A):Yw.Y such that 

[}', X]=0 for all xs c md YP----YP for all P6A o. Its image is the Lie subalgebra of all 

fields which commute with D= and are trivial on /( . 

Proof�9 The action of Y on x I and uk coincides with the action of Y, and on :L(k l) 

for I/I>l it is defined by the condition IY, Dc]=0: YUk(t)-----(Y/zk) ('). Therefore, the only pos- 

sible formula for Y has the form Fp=~(yuk)~o oP 
z_a O u (kt ) " 

The required properties of Y are obvious on the generators of D~ and A o and are 

hence valid everywhere. Any field which commutes with D c and is trivial on /(, can be re- 

presented in the form ~ Q(k O auto , and therefore has the form of F. Finally, such fields 

obviously generate a Lie algebra. 

We denote by DevCD(A ) the image of AD(Ao/IOin D(A). Assigning to each YEOev 

the system of evolution equations ui.t=Yu j , we see that ~A--~A is the "total time deriva- 

tive" by virtue of this system. The condition [D c, Y]=0 means that the total time and space 

derivatives commute. 

a) [Dev, AD,lcAD= �9 b) Dev-bADc=Dev~AD r (sum of spaces) is a Lie sub- 

The restriction of D,v-bAD. to A 0 defines an isomorphism of. this space 

Proof. a) For YED,v, XED c, PEA we have ~',P~]----(FP)){EADc, since [F,~I--O. 

b) The restriction of ~,~(t) 0 0 w, ~ -5 ~ R,O16D, v-5 ADr to Ao coincides  with ~ Q. ~ -5 
k 

uniquely determined for any field of AD(Ao), whence b). 
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For any element XEAD(Ao) we denote finally by X6D(A) the corresponding element of 
D,,-~ADc . As is evident from the proof of Lemma 2.6, on Dev and D c this canonical lift 

operator coincides with those defined in Lemmas 2.4 and 2.5 respectively. 

A/though D,,~-AD c far from exhausts D(A), these differentiations completely suffice in 

order that interior products with them should uniquely determine the differential forms on 

the space of Jets (see below). Indeed, we have the following result. 

2.7. LEMMA. Fields of the form X-}-Y, where X6D(Ao/K), Y6D(A')form a basis of the 

tangent space at any point of Jt~v. 

Proof. Fields XIA k have the form ~i~ ~(J) 0 t/j<hx-~:j ~ , and an-argument analogous to that 

used in Lemma 2.3 shows that for any point ~6J~=v it is possible to find QiEA with any 

prescribed values Q~J) at this point. Thus, X generates the spaces of vertical tangent 

vectors, while the spaces generated by )" for Y6D(A~ project onto the entire tangent space 

at ~{~) and therefore give the lacking horizontal complement. (It should be mentioned that 

takes A~ onto Ak+ I, so that, strictly speaking, Y does not define an ordinary tangent 

vector. However, we shall use this lemma to verify that each differential form on jk= is 

determined by its values on fields of the form XnUF, and for this purpose our argument 

suffices. ) 

2.8. The de Rham Complex. For i>--I we denote by QAi= ~Q~A: the exterior algebra 
k--0 

of C = differential forms on jr= with differential d:OkAi-+Q~+*Ai. The canonical imbedding 

AI-~Ak (k>i) define a system of imbeddings ~AI-+OA k consistent with d �9 We set ~A~- 

lim l2A,----- ~ ~2Ai, .O,A= ~ ~'A, �9 
- - - - *  i - - - - 1  t = - - 1  

,4'  . ( k t )  ^ In a local chart ~A is freely generated over A by elements of the form ~, /\ ... 

Adu~:=)Adx~a+,A ... Adx~ b, i1<...<i,, ia+t< ... <io. For any vector field X~D(Ai) and forms 

~E~JAI the standard compositions ix~os176 (interior product) and Lxo,=(ixd-~dix)~o6OJA~ 

(Lie derivative) are defined. If k>i, )~D(Ak), is an extension of XED(At), and o:~(Ai)c2(Ak) , 

then i~=ix ~o and Lix~o=Lx~. Therefore, ix and Lx are defined for X6D(A), ~o(A)and 

possess the usual properties. In particular, the ix (respectively, ix ) are additive in 

X, and are differentiations (respectively, antldifferentiatlons) of the algebra ~A . More- 

over, [Lx, d]=0, [Lx, Lr] =~x,r]; LPx=PLx-~dPAix; [s i~,]=i[x,r]; i~x=Pix. We shall sometimes 

write X~ in place of Lx ~ 

We now concern ourselves with the restriction of forms of OA to sections. Any section 

8 defines an algebra homomerphlsm eA-+eK: o ~ .  

2.9. Proposition. a) There exists a unique operator ~:Q~A-I~Q,A with ~2AcA~Ksuch that 

(~)s_~_~s for all sections $. 

b) z2=~ , and r is a homomorphism of graded algebras with exterior multiplication. 

c) Ker �9 is the ideal in ~A, generated by Ker ~A. 

d) ~L-~=-~L-~ for all 2~D~,+AD=; ~L-~=~z for all Xs 
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e) *d~=~d and "~d~d=O . 

P r o o f .  a ) ,  b ) .  We d e f i n e  an A-homomorphism of  a l g e b r a s  QA-+AeK on the  g e n e r a t o r s  
m 

by the formulas  ~(dx])-----dx# , ~ ( d ~ n ) = ~  g(~+'~)dxt. I t  i s  c l e a r  from the  d e f i n i t i o n s  t h a t  

~Ac__A~K, ( ~ ) * = ~ ,  and ~2=~. Uniqueness  f o l l ows  from the  f a c t  t h a t  Ae[(  i s  a f r e e  A -  

module wi th  g e n e r a t o r s  d x ~ , / k . . . A d x ~ ,  and t h e r e f o r e  any of  i t s  e lements  i s  un ique ly  d e t e r -  

mined by i t s  s - images  accord ing  to  Le~ma 2 .3 .  

m 

We remark that ~dP-----~/~O~Pdx, for all P~A . 
j=! 

C) Since ~2=~ , we have Ker~=Im(l--~). The identity oA~--,(~A~)_--(o--,o)A~,+~A(~_~) 

and induction on i show that Im(l--~)NO~Ac~ . The reverse inclusion 

follows from the fact that Ker: is an ideal containing Im(l--z)~OtA 

d) We shall show first that Ly~.er~cKer~ for Xs +ADo. Since L~ is a differentia- 

tion and I{er~ is an ideal, it suffices to verify this inclusion on the generators of Ker% 

i.e., on =}t)--~d=~+zi)dx$. Because of the additivity of L~. with respect to 2 , it is possible 
- -  

to consider X separately for X~AD(Ao!K) and X6ADc; we have 

] 

~-~t* l t*,,~,] - i "  Le, l "*~-~"11"_ 
J 

For X = ~ Q ~  k) 0--~-- the  r i g h t  s i d e  i s  equa l  to  (l-~)dQ~k)~Ker~. For X = P c )  t the  r i g h t  s i d e  
l ,~ e"~ ~) 

i s  equa l  to P(l--~)dul~+'l)EKer~. 

Now ~L-f~--~L-f=~L-f(~--l) and l m L ~ ( : - - l ) c l m ( x - - 1 ) = K e r %  whence ~L-f=~L-f~. I f ,  moreover ,  

XEAD(AolI~ ) , then L ~ I m ~ c l m ~  , s i n c e  by the p reced ing  c a l c u l a t i o n  ( f o r  X = X Q } ' )  ..-~~ 
t,k 

L-~(~duJ~))=~dQ} k~ Therefore L-~=~L-~=~L-~.  

e) Obv ious ly ,  ~d--~d~=~d(1--~) .  I f  ~s-----0 fo r  a l l  s , then (do);-~-d(~*)-----0 f o r  a l l  s, 

i . e . ,  dKer~cKer- ,  and hence ~d(1--~)=0.  M u l t i p l y i n g  the  equa t ion  ~d=~d~ on the  r i g h t  by 

d , we find that (~d)2=0 . 

3. Integration by Parts 

3.1. Probably all the invariant information contained in the classical procedure of 

integrating the varied Lagraaglan density by parts is contained in the next proposition. 

Here we do not even assume that the "form in the variations" ~s (du} t~ is the "variation" 

of =~)) is obtained from a Lagranglan; this case will be dealt with in the next section. 

3.2. Proposition. Let o~e'AQ~IVceA. There exist forms o,~A~tA, e=K, ~2~OIA~m/~, 

o~6~Aem-*K with the following properties: 

a)  ~o = ~t +'~ 

b) For all X~Dev we have ~2=~di~3. The forms ~,, ~2 are determined uniquely. The 
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form ~3 can be normalized by the following additional requirement: we choose vEA~.mK arbitrar- 
ily and impose on % the condition: 

C )  'r ~ "~. 

Then ~a exists and is uniquely determined in the case m=l and also in the case ~E21AI2mK, 

if we require, in addition, the inclusion r 

Proof. Existence. It suffices to verify the existence of ~l, w2 with properties a), b) 

on the additive generators of the group OIA~K which we take to be the forms Pdu~)/~ 

dxiA...Adxm in a local chart. We set k('.~)=Ik ] and carry out induction on k(~). For k(~)=0 

the forms c,h=o~, ~,,=~a=O satisfy a) and b). Suppose that k(c,~)~land let k~l . Then 

~,= Pdul~) A d x ~  A . .  . A d x , , =  --  O~Pdu~*-~ ~ A d x ~  A . . .  A d x m : t -  

-{- Ot ( Pdur ~-~p ) /~dx~ A . . . / k d x m  = ~' d- v. 

By the induction hypothes~s it is possible to choose ~, =~ and ~a with ~'--__~'~-,.0~, i-Xo,~--=:.:diXo)' a 

for all X@Oev, and these lle in the described subgroups of OA . Further, 

- - ~  "(~-'~) A d X ~ )  + i-~ (Pdu~ ~ A d x ~  A / \ d x m )  i-xv = i- X (0~ Pa,,~ A dx~ A . . . . .  

----- O~P ( X'tl, i) (t~-~t) d x ~ A .  . . A d x m J c ' P  (Xtt~)ttOdx~ A . . . A d x n = =  

= O~ (P  (Xut) (~-'p) dx~ A . . .  A d X m  = 

= ( - -  l )H~di-~ (Pdu~ ~:-~? A d x i  A . .  . Adx~_~Adx~+~ A .  . . A d x m  = ~di-s 

It remains to set ~=~o'~, ~2=~'2~-v, ~a=| 

Without destroying properties a) and b) we may add to ~a any element v"~O-~AO~-~ with 

the property i~v"=O for all X~Dev. In particular, it is possible to take ~--~,03~-v in 

place of ~3 for any v~AOmK, since ix (AO~/()= {0}. Then ~% is replaced by iv==.~, which gives 

condition c). 

Uniqueness. Let ~o=~i~-~ and i-f='=di~'~ for all X, i.e., ~,-~, %, ~'~ is another triplet 

of forms which satisfies a), b), c). Then for all X~Dev we have, on setting 0~-~-----~--~, 

(3) 

From the proof os Lemma 2.7 it follows that any form o~A~mK is uniquely determined by the 

values of i~o for all X@D(Ao/K), since such X generate a basis for the vertical tangent 

vectors at any point of the space of Jets. Therefore, to establish the uniqueness of ~ and 

~2 it suffices to verify that i~I=0. For all sections s we have by (3) and the definition 

o~ �9 : 

= - a  

We choose any point xEM,, a small open neighborhood U of it with boundary OU, and we 
consider the fields X for X with support strictly inside =-i(~. By Stokes' formula I 

M 
m 

d(i-x~3)s=~ti(l~o3)s~-O , for all such X. If -~l=~Pldtt~AdxIA"'Adxml=1 and Xttt=Qi , then 
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(ypiQ~)slu---0 for all $ and Qi6A 0 , whence P~lu=0 and therefore ~11u=0. We remark that 

this conclusion remains in force if it is assumed that ~a depends on X. Finally, 

~i=~-2=0, and according to (3) ~di~3___0 for all X~Dev. 

Even the normalization of ~ by condition c), however, does not guarantee the unique- 

ness of ~s . We cannot describe the complete kernel n Ker~diy, but it contains, e.g., 
X6~e v 

d~dQ~m-~K . Indeed, 

= �9 (L-~ - -  i-~d) d~d = ~L-~d~d = ~ L ~ d ~ d  = O, 

according to Proposition 2.9 d) and e) 

It remains to consider cases in which we are able to guarantee the uniqueness of ms. 

The case m=l . Up to a term in Ao"K, which is uniquely normalized by condition c) 

and lies in the kernel of all the ~di-~, the element ~a can be represented in the form 

~s=~Pj.kdg~ k), Pj,~A. If ~di-~(~a-----O, then ~d(~P]~Q~a))=~ dz(PikQ~))dxl=O �9 for all Q]=Xuj~A, 
k 

i.e., ~P t]!k)-- j.a~1 --Const for any Qj. From this it easily follows that Pj.k=O. 

The case ~6~IAiO~f(, %s176 The existence of % in this subgroup for ~e*Alem/~ 

is obvious from the construction of % at the beginning of the proof. Up to a term of Ao~A " 

the element -Jas the difference of two choices of % can be represented in the 

form -~3=~d~A~, o~s Further, 

" :d i -~  = ~,~ ( - -1 ) ' - ' a ,  (Xu,P, , , )  d x ,  A . . .  A d x , . .  
l , l  

I f  t h e  l a s t  e x p r e s s i o n  i s  i d e n t i c a l l y  z e r o ,  t h e n ,  s i n c e  X t h : Q ~ A  may be  chosen  a r b i t r a r i l y  

and i n d e p e n d e n t l y ,  we f i n d  t h a t  f o r  each  i t h e  sum~](- -1) ' - tX0~(QP~,~)does  n o t  depend on Q . 

I t  i s  e a s y  to  s e e  t h a t  t h i s  i s  p o s s i b l e  o n l y  f o r  P~ , .=0 ,  which  c o m p l e t e s  t h e  p r o o f .  

We d e n o t e  t h e  forms m~ and me, c o n s t r u c t e d  i n  P r o p o s i t i o n  3 .2  on t h e  b a s i s  o f  t h e  form 

~~176 by ~ and ,~,~'~ , respectively. We shall indicate their explicit forms in co- 

ordinates. 

We begin with the following classical lemma. 

Let B be a (not necessarily commutative) ring, and let d,, ...,am be its differentiations 

into itself. For any sequence of numbers i~, i~, i 3 ..... |..<i1~<rr~ we set @(/,, .... i~)-~-t)~ ...d~ : 

B - * B ;  0(~)-----id . 

3.3. LEMMA. For any x, YEB we have 
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0 (i, . . . . .  G) x y -  ( - -  !)~xd (i~ . . . . .  iO y = 
/r 

= ~.~ ( - 1)~-~0,. (0 (L+~ . . . . .  ih xO (i._~ . . . . .  iO Y). 
a ~ l  

The proof is obvious. 

3.4. COROLLARY. We assume that [d:,0]]=0 for all I..<i, j~<m. 

C(];k.l)>O, 1~<]- .<~;  k , l ~ N  m, such that for all s~N ~, Os=O~ '. 0 s'n 

t i t  

1--I  
, j +  ~ + : - s  

( -  1/~+'C (1; k, t) O~ (O~xOty). 

Proof. We write out the formula of Lemma 3.3 for all sequences 

Isl 

Z eij-~--- $ 
J--I 

, take their arithmetic mean, and collect llke terms. 

Then there exist numbers 

(i,, . . . .  itsl) with 

We remark that for m = l  we h a v e  C ( j , k , l ) = l .  

3 . 5 .  We can now w r i t e  down f o r m u l a s  f o r  ~ 

We set 

and ~v~o. Let ~=X p :  "dg~s)dxlA"" A d x m .  
f 

d " x  = dx~ A .  . . Adx,n, d~x  = dxl  A .  . . Adxj_,  A d x  m A . . .  Adx, . .  

Then by 3.4 we find that 

Isl %~=~ (--I) O'P,.flu, Aa'~x, 
$ 

k, 
k-I-1-FZj--$ 

For any X~De~ we have i~ (dj (O'P, sdtt~ k) Ad~x)) = xdi-~ X (-- I) j-1 (~P~.sdtt~k))Ad~x. Therefore 

i- i ( ,o- &) = ~ai- z ~ ( -  1) 'l+'c U, k, t) o,P,.,du} ~) AdTx. 
k+l+gj--$ 

Replacing here du} k) by (d--xtOu~ ~) , we do not change the right side. In place of (d--xd)u~ k) 

it isalso possible to take dg(k)--u{~'J)dx,: , , in the term d~x ; the remainder terms give 

zero. After this change the form under the sign ~di~ is in the kernel of x. Finally, 

adding ~ to it in order to satisfy condition c) of Prop0ss 3.2, we obtain finally 

:Y;: = ,  + 0 0!p,,,(au} -u} +'J)a j)AaTx 
k+l+,l--s 

4. The Euler-W~agrange Operators and the Legendre Transformation 

4.1. THEOREM. Let ~ be any Lagrangian density for the fibration =:N-+A4 , i.e., a 

form which belongs locally to A2m/(. Then there exist forms ~m and S~ , locally belonging 

to A~21Ao~2"Kand OIA~2m-xK , respectively, such that for all XEDev+AD c we have (locally) 
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,~ L-~to --. ,~ ( i-~d q- d i-s ) to = ,~ ( i -~o -5 d i-~ S ~ ) (4) 

and, moreover, ~Sto=~. 

The form ~ is always uniquely defined by these conditlons, while the form S~ is unique- 

ly defined in the case n~=l or in the case ~s176 if it is additionally required that 

So~6A~ A~"-*K (locally~. 

Here ~ is called the Euler--Lagrange operator, and S is the Legendre transform. 

Proof. a) The local case. We set ~ =~dto, Sto=S.dto,where ~ and ~ are defined as in 

Proposition 3.2, where ~ in condition c) is ~ . We then obtain according to 3.2: 

(5) 

From this we deduce the identity (4) for 2EDev and X ~ A D r  individually. 

If X~Dev, then i~=O, whence according to (5) 

xL-x~ = ~iT~d~ = ~i~ ( ~  + ~ )  = ~i-2~ + ~di~S~.  

The uniqueness properties of ~ and S~ follow from those proved in Proposition 3.2 if it 

is noted that d% ~,s176176 so that these forms are uniquely determined by all values of 

i~d~, iy~ for )?EDev , and these values lie in Ae"K ; therefore, x is the identity on them, 

and hence the decomposition d~---~,~-to 2 with the properties postulated in Proposition 3.2 

follows from (4) for 2EDdy. 

It thus remain to verify (4) for X6AD=. We shall first establish that ~(i~m+*A)=0, 

i.e., (imem+*Ay=O for all sections $ . Since (Qm+~A)s-----{O}, it suffices to verify that 

(i-~,~)s-~-tx'~ s for Xs Since ty is a differentiation and restriction to s is a homomor i 

phism ofthe algebraof forms, it suffices to verify it on the generators. On A both sides 

coincide. Further, 

( i x d x j y  = ( 2 x j y  = ( X x ; p  = ix  (dxj). ,  

Using  t h i s ,  we see  t h a t  i t  i s  n e c e s s a r y  t o  v e r i f y  t he  f o r m u l a  

-.d i-xoJ = ~d i-xSto. 

We have  

~di~S~o = ".L-xS~--~(i~dS~ ) = eL~S~. 

From Proposition 2.9 we have 
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xL-~S:., = ,~L-~,:.Sto = -. [di-~ + i~d] "r = ,r 

But xS=-=~,which gives the required result. 

b) The Global Case. Since 6~ is locally uniquely defined and the properties character- 

izing it are consistent with the operation of restricting to a subdomain, all local con- 

structions automatically fit together. For S~ an analogous argument goes through in cases 

where uniqueness is guaranteed. Aside from these cases, as has been shown, it does not hold; 

e . g . ,  it is possible to add locally to S~ any element o f d T d ( A ~ m - 2 K ) w i t h o u t  changing the 

values of zdi~Se for all XEDev-FADc . Therefore, to prove the existence of a global form 

Se a special treatment is necessary in order to establish the possibility of consistent 

local constructions. This has been done by B. A. Kupershmldt, but we shall not reproduce the 

proof, since it will not be needed below. It is essentially a question of the vanishing of 

a certain cohomological obstacle, and the problems which arise here merit special attention. 

The question as to what addition conditions (functorial property, for example) it is neces- 

sary to impose on S~ in order that S~ may be uniquely chosen has not been solved. 

4.2. 

Further, 

Classical Formulas. We shall apply the formulas of 3.5 to the case te-----Pdmx, d~o~-- 

. We o b t a i n  

E 8t (duj --~ j, dx~)^d Ix, 
=,],k 

where 

! 

(it can be shown that C(]; k, l) depends only on knu:e], I). 

5. The Variational Complex 

5.!. Definition of the Complex. The :beglnnlng of ~the complex is locally as follows: 

A ~ A ~  K-+ . . . .  -~A~ ~AgJ  Ao ~2ml(. (6)  

The f a c t  t h a t  (xd)2=O, i s  p r o v e d  i n  P r o p o s i t i o n  2 .9  d ) .  The e q u a l i t y  ~ x d = O  i s  e s t a b l i s h e d  

as  f o l l o w s .  The o p e r a t o r  xLxd  on A ~ m - ! K c a n  be t r a n s f o r m e d  i n  two ways .  F i r s t  o f  a l l ,  
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Secondly, by formula (4) and Proposition 2.9 d) for ~ED,v+ADr xL~d=xL~xd=xi~xd+~d(i~Sxd). 
From the uniqueness of the Euler--Lagrange operator we therefore find that Bxd=O. 

We shall now indicate how to extend complex (6) to the right. The extension operator 

will also be essentially an Euler--Lagrange operator but in a larger bundle =XId:NXR-~A4XR. 

Locally we denote by 2m+ 1 the coordinate on the additional factor R , and we set K (I)= 

C~(x~ ..... x~+t), A(')= ~ C| u~)[i=l ..... n;k6N -+', [k[~l). The canonical inbedding AcAV), 
f-o 

corresponding to the projection of =Xld onto =, in local coordinates can be identified 

with the imbedding g~)~=~,0)which thus has an invariant meaning: the coordinates "along the 

fiber" N~ in the extension to NX~ are assumed to be independent of the new variable. 

The imbedding A-+AO) determines the imbedding eA-~[~A ~) which also corresponds to the 

lift from = to =Xid . Identifying o~A~m~with its image in r176 we may consider 

the composition of the operators O'AO.mK-+~ v)~e,A(')o.m+'K ~'~, which we 
denote simply by ~(*)~(*) (~o) is the Euler--Lagrange operator, and ~o) is the operator z for the 

fibration ~.Xid ). This construction can obviously be iterated which leads to the sequence 

~d 5 s(*)~ O) 
�9176176176 .A(')O*A~o')O~m+'KO) 

(~,)~(o) +o ( 7 )  

5 . 2 .  THEOREM. Sequence  ( 7 )  i s  a complex which we s h a l l  c a l l  t h e  ( l o c a l )  v a r i a t i o n a l  

complex o f  t h e  f i b r a t i o n  r.. The g l o b a l  complex  i s  a b u n d l e  complex t h e  l o c a l  s e c t i o n s  o f  

which  have  t h e  form ( 7 ) .  

Proof. We first of all introduce a new operator ~+:~o~+~A~Q~A2~/( by the condition: 

for all X~ ..... X~6D(AIIO and ~6~m+~A 

i x , . . ,  ix,~- § = ~  ( i x , . . .  ix , ,~) ,  (8) 

Tlle existence and uniqueness of the operator ~+ are obvious, since a form in ~A~m/~ can be 

considered a skew-symmetric, multilinear function of k fields in D(AI/O with values in 

~'K �9 It is clear that ~+ is A-llnear. 

5.3. LEMMA. For any Lagrangian ~@AOm/~ we have ~=~+dS~ . 

Proof. It suffices to verify that i~=~iydS~ for all X@Dev, because of Lerma 2.7. 

According to formula (4) and Proposition 2.9 d), we have 

L-~,,, = "~ L ~ ~ ---- ":d i-e S ,,, + i -e~,  = �9 ( L ~ - -  i-ed) S ~ + i - ~  ~, = 

T h e r e f o r e ,  Xix-dSto=i-~o, as  r e q u i r e d .  

5 . 4 .  LEaMMA. ~(l)=xr on O2Ag/a-lK. 

Proof. In view of the A-linearity of both operators, it suffices to verify this 

equality on generators of the form dtt~k)/kdmx and dtz~k)/kdtt~l)Adrmx. On forms of the first 

kind the operator z+ is the identity. Further, as is not hard to check, 
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�9 + (du  ,(*} A d u  ~t> A d"x)r = ( - -  1 ) , - t  ("yr u+~,).4..,.,.~{,) _ ..~. v'+~,}d u y(~ ~,,~ i ,  d ~ x  . 

whence it follows that the value of ~(o,+ on this form is equal to (even in O A~ 

( - - I ) ' - '  ( u ~ + ~ " u ~ * + ' ' + " - - u l ~ # ' ~ " u ~ ' + ~ m + , ' ) d x , , , + ,  A d x ,  A . . .  Adxm. 

On the other hand, the value of ~o> on our form is equal to 

( "'(/~+$r,A' . . . .  (k+mm~tL4-- ~ /~ (U'~ '+$r)dx" "-~l~l+r A d'J~. ~s ' r162 ' -~  ~ l  ~ '~'A'm+ ! ! 

The last two expressions obviously coincide. 

5.5. Completion of the Proof of Theorem 5.2. According to Lemmas 5.3 and 5.4 

~(1).J ~)~ = ~O):(t)~+dS . - - - - -  ~(l)~(t)dS" 

But l(t)~(t)d=O, by the argument at the beginning of this section applied to the ring A O). 

Thus, (7) is a complex at the term ~tA~JmK and hence at all remaining new terms: ~(a+~):(a+,)~(,)___~ 

0 for all a>O, The fact that it is a complex in the terms to the left of ~A~m/~ was 

verified earlier. 

The exactness of complex (7) in the terms to the left of A~.mK (the "lift" of the de 

Rham complex to the jets) was recently proved by A. H. Vinogradov. The exactness of the 

global complex (7) in the remaining terms was established by B. V. Kupershmidt. We shall 

restrict Ourselves to the proof of the classical part ("if the variational derivative of the 

Lagrangian is equal to zero, then it is a divergence"). 

5.6. THEOREM. KerS=Im,d. 

Proof. We consider a contractive homotopy .or:V-+V, t~[O,l I of the open set VcN , over 

which the complex (6) is defined: 

~t:(xz, uy)~(txi, uy exp [1 --  (1 --  O-~i). 

It is obvious that % is a diffeomorphism of the fiber space V-+U onto itself with 

0~<t<l, %=|d and .~1:U-~ (point). Let XtED(Ao) be the corresponding vector field, and let 

)(t be its canonical llft to O(A) according to Lenmm 2.6. Since A't@O(A0), it is obvious 
d that ~Lytm =Lyt~ for all ~EAQ~/~. Since X t is the derivative of ~t, we have X,-----(~),I~7 (71) 

f o r  t < l  , and h e n c e  .~LFt=~F~t ,  where  ~t i s  t h e  l i f t  o f  ,~t to  t h e  j e t s .  A p p ly in g  ~ 

t o  formula (4), we find t h a t  

dt %~o= %L~t~ e (9) 

s i n c e ,  a s  i s  e a s i l y  s e e n ,  ~-~=~-~ ( t h e  mapping ~ i s  l i n e a r  on  x I and u?)) . A l though  

t h e  f i e l d  XI i s  n o t  d e f i n e d ,  i t s  l i m i t  ~L~t~ e x i s t s  as  t - ~ l  f o r  a l l  m, T h e r e f o r e ,  i n -  

t e g r a t i n g  ( 9 ) o n  t f r om 0 t o  1, we f i n d  

1 1 1 1 1 

- ~  ; I S I I -"  ' ~  
0 0 0 0 0 
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since ".d=':d'r Thus, 

ldlaam x ='r -Jr- d?2~ , 
I 

,1 (,,,) = - ' :  I  ;i S=dt, 
0 

and we find that if ~=0, then ~=~d~t(~)which proves the theorem. 

We remark that if the form ~ is a polynomial in u} ~) (respectively, in u[ ~, x]), then 

so are also S~, ~,~ polynomials by virtue of the formulas of 4.2 and with these also ~x(~), 

~?2(B~) , since ~; is linear in t~'), Xl. 

5.7. The Formula ~(1)xlX)~----O in Coordinates. 

Further ~O')dg~=~.,l~ glePdx, "l-g~ era+t) dxm+,, whence 
I--I 

We set o~=Pd"x. 

tt 

~--~ tt~ ~+" dxm+~Adx~A .. .  Adx=. 

Then ~(o-- ~ 5P du~ Ad"~x. 
t - - !  

Therefore, 

~cl~o)~o-- ia ~!K~6 t6g u,("~+O ) dulAdxm+tAd~x= 

" (6P ~ (Sin+') 
(--1)J'l ' 0 0 P  u(,,.+,) 1.(,)dulAdx,.+tAd., x _ ' ~  ~8"~1) dutAdXm+,AdxzA Adx.,). ' . ,., " ' "  

Fur t h e r ,  

SP \(en=+,) =~,~ 0 5P 

Therefore, after division by dxm+iAdmx the formula ~(z)~(1)~-----O assumes finally the following 

form: 

. 0 5P 5 P  . (e.,.,~ ~(')dttt. ~.j ~ ~K~ld'u~*m+ddu' ,,,,*~,'Z (--1)'~"(Ou~-'--T~-u]U ] / 
t--I j ,tf~iV m 

We r e c a l l  now t h a t  o v e r  A t h e  v a r i a b l e s  d~u~ era+,) a r e  f r e e .  T h e r e f o r e ,  f o r  a l l  i, ] we o b -  

t a i n  a family of equalities among differential operators which is equivalent to the formula 

~ ( z ) ~ ( z ) 8 = O  . 

5 . 8 .  LEMMA. For  any PEA and 1..<i, j..<n we have  

6P 

~r~N m 1 s ~  m 

We shall need this lemma and its corollary in Sec. 7 to investigate the Hamiltonian struc- 

ture. 

5 . 9 .  COROLLARY. For  any X~Dev 

],s \Out 
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Proof. We apply the identity of Lemma 5.8 to Xuj and sum on /. 

6. N~therts Theorem and Lagrangian Conservation Laws 

6.1. Let ~=Pd~x%A~mKbe some Lagrangian. It is evident from the formulas of 4.2 

that the equation (6~)8=0 relative to unknown series s coincides with the classical 

system of Euler-Lagrange equations for the functions u, s .... , u~ 8 with Lagrangian P . Its 

solutions are called extremals of the Lagranglan ~. 

6.2. Integrals, Flows, and Symmetries: Analytic Version. A conservation law or an 

integral for the form e is a form ~EA~m-IK such that ff(v*)-----O for anyextremal s of the Lagrangian 

~. For m=| this means that ~A is a functional of the space of jets which is constant along 

any extremal. In the general case for ~=~P~d~x the relation d(v*)-----O has the form 

(--1)t-rOmP l = 0  a long any ex t r ema l .  
t - - !  

m 

A flow for ~ is a field YEAD e, such that iyco is an integral. If o~=Pdz'x, Y=~Q~O~ , 
m I--I 

then iy~=~(-|)l-ZPQ~d~x . It is evident from this that if P does not vanish on its ex- 
t--1 

tremals, then for any conservation law v there is a unique current Y such that ~=iy~. 

The classical Ngther theorem affords the construction of conservation laws on the basis 

of a Lie group O, which acts on =:N-+~{ and preserves the Lagrangian ~ or even just the 

action s~m s. If X is an element of the Lie algebra of the group G, considered as a field 

on N, thegn the G-invariance of ~ implies that L~-----0. More generally, let X~AD(Ao) be 

a field on the jets such that (L~)s=0 for any extremal s of the Lagrangian ~. We call 

it a (formal) symmetry of the Lagrangian ~. 

6.3. Integrals, Flows, and Symmetries: Algebraic Version. The definitions of the 

preceding section appeal to the set of all extremals of the Lagrangian ~, which may be empty 

or very complicated. In practice integrals, currents, and symmetries always satisfy the 

following algebraic version of the definition whose application does not require vanishing 

on the extremals. Let [(8~) be the minimal D c -closed ideal in A, generated by expressions 

of the form ixiv,...iym~, where X6D(A/K), Y, ..... Ym~D(K). Let J(~)cQ~AOm-~K be the 

mln~m~l D~-closed ideal in the ring ~A, generated by I(~) . 

We call ~ an ' algebraic conservation law if d~6J(~) �9 We call Y an algebraic current 

if ip-~ is an algebraic conservatloh law. Finally, X~AD(Ao) is an algebraic symmetry if 

We po in t  out that the use of this definition makes it possible to obtain additional 

information. For example, if ~ is a conservation law, then the explicit representation of 

d~ as an element of J(~) determines important invariants; the theory of characteristics of 

Gel'fand and Dikii [2, 3] is based on this. 

6.4. THEOREM. a) If X is a symmetry, then ~i~S~ is a conservation law (the formal 

N~ther theorem). 

24 



b) For any flow )" the field Y is a formal symmetry. 

Proof. We write the proof in the analytic version; the algebraic version may be con- 

sidered analogously. 

a) Since X is a symmetry, for any extremal s we have (L~)s=O. It therefore follows 

from (4) that (i~Bm)s-~-d(i-~S~)s=O on the extremals, whence 

d ( i ~ s . y  = d ( ~ i ~ S . ) ,  = - -  ( i x  ~.)~ = o. 

The last inequality follows from the fact that locally ~a~ =~Ad'nx , so that i~m is a 
I 

8P 
linear combination of the ~-~i" which are zero on the extremals. 

b) Since Y is a flow, we have d(iTm)s=O on the extremals, so that 

But the last expression is zero as verified in the proof of Theorem 4.1 a). 

7. The Hamiltonian Structure 

7.1. We shall give a local definition of the Hamiltonian structure on =:N-+M; global- 

ization goes through automatically. 

7.2. Definition. Let F be an R-linear operator F:A~mK-+Dev . We define a 

bilinear composition law on A~mK, by setting 

{co,, ~}r = Lr~,~'~2. ( i 0 )  

The operator F gives a Hamiltonian structure if it takes {, }r into the commutator in the 

Lie algebra Dev , 

P {m,, ~O2}r = [F (~o,), r ("~)1, ( l l )  

and its kernel contains Im~d=KerB. 

7.3. Comments. The motivation for this definition was given in Sec. l; it is parallel 

to one of the characterizations of a finite-dimensional Hamiltonian structure. In particular, 

here ~6AQm/~ is considered as a representative of the functional ~(s)=~s on sections. 

Since ~d~-~O (for a form ~6A~m-11~ with compact support or on rapidly decreasing sections), 
we require that Ker F_Dlm=d . 

7.4. The following result is obvious from the definitions. 

the notation {~z, m~}r) �9 

7.5. THEOREM. 

we have 

(We sometimes omit P in 

If r:A~mK-+Dev defines a Hamiltonian structure, then for any osiEAO'lf 

{~ol, ~o~}-F {~~ ~ r ,  

{~~ {~2, ~~ -b {~ {~ ~o~}} + {~o2, {~%, ~o~}}eKer r .  
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In particular, the operation { , }r induces on AP:"KIKerP the structure of a Lie algebra, 

and F induces an imbedding of the Lie algebra A~mK/KerF-'+Dev. 

7.6. Since Ker~C_Ke~F , we can always represent P as a composition A~mK~-~Im~-~Dev . 

Indeed, |m~c'AO*Ao~"I( , and our operator B in all concrete cases will be a differential 

operator defined on the whole module A~AoQm~. We call such an operator a Hamiltonian if 

F-----Boa defines a Hamiltonian structure. 

7.7. LEMMA. For any additive operator B:Im~-+D,v we have 

Proof..  For  any XEDev, by formula  (4) and i tem 5.1 we have 

(12) 

L~-- iia~ rood Ker 4. 

Setting here )~=Ba~I and applying (I0) with I~=BS, we obtain (12). 

7.8. We rewrite the Hamiltonian condition (ii) of the operator P=B~ in terms of 

structures related to the choice of a local coordinate system (x 1, ui). 

Let us first agree on the following notation. Let ~ be an A-module. ~" denotes 

the module of column vectors of height n with elements in ~ . If PE~" , then P~ denotes 

the transposed row vector (t will generally denote the transpose of a matrix of any size). 

If Q6A", PE~", then ~tP6~ denotes the scalar product ~QlPl. 
t--I 

5 5P [SP~ (cf 4.2) In place of The operator ~:A-~A" takes P~A into the vector ~=k6-~i) " " 

w e  write 6p a,, ] ~ "  

F u r t h e r ,  l e t  A[Dc] be the  r i n g  o f  d i f f e r e n t i a l  o p e r a t o r s  over  A, g e n e r a t e d  by t o t a l  

d i f f e r e n t i a t i o n s  a long  the  base .  For any P6A we deno te  by D.~(P)EA[Dc] t he  formal  p a r t i a l  

F rdc he t  d e r i v a t i v e  

oP a~ ' O~_O~, ,~,,, a j = o / o X r  D. t (P) = ~ a,,} ~--7 . . . .  r 

F i n a l l y ,  f o r  any v e c t o r  I~A  n we d e f i n e  the  ' T r $ c h e t  J acob ian"  D(,ff)qM.(A[Dc]) as t he  (nXn)  

m a t r i x  (no t  the  d e t e r m i n a n t )  wi th  the  o p e r a t o r  D,,i(PO a t  t he  s i t e  (i]) . I t s  i n v a r i a n t  

interpretation will become clear in the next section. 

In order to write the Hamiltonian condition (ii) in this notation, we identify the A- 

modules A omK, A~AogmK and Dev, respectively with A, A", A" by means of the following 

mappings: Pdx, A...Adxm~P,~__~P~dutdx, A...Ad'x~(Pl),2~,(Xus) for XEAD(Ao/K). Then the 

operator B:A~176 ' will be represented by an operator B:An-~A", which in all ex- 

amples lies in A4, (A [De] ) . 

7.9. Proposition. The operator B:A"-+A" is Hamiltonian if and only if for any P, Q6A 

we have 
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(13) 

Proof�9 We shall verify that the left and right sides of (13) are identical with the 

left and right sides of (Ii), respectively, for F----B~, o,1--=-Qd"x, ~'~-Pdmx �9 

According to (12), tile left side of (ii) is B~(/ss~,~o~_~). According to 4�9 the form 

~0~ is represented by the vector 5-~ ; the field B~t is therefore represented by the vector 

n 

B 8Q From the formula t~(6o~2)=2~ Xu~dmx it follows that the form is~,~ is represented 

5P 6Q 5 by ~B 8u= " Finally, the operator B~=F is represented by the operator B~ . This 

reduces the left side of (ii) to the left side of (13). 

In order to compute the right side of (ii), we note first of all that the field B~ 

is represented by the vector B 6P 8u�9 Further, for any R6A and )(EDev we have X/~----- 

~0R (Xtz~(u) ~, Dui(/~)Xui; this explains the meaning of the Fr~chet derivatives Thus, 
i , k  i i ~ l  

for any vector R6A n we have )(R ----- D (R) A'u- Applying this to the case X-----BS~ and R=B 8-~P �9 6 u  ' 

we write B~,IBgu,~ in t h e  form D (B 8P~B 6Q " . 6~] ~ . Similarly, the second term of the commutator 

gives the second term of the right side of (13). This completes the proof�9 

7.10. We shall now concern ourselves with transformation of the criterion (13). We 

recall first the formalism of the adjointS of differential operators. In a local chart we 

have A [ D c ] = A [ O I  . . . .  ,0nl, [Oi, Ol]=O. Let L~M,,(A[Dc]) (the ring of (nXn) matrix operators 

which act in the natural way on ~", where ~ is any A ID01-module). We define an additive 

mapping L~L +, by setting for any matrix a~.~4n(A):(~)+-~(--l)I~IO~oa t, where at is the transpose 

of the matrix a . 

The following result is classical (and can be deduced without difficulty from 3.3 and 

3.4). 

7�9 LE}~. a) For any L, ~4 we have (L+)§ (LM)+=M+L +. b) For any P6A", Q6~", 

where ~ is an A [D=] -module we have 

P t L Q  - -  (L +P'-)tQ6Ox~ nu . . . -.}- On~. 

The operator L is called formally symmetric (respectively, skew-symmetric) if L + = L  

(respectively, /+=--L ). 

12,e next result is obtained immediately from Lemma 5.8 and the definition of the Fr~chet 

der ivat ire. 

C) 7.12. LEM}h%. For any element P6A the operator D ~ is symmetric. 

It is moreover clear from the considerations of 5.7 that the part of the variational 
6 6(I)~(I) 

complex A~I(-+A~aAoO~K-+A~)~A~)~+xI(~) with the identifications of 7.8 may be replaced by 
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~16"~ D(.)--D+(.) 

and the theorem of B. A. Kupershmidt on the exactness of this complex means that D+(Q)=D(~, 

if and only if there exists a P~A, such that =~. There is thus an effective criterion 

for determining if a vector Q.~A" is a vector of partial derivatives of some element of A. 

S u p p o s e  now t h a t  B@M.(A[D=]) i s  some d i f f e r e n t i a l  o p e r a t o r .  

7.13. THEOREM. a) If B is skew-symmetric and B6M.(K[D=]), then B is Hamiltonian. 

b) If B is skew-sy--..etric and B6~.(AoID=] ) , then in order that B be Hamiltonian it is 

necessary and sufficient that for all P, Q6A the following identity hold: 

(14) 

We begin with the following lemma. 

7.14. LEMMA. Suppose that B~M.(A~[D=]) is skew-symmetric. Then 

6 lap 8Q~=D(SPIB~Q_O[6QIBSP, 8Pd35q (15) 

where the last term is a column vector with coordinate 6Pc)B 8Q aB 8"-~Ou----8---ff~ at t h e  i-th row, and ~ is 
d 

the result of applying ~ to the coefficients of the operator B. 

Proof. By the definitions 

Further, 

L~\~ ~ 6u 

M 

where aB=~ du,~ and O A 
l -  

a n y  PEA, ~E~ 
is considered as an A-bimodule with multiplication 

T h e r e f o r e ,  f o r  any  X6Dev, we h a v e  

(16) 

~P=P~ for 

) i-~a(sPnsQd'x~6-~' 63 =[(~ 8pt~ ~ B ~sQ +sp B~, X ~  qu~ 8=J 

Using the formula X--'R=D(-R)Xu, we rewrite the right side of (17) in the form 

We now note chat for any REA we have ajRd"x =(--l)J-1~d(]~d~x). Therefore, 

operators in (18) while replacing them by their adjoints, as in Lemma 7.11 a), we do not 

transposing the 
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change the value of the right side modulo Im~d. 

DW , In the first term of (18) we transposed the operator \~] and in the second term the 

. o:0,  (00) 
operator BD . Recalling that B is skew-symmetric while k~] and D ~ are symmetric, 

we obtain finally 

aP aq d e  i D 
\ 8=  ~= / L\ 

From the uniqueness of the Euler--Lagrange operator it follows that the form following iy 

on the right side of (19) is ~d %~ ~ / . This and (16) give the assertion of the lenuma. 

7.15. Proof of Theorem 7.13. By formula (15) the left side of (13) is equal to 

If B~M,(K[Dcl) then aB--0. Moreover, in this case BD =D\ 6~u/ since when applied , ~--~ 
-- - -  6P -- ~P 

to  t h e  v e c t o r  Xu~.A% X~Dev, t h e y  g i v e  BX-~u and XB-~a, r e s p e c t i v e l y ,  and t h e s e  e x p r e s -  

s i o n s  coincide, since K[Dc] conunutes with De, . Thus, the criterion (13) is satisfied in 

this case. 

Using the information obtained, for BEA0[Dc] formula (14) obviously coincides with 

criterion (13) o 

In Sec. 8 we shall apply the criterion (14) to prove that two special operators B over a 

one-dimensional base are Hamiltonian: the Gel'fand--Dikii operator and the Benney operator. 

7.16. Hamiltonian Conservation Laws. Suppose r defines a Hamiltonian structure on 

~:N-+M. For any form ~--Qdxl/x ... AdxmEA~ to the field F(w) there corresponds the 

,,, U B 60 s y s t e m  o f  e v o l u t i o n  e q u a t i o n s  u t = F (  ) = ~ i n  t h e  n o t a t i o n  of  t h e  p r e c e d i n g  s e c t i o n s .  

We c a l l  ~ o r  Q i t s  H a m i l t o n i a n  and B t h e  c o r r e s p o n d i n g  H a m i l t o n i a n  o p e r a t o r .  

The fo rm ~l=PdxlA... Adxe, o r  t h e  c o e f f i c i e n t  P ,  i s  c a l l e d  an  i n t e g r a l  o r  a c o n s e r v a -  

t i o n  law f o r  t h i s  s y s t e m  i f  {% ~ } r 6 1 m ~ d = K e r  a .  I n  t h e  c o r r e s p o n d i n g  a n a l y t i c  f o r m u l a t i o n  

t h i s  means t h a t  f o r  an  e v o l u t i o n  s, b e c a u s e  o f  o u r  s y s t e m ,  

d t  2~ 

i.e., ~ is a quantity conserved in time. In the notation of 7.8-7.9 P is an integral 

for the Hamiltonian Q, if 

8 (sP B aQ)=0. 
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The integrals Pl and P~ are said to commute if {~,h,~2)r6Ker~, i.e., 

We note in conclusion that if {~ ..... {~,t,h} ..:}6Ker~ (k>/2 factors ~) , then on those 

sections s, which are uniquely included in the flow with Hamiltonian ~, it is possible to 

find k--I quantities conserved in time as follows. We have -~- ~i= Lr(o)~x) ----- o ..... 
M " M M 

{~,~i}...}=0 . Therefore ~o sl is a polynomial in t of degree k--I in general. Normalizing 

the initial time on a given trajectory of the flow so that the (k--2)-th coefficient of the 

polynomial is zero, we find that the remaining k--I coefficients are invariantly defined, 

conserved quantities. 

7.17. Stationary Manifolds of Integrals. Let ~'~i be a conservation law for a Hamilton- 

Jan system of evolution corresponding to a field F(~,~) . By definition /r~ohEXm-d or 

ir(~)~ohqlm~d . The latter condition means that if s is an extremal of the Lagrangian t,~'1 , 

then within a short time in the linear approximation the evolution of s, under the field 

F(~), will also be an extremal or that the "field F(t,~) is tangent to the manifolds of 

extremals ~i ." It is possible to give a precise meaning to the last assertion and to prove 

it at least for m=l and polynomial integrals o~ I, when the manifold of extremals W can be 

identified with a finite algebraic manifold by assigning to each extremal its value at x-----0. 

Then F (~) defines on it a flow which is also Hamiltonian with Hamiltonian computed on the 

basis of ~ and o h. This assertion is nontrival because the natural class of functions on 

W is not obtained by restricting functionals W to ~ ; it consists, for example, of smooth 

functions on W in the natural structure of W. For a precise formulation and proof see 

the papers of Bogoyavlenskii and Novikov [i] and also Gel'fand and Dikii [3]. 

We shall make use of this remark in Chap. 3 where in place of the equations ut=F(~)~ 

we will solve jointly the system ut-~-F(~)u and ~,~i=0 , where ~i is an integral. It is 

just this procedure which distinguishes in an invariant way the class of multisolution and 

finite-zone solutions of the Kor~eweg--de Vries equation as already mentioned in the introduc- 

tion. 

7.18. Examples. a)Let n-----2r , and B=(~ E), where E is the identity matrix of 

order r . The system of evolution ut=B 8p_ is traditionally called a Hamiltonian system 
~u 

with Hamiltonian P in "canonical coordinates". It is also Hamiltonian in our sense accord- 

ing to Theorem 7.13 a), since B is a differential operator of order zero and B+=--B . 

Below we shall show how it is possible to define a "cotangent fibration" =:N-~A4 to any 

fibration =:N-+JW, a canonical Hamiltonian structure on it, and to each local coordinate 

system (x~, =1) on N a system of coordinates (xi, u i, v 1) on N, such that in these coordinates 

the operator B corresponding to this structure has the form --E 0" 
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8P 
b) Let m,=l ,  and B-----O=01 . That equations of the form Ut=O-~s , which include the 

usual and higher Korteweg--de Vries equations, are Hamiltonian was established by Lax in the 

functional version and in terms of Fourier coefficients by Gardner. Our proof of Theorem 

7.13 is a generalization of the proof of Lax as reworked by M. A. Shubin. A formalized 

version of Gardner's arguments will be given at the end of this section. 

7.19. The Cotangent Fibration. The cotangent fibration to ~:JV-+~ we call the fibra- 

tion =:N-+~, where JV=T*(N/M)| Here T(N/JD~) is the tangent bundle to 

along the fiber =, T(~l~) is the tangent bundle to M, and the asterisk denotes dualization; 

the tensor product is taken over ~V ; ~ is the composition JV-+JV-+J~, where a:N-+JV is the 

natural proj ection. 

Sections of a are naturally identified (locally) with forms in ~i~. 

Let (xi, uj) be coordinates on iV. On the basis of these it is natural to define co- 

ordinates (x t, uj, vj) on N (]=I ..... n) as follows. If x~N lies on a section of a, corre- 
m 

sponding to the form ZPjdll]Admx, then ~j~x)=Pj(a(x)). 
]-i 

Let A0 be the ring of smooth functions on ~'-i(~, where U is a neighborhood with 

coordinates (xi). Then A0-----C~{x~; u], v]), and the natural imbeddings ~(cAocA--0 correspond 

to the projections = and ~ . 

We consider p=~ ~ldul/~d'x~-AoO1(Ao)O~"I. It possesses the following property: if the 

section s of the fibration a corresponds to the form ~Eol(A0)o.~K , then ps=~. It is easy 

to see that this property determines ? uniquely. Thus, ? is defined canonically and 

globally. 

Let Dev be the evolution differentiations for ~ . If XEDev , then iXdpEQ~A0O=K and 

the formula 

m 

1--1 

shows that this mapping D'-'ev'+~176 is an isomorphism of A0-modules. We denote by B the 

inverse operator, B:RIA-oO"K-+D,v , and we set 

r = --B~: ~,oO~'K-+ ~ , , .  

7.20. THEOREM. In the coordinates (xi, u/, ~j) on IV with the conventions of 7.8 (as 

applied to ~')the operator--B is represented by the matrix (~-n'},  the operator P is 

Hamiltonian, and the system of evolution corresponding to the }tamiltonian PdmxE~~ has 

t i le  form 

- 6P ~t= 8P ut--~-, 6~" 
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All this follows readily from the definitions and Theorem 7.13 a). We note further 

[6P 6Q 6P 6Q ) d " x  is equal to iB~,B~2 where ~i--=pdmx, ~o--= that the classical expression k iv# 6us 6uj ~s 

Qdmx . 

7.21. The Hamiltonian Property in Forma I Fourier Coefficients. In this and the follow- 

ing sections we briefly describe the formalism of variational calculus in terms of Fourier 

coefficients in the simplest case: ]W is the unit circle, N---.~4XR . We restrict ourselves 

to Hamiltonians which are polynomials in u and do not depend explicitly on x, i.e., we 

start from the algebra A=C[u,I~',...]. We shall first introduce formal Fourier coefficients 

(~,]n~Z) , assuming that the Fourier series of u is F(u) = s 'one ~ninx. As the Fourier 
n~--O0 

series for g(l}it is then natural to take F(tt(/))~-E(2=ilz)J~)ne~nlnx , i.e., F(tt(J))=(2=ilz)J=n. 
n 

The Fourier coefficients of the polynomials in u (]) will, however, be special series of 

infinitely many variables ~n �9 In order to introduce the corresponding ring, we first set 

B=C[qn] . In this ring we introduce the order function 

ordf'~c~v~-~=mtn(ordv~lc~+O ) . If B N 
t ~ - d  n n ] �9 ~ n  

then obviously B=N@=0B ~ (direct sum). 

co 

are infinite series "~ /~, I~B~. 
N=0 

has a natural ring structure: 

ord (~2:...~::)=l-,l+... + l . . I  and 

is the space of polynomials purely of order N, 

We set B-~-~ B N . The elements of the space 
N--0 

Since ord(/g)----ord/-~-ordg for /6BM, g~BN, 

We call the ring 

D((e~n'x))= l~  Ae2ninx.l.fn~D, ac >0,  no>O, v l n l>no ,  
t.~z . I 

ord/.>clnl} 

the ring of formal Fourier series; it has the natural multiplication (~fme2nlmx)(~gne2"ni"x)= 

[tpe 'n'px , where [,p= ~ fmgn. The convergence of  the  s e r i e s  f o r  hp in  B i s  ensured 
m+n=p 

by the  f a c t  t h a t  ord(fmg,,)>c([m]+ln]).+oo t o g e t h e r  wi th  ira], [n] . The p roduc t  l i e s  in  

B((e=ntx)) , because  o rdhp>  rain c ( ]mI -} - ] r t l )>c ip  1. 
m+n=p 

0 We extend to B((e~nix)) the  d i f f e r e n t i a t i o n  ~ by c o n t i n u i t y :  we extend from B to 

0 Ce2ntkx~ 0 .  arid then s e t - ~ . ,  , =  This is  c l e a r l y  poss ib le ,  since o rd (o~n )>o rd / - -#z .  

We similarly define a differentiation O, which on B has the form Ovn=l=ivn. 

We i n t r o d u c e  a r i ng  homomorphism F : A ~ B  ~e~nix)), by d e f i n i n g  F (u) = ~ v.e 2~'lnx, F (u u)) =OSF (u). 

It is not hard to see that F is an imbedding which commutes with d. Let F(P)=~Fm(P)e z~imx 
m 

for any P6A. 

SP) 0 
7.22. LEMMA. For any P6A we have Fn ~ -----8~_ F0(P). 
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Proof. We consider the two mappings of A-+B((e2=Ix)): 

oo 

 _oOO. 

They are both differentiations of A into the A-module 

Further, on the generators u (j) they coincide, taking u(J) 

coincide everywhere, whence 

O'Fo(P)=Fo(o-~F(P))=Fo , O-O-~F (u(J)) F = e o  
OVn 

We note now that FooO=O, so that we may "integrate by parts" under the sign of 

the last expression is equal to 

B((eZntx)) (relative to F ). 

into (2=i~)Je 2=Inx. They therefore 

aj O.~ F (u) F ( ap )) 
0 r n 0 - ~  " 

Fo , and 

I)) <) dp 6P Fo e2=t"~(--l)JOiF ~ =F_. 8-i~' 

which proves the lemma. 

7.23. Corollary. 
a 8P 

The equation Izt= ~ in terms of Fourier coefficients has the form 

(~0), =0, (On),= 2~in 0v0--j F0 (P), I n[ > I. 

~tn 
Thus, setting Pn~-~-., q"~-2-~-n' /-/~' q) ----- iF0(P)' we find that on the "hyperplanes" ~0=coRst 

our equation formally has the Hamiltonian form 

Opn OH Oqn OH 
Or= oq.' ~=O~n" 

Further, the Polsson bracket may be written 

whence 

/li--O0 

in agreement with the classical formalism. 

Opo(P) ap.(Q),~ 
Op. Oq. / 

8. Special Hamiltonian Operators Over a One-Dimensional Base 

8.1. In  this section we set re=l, x,=x, 0=0,=0/0x, K----C'(x), and we work with the 

sequence of rings An=~C| =~}10-g]<n, 0<k-.<i~, and also with their union A=~A.. 
i--O n--0 

We point out that the enumeration of the variables = I begins with zero in contrast to the 

preceding conventions. In correspondence with this the enumeration of the elements in the 

rows and columns and also the enumeration of rows and columns in different matrices also 

begins with zero. 
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We define the operator B.6M.+,(A.[d]) by the formulas 

Bn-~-~ [Bn,tO t -  (-- |)'a'oBnf ,1, Bnj~A, ln+ 1 (An), 

i(i+~l |t a ) ua+b+i+l for a + b - k i + l ~ n ,  
(B~,,)~b=~O ~r a+b+i+, l  >n ,  a+b+i+l--/ffin+2, 

I(i~a a) for a+b--7i - t - l=n-4-2 .  

(20) 

These operators were introduced by Gel'fand and Dikii [4]. Following thei~ work, we shall 

show in the next chapter that the Lax equations Lt--=[P,L 1 , where L=On+=+~ui@ l are 
l-o 

Hamiltonian in the structure defined by the operator B,, with a suitable Hamiltonian 

depending on P. 

We further introduce the operator Bq]~4= (A [@]) by the formulas 

B=B~-FdoB t, B~M=(A), 
_. [at~+b_ I for a+b~ I, 
~)ob = ~0 for a + b = 0. 

(21) 

Here M=(A) denotes the group of matrices with an infinite number of rows and columns down- 

ward and to the right beginning with the zero (index) columns and rows. The elements of 

A4~(A I~]) are considered as left operators on the A -module A T of finitely supported 

infinite columns with elements in A (finitely supported means that only a finite number of 

the coordinates are nonzero). The range of such an operator lies in the A -module A ~ of 

all infinite columns. The scalar product ptQ is defined if at least one of the two vectors 
8P 

P, Q is finitely supported. All vectors ~ for P~A are finitely supported, and there- 

fore the ~SQ are defined but are not necessarily finitely supported. Each row of the 

Fr~chet Jacobian D(P) is finitely supported for any PEA ~ , since Dai(Pl)-----0 for sufficient- 

ly large j (depending on i ; see the definition in 7,8). Therefore, D(P) may be applied 

to any vector of A = . The left and right sides of equalities (13) and (14) of Sec. 7 are 

thus defined, and we take them as the definition that B be Hamiltonian in the ring A of 

II t! functions on the space of jets of the corresponding infinite-dimensional fibration (the 

projective limit of the finite-dimensional fibrations). It is not hard to verify that the 

remaining constructs of See. 7 with appropriate modifications carry over to A. 

The operator (21) was introduced in the work of Kupershmidt and the author [19] to study 

the system of equations for long waves with a free surface suggested by Benney. The infinite 

sequence of unknown functions un, n>0 , is, in fact, the sequence of moments of the horizon- 

tal component of the velocity, and the system of Benney's evolution equations for it is found 

robe Hamiltonian with operator B and a corresponding Hamiltonian. Details may be found in 

the next chapter. 

The following theorem is the main result of this section. 

8.2. THEOREM. The operators Bn and B are Hamiltonian. The proof follows by means 

of lengthy computations. Among the reasons for this is probably the fact that we do not know 
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an invariant (coordinate-free) characterization of these operators. 

We note that according to formula (20) there is also a formal "limit" B= of the 

operators Bn, which is a matrix operator of infinite order. The operator B, is obtained 

from B= , by setting un+2=|, uj=0 for ]=n+|,]>n+2. Although we are not in a position to 

assign B~ a substantial meaning, in the computations to verify the Hamiltonian property 

it is possible to work directly with B~, since the identities of interest to us will 

obviously be preserved under the substitution uj=0 for ]>n, ]~n+2. un+2=l. 

These identities are obtained in the following manner. In place of the columns 8P_ �9 6u 
and 8_~Q we consider the columns X=()(o, X, .... )t and F=(F0,Y~ .... )t with formal variables 

8, 
as coordinates; the action of O ] on them is interpreted as the conversion of Xl, }'4 into 

the formal variables 0))(i=X~ j), 0/}'k=}'~ j), independently of one another and of u~o. Each 

element of the left and right sides of (14) will then be a formal infinite sum of monomials 

in u, X, }" and their derivatives which is trilinear in u, X, }" ; we simply verify that the 

coefficients of each such monomial at corresponding places on the left and right coincide. 

(Here X and }I are not to be confused with the previous notation for fields on Jets!) 

8.3 For the reformulation of the Hamiltonian criterion (14) which we shall use below, 

we introduce some further notation. Let P,Q6A . Since [)u] is a differentiation, we have 

D.j(PQ)=PD,,i(Q)-bQD,i(P ) , or in vector form D~t (PQ)=PD-~, (Q)-bQD~t (P), where O~t =(D,,, D,, .... ). 

Now let P, Q be columns. From the last equality it then follows immediately that D D (~tQ-)= 

PtD (Q) -b Q'D (P) . Finally, let C be a matrix and Z a colmm%. Then CZ is a colmml, and 

D (CZ) ----- CD (Z) -5 ZtD (C), (22) 

where the expression ZtD(~) is to be interpreted as follows: C is a transfinite object -- 

an infinite column which contains at the i-th place (~l-----(i-th place C) t, D(C) is an 

infinite column containing at the i-th place the matrix D(~i), and ZtD(C) is an in- 

finite matrix with 
4>0 4~0 

th element the operator ~ ZkD.1(Cik) . 
k>0 

Since d commutes with @ , the identity d(Pdx) =~Dui(P)duiAdx implies that 
l 

D commute with 0. From (22) we therefore find that 

i-th row E Za. ( k-th row of D(CI))=~ Z4O-ft (C,4) and hence with i] - 

D.~ and 

D (CO'Z) = CD (O~Z) Jr (0'Z)'D (C) = C O'oD (Z)-Jr Zc','D (C). 

D (0 ~ (CZ))----0toD (CZ)---- O~oCD (Z)-50~oZD (~), 

where Z(i)=azZ and the circle following a I on the right is inserted in order that, for 

example, the notation OIoCD(Z) not be interpreted as (a~C)D(Z). 

In this notation the criterion (14) after obvious calculations may be rewritten in the 

following manner. 
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8.4. Proposition. The Hamiltonian property of the skew-symmetric operator ~.~(B:OJ-- 

is equivalent to the following identities between the infinite columns: 

- -  ( - -  1)J O I o X t 0 7  I/ B Y - -  (the ,~,me with X~-~}~. (23) 

Here the right and left sides of (23) correspond to the left and right sides of (14), 

respectively, and the following additional notation is used: OBIIO~ is the column of in- 

finite matrices containing at the i-th place the matrix 0 (i-th row of B~) ; X ~0~ is 

~ X  0 "B " t he  ma t r i x  w i th  ([k)-element  ' ~  , / ~ (  I.u); B~ =(B~ )-.~ 

8.5. We begin with the verification that the operator (21) is Hamiltonian. The 

identity (23) to be verified assumes the form (X'=OX, etc.) 

  O+Oo, or, . . . . .  ~u~ l (BO q- OoB t) Y - -  (me ~rne withX~,,Y). 
k ou 6~ ) 

(24) 

We expand here all the brackets. On both sides there are sums of monomials each of which 

contains X ~6 and Y~ (possibly transposed). The ordered pair iJ we call the type of the 

corresponding monomial. By collecting all terms of the same type, we bring (24) to the 

form 

left and right cancel. All calculations making use of the concrete form of the matrix 

reduce to the following 1emma. 

8.6. LEI~A. For any i>0, and any X and Y the following assertions hold: 

a) The expression Xt~St(~ is symmetric in X and Y . 
0= 

b) (B+B ' ) c '~X t  O--~B- Y = X  ~ 03' ( S + S O ~ o y "  
Ou O~ ~" 

c)  B~ ~ o~ ,~T~ R'~'~X --~-u Y = Y t  o-~i - -  --. 

_- X t, OB y , _ ( B . _ I _ B O X  t, OB t y , _  ~S y , , _ B t , X  t, OS t y--}-(B-FB9 ~ 0-~ B t , X  t Os y , . _ p ( B _ p B O X  t 0~ 
Ou Ou 

, t - t  . - t  , ( 2 5 )  
--. (B.-bBt) X t O B . ~ _ * y = x t O B ~ _ ' B t y . . b X t ~ ( B , . q _ 2 B t ) y , _  out ou, - 

- t  , 0  (~+~t) 0 (~+~t) Y ' - -  �9 .{-X t OBt (B.-}-Bt)y"--FX t B t ' y  - P X  t' (B--pB9 (~e sam~ ,,a~ X ~ , Y ) .  

We s h a l l  prove t h a t  t h i s  i s  an i d e n t i t y  by showing t h a t  the  terms of  each type  on the  

B we 

~ 
d) The expression Xt~(B+Bt)C~ is symmetric in X and Y . 

X' aS' Proof .  a) and d ) .  The ma t r i x  .~Tu t has a t  the  a d - t h  p l ace  the  element  ~ X o 

0 ,Bt ~ ~ r - - c u  (0 There- Ou d --~>oX~b~aa+~-~ where 8 is the Kronecker symbol. Further, , c-- d+c-1 �9 

X t ~t fore, the a-th element of the column -~F=t Y is equal to 

XbbCU, d+c_ 1 c 
b,c>O b,c>O 

d=a+b--1 
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It is obvious that this expression is symmetric in X , Y. 

Similarly, the matrix Xt  0~ has at the ud-th place ~ X ~  --a(Bab)=ZXbO'~d'a+b--I ' 
b >0 b>O 

while the matrix ( B + B t )  (0 at the d c - t h  site has the element (c+d)u(J~_a_t , so that the 

element of the column Xt~ is 

b,c>O b,c>O 
d--a+b--I 

a -th 

and this expression is symmetric in X, Y. 

_.. " t  dB .. 
b) The element at the d-th place of the column Xt OB y is A ~-~dr= Z Xbb~a b+e-iYc �9 

0u b,c>0 

Further, II~-l-l~t~(O--l=-Ld~l# 0 - Therefore, the a-th element of the column (B-}-BO(oXt OB y 

i s  e q u a l  to  
b,c>O 

In  a n a l o g y  w i t h  t h e  c o m p u t a t i o n  a t  the  s t a r t  o f  t he  p r o o f ,  t he  a - t h  e l emen t  o f  t h e  

X t ~ t  . ~ + Bt) (~ Y is column ~ ~/~ 

b , c > O  
d- -a+b- - I  

") r X~b (c + d) Uc+d_ I ~ = =+~+c_~XbYc. 
b,c~O 

c) As above, the ~-th element of the column B(~ t ~ Y is '~ -b* (t) X v �9 u u a + b + c - - 2  b x e  �9 �9 d U  �9 ~ 

On the other hand, the matrix 

~ ~ =+,-1Y~ , (Bt~db = ~_~. , , and -(0 bg~5_1 " 
c>O 

Ycabu~'~#+c_=X# �9 The proof of the lemma is complete. 
b,c>O 

8.7. Verification of the Identit7 (25). 

while on the right there is Xt~ Bry - (the 
d= t 

,.'~rpe 01.  We must  v e r i f y  t h a t  

b, C>O 

yt a-S o =~=,t ha s  a t  t he  a d - t h  p l a c e  the  e l emen t  ~__~.Ye~.~;(B.J,= 

T h e r e f o r e ,  the  a - t h  e l emen t  o f  yt~C)_=~~ X i s  equa l  to ~ t  

Type 00. 

same with 

On the left there are no such terms, 

X~Y ), i.e., zero by Lemma 8.6 a). 

BVX~-~.  Y ' = X t  O~t~t ( B '+2Bt ' )Y"  _ y v  0 (H+ ~ ' )~ t  B t 'X. 

On the right there is the monomial 

X~y', which cancel by Lemma 8.6a). 

Lemma 8.6 b) and c): 

t O~t t' , X ~-dB Y and a similar term with opposite sign and 

The remaining terms we transform in accordance with 

0B., Xt 0~' (B, + B,,) y,=(B, + Bv) Xt ~_ r ' 

_yv a._S B"X=--B'X' OB y, 
0~ t ~ " 

Their sum is obviously equal to the monomlal on the left side. 

Type 02. We have the equality at once and it follows from Lemma 8.6 b). 
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Type I0. We must verify that 

_Bt,X~,OBt Y Xt, a(~+~t) Bt,y_yt  ~ t  , t' , 

By Lemm~ 8.6 a) the term X r ~t Rry ~t -- - on the right cancels with the term symmetric to it. We 

transform the remaining terms according to Lemma 8.6 c) and b): 

X r O~ Bt,Y_B,yt O..~.BX, ' 

_y t  O~ (B,q.Bt,).= _(8,q_Bt,)y t ~B X'. 

The sum of the right sides is equal to _Bt,yt @B X'. The proof is completed by the remark 

that yt OB_ x, xr OB t_ Y, which is immediately evident from the definition of these expressions. O, Ou 

Type ii. We must verify that 

(S + S') X" ~aB g,_(B+BOXt,  O.~B_tg,=Xrou O(B+~SF~t (B+BgY'- -Yr  ~ 

By transforming the first term on the left according to Lemma 8.6 b) and cancelling with 

the corresponding term on the right, we obtain the equivalen~ identity: 

--(B+BgXt'OBt~-~ Y' = Xt' ~ _gt, o(~+~9~t (B-['BgX'" 

On the left we interchange X and Y, replacing B t by B, again apply Lemma 8.6 b), and 

cancel by Lemma 8.6 d): 

0=X" 0~ (B+Bgy, yt, o~ (B+B,)X," 

Type 20. We must verify that 

' 

r =  o-/ . 

On the left we make the change X"++} ". and Bt~-,'B ; applying Lemma 8.6 b), we obtain the re- 
quired result. 

This completes the proof that the operator (ll) is Hamiltonian. 

We now proceed to verify that the operator (20) is Hamiltonian. In criterion (23) we 

put B----B~=IImB. (formal limit), B:=IImB.,/ ; X and Y are infinite columns. 
m 

The next lemma is verified by straightforward computations using (20), and we limit 

ourselves to formulating it. 
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8.8, LEMMA. a) In the a-th element of the column ~BX tOB/_ y(D only the coefficient 

of a monomial of the form X~iYIv~)g,,+~+~+y+~+~, can be nonzero, and this coefficient is equal 

t o  

<=+#>____! <=++++-0, <+V+:)t] 
L at fit ( 8 - - i ) t  mt it - -  at ~l ( 8 - - i ) t  " " (26)  

Here and below all indices are integers >0; terms with (B--J)| (respectively, (~--j)|) are 

considered equal to zero for j>~ (respectively, j>~ ). 

b) In the ~b-th element of the column EBX ~U)~--=-- Y only the coefficient of a monomial 

of the form X(~)Y(S)= (~) can be nonzero ,"-7- and this coefficient is equal to tz V a+cz-l~+T+6+~,+2' 

(st-F[~ + Y + 8 + Vl -{- !)I (ct + l)! 1~ I (st +[~ + ' 7 +  8 - F q  + I)I ( y + / ) !  ] 
(.__l)t++~+-,.+t~_+ ( _ l ) J - ( a + . i , + i + l ) l l ~ ! ( ~ _ D l ~ l  ! c+tj! (-- " (a+,+,+i+l)l~!(l~--i) l+ll  ~ J" (27)  

1 

M 

c) In the a-th element of the column ~_~XU)~BJBY only the coefficient of 
/ 

X(~)Y<~)~t(")~ can be nonzero. For ~=0 this coefficient is equal to c.+ v a+ z+~++l'-.~+'q+2 

( . +  ~)t p(a + c+_+, ~ § + ,-+ I)t .a_ + (v+8):] 
(28) 

For ~A0 this coefficient is equal to 

(_ I)n§ + n)! (a +I~)! 
y! 8t ~t a! ~t " (29) 

d) In the a-th element of the column (--l)S+tOSoXt-j~tBY only the coefficient of 

(~) (8)u~) , be nonzero X~+ Yv a+~+~+v+6+~,+2 can , and this ~coefficient is equal to 

j • < 6  ( -  I)1++,~+.#+~+1 (~+1~-l-6--i++!)! (,' -t- =-+-1~-1-8-t-vl + l)t " 1 - ~  ( - -  l~'l++++~ (~ (--V-I- 8 t- vl--/+--Z)t 
(a+ a +l+ + 8-- i  + n  + l)t ,ml [+t (8--i)t +It i! "J =t l+t yI (8--0101--k)t  kt It " (30)  

We remark that parts a) and b) of this lemma refer to the entire left side of (23), 

while parts c) and d) refer only to half of the right side, the remaining terms being con- 

sidered by permuting X-~Y , i.e., the pair of indices (=,~)~-~(y, 6). 

We now proceed to describe the cancellations of similar terms. 

8.9 .  LEMMA. 

' •  (oc+p+6--i)t (m+i)t (a+~)! (a+m+fi+8+l)! 
" a'pt(6--i)t ~.--E~T-#~ ---- a'p' ( a + a + p + l ) : 6 1 "  j<+ �9 . . 

( .  +~)t P r o o f .  A f t e r  d i v i s i o n  by  ~ t h e  sum on t h e  l e f t  i s  t h e  c o e f f i c i e n t  o f  X'+"~Y~T ~ i n  

the polynomial 

Z ( X  -4- T)  a+~+8-1 (Y -+- T) +++1 = ( X  -t- T) a+~ (Y q- T) ++ (x  + 1") 8+1- (Y + 1")8+ 1 
X - - Y  

i<8  
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Separating from the two first factors the coefficient of Xa+P-'Y =-s, and from the third 

the coefficient of X'}'sr j (after the binary expansion of (X+T) 6§ and (}'+T) ~+I and division 

by X--~, we obtain ~ [6+ll(=t~i~l, which is the coefficient of T 8 in the polynomial 
r + s + j = 8  " 

( I+T)6+I( I+T)~+~(I+T)  ~ i . e . ,  just (a+~+p+~+l): 
' (a  +lz+i l  + l)l 8]. " 

8.10. COROLLARY. All terms of the form (26) cancel with the first term of (28 ) and its 

transform under the substitution (a,~)~(T, 8) . 

8.11. LEMMA. 

8 

~ ( ' l p  ( ~ + v + 8 + l ) I  ( = + O f - /  !~ (v+6)~ 
(~'0E(=+V+i+l)l =.'-ETTT-/I - - , - - - ,  v'-P~-" /-o 

Proof. We make use of the identity 

8.12. 

8.13. COROLLARY. 

( , ~ + y + 8 +  I)! (~ +',,, + 8)! (m+7+8) l  
(8--./)1 (~ .+7+1+  1)! - - ( 6 - - / - -  1)I ( ,~+?+1+  l)t "+ (8--i)! (~,+u +1)! 

COROLLARY. The e x p r e s s i o n  (27) i s  equal  to 

( - -  1)P-~+.+~ ( , z+p+v+8+q+  1)! (v+6)~ --(the same ~m 
PtTII (~+7+8 + l)l 

The first sum in (30) is equal to 

8.14. COROLLARY. 

(~, ~)~ (T, ~)). 

(_ l)p+.+ 1 (~+p +q)l (a + 8 ) 1  
~lPhlt al-"~]~--" 

The second sum in (30) is equal to 

(_ l)pd4+. (= + p +,V + 8 +~ + I)I (= +p)t 
,zllilShll (~+ i l+Y+ 1)I 

Proof. We first sum on I for fixed k with the help of Lemma 8.9 (with different 

values of the parameters) and then sum on k using the same le-~_~. 

8.15. According to 8.12 and 8.14, the terms of (27) cancel in the second sum of (30) 

and its transform under the substitution (=, ~)*+(y, 8). The remaining term of (28) and the 

coefficient of (29) cancel with the transform of the first sum in (30) under the substitution 

(=, ~)~(y, 6) according to 8.13. Finally, the last remaining terms cancel by symmetry also 

by 8.13. 

1. Introduc t ion 

1.1. 

CHAPTER II 

THE STRUCTURE OF THE BASIC EQUATIONS 

The principal purpose of this chapter is to describe the construction, algebraic 
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structure, and conservation laws of some classes of nonlinear partial differential equations 

and also ordinary differential equations related to them. The introduction is devoted to a 

brief description of these classes. 

1.2. Lax Equations. Let ~ be some associative algebra over a field of character- 

istic k, which lies in the center of J3 ; let a:~->~ be a differentiation of ~ which is 

trivial on k . The algebra of differential operators ~[a] consists of all expressions of 

N N 

the form ~ b l ~  l, b1~33 , with the commutation rule ~ob =ab-~-, ba If L=~.~bia l, b~v=/=O , the 
i~O t--O 

number N is called the order of the operator L and is denoted by ordL . It is well 

known that the left .03-module of operators of order -.<N is freely generated by I, @ ..... Ore. 

Basic examples" 

a) ~ is the ring (of germs) of smooth, analytic or meromorphic functions of the 

variable x, of the variables x, t , or of the variables x, y, t; k=l{ or C; ~=d/ax. 

b) 33=k[#~J}li=O . . . . .  n; j>Ol ;  a:uJJ~u}J+~; k----Q, R or C. 

c) ~---Mt(~o ) i s  the  r i n g  of (IX1) ma t r i c e s  over a r i n g  ~0 of  the  type desc r ibed  in  

a) or b) ;  a i s  t he  unique e x t e n s i o n  of  d from ~o to M l(~0) �9 

We suppose further that in ~ there are defined two additional differentiations at and 

a2 such that a, OL, 02 are pairwise commutative. In example a) Ot=a/at, a2=~/Oy ; in example 

b) ~t, ~2 are some differentiations commuting with ~ , i.e., formal analogues of the evolu- 

tion fields of Chap. I. We shall usually write ~t, Or in place of ~i, a2 in case b) as well. 

For any L=~ bi~iE33[~] we set O~L=X@Ib~i and similarly for a2 . The symbol [P, L] 

denotes the commutator PL--LP of the operators P and L. 

A pair of operators P, L6.~ [a] is called a solution of the stationary Lax equation 

(respectively, the Lax equation, the equation of Zakharov--Shabat) if [P,L]=0 (respectively, 

O~P=[P, L], OtP+O2L---[P, L]). For brevity, we shall often refer to all these equations as 

Lax equations. 

We remark that in case b) (and similarly in the matrix case) the "unknowns" in the Lax 

equations, in addition to P, L ~ include the fields a~, at, and solutions of these equations 

in such rings correspond to what in algebraic geometry are called "generic points" of the 

algebraic manifolds represented by systems of algebraic equations. From the more traditional 

point of view, when working with these rings, we shall investigate the structure of the Lax 

equations themselves rather than their solutions in the sense of traditional analysis. The 

latter case corresponds to rings of type a) and is treated in Chap. III. 

The main results pertaining ~o Lax equations are proved in Sets. 2-5. These include 

the following: an explicit description of operators P with the property ord[P, L]~.~ord L--I 

or ordL--2 ; establishing that the equations L~=[P, L] are Hamiltonian over commutative 

rings of type b); formalization of the method of Zakharov-Shabat. We make use of the 
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technique of fractional powers of Gel'fand and Dikii in a considerably simplified and form- 

alized version. Another version based on the study of the resolvent may be found in [5]. 

1.3. The Benney Equations. This name we give to the following system of equations 

for the two-dimensional motion of a nonviscous, incompressible fluid in a gravitational 

field in the long-wave approximation: 

y 

l~ t Jf- UU'x-- ~y ! Ux l y_d'~ "~- k x = O, 

Here --oo <x< oo is the horizontal coordinate; 0~<y is the vertical coordinate; t is 

the time; u-----=(x, y, t) is the horizontal component of the velocity at the point (x, y) at 

time t ; h(x, t} is the height of the free surface above the point (x, O) at time t. The 

notation ut is an abbreviation for ~-/u(x,~,t) , etc. The system of units is chosen so 

that the gravitational acceleration and the density are equal to one. Integrals of the type 

i uxd ~ arise from the equation of continuity Ux~-~y=O where ~ is the vertical component 

of the velocity and from the boundary condition ~=0 at y=O ; these relations make it 
Y 

possible to eliminate ~, by expressing it in terms of ~; ~(x, y, t)=--Igxd ~ . For the re- 
0 

maining details of the derivation see the work of Benney [27] who first discovered an un- 

expected property of the system: the existence of an infinite sequence of conservation laws 

for it. 

The Benney equations display a number of unusual properties. We do now know of a Lax 

pair for them; the conservation laws in the interpretation of the present work (in contrast 

to the formal derivation of Benney) are obtained from a nonlinear integral equation with a 

parameter. This equation enables us to obtain the conservation laws of Miura [46] for the 

Benney system. We further establish the Hamiltonian character of the "reduced system" (with 

the additional condition uu=0 ) and the commutativity of the reduced integrals. These 

results are then generalized to the full system. 

Our exposition is based on the work of Kupershmidt and the author [19]. 

The main results pertaining to the Benney equations are formulated in more detail in 

Sec. 6; Secs. 7-13 are devoted to their proofs. 

2. The Commutator and Fractional Powers of Differential Operators 
r 

2.1. In this section we begin the study of the Lax equations. If ~tL=Lt---IP, L1 or 

[P,L]=O , then in any case ord[P,L]-.<ordL. We therefore first investigate the conditions 

under which the commutator of two differential operators has lower order. 

N A~ 

We set L=~_jl~a(~ n, P = ~  7Jra ~rn. 
n=O ra=O 
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2.2. LEM~L%. Setting 0=~-----~ (=) for any ~6~, r we have 

J 

Proof. According to Leibnitz ' s rule 0 (~Y)) =~0 ( ] ) U(CZ) ~)(J--cc). 

2.3. COROLLARY. The coefficient of 0 M+# in [P, L] is equal to [~, uN] . In particular, 

ord[P, Ll..</45N--1, if s#E is contained in the center of J~ 

2.4. COROLLARY. For ~E~ we have [~, L]-----[~, UN]@N~--(VU~--NUNV) 0N--I~ - (terms of 

order -.<N--2). In particular, if the center of ~ is infinite-dimensional over k, then 

the linear space of those P, for which ord[P, Ll<N--l, is infinite-dimensional. 

We shall see below that the condition ord[P, L]-.<N--2 in typical examples already leads 

to a finite-dimensional space. 

2.5. COROLLARY. The coefficient of 0 N+k , k6Z , in the commutator [P,L l depends only 

on those coefficients v I of the operator P and their derivatives for which j>k . The 

terms depending on ok, vk+t and their derivatives in this coefficient have the form 

+ ] + < l) 

Below we shall always assume that u N is invertible in 59 and is a 0-constant (i.e., 

OuN=O ). The operator L is fixed, while P may vary. 

2.6. T}IEOREM. If IN, eN-1 lie in the center of ~ and d is the dimension over k of 

the space of 0-constants in ~ , then the dimension of the space of operator PE~[0 I, for 

which ord[P, Ll~<N--2, does not exceed (M-~l)d . It is equal to (M+l)d, if 0:~-~ is a 

surjective mapping (it is possible to "integrate on x " in the ring ~ ). 

Proof. For k=/W, /%'i--I ..... 0, --l we call the "k-th equation" (relative to ~j) the 

condition that the coefficient of 0 N+~ in [P, L l vanish. It is evident from (i) that the 

2%4-th equation is trivially satisfied. Further, for fixed v/d , ...,vk+2 the k-th equation, 

according to (i), has the form ~'k+1=~ , where ~ is a polynomial in u~ I, It~ =), @~), M>l>k . 

If it is solvable at all, then any solution is obtained from one solution by addition of any 

0-constant in ~ . It is clearly solvable if 0:~-+~ is surjective. This completes the 

proof. 

2.7. COROLLARY. If the O -constants in ~ coincide with k (e.g., ~9 is the ring 

of germs of functions of x or ~=k['z~]) l ), then the dimension of the space described in 

Theorem 2.6 does not exceed A4+I . (It will be shown below that in the counnutative case 

it is equal to J~-?l, even if 0:~-+59 is not surjective.) 

For matrix rings ~ it is possible to obtain an analogous estimate under less restric- 

tive assLunptions which we now axiomatize. 

2.8. Let aduN:~-+~ be the operator aduN(b)--[gN, b] . We set ~+=KeraduN, ~------lm aduN 

and assume that the following conditions are satisfied: 
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a) ~9=~+~ - (as a k -space) ; ~+39-c_~-, ~-~+c__~-. 

b) The operator ad,d~/:~--~-is bijective. 

c) O~+c.~ § 

For any element ~vs we denote by ~v +, ~v- the components of ~ in ~+ and ~-, respec- 

tively. If for u:; the conditions a)-c) are satisfied then we call uN semisimple. In a 

commutative ring ~ every element is semisimple: ~+=~, 3~-={0} . In the general case our 

terminology is motivated by the foltowing example. 

2.9. Example. Let ~0 be commutative, ~=M~(~0), and UN be a diagonal matrix with 

nonzero elements ci~k on the diagonal. Then ~+ consists of matrices with zeros at those 

sites for which Ct=/~C], and ~ of matrices at the sites l], for which c~=cl. It is 

easy to verify that all conditions 2.8 a), b), andc) are satisfied. This implies that any 

semisimple matrix of Mr(k) is also semisimple in our sense of the word. As is known, the 

converse is also true. 

In conditions 2.8 we denote by d the dimension of Ker0N~ + over k . In Example 2.9 

it is equal to the sum of the squares of the multiplicities of the elgenvaluesof u~ . 

2.10. THEOREM. If uN is invertiblep constantp and semisimple and UN-16~-, then the 

dimension of the space of operators P with ord[P, LI.<~.N--2 does not exceed d(~4~-I) . It 

is precisely equal to d(M-~l) if 0:~+-~ + is surjective. 

Proof. The proof is analogous to the proof of Theorem 2.6, but it is somewhat more 

complicated due to the fact that the ~-th equation now contains ~+i as well as ~: 

We do induction k downwards assuming that ~+~, ~+~ ..... ~ are already defined from equations 

with indices greater than or equal to k ,'-|. Then the condition for solvability of the 

for ~ consists in (by 2.8 b)) 

[v~§ U._d+--(NuN~+y----~ +. 

If it is satisfied, then ~ is uniquely determined. On the other hand, [~++~, u#_t]+=0, since 

g#_t~3~- . Therefore, [~+t, gN-~l+=[~+p u#-~l + and ~+t is already defined by the induction 

hypothesis. Hence ~++t is determined up to an element of Ker0~:~ ~, if it exists at all, and 

it necessarily exists if 0::'~-~.~ ~ is surjective. This completes the induction step and 

the proof. 

2.11. Using the method of Gel'fand and Dikii', below we construct explicitly for each 

order an operator P with the condition ord[P, L]<N--2 as the differential part of an ap- 

propriate fractional power of L . To this end we introduce the formal ring of symbols. 

We denote by ~ the free variable and consider the polynomial ring ~[~] (~- commutes 

with ~) The mapping l-~L:2b~d'~" ~" . o~ induces an isomorphism of left ~ -modules but 

not of rings. The transferal of multiplication of operators to ~[~] we shall call composl- 
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tion and denote it by o: PL----PoL . In order to describe composition in S[ l in terms of 

the inner structures, we introduce two differentiations in ~[~]: @:Xbi~'~Ob~Z and 

0~:~ bi~ t -*~ ibi~. ~-I . The next lemma follows from the Leibniz formula�9 

2 . 1 2 .  LE . 
cz:>O 

The idea is now to use the well-known construct of extensions of commutative rings and 

extensions of differentiations to them in order to learn how to extend composition by the 

formula of Lemma 2.12 and thus to construct useful ring extensions for differential operators. 

our purposes a single extension suffices: ~=~((~-~))-----I~ b~[b~d3.] (the ring of For 
) 

fo rma l  L a u r e n t  s e r i e s ) .  O b v i o u s l y  0 and O~ e x t e n d s  to ~((~-x)) by c o n t i n u i t y  w i t h  t h e  same 

f o r m u l a s .  

We s e t  ord(XO~J).---max{klO~=/=O } and f u r t h e r  [Ja i l=2 ~ f o r  a(~((~-~)) (we assume t h a t  

ordO=--oo). The norm [[ [[ is non'Archimedean: tla+bli<max([la[l,l[b[[) . Moreover, [lab[l< 
IlalI[[b[I, I lall=l f o r  afi~\{O} and I]a[l=O i f  and o n l y  i f  a = O .  The a l g e b r a  ~(([-~)) i s  

complete in this norm. 

For any additive operator /=:~-+~ we set [IFIl=supllFalIlIIaII. Obviously, II01l<l, I]0111_~- 
u#O 

! 
~<l . In analogy with Lemma 2.12, we introduce in ~((~-a)) the composition o, by setting 

aob = '~  -d( (2) 
~>0 

2.13. LEMMA. Series (2) converges in norm for any a, b6~((~-l))and defines on ~((~-1))the 

structure of an associate k-algebra. 

Proof The convergence of (2) follows from -.7o~aO v 42-=[[a[[l[b[]-+0 as a-+oo 

Bilinearity in a and b is obvious�9 The identity is 16~ . Associativity is verified as 

follows: 

I O~aO~,b]oc= I 

ac(Ooc)='~ 1 oA o.AF~a I 0~08C] - "~ 1 
A>0 A , B , P < . B  " 

It is not hard to see that the substitution ~-I', ~=A+B--P, 7=A--P defines a bijection 

of the terms of both series and corresponding terms coincide. The proof of the lemma is 

complete. 

We now suppose that Iv[ is a left ~-module to which the action a: O(bm)=Ob.ra+bOra 
has been extended for b~39, rn6M . We denote by ~4((~-I)) the left 39((~-I)) ' -module {~mt~[ 

rt~i~il'l, XioVi>io, mi=O } with the obvious action. We extend the action of 0 to ]gI((~-t))co- 

efficient-wise. It is not hard to see that formula (2) enables us to define on 2W((~-I)) a 

new structure of a left ~((~-x)) -module relative to composition if we take a@~((~-l)), b~A4((~-1)). 
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Right composition M((~-*))X59((~-*))-+M((.~-9), is defined similarly if ~i is a right 59-module 

with action O . Finally, if A4 is a 59-bimodule, then ]~1((~-~)) with left and right composi- 

tion becomes a 59((~-~))-bimodule. The only nonobvious assertions here concern associativity, 

and its verification in the proof of Lemma 2.13 carries over automatically in all the required 

cases. We shall need this construction in Sec. 3. 

An interpretation of the elements of the ring ~((~-~)) with negative powers of ~ as 

symbols of integrodifferentlal operators is given in Sec. 5. 

2.14. LEMMA. An element Z b~'~-----b is invertible in ~((~.-~)) both with respect to 

multiplication and composition if and only if ou~ is invertlble in 59, where t~=ord (E big'i) �9 

Proof. Invertlbility with respect to multiplication is well known. Further, 
~ O  

(~@~)ob[l~-"~-l~-c, ordc<--l, as is evident from (2). Therefore, ~(--l)lc O~ exists in 
t--0 

59((~-I)), and is inverse to l~-c in the sense of composition: (l~-e)o'~(--|)'c~ (we write 
--0 

r176 .... oe, i times). Then b.-~-"=(l-~e) ~ is inverse to ~b~ ~ on the right. A left 

inverse is established similarly. Finally, if box=l or Xo~=l, then by (2) the leading 

term of x must be equal to b[1~ -", so that ~. is invertible. 

We proceed to the extraction of roots. If the element c~-~-~gn~" is an N-th power of 

X , then obviously X-=~-~ xl ~-l and W~=UN . In order to establish the converse as- 
I>0 

sertion, we introduce the following notation. We call an element ~ N-admissible (N>0) , 
N--I 

if the mapping ~"~ '~:x~"~"~ w l x w  'v-*-~ i s  a b i j e c t i o n .  In  a commuta t i ve  r i n g  ~ w i t h  u n i q u e  
1--0 

division by N precisely the invertible elements are admissible. In a matrix ring the 
N--I 

element ~=dlag(cl, ..., cl) is admissible if and only if all elements ~ -,-~elcN-1-t(r, s=l, ..., I) 
I=0 

are different from zero. 

2.15. LEMMA. Let c=~u,~", N>0. Then for each N-admissible root of an N-th 
n<N 

power ~ of ~N there exists a unique element X~((~-I)), for which X~=~ and X=~-~ 

O(I) (O(~ ~) denotes some series of order <i). 

Proof. We apply the method of successive approximations. We set X_I=wL Obviously, 

XN--I=UN~N~-O(~ N-I) . Suppose that for some r>--1 we have already proven the existence of 

X,659((~-')), such that X,=w~-O(1), XN,--=--c~-O(~N-'- 5 and its uniqueness up toO(~-(t+1)) . We 

seek X,+, in the form Xt+I=Xr~-x,+I~ -(r+1) . Using the distributivity of composition, we have 

/V--1 

l=0  

N - - I  

We compute the terms on the right up to O(~ N-r-3)) . The sum has the form ~ ~iXr+ l" 
I=0 

WN--I--I~N--r--2~o(~N--t--~ . The remainder consists of a sum of products of j<N--2 of elements 

X ,  and /~--J" e l e m e n t s  xr+1~ -(r+l) i n  d i f f e r e n t  o r d e r .  T h e r e f o r e ,  i t s  o r d e r  does  n o t  exceed  

max(--(r-~l)(N--j)q-j)=N--2r--4..<N--r--3 for all r>--I. Hence, from the admissibility 
j~N--2 
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oN 
of ~P it follows that x,+, exists and is uniquely determined by the requirement X,+l----c+ 

O(~ N-r-3) . This completes the proof. 
N 

2.16. We now choose an operator /=Zun@"E~[O] and an /v-admissible root of an /v-th 
n=O 

power ~P of UN (if it exists). We construct a root X of degree /V of L, as in Lemma 2.15; 

X==~p~+O(1). We denote by L ~ for any s=p/V-t6QN=Z/V -l the element XPE~((~-~)). Let 

Z~ = 2  *J (s; ,0, L) ~J: 

Assuming that ~P and L are fixed, we shall often write below @l(s; ~, L)=ml(s). 
set 

P 

< L, ) = ~  *s (s) Os. 
i--0 

For s > 0  we 

2 . 1 7 .  THEOREM. For  any  s > O ,  s~Q~ , we have  ord[<Ls),L]~N--1. I f  u u l i e s  i n  t he  

c e n t e r  o f  ~ , t h e n  even  o r d [ ( L * ) ,  LI~<N--2. 

2.18. COROLLARY. Suppose that UN, UA,--I lie in the center of ~, that UN iS invertible 

and is an /v-th power of an admissible element ~p , that the set of O-constants in 

coincides with k . Then for any ]W>/O the space of operators P6~[a] with the property 

ord [P, L] -.< /v -- 2, ordP~/vl is freely generated by the operators < L s ), O-.<s-.<M/V -t. 

Indeed, since the order of the operator (L s > is exactly s/V, and its leading coefficient 

~p:N is invertible, all (I.s > of order ~I generate a space of dimension ]TI+I. It re- 

mains to use Corollary 2.7. 

For matrix rings, however, the operators (L s ) , in general, generate only a part of the 

space of interest to us. 

2.19. Proof of Theorem 2.17. All powers X from 2.17 commute pairwise and, in particu- 

lar, commute with l=X N. Therefore, in the ring ~((~-i)) with composition we have [ </s ) - 

T.]=[~, L ~ (Ls) -] . But ord(L ~ (L~>~)-.<--I by definition of (Ls). Therefore, 

ord[<Ls>-,L]-.<N--I and is even ..<N--2, if =N lies in the center of ~9 (use is made of 

Corollary 2.3 which remains valid for composition in ~((~-i)), by formula (2)). 

3. The Hamiltonian Property for the Nonstationary Lax Equations and Their Integrals 

3.1. In this section we set ~=k[u~J) I, where i--tO, .,/V--2 (/V>2), j>O; O'u(1)~--~u (I+I) 
N--2 

are algebraically independent variables. Let further L-----O~+~ =iOt. We choose w=l 
i--O 

and for any sEQ~ we set, as in 2.16, 

Z ~ = ~ . j  (s) l J, . j  (s)E~. 
j .~Ns 
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According to Corollary 2.18, all solutions of the Lax equation OxL-----[P, L] in the ring ~9 

have the following form P=~r <LS~>, c~Ek, s~@QN, s~>0; ~1='O~.p:~-+~ is an evolution dif- 

ferentiation (i.e., it commutes with @ and is trivial on k ) uniquely defined by the con- 

ditions 

O',n I X  < >. . . . . .  N--2.  

We shall here prove the following basic theorem. 

3.2. THEOREM. a) The evolution differentiation a,, defined by the condition @,L= 

[~j<,:~>, L], is Hamiltonian with operator B~_, (of Sec 8, Chap I) and Hamiltonian 

~ ' c '  "-' c~J+ ') x,=i i sj+ 1" " 

b) A l l  Hamil tonians ~_z(r), rEQ~, r > O ,  commute pai rwise in  t h i s  Hamil tonian s t ruc tu re  

and are there fore  conservat ion laws fo r  any of the Lax equations descr ibed. 

We begin with a n=ber of auxiliary assertions. We set res (~ b,~.')=b_,. 

3.3. LEMMA. Let ~, bE~9((~-*)). Then res(~ob--b~)6O~. 

Proof. It suffices to verify this for ~=~, b-----#~" . It follows easily from formula 

(2) that 

m n �84 ,os ~ 

i f  m+n+l>O and e i t h e r  re>O, or  n>O,  but m n < O ,  and res[a,b]=O in  the  remaining 

cases. Let us suppose that m>0, n<0; the second alternative is treated analogously. Then 

n ( , . + , , + l ) =  , , ( , , - I ) . . . ( - , , , )  ,. ,,, (~+n+l)! =(-I) ~+"+~ ~+.+I)" 

Therefore, res[u,b] is proportional to ~=(m+"+1)--(--l)m+"+1=~(m§ and is a total derivative 

by a 1emma of Chap. I. 

3.4. In order to verify that the Lax equations are Hamiltonian, we adapt the results 
6 

of chap. I on the characterization of variational derivatives 8-~ to our formal case. 

To this end we denote by Q'(~) the universal module of differentials of the ring ~/k 

in the algebraic sense of the word, and we let ~:~_+o,(~) be the universal differentiation. 

It is well known that Ql(~) is freely generated over ~9 by the elements ~=Jl) and ~P= 

�9 ~0P ~1). We extend ~:~->~9 to a differentiation a:oI(~)-+~I(~), by setting 0( , ,_~u!])~--~u(.l+1). 

This is a formal analogue of the operator L~I~-~. of Chap. I where ~ldxl is the canonical lift 

of al~X, to the jets. Obviously, ~a=~ , since |8, a] is trivial on the u~]) . It is not 

hard to demonstrate the validity of the following formal version of Theorem 4.1 of Chap. I. 
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3.5. LEMMA. For any P6~ there exists a unique representation of ~P in the form 

N--~ 

'~=o Qi~ui+a~ ~oi(~) ; for this representation Q~ =~ 

(All formulas of Sec. 4, Chap. I pertaining to the computation of variational deriva- 

tives are to be "divided by dXl*, (~-----l), and are to have d~ 1) replaced by ~]) ). 

3.6. We now pass to the ring ~((~-')). We define the ~((~-~))-module e'(33)((V~)), con- 

sisting of series ~ mi~t, mi6o~(~) with the usual rule of multiplication on the left and 

right. The differentiations a and 01 extend to ~ thefirst coefficient-wlse and 

This enables us to introduce another action of 33((~-I)) the second by the usual formula. 

on -~ ((Fl))- the composition 

ct! ra " 
cL>~0 

According to the remark following Lemma 2.13, Qt(33)((~-I)) is converted into a left (.~((~-i)), o) - 

module. The composition o~ob defined by an analogous formula converts ~i(~)((~-l))into a right 

(~((~:i)), o) -module. It in fact becomes a bimodule, since the formula of associativity 

bo(o)cc)=(boo))oc is verified in the same way as for the associativity of multiplication in 
~ ((.~-I)) �9 

We extend the differential &:~-+oI(33) to &:.93((~-I)) _~oi(~)((~-I)) coefficient-wise. The 

mapping res:e~(~)((F*))-+~ picks out the coefficient of ~-~. 

The easily verified compatibility properties of the structures introduced are collected 

in the following lemma. 

3.7. LEMMA. a) The operators res, a, ~ are pairwise commutative (in the sense of the 

commutativity of the corresponding diagrams). 

b)  ~(aob)=~aob+ao&b f o r  a n y  a, bE33((~-~)). 

The second assertion follows from the fact that ~ also commutes with 0[ . 

We now apply this formalism to the computation of 6v_~ (s) 6uk " 

and 

3 . 8 .  LEMMA. ~v_, (S)----S res  ~].oZ ~ rood lm 0 f o r  sEQN, s > O  �9 

Proof. Let X=L ~ s=pN -I . Then L=X ~ and ~,_1(s)=resX ~ . 

We wish to establish that 

res X ~ ----- ~ res ~ (x~ ~ rood Im O 

N8 res X ~ ~ p~ ( x ~  ~ mod Im 0. 

A c c o r d i n g  t o  Lemma 3 . 7 ,  
p- -1  

N a r e s  X ~ ~- N res  a ( X  ~ = N res  ~a X ~ ~176 X ~ �9 

Further, Xolo~XoXOr ~162 X~ It is shown by the same argument as 

in Lemma 3.3 that the residue of the commutator on the right lies in Ima. Therefore, 
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On the  other hand, 

and since 

N8 res X~ res ~XoX ~ mod lm 0. 

N--I 

p~ (x~ p-N = p  ~ x'oSXoX ~ 
l--O 

X'oSXoX~*-' = 8XoXp"' -- [~XoX ~ X~ 

the same argument shows that 

p res 8 (X~176 --Np res 8XoX ~ (p-l) mod a. 

This completes the proof of the lemma. 

3.9. COROLLARY. For $6Q~, s>O and O..<i..<N--2 we have 
t 

l ~ (;) 
6u, , - o  (3) 

Proof. According to the preceding lemma, 

//~2\/N(s-~) )) 

- - s r e s ( ~  (~ )S# ,v ~ ' ) ( s - - ' ) ' ~  ' + ' - "  --s (,+1+,)v}'+'+')(s--l)Su, modImO, 
%~,l,j " " 

whence the required result follows in view of the characterization of variational derivatives 

in Lemma 3.5. 

3.10. Proposition. For all s>0, s6Q N and O~<i~<N--2 we have 

l 
1 ~ i 8 v_,_l (s-- l)----_T j~_o (j )(--O)J 6--~l.l .o_l (s ). (4) 

Proof. Relations (3) can be considered a system of equations for v_1(s--l) ..... v_N+~(s-fl ), 

which has triangular form and can therefore be solved by induction. The closed formulas (4) 

are most easily obtained by writing (3) in operator form 

Or_, (s) = s (1 + aoTyv_t_l (s-- 1), 

where T i s  the  o p e r a t o r  fo r  i n c r e a s i n g  the  index by one: T ( v ~ )  = v ! ~ + , .  

becomes 

(5) 

Equation (4) then 

v_,_l (s--1)=~ (l--aoT-1y ~ (6) 

and the fact that (6) is the inversion of (5) is obtained by induction on i. 
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3.11. 

O,L-----[ < L s > ,  LI . 

by < L s > ---L ~ 

Proof of Theorem 3.2 a). It obviously suffices to consider the equation 

We rewrite it in the algebra (~9((~-*)), o), replacing L by [ and < L s > 

(it is recalled that [L~ We find on setting uN_~=0, uN=l: 

This implies the two identities 

O~uk~. ~= u~3 =, ~_~ (s) ~-~ . 
k..=O - -  i~=1 

L=-o r 

o =  ~ =J., ~,_~ (s) ~-~ 
L r  

(the second follows from the fact that the order of the commutator on the right is -.<--I) . 

The commutator in the first identity is equal to 

? > o  

We sustitute in (7) the result of Proposition 3.10: 

l$--1 

(8) 

We wish to represent the formula obtained in the form (cf. Sec. 8, Chap. I): 

( j . n )  6.l s+ l  "~7~ s+l (9) 
j , l  

with appropriate Bj.kl. In order to compare (7) and (9), we make in (7) and (8) the change of 

indices: =--~--~=k, ~-, B=], ~--I--~=I . We then find that the sum of the first terms of 

(7) leads to the first terms of (9) if we set 

BLkt=lO~ for j+k+l+l>N for j+k+l+l..<]V 
(lO) 

(we have used one of the identities for the binomial coefficients proved in Sec. 8, Chap. I). 

Similarly, the part of the second sum of (7) corresponding to given ], k,/, can be 

written in the form (for k+l+j+|<]V and zero otherwise): 

i 

-~=o(-1)J ~i-6) ~ ;  ,+1 .oJ-%+,§ - ~ ,+ l  ) 
This agrees with (9) and (i0) and completes the proof of Theorem 3.2 a). The fact that the 

~Sj0J--(--@)JoB~ is Hamiltonian is proved in Sec. 8, Chap. I. operator 
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3.12. Proof of Theorem 3.2 b). We fix r and s and consider the evolution of v_x(s), 

due to the system 01/=[(L'), L 1 . Repeating word-for-word the proof of Lemma 3.8 with 8 

replaced by 01 (it is only important that [01, 0]~-[01, 0~]~-0 ) with the coefficient-wise 

action 0~:~((~-~))-+~((;-*)), we find 

01~)_i (s)~- s res (dIZoL ~ mod Im O. 

F u r t h e r ,  

0xZoZ ~ = [ ( L t ) ?Z]oL ~ = ( L r > oL ~176 ( L' )-oL ~ ----- 

= < r, ) ' ; D , -  [i.o ( L, ) .Z~ +Z~ < : ,  > - = [  < L, >. Lo~ l _ I z o  < L, >. :-~ 

Since the residues of the commutators lie in Ira0 by Lemma 3.3, we finally obtain 01v_i($)60~. 

According to the definitions of Sec. 7, Chap. I, this means that v_1(r) and ~_1(s) commute. 

We shall now clarify the algebraic significance of commutativity. Let ~(~0 ..... UN--~), 

let B be some Hamiltonian operator, and let Q, PE~9=k[s~(/)]. Returning to the conventions 

of Chap. I) we denote by XQ the evolution field X~=B 8Q 

3.13. Proposition. If Q, P commute in the Hamiltonian structure with operator B , 
8P 

then XQ takes the minimal 0-closed ideal Jp, generated by the components of B~ into 

itself. In other words, the XQ flow is tangent to the finite-dimensional manifold of 

solutions of the system of ordinary differential equations Bg-=_P-----0. 
8u 

8p 8p ( 
Proof. Since [0, XQ]=0, it suffices to verify that XQ~ll~Jp. But XQ~=D B~/ 6u 

B!/8" and by the Hamiltonian criterion for B the latter expression is equal to 8~\8-~ t eu/ 

�9 The first term is equal to zero, since the commutativity of P, Q implies 

6P B 8QQEIm0 cKer ~ that 6-~ o- ~. The second term (more precisely, its components) lies in Jp , 

since the Frdchet Jacobian belongs to Adn+I (~ [0]). 

This proposition motivates the search for solution (in function rings) of the equations 

~=B 8Q B~-~_P=0, where P is an integral. ~, which remain for all time on�9 the manifolds 8- 

Actually, instead of the equations 8PEKerB the equations 8-PP_=0 -- the extremals of the 
8u 8u 

Lagrangi~,, P--and the flows induced on them are usually investigated (cf. Gel'fand and 

Dikii [3]). Both formulations of the problem are equivalent if KerB=k N-I and in place of 

the equation 8--_P=cEkN-' it is possible to consider the equation ~(P--?tu)-~-0, noting that 
8u 

P--cttt is in this case an integral together with P. In the general case the question 

merits special investigation. 

Regarding the Hamiltonian property for the induced flows see the work of Bogoyavlenskii 

and Novikov [i] and Gel'fand and Dikii [3]. �9 

3.14. We shall apply these considerations to the Lax equations Lt~[~r i (Lsl), L]and 

their integrals ~ d~ v., (re+ I) 8Q rt+l =Q. By Theorem 3.2 the condition B~-0, implies that 

52 



[ • d •  (Lr~ >, LI=O. Thus, the search for solutions of the Lax equation lying on the "quasi- 

(B 0 8p extremals" of their integrals ~ ~= in place of ~-~- /, reduces to the joint solution 

of the system of equations Lt=[P , LI, [Q, LI-----0 . The condition [Q, LIt0 is called the 

auxiliary stationary problem (for the nonstationary problem Lt-----[P, LI). Chapter III is 

mainly devoted to the description of such solutions. 

3.15. Example: The Korteweg--de Vries Equation. We set N=2, L=d2-}-u . The equation 

L~-~-ut:= [ (L3:2), L] is called the Korteweg--de Vries equation, while the equations Lt= 

[~.~ (Ls~,) r L] are its higher analogues. As $tEQ, it suffices to take half integers, since 

(L s > =t s for integral $ (this remark applies to general N) . 

5v_,(s)-~-sv t(s--l), so that increasing s We observe that Corollary 3.9 assumes the form --~ - 

by i corresponds to "variational integration." 

3.16. The Matrix Case. We shall now briefly describe the changes to be made of the 

definitions and results of 3.1-3.12 in order to extend them to the matrix case. We set 
N 

L= XUkOk , where UN=diag(r ..... c l) is a semisimple matrix of A41(k ), which is diagonal for 
k=0 

simplicity and U 0 ..... U~-I are matrices with independent variables as elements: Ui-----(ui,~); 

UN-I.~=O for a, ~ with c=~-c~ . Having chosen an admissible root of an N-th power V/ 

of UN , we can construct the fractional powers %~, as in Sec. 2 for s@QN �9 We shall 

further investigate equations of the form OiL= ~ci.w (L~ >. We recall that they now do not 

exhaust all Lax equations over the ring ~[~], ~=]W~(~0), ~0-----k[u}!~]. 

--o$ We set iw= ~ V_~(S, V/)~-". A representation analogous to (7) holds as before but only 

up to a co=mutator in the term OtU0, which dropped out for l-----l: 

fJ--I i 

The contribution from this commutator will vanish if we go over to equations for the matrix 

traces of the Uk in place of the t7 k themselves. This becomes even more necessary if we wish 

to carry over to the matrix case at least a part of the results regarding the Hamiltonian 

property. Indeed, the key Lemma 3.3 ceases to hold, since the matrix VU(m+"+1)--(--l)m+"+ I. 

UV ('+"+l) no longer need be a total derivative. However, this expression differs from a 

total derivative by the commutator [i/, V(m+"+~)] , and therefore after going over to traces we 

again obtain Tr res[a,b I~.0~ . In the considerations of 3.4 and thereafter in place of Qt {~) 

it is now necessary to take the ~IO]-module Ml(~1(~0)); ~:~-+Ml(Qt(~0)) is defined coefficient- 

wise, and the subsequent constructions are modified in an obvious manner. In Lemma 3.5 we 

must represent BP in the form '~Q~,x~B=~,,zf~+O~o, where Q~,=~-~-~u--~P (coefficient-wise). The 
proof of the analogue of Lemma 3.8 leads to the result Tr ~V_t (s, V/)-----s Tr res ~%oL~ rood ImP. 
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Analogues of Corollary 3.9 and Proposition 3.10 now connect ~-#---Tr V_1(s, W) with TrVl(s--I , W). 

Substitution of expressions analogous to (4) into the equations for TrOiUk leads to an 

assertion that these equations be "quasi-Hamiltonian" which is described in detail in the 

work of Gel'land and Dikii [5]. We refer the reader to that work for further details. 

4. The Statibnary Lax Equations 

4.1. In this section the first general result on stationary equations will be proved: 

if L, PE.~[O] are such that [L, P]---0, then (under weak additional conditions) L and P are 

connected by a polynomial relation with constant coefficients. This reduces the problem of 

solving the stationary Lax equations to the problem of imbedding one-dimensional commutative 

rings (i.e., rings of functions on affine algebraic curves) in rings of differential opera- 

tors. The fruitfulness of such a reduction will be demonstrated in Chap. III. 

4.2. We shall actually prove a more general theorem pertaining to rings of operators 

generated by several differentiations 01 ..... On. 

Let ~ be a not necessarily commutative Q-algebra which is free of finite rank as a 

module over its center ~0. Let Oh.. On:~-+~ be differentiations taking ~0 into itself 

and commuti~ pairwise. We ,,ite ~=t~ ..... ~,,>. I~I=~,. O'=O~'...d:, ~IOl={~O,O'jb,~} 

with the usual rules of multiplication. 

Let Iq ..... Lr6~[O ] be a finite family of operators. We call it independent if the sum of 

-~d~es~L: ' . . .~ - ;"  is direct. We ~ite L,--L:,...L:, and IPI=~Pj. 
j--I 

4.3. LEM~%. We assume that in the category of free ~-modules the concept of rank is 

well defined (i.e., ~r~-~.s=>r=s), and the rank of a submodule does not exceed the rank of 

the module. If LI ..... L r is an independent family of operators, then r~n. 

Proof. There exists a constant l, depending on the degrees of the operators LI ..... Lr, 

such that for all m>O there is the following imbedding of free ~-modules: ~LPc 
Ip l<m 

~ 0 i . But the ~-rank of the module on the left grows asymptotically like c~m" and 
lil~tm 

that of the module on the right like c=(Im)". Therefore, r~<n. 

4.4. We shall call a family of operators L, ..... L.E~[0] maximal if it is independent 

and there exists a free ~ -module of finite rank ~4c~[0], such that ~[0]=XJ;LI, and the 
i 

sum on the right is direct. 

Example: in the case ~-----I the family consisting of a single operator bNcgN-[ - ... +b0, 

N-I 
is maximal if the coefficient bN is invertible in ~ . Indeed, we set ~4= E ~0 ~ . Since 

~o /N-I \ t--0 

~,o'~+'=~o '~§ i t  follows easily that ~ I O I = Z | ~  ~ 0 ' ) ~  and thesum on the r ight  is direct .  
p~O\l==0 / 

4.5. THEOREM. Let Lz ..... /.. be a maximal family of operators in ~[01 and let P@~[O] 

be an operator such that [P, L~] ..... [P,/~.I=O. Then there exist O-constants al,q, Z----- 

(~z ..... ~.), q>O, lying in the center of ~ and not all zero such that ~_~a~,of~iP~-----O. 
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We first prove the following auxiliary assertion. 

over 33[0] which commute with one another and with ~[0]. 

4.4 for the family Lx ..... L., and set 

Let %x . . . .  , kn be independent variables 

We choose a module ~Ic33[0], as in 

~vt ix1 . . . . .  X . l = { ~  m),'i m,6M} ~33 lOl P,, . . . .  , ~'.I. 

4.6. LLMMA. There is the direct sum decomposition 

~? 1oi 0,, . . . . .  x.) = M P.1 . . . . .  ~..l �9 ~ ~ [Ol [x~ . . . . .  X.l ( ~ , -  ~.,), 
i = 1  

( n )  

where the last expression on the right is the left 3310][>.i ..... kn]-ideal generated by Li--)~i. 

Proof. a) We show first that the left side is the sum on the right. Since ~-d[O]---X/%4LJ, 
i 

it suffices to verify that for any m6/%~ and ] the element roLl is contained in the sum on 

the right. But mLJ-~m'l.1-~-, ra(Ll--kJ), so that it remains to check that LJ--k i lies in the 

left ideal generated by L~--k i . Let /=(Jr ..... in) and let k be the largest index for which 

jk=/=O . We set j'-~-(Jx ..... j~_x,O ..... O) . Then 

- - L  j '  (L/~ __ ~,~,) d_ ),~ ( t~ '  __ k~'). 

The first term on the right is divisible b y  L ~ - - ) , ~ ,  while the second is analogous to Ll--kJ, 

but the index ]' has fewer nonzero components than /. Therefore, induction on the number 

of components gives the required results. 

b )  We now show that the sum on the right of (ii) is direct. 

verify that if XtrtiklO. Z 33 [O] ['t.](Li --),l), then mi--0 for all i. 
i i 

For this it suffices to 

But if ~ ~),i6 ~ $3 [O][~] (Li-- X~), 
i I 

then according to the first part of the proof also ~]miLt~.X33[Ol[),](Li--),i). We consider 

the homomorphism of left ~910] -modules 3310] [k] -+ 33 [01, which is the identity on 33[0] and 

takes the free generator k~, ..Ai. into LI'...L~ . The submodule X 33 [0] [k] (Li -- Ai), clearly 

lies in the kernel of this homomorphism. Therefore, it as well as the entire kernel has 

zero intersection with 33 [0]. 

4.7. Proof of Theorem 4.5. We consider the ~[k]-module 'NI=--33[c)][).]/~,._j33[c)][),](Li--li). 

According to Lemma 4.6, it is free of finite rank over 33[~], since it is isomorphic to /%4[k] . 

It is therefore free of finite rank over ~0[~], where 330 is the center of the ring 33. 

Since the operator PQ33[0] commutes with all the Li , multiplication by P on the right 

induces a ~0[k]-endomorphism of the module M. Therefore, the ring 330[ki ..... k., P] c3310 ] 

acts naturally on ~. On representatives this action can be written as follows: 

mob)/P/=b'mk~P J, bEB o, mEM. 

Since 1%-] is free over 330[Xx ..... k.] there is a nonzero polynomial F(kx ..... kn, P)~0[kt ..... 

~n,P] such that MoF=0. According to Lemma 4.6, this implies that 3310][A]oF(AI ..... k.,P)c 
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• [ d ] [ k ] ( L i - - k • )  . From the calculations in the first part of the proof of this lemma it 
i 

follows that then ~[@][>,]oF(LI ..... L,, P)=O where the substitution of L t in place of ~'z must 

be done in the reduced notation for F . Applying F(LI,...,Ln, P) to l~J~ ]d] [k], we find that 

F(LI,...,Ln, P)6~[d] n ~ ~ [d] [k] (L~ -- ),j) ----- {0}, by the second part of the proof of Lemma 4.6. 
i 

We have thus obtained a polynomial relation between L t and P but with coefficients in 

~9 0 . We shall now show that for suitable F these coefficients are 0-constants. 

To this end we choose a free basis of the ~0[k]-module M and denote by D a dlfferen- 

tlatlon 590 [kl -+ ~0 [k ] and its lift M-+~ with the following properties: 

a) On ~ the differentiation m coincides with d. 

b) Dkt=0, i-----I ..... n. 

c) The chosen basis of A4 is annihilated by D. 

We denote by A the matrix of the endomorphism of multiplication by P in this basis and by F 

its characteristic poly~miai. 

In addition to D, there is the differentiation 0:]W-~A4, induced by multiplication on 

the left by @ in ~[d][k]. It also extends @ . Therefore, D--d:M-+2W is a ~0[k] -linear 

operator : 

(O-- D) (bm)=(O-- D) b.m q-b ~ " D) m =b (O--D) m. 

We set U-='d--D and identify L/ with its matrix in the chosen basis. Since right multi- 

plication by P commutes with left multiplication by O , on calculating the action on this 

basis of the composition of O and P in two different ways, we obtain OA~-AU=UA or 
~--I n--! 

0A----[U,A l . This implies that OA"=y,~AidAA"-~-'=~AI[U, AIAn-i-*=[U,A= I. Therefore, the 
l~O l--O 

trace of OA" is zero for all n>/0 �9 This means that the coefficients of the character- 

istic polynomial of A are @.-constant by Newton's formula. 

4.8. Integrals of the Stationary Lax Equations. We apply the preceding considerations 

N--~ 

to the case ~ = k [g~]), .... g(N])_.2 j j > 0], Z,= O N ~- ~ ul@ ~, P ~- ~ c i < L ;t >. We mend te by ~ =~(cl) the 
I--0 

factor ring of ~ by the d-closed" ideal generated by [L, P]. Let d:~-+~ be the induced 

differentiation where L, P6.~3"~[0] are the images of the operators L and P. It is obvious 

that L, P is a "general solution" of the stationary Lax equations with operators of the 

given degrees N, ]W, if the constants Co .... ,oR are taken to be free variables and si=i/N. 

Since the leading coefficient of L is equal to I, ~ generates a maximal family, and 

L, P are connected by the relation ~dt]LIPJ-~-O, where dt] are O-constants in ~. There 

is a canonical relation: ~d~]k] are the coefficients of the characteristic polynomial 
] 

of the endomorphism of multiplication by P for the ~[l]-module ~ The 

lifts dl] of the elements dl] to ~ are integrals of the equation [L, P]=0. 
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We note now that by Proposition 3.13 we have another collection of integrals of this 

equation. Namely, for any r~Q u, r>0 we have 6~_,(r)6~ t B ~Xcl8 v-1(st+l)si+l =Of,, [rE.~ so that 

OIr=O in ~. 

The relation between the integrals dii and I r is known for the higher Korteweg--de 

Vries equations; in particular, the ones are expressed in terms of the others. 

5. The Zakharov-Shabat Formalism 

5.1. In this section we present an initial version of the method of Zakharov--Shabat 

[13]. Our objective here is to clarify the algebraic side of their construction- the 

structure of "dressed" differential operators --while omitting functional-analytic considera- 

tions. We begin, however, by describing the basic functionals. 

5.2. We consider the space of columns ~ of height N, the coordinates of which are 

functions of the variable x and possibly of the additional parameters t and z . Let 

K(x, y; t, z) and F(x, y; t, z) be two (N)<N) matrix-valued functions. We assign to them the 

integral operators K, F: 

(k'qOCx)= KCx, v)~,Cv)ctv, (Po,)Cx)- i F(x, V) +,(V)dV. 
- - 0 0 .  

Similarly, for any operator L we understand by (LK) ̂  the operator with kernel LK and 

integration from x to oo, and by (LF)" the analogous operator with integration from --oo to 

oo . The dependence on t, z is not indicated here explicitly. The functions K, F, and 

are assumed such that all classical formulas used below for differentiation of integrals 

with respect to a parameter are valid (and, of course, the integrals themselves exist). The 

following sequence of lemmas on the co~utation of various operators is preparatory to the 

formulation of the main theorem. 

5.3 LEMMA. [0t, FIt(OfF)" ,[Ot, I(I=(OtK) ^, and similarly for O z. 

The proof is obvious. 

Let Lx=~li(x; l, Z) 0x , where the li are (N>(N) matrices. We denote by the symbol 

FL+ the kernel ~(--ay)i(F(x, y)li(x)) and similarly for KL + . 
i 

5.4. LE~. [Lx, P]=(LxF--FL+} ^ 

Proof. Integrating by parts, we have 

 ILx, e (x, y) L,, (v)= 
- - o o  - - ~  

= i LxF(x'Y)@(Y)dY-- ~ FL+(x'Y)~(Y)dY={LxF--FL+}~" 
- - o o  - - o o  

5.5. LE~A. If L x satisfies the conditions of the preceding lemma, then 
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L, ok - (L .K)  ^ = ~ (L,), 

where the differential operator ~x(Lx) is additive in L x and for l----l(x, t, z) is defined by 

n--1 

:x (la~,)9 = - ~.~ la~ [(O~-'-'K) (x, x) ~l. 

Proof. 

of ~, t ,  Z. 

From ~ to 

It is clear that the left and right sides are linear on matrix-valued functions 

It therefore suffices to compute aX(O~). For ~-----0 the formula is obvious. 

n--{- 1 the computation is as follows : 

o~ (o~,+,) ~, = o~.+, ~ X (~, m * ( u) a y -  ~ (O.~+, K) (x, y) ~ (m ay = 
X X 

,1r 

n--! 

= - (oTz<) (x, x) ~ (x) - ~  a,.+, [(av'-'K) (x, x) ~ (x)l. 

The last expression coincides wlth the formula for azr indicated in the lemma. 

5.6. LEMMA. We assume that the coefficients of L x do not depend on x . Then 

7 r  (KL+) ̂  = r (z.,), 

where ':x is additive in L x and 

n--I 

,,r (to?,) = ~  ( -  1).-, (a~-,-,x) (x, x) taL. 

Proof. 

from n to 

As above, for n=O the assertion is obvious. We carry out the inductive step 

~-{-1 . Splitting the second integrals into parts, we have: 
oo 

[~'otal +~-z<" (la~,+')+ l , (x) = I g (x, y) taT,+,, (y) ~y - 

r  

- I ( -  1p § (a~,+'K) (x, y) t~ (y) av= 

~ g (x, y) lO~+~ (y) dy-.t- ( -- 1),+' (O~K) (x, x) lt~ (x) -F ~ ( - 1 p+~ (O~,K) (x, y) lO,~ (y) dy. 
X X 

H e r e  we h a v e  u s e d  t h e  f a c t  t h a t  O,(l'~)=ldyaP s i n c e  l - ~ - l ( t , z }  . 

here is equal to 

The sum of the two integrals 

[ K o Z a x -  K (tO,,) l a ~  = ~x (to~) a.~. 

by the inductive hypothesis. The entire expression is therefore 

( -  D"'  (a~z<') (x, x)  t o ~  + ~r (ta~) a,~ = ~  (to~+9 ~. . 
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5.7. We now consider the ring ~[C)x] of matrix-valued operators in 0 x, the coefficients 

of which are polynomials of the restrictions to the diagonal of the partial derivatives 

0~K, 0~K and the derivatives of these restrictions along the diagonal. Let Lx~MN(k)[Oxl 

(k consists of the constants, i.e., R or C in the analytic case). Then (1+~x)L x has 

the same order as L x, and its coefficients depend only on x, l, z . It is therefore permis- 

sible to apply aK and its powers to it while remaining in ~[0x] . But the operator 

u#:~[0xl-+~[0xl, as is evident from Lenmm 5.5, reduces the order. Therefore, the following 

expression is meaningful: 

L*. = 0 + o,r ,~,r = 0 - o K  + ~ -  . . . + ( -  D~"oD ~,r I0.1, 

where M > o r d L  x . 

The operator L x is called the "dressed" operator L x , and the mapping Lxw-(l +~)-Izxi x 

is called the "raiment" of i x . 

The first part of the next theorem shows that L~ is roughly speaking the differential 

part of the operator obtained from i x by means of conjugation with the operator | +K : 

5.8. THEOREM. a) L*x(I+R)--(I+[OLx={L*xK--KL+} ^ �9 b) We assume that the functions 

K, F satisfy the equation 

K (x,y).-k F (x, y)--k ~K (x, s) F (s, y ) d s = O  
I 

or, more briefly, K--bF--]-K*F=.O �9 There is then the identity 

(t:K- KG)+('~P- P G) + (L:K--KG) .P + K. (L:--FL~) = 0 

c) Under this same condition we have 

OtK +OtF + c)tK*F + K*OtF = 0 

and similarly for 0 z . 

5.9. Application of Theorem 5.8. If K + F + K * F = O  and R K + S F + R K * F + K * S F = O  for 

some operators R, S, we shall say that the pair (R, S) "differentiates" (K, F) . According 

to Theorem 5 .8 ,  the  p a i r  (L~--L+,-F-~Ot-F-@O,,Lx--L+y-F-~c)t-F-~JOz) d i f f e r e n t i a t e s  (K,F), i f  ~, 

are any constants. 

We now suppose that the kernel F satisfies the system of linear differential equations 

LxF -- FL;-]- aOtF = O, 

LxF -- FL; + [30sF = O. 

We find by Theorem 5.8 b) and c) that 

{ L~r L*,K -- KL+y + [30,K + ( L ; K - -  KL~, + [30,K) .F --- O. 
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We suppose, moreover, that from this it can be concluded that 

{ L:K-- KL~ + =0,K =0, L;K--K'-~+ ~o,h-=0. 

Using Theorem 5.8 a) andLemma 5.3, we obtain, on the other hand, 

(L'x 4- ~0,) ( 1 4- I~)-- (I 4- I~) (L x 4- ~tOt) = {L*xK-- KL; + aOtK }" = O, 

(L; 4- [30,,)(1 4-K)--  (1 4-I() (Lx4- ~O,)={L*xK--KL;-[-. [30,K} "=,.O. 

Assuming further that 1 +2~ is invertible, we find that the differentiation operators 

L~q-a@ t and L~4-~@ z are adjolnt to Lx4-a@ t and Lx4-~0,, respectively. 

We now take the initial matrix operators Ll, x and L2, x to have constant coefficients. 

We obtain the following result. 

5.10. THEOREM. If [Ltx, L2x]=0 and F, K satisfy the conditions of 5.9, then 

satisfy the equations of Zakharov-~habat 

o r  

[q'~ + ~o,, ~.,; + ~o,] = o, 

�9 a,L;; " ' 

We proceed to the proof of Theorem 5.8. 

5.11. Proof of Theorem 5.8 a). According to Len~nas 5.5 and 5.6 

L;,o~ = (t;K)" +o,. (L;), 
goLx = (KL;)" + .~,~ ( , , ) .  

Therefore, 

L~ (1 4-/~)-- (14-~) L~ ={L'xK--KL+}+4-L~--Ls+ak(L~)--~x(Lx). 

But L*x=(l+ah)-t(14-x)Lx. Hence 

~--L, - -o~L~+,~L,  =[(1 +o~)-i (1 + ~ ) - -  I +o~0 + o~)" 0 +xK)-- ~1 ~,----0. 

5.12.  Proof o f  Theorem 5.8  b) ,  Applying the ope ra to r s  0f Lemmas 5.5 and 5.6 Co the  

identity K4-F4-K*F----0, we obtain 

L,~C + LT +(L,K).F +o,~(Lx)F-=O. 

KL+ 4- FL+ 4- K.FL+=O. 

By Lemma 5.6 applied to the columns of F , we have 

K.FL,+ = -- K.(L~P -- me) + K.L~F = -- K.(L~P-- FL~+) + KL+*P + ~ (L;) F, 

LL,, LL 

(12) 

(13) 
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Substituting this expression into (13) and subtracting the result from (12), we find 

LxK - -  KL+ + LxP - -  PL+ + ( L x K - -  KL + ) ,P  + K*(L ,F  - -  FL+) + (a2r --  ~r (L,) F = O. (14) 

We set L~)----Lx, -xt(i)=ai-l( aK-'cK)LxK for i>I and apply (12) to A(o in place of t~) . We 

ob rain 

L9)K + L~)F + (L(j) K)*P + ~c CL~ )) P = O. (14) f 

We take the alternating sum of Eqs. (14)i with signs (--l) i over i-~.O ..... .44, M>ordL x. 

Noting that 

24 

i={) 

we obtain 

L;,~'--m-++L,F--FL,+ +(LVC--TCL+,)*F +K*(L,F--FL+,)=O, 

which completes the proof of the theorem. 

5.13. Formal Analogues. Under appropriate analytic assumptions we have 

K (x, y) = Z ~- @y K) (x, x) (V-- x) t 

and 

X 

It is possible to eliminate the factor (g--x/ 
il " 

i times. Therefore. setting (O~I)(x, x)=.,, 

operator ~ its symbol 

under the integral by integrating by parts 

it is natural to assign to the Volterra 

i--I 

Here the u I may be considered arbitrary elements of some differential ring ~, or matrices 

with independent coefficients as in 3.16. 

In order to write formulas for the operators ax, ~, it is useful to introduce further 

the generator ~i, corresponding to (atx/<)(x, x). It is not hard to see that they are linearly 

expressed in terms of the ul and their derivatives (using the formula ((ax+a~)JK)(x-, x)= 

O~ CK (x: x))) : 
! 

1 
o , =  X (, )(- 

1-o 
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Comparison with formulas (3) and (4) indicates that conversely the ul are expressed in 

terms o f  t h e  ~ . I n  t h e s e  g e n e r a t o r s  we o b t a i n  

,,,~: ~ [o]--,-m [a] : t ~  - ~ tO,o~._,_,, 
i--O 

n-i 

".x:~ [oI ~#a [al : t o ,  ~ ~(-|)n-l-'fU,,l_l_l[l~t. 

Conjugation by means of /~---1--}- Z( - -1) l /Z t r .  -I takes co,muting operators in (~((~-z)), o) 
i=i 

into commuting opera~rs: 

[L,, L.~I=O=~I~-'L,, g, S~-'X;s 

(we here identify Li, and L 2 with their symbols). Generally speaking, the operators K-IL~ 

are not purely differential operators. Considering only their differential parts < K-~L~K >, 

we find 

ord[ < K'-IL1R" ) , ( /~-!L2/~ > ] ~ < m a x o r d L i - -  1. 

Thus, this method leads to the construction of certain "general" solutions of the equations 

of Zakharov-Shabat. 

In conclusion, we ~hall clarify which differential operators are conjugate by way of 

some /~ . 

N N 

Now let EgiU, ~i~16~I ~] be two symbols (gi, ~l are any elements). We shall assume 
i = 0  i = ~  

that 0g~=0 , u~ is semisimple in the sense of Sec. 2, and that 0:~+->~ + is surjective. 
Oo 

5 . 1 4 .  THEOREM. Fo r  t h e  e x i s t e n c e  o f  a s y m b o l  l a l - ~ ' o ~  -k w i t h  t h e  p r o p e r t y  

�9 - k  i 

k - - I  / I = 0  

it is necessary and sufficient tlmt gN-----WN and ~N--i--~M--i~"d-. 

Proof. We rewrite the last equation in the form 

N 

. L t = /  i _ ~  
a~O,k> i  b ":41 
i=0 ..... N 

We call the k-th equation (for v ) the equality for the coefficients of ~ on the left 

and right sides. 

The N-th equation gives gg=~g ; the (N--l)-st equation has the form [uN, v_l]= 

wN_luug_i . This shows the necessity of the condition of the theorem and uniquely deter- 

mines vZl. The rest of the argument is parallel to the proof of Theorem 2.10. We suppose 

that from the equations with indices N .... ,]V_k+ i the quantities ~_i,...,v:k+l have been 
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determined. Then the (N--k)-th equation uniquely determines the element 

utc-t=-k +, -- ~-~ +:u.'.,v - ,  + Nu.v'o'_k+ l + [u.v, =-k] = w. 

Since WN--I~-UN--I~-X, XE~-, the first two terms can be rewritten in the form [UN--I, V-k+t]-- 

X~-~+, �9 For determining v+~+ l we obtain the equation 

NgN (~ , ' , ,+ , ) '  - -  ( . , = ~ - _ , , + , ) = . + ,  

which is solvable if O:~+->~ + is surjective. 

6. The Benney Equations: Main Results 

6 . 1 .  We recall that the system of Benney equations has the form 

Y 

it  t + u u ~ - -  uy I uxly-~d~ + h~ =0, 
0 

ht+ ud = 0 .  

(15) 

The meaning of the notation is explained in Sec. I of this chapter. The formal investiga- 

tion of the equations is based on the following lemm~ of Benney. 

h 

6.2. LEM~LA. We define the moments An(x,t)=lu(x,y, t)ndy, n~O,. From system (15) there 
0 

then follows an infinite system of equations for the moments: 

A~.t+ A~+l.~q-nA~_lAo.x-----O, n>O. (16) 

Proof. Multiplying the first equation of (15) by n/Z n-~ and regrouping terms, we obtain 

without difficulty 

(u~)t+(u"§ u ~ u~d~ +nu~-qz~=O. 
\ o ly  

We now integrate this relation on y from 0 to h The fourth term becomes nAn_iAo,x, and 

the third [because of the second equation of (15)] becomes Un(ht-~Uhx)ly-h �9 Adding the 
h h 

first term of the last relation to ~('~n)tdy , and the second to I{un+~)xdy , we obtain An.t 
0 

and An+l.x , respectively. 

In Benney's work it is shown that there exist two sequences of polynomials HnE Q 

[A 0 ..... An] and FnEQ [A0 ..... Ak+ll such that (16) implies local conservation laws for the 

system (15) of the form 

Hn.t+Fn.x=O, n>O. (17) 

In Miura's work [14] it is shown that there exist two further sequences of polynomials 

I-In, FnEQ[u, A0 ..... An_tl such that (16) implies local conservation laws of the form 
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h 

0 

(1.8) 

(In Miura's table the coefficients of ~ do not coincide with H, because of misprints and 

omissions.) As usual, under the assumptions of rapid decay of solution~ at infinity, from 

this it is possible to obtain quantities conserved in time: these are I HadI, ~>0. 

The next two sections are devoted to a new construction of relations (17) and (18). The 

description of the generating function of the system of polynomials ~n as solutions of a 

certain integral equation with parameter plays a central role in the construction. 

6.3. THEOREM. We set 
h 

~-,0 0 

Then there exists a unique 

solution p(~) of t h e  equation 

(~') + ~ ( .  (~)) = ~ (19) 

a) i n  the class of formal series of the form ~+Q[A0, AI .... ][[~-']]; b) in the class of func- 

tions analytic in ~ of the form ~+o(% -l) in a neighborhood of co (depending on u(x, y, t), 

h(x, t))  . 

6.4. THEOREM. System (15) implies equations for ~(~) of the form 

Pt - -  (p~ /2  + Ao)~ = O, (20) 

o 
(21) 

Theorems 6.3 and 6.4 are proved in Secs. 7-8. The Bennooey conservation laws (17) (UP tO 

constant factors) are obtained from (20) by setting ~---k--Z(--|)!Hi%-(l+1),p2/2~-A0= X~/2- ~ 
!--O 

. Miura's conservation laws are deduced �9 (--|)tFiX-(i+~) and equating coefficients of ~.(.+i). 

similarly from the relations (21) in which (p_~g).1 is to he interpreted as (--l)!=i~-(t+1)qQ[u, 

A,HP-,]I. 

6.5. The Reduced Equations. As already mentioned, the reduced system is obtained from 

Eqs. (15) by adding the condition ~uv=0: the horizontal component of the velocity does not 

depend on height. The reduced s ys=em for the functions u(x, t), h(x, l) has the form (,the 

classical equations for long waves):: 

i / a '  . h~ 0 1 0 / ' /  u , =  

0 OH /'t - -  ~ .  
( 2 2 )  

B 0 This system is Hamiltonian with Hamiltonian operator =(O~x i~x), and Hamiltonian H. 
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The integrals Hn of the full system (15) are converted into integrals /-/o of the 

reduced system (22) after substituting A.~-~/zu"---A~ H~ hi . We explicitly compute these 

integrals in Sec. 9, we show there are no others, and we establish their commutativity. 

[./21 

6.6�9 THEOREM. a) Up to constant multiples we have H~ t.,,u"-2kh k+l, where 
k--0 

tn. = (n_2ki,nk ', (k + ,), ( n )  

and any polynomial H of u, h, for which Ht~OxQ[u, h] is a linear combination of the H. ~ 

b ) [l'I~ [-[o ] 6.0zQ [ It , Ill. 

Theorem 6.6 enables us t o  introduce the "higher reduced equations" 

OH N 

/ h I oH ~ ,  
t t=l~=~-]. .-o 

(24) 

From what has been said, they admit conservation laws of the form H~ where the 

#0 depend on co ..... c N. 

In Sec. I0 it is shown that the construction of commuting Hamiltonians {H. ~ can be 

considerably generalized. 

In See. ii we pass to the investigation of the full system (15) or, more precisely, of 

the system of equations for the moments (16). We begin by showing that they are Hamiltonian 

as a system of evolution for infinitely many unknown functions An(x, t) of two variables by 

establishing the following facts. 

We set B=B,O+OoBI', where B,,i~=iAi+j_,, i, 1>r 
I, the operator B is Hamiltonian. 

Then, as was shown in Sec. 8 of Chap. 

6.7. THEOREM. The Benney equations for the moments are Hamiltonian with operator B 
! 1 

and Hamil t o  nian -- ~ l-/2 = -- ~ (A2-I- Ao2). 

(The Hamiltonlan formalism is here applied to the ring ~r i, j>O, A~ s) being the 

independent variables It is also possible to work in the ring ~C~176162 or in �9 z~ i ! 
k--O 

various intermediate rings.) 

6.8. THEOREM. Let /-/6A be any element. Then a system of equations for u, fL of the 

form 

~H 
where HlJl~'o.~j implies t h e  system of equations ~t=B 6_ with Hamiltonian H 

H 

6A 

(25) 
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I This theorem is proved in Sec. ii. Theorem 6.7 is a special case of it for H=--~H2, 

when the system (25) becomes the original system of equations (15) of part i and Theorem 

6.7 becomes the Benney lemma. Theorem 6.8 indicates the rather surprising situation: in- 

spite of the loss of information on passing from u, Iz to A , the equations of evaluation 

for A with any Hamiltonian can be lifted to equations of evolution for u, h . Of course, 

the question of lifting solutions requires separate investigation. 

6.9. THEOREM. Let the elements ]-/i6~ be defined from Benney's conservation laws (17). 

Then they commute relative to the Hamiltonian structure with operator B . 

This theorem is proved in Sec. 12. It makes natural the consideration of systems of 

(25) with Hamiltonian H=~ciH~, which we call higher Benney equations in analogy the form 

with the higher Korteweg--de Vries equations. By the general formalism the higher equations 

possess conservation laws of Benney type Hl.t-~Pl,x=0, where the F~ depend on H . Con- 

servation laws of Miura type hold for one of the higher equations. 

6.10. THEOREM. There exlst Miura conservation laws for the system (25) with Hamilton- 

Jan H=cH3. 

Unfortunately, we have been unable to determine if this fact holds for the other higher 

equations. Theorem 6.10 is proved in Sec. 13. 

We began by considering the reduced higher Benney equations (with the additional con- 

dition =y-----O), for which A~-----hu I . As was mentioned, they are Hamiltonian related to the 

operator  ( 0 ~0 O) in  the r ing ~~ h~JJIj>O]. 

6.11. THEOREM. The Hamiltonian structures described in the rings ~ and ~0 are 

compatible. 

A precise formulation and proof of this theorem is given in Sec. 14. That section 

also contains an explanation of the reasons for which the system (25) contains the operators 

J--O 

7. The Function ~(I)  

In this section Theorem 6.3 is proved, and further information regarding the function 

~(~) and its coefficients needed below is presented. 

7.1. The Function ~(k) as a Formal Series. We set ~(k)-----k--~(--l)i/aril-(i+1) and seek 
I~--I 

the coefficients [-ll from Eq. (19) which we rewrite in the form 

i - - - - I  i ~ O  j~--I - 

This obviously implies that I-/_l---~-O, /-/0-~-A0, ]'[I=AI and further H.-----A.q-P., where P.GZ 

[Ao ..... A._~, ]'/0 ..... /I._2] for t~>2 . Induction on n immediately shows that the [~r.EA.-}- 
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Z[Ao . . . . .  A._2] ex i s t  and are uniquely determined. The f i r s t  P/n are: A o, At, A2+A~o , A3+ 

3AoA,, A4 + 4AoA2 + 2A~ + 2A~ . 

7.2. The Function ~(k) as an Analytic Function. For given differentiable u(X, y, t), 

h(x, t) the moments A~ become functions of x, [ ; it would be possible to attempt to estimate 

the IN,(x, ~)[ and show that they grow no faster than C"(x, ~) for a suitable function C(x, t), 

and this would establish the analyticity of ~(k) in k . However, it is inconvenient to 

obtain such an estimate directly, a~d instead of this we apply the method of iterations to 

the integral equation (19): ~(k) +l(~(k)+~)-tdg--=O . We set ~(k)=k+e(k). The uniqueness 

of a function ~ analytic in X with the property (19) and the estimate e-----O(k -t) follows 
h 

from the uniqueness of the formal series. To prove existence we set e0=O, eN-------I(=+ 
0 

k-}-eN_,)-~dg and show that e-~-limeN exists (for given ('x, t)) uniformly in k, when Ik[ is 

so large that the following inequalities are satisfied: 

{/~ (i k I--U)-* (1 - -4~  (l X l--tO-=) -t -.< ([ k l - -~0/2 ,  
I~,l--U>el/-h', U-----sup {mlO~<v<;h}. (27) 

In particular, if u, h are bounded there is a domain of analyticity ~, not depending on x, t. 

To this end we establish the following ~ inequalities by induction: 

Indeed, [%J= 

I ~. I~( !  ~ I - L 0 / 2 ;  4h 
I ' . - -  ~n.1 [ ~ 0 I ~._ I - -  8t~.2 I. (0=( I  ~ 1 - - ~ '  < 1 ,  by 

i u_~ [..</z sup, u + ~ l_, .</~ (2 ]/F)_, < ,x ,~  o" < ,z t - -v  2 " 

(2D). (28) 

Further, for any N > I  we 

have ]eN+x--~M~<ksupl(u+).+e~)(U+X+e~-0[-x[e~--eN-X[. Set t ing here N = I  and using (28) 

for N-----I , we find by (27) Iu+Xl-1~(iXI--U)-1, " lu+k+e~l-1-.<2(Ikl--U) -I, whence [e2--e1[.<. 

2h(l%I--10-21e11<4h{l%!--U)-21ell . This provides the basis for induction. Suppose now that 

the inequalities of (28)are satisfied for all n~<N . Then 

I ,~+x -,~ I < h sup I (u + ~ + ~)(= + x +'N-0 I-~ I '~- ~s-~ I< 01 ~- ~s-, I, 

by (28) for  n = N - - 1 , N .  Hence 

N+t 

l,+++xl--< +~ !,,,-+-,,-11 < 0 - O)-ll~d ~ (1 - o)-',~C!>,l- L0 -ffi --< CI>-I-~/2,  
fl~l 

by (27). This completes the proof of Theorem 6.3. 

Below we shall mainly use ~(A) as a formal series. The validity of the corresponding 

computations in the analytic version can be trivially verified. We shall establish several 

curious algebraic properties of the series for ~(A) and its coefficients H~. 

7.3. Homogeneity. We call the number An the weight of the variable n+2, and we 

introduce the corresponding graded ring Z[An]. In this gradation the polynomials H, are 
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homogeneous of weight a+2, This fact is obtained by an obvious induction on n from the 

identity (26). 

7.4. The Symmetry Ai+~--Hi, I+~ ~. We define a homomorphism ~ of the ring Z[Al]I[k-1]] 

into itself by the conditions a(Ai)-~---Hi, ~(k)=~. It is obviously an automorphism. We 

shall show that it is an involution: ~2=id. 

oo 

Applyin~ ~ to (19), we obtain =(~)--~,/-/i(~(p))-(i+o=p. On the other hand, by the 
co i~0 

definition of p, A--~(--1)tHik-(~+1)=p . But from the first equation, as in 7.2, the element 
i=0 

=(?)~.~-{-Z[AI][[?-I]]-I-]-Z[Ai][[k-I]] is uniquely determined. Hence =(~)=I . Applying = again 

to the.series for p , we find p-- (--I)t~(Hi)~-(i+D=X; since pq- (--l)tAip-(t+I)=X by (19), 
i-0 

in view of the uniqueness of the expression for ~, in terms of p, we obtain a(H~)-------A~, 

i.e., a(--Hi)=At. 

7.5. S,,mmation of the Benney-~liura Series. In the work of Benney [27] and Miura [46] 

the generating series for the conservation laws were constructed in a different way. Benney 

ZAnz" and showed that H,zn= z~-~] ~ ,  similar started from the series U (z)= I 0 ~nF'~+'z n+' . 
t=--O n=O n~O 

formulas are given in [27, 46] for other series from (20), (21). After the substitution 

z=--k -I and passage to ~(k)=k-iF(--i -I) all the series of Benney and Miura can be rep- 

resented in the form ~-f) [~"(1),~(k)], where ?----@, @6Z[Ai]((I-*)). Our basic integral 
n=0 

equation (19) was obtained by applying to these series the following identity which is of 

independent interest. 

7.6. Proposition. Let k be some Q-algebra, and let ~6k[[l-']], #6k((l-t)). Then 

~ ! (  o__V 
nl ~c)~} [~"@]=0p/d),. @(k), where ~6k-~k[[k-*]] is the unique root of the equation ?-----?(?)nu),. 

germs ~--2n+const , SO t h a t  t h e  sum c o n v e r g e s  k - * - a d i c a l l y .  We i n t r o d u c e  t h e  a u x i l i a r y  v a r i -  

a b l e  C and d e n o t e  by  pc t h e  r o o t  o f  t h e  e q u a t i o n  p~=c~(?r  i n  l~-k[cl[[k-~]]. T ts  

e x i s t e n c e  and u n i q u e n e s s  f o l l o w  i m m e d i a t e l y  f rom Theorem 6 . 3 a ) .  We s h a l l  show t h a t  
o o  

~ --0-~-@(pc) in the ring k[c][[k-'I]. For c=l this implies the result of the 

proposition. 

This identity is equivalent to the sequence of identities [d-~.)[.~"@]=[~)[~@(Pt)]Ic-0' 

which we establish by induction on ~ , For t~=O ~he result is obvious, since pclc=0=k, 

0~.|c_0--I . Suppose that it is true for ~<N and all ~, @. In order to make the inductive 

step, we use the followi~g remark. Differentiating the relation p,=c~(p=)~ck with respect 

t o  C a n d  ), , we find dPcl()c=[1--c',p'(pc)]-z?(~,c), Op~lat=[l--c:p(p,c)] , whence d~ldc =OP, cl~),.~(~c ) 
and f u r  t h e r  02pc/ O ).dc ---- d~pc/ d ), ~" ~(Pr -~- ( 0~*c/ 0 ).)27'(Fc) �9 

We now h a v e  
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( O ";N+l . . . .  l . ,  0 [ /  O ',N 0 / O "N OlXc . 

0 ,X  O~tic ~OPt" �9 ~,  

_ (__o/NFO,~:  t _  , o . :  ol~= '~ (,'<D]< o" 
, ( , m , ,  o = ( - ~  . _ toe  ] kO~, - -  kOc ) IO~Oc = 

This completes the proof. 

8. The Conservation Laws 

In this section we shall prove Theorem 6.4. In order to establish a formal version of 

it, we introduce the independent variables A}]), AI6)----A~; i, j>0, and we consider the follow- 

ing differentiations of the ring Z IA~/)][[k-i]] into itself. The differentiation @/@AI takes 

A i into |, and it takes A~(s) for k~i, A}n for ]>I and k -I into zero; @/@x takes A}J) 

into A} j+') and k -I into zero; @/@~ commutes with @/@x, and takes Ai into--A}~1--iAi_iA~*) 

[cf. (16)] and i -I into zero. Moereover, all these differentiations are continuous in the 

k -I -adic topology. 

8.1. LEMMA. Let m be one of the differentiations described above. Then (l+~' 

(~))D~=D~--~D(~), where, by definition, ~'(.)=~(--l)mAi(i+l)(.) -(I+2), ~D(.)_____ (__l)~DAi(.)-(i+ll . 
t--O 1--0 

COROLLARY. a)  (l+rl, ' ( l , .))@l,./@k=l ; b)  @l~/dx=--O@lOx(t*)~-~, ; c)  @l,. /Ot=--~-tl . , .)~- x ; d) 

Ol___it = (-- l)~+i~-c~+~. OA~ 

Proof. We apply D to the relation (19); we obtain D~+~D(?)+~'(~)D~=Dk, i.e., 

Lemma 8.1. Setting here D---@/OX, we obtain Corollary a). Finally, putting successively 

D-----O/Ox, @/@t, @/@Ai, and using Corollary a) and the fact that ~O/OAl(.)-~(--l)l(.)--(i+l), we 

obtain Corollaries b), c), and d). 

8.2. Proof of Formula (20). We multiply relation (16) by (--|),~-(,+*) and sum on /~ 

from 0 to oo. We obtain @~/Ot(~)--~(O~IOx(~)--Ao,~-i)+Ao,x~'(~) =0, or @~IOt(~)--~IOX(~)q- 

A0.x(l~-~'(~))=O �9 Multiplying the last equality by @~/ol and using Corollaries a), b), c), 

we obtain (20). 

8.3. Proof of Formula (21). We carry out the proof by analogous formal computations 

in the extended ring Z [A~S), u( k,n, v~.~)] [[k-i]] , where }, ~, m, ~>0; =(0~0)==; m!0!~,~_~ and cor- 

responds to --~xd~ ; all the new variables are independent of one another and of the pre- 

vious v a r i a b l e s  The d i f f e r e n t i a t i o n  @/@x t a k e s  u{ ~,n i n t o  ~{~+l,t), v!m} in to"  {.} , �9 (~) 

into A~] +I), and k-* into zero; the differentiation @/@k is trivial on the new variables; 

the differentiation @/@~ commutes with @/@x, @/@k and takes ~I,~ ) 'int~ v(') ,(,+i) A0 into 

--Ai , = into --==(i.o)--=(o,D~--A(ol); and l -~ into zero; the differentiation @/09 commutes with 

~(') into _(@/@~),=(m+,.0)and is trivial on A} j) and @/@x, @/@~ and takes =(~.o into =(~d+i),. (=) 

k-* (the differentiations are chosen in correspondence with the first and second equations 

of (15)). 

We now calculate (21) using the prime to denote differentiation with respect to ~: 
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(~' (~ + u)-% = [(,~ + u) ~', - ~" (.~, + u,)l (~ + u)-L 

- (~ '  (~ + u)-%: = - [(~ + u) ( ~  ' + ~,'~'~) - ~ '  (~  * ,  ux )l ( ~ + u )-~, 

( .,,~' (,~ + u)-% = l(,~ + u) (~.,w' + ~,~') - ~ '  (t,~ + v~)] (~ + u)-~. 

Substituting into the numerators of these expressions the right sides of the relations 

t t t~ t ~y=~;-----0, ~-~--~x, ~t=~x+Ao,x [formula (20) ], ~t'~'~ ~x+, ~x (the derivative of (20) with 

respect to k), ~t-------~ux--~J--Ao,x and collecting like terms, we find that the sum of all 

numerators is equal to zero. This completes the proof of Theorem 6.4. 

There are a number of relations between the "densities" of conserved quantities Hz, /?t 

and the "local currents" Fi, /T i which we now describe. We introduce Two further dlfferen- 

2 o # X  o o tlatlons ~----- + jAi_I ~ and D = ul ~. 
i l l  1=0 

8.4. LEMMA. a)~0~=0~/0~--1; b)DF=--0F/0L(~+tt ) -L 

Proof. a) Using Coroliary 8.1 d), we find 
oo 

J=Z 

( t h e  last equality follows from 8.1 a)). b) Similarly, 

DI~ ~ '  uS ( - -  t)s+l t~-u+z~Ov./O~. = _ OFIOX (~ + u)'L 
]=o 

8.5. Proposition. The following relations hold: 

Fn+t . c) O-~Tt H,,=O-~l+, F., a) ~Hn=nH._~; b) H . = &  n'+1' ~ " 

d) DHn=--H., DF.=--F.; e) ~/qn=n/7._1; 
- o ~ .§  e B _ _ _ L _ o  ~ . .  

0 H.=oA'; h + i ' ;  ~) ~ "--OA,+, 

Proof. Relation a) follows immediately from Lemma 8.4 a); d)is obtained from 8.4b) and 

(21). Further, according to 8.1 d), a/OAo(}~2/2+Ao)=--O~/Ol+1; this and (20) imply b). 

Relation c) is obtained similarly: c)/c)Ai+1(i,~/2 + Ao) ~--(--l)i}~-(i+1)O~IC)k- ~ --C)?/c)A i . The rela- 

tions e), f), and g) follow from a), b), and c) respectively if to the latter we apply D 

and v o t e  t h a t  [D,~I=[D,O/OA~I=O. 

8.6. Homogeneity. Setting the weight of g equal to 1 , we find from 7.3 and Eqs. 

(20), (21) that the F, are homogeneous of weight n+8;/~, and F, are homogeneous of 

weights n and t~@], respectively. 

9. Integrals of tlle Reduced System 

Theorem 6.6 is proved in this section. 

9.1. Proof of Theorem 6.6 a). The derivative of u~h l, by virtue of the system (22) 

is equal to (ttk[zt)t:--(k+l)~khtUx~(ku~-lht+l~k+Ikt-a)kx. Therefore, for any polynomial P6 

Q[u, h], represented as the sum of terms homogeneous in u, k, p=Xpi of degree degPi, we 
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: 0 . ,  O ' ~ p  t ~ . , have Pt=--~degP~XP~ux--~u'-j~-1--~) .z x. The Poxncare lemma implies that the condition 

Pt6--~-~ Q[k,u] is equivalent t o  the requirement that 

(P) d'--~c)/ok ( X  deg Pi.P,)-- ~--~o(uc)/c)h q-O/Ou)P--O. 

In Q[u, hi we introduce tile gradation with weight ~, by setting w(u)=l, ~0(h)=2 (cf. 7.3). 

Obviously, A is a homogeneous operator of weight --2. Therefore, the kernel of A is the 

direct sum of its homogeneous components, and it suffices to compute it on a component of 
[ L n/z] \ 

weight n, i.e., to solve the equation A(~, Cn,~Uw-2khk)=0. Somewhat complicated computa- 
1 

tions show that A-----0 on Q+Qu, while for tz>~ we have cn,0=O and Cn.,+1=(n--2k) �9 

(n--2k--l)k-1(k+l)-:cn,k for k>l . This implies that all homogeneous components of tile 

kernel of A are one-dimensional and are generated by polynomials /_/0 of the form (23). 

Remark. The explicit form of H~ ~ could also be obtained by computing the coefficients 

of the function ~0(%), which in the reduced case satisfies the equation ~~176 

It cannot, however, be proved that the integrals found form a complete system. On the other 

hand, by generalizing our arguments to the full system (15) it is possible to show that the 

Benney integrals also exhaust the space of integrals which are polynomials in Ai. 

9.2. Proof of Theorem 6.6 b). According to the general formalism of Chap. I, the 

Poisson bracket [Hm ~ Hn ~ is the derivative with respect to t of Hn ~ by virtue of the 

s y s t e m  u , =  (c)Hm~ h,  = (c)Hm~ 

In order to cover all pairs (n, m) simultaneously, we introduce the new formal generat- 
co 

ing function "~(k)= ~/-/0 An/n! and in the ring Q[u, hi [[~, k,]] we compute the derivative with 1..d - - n ,.-. 
n=0 

respect to t of v(k) on the basis of the system ut=v(kx)a z, ht=v(kl)ux. More precisely, 

setting v=~(k), ~i=~(ki), we show that "~t60/axQ[u,/zl [[~, kl]l. The conventions regarding the 

differentiation are analogous to those described in Sec. 8. 

We note, first of all, that because of (23) 

n.~.~(n--2k)t k f (k + l ) ~ . t  ~'~h" ' , ~._~_ to (h~.2) e~ ,  
n--Ok=O 

where ~ ( . ) ~ X - ~  (')~§ = ~ .  It is important below that [ ~ ( h ) , ~ ) ] ~ = ) , ~ h - l c ~ ( h k 2 ) ,  which is obvious 

from the definition of m , and similarly ~aa=k2h-*v . Moreover, ~,=Av. 

Now the evolution of ~, due to the ilamiltonian ~, is determined by the relations 

"t = ",,,u, + '~hlz, = ~ .~,~x + "h ~',,,* = " . ( ' , . ,hk,,  +'q~,,,u~,) + ,,~,('~,.,~,, + "~.,,u.d = (",,'~,,,~, + ~'h ~',,,Dh.,, + (",,',,~,,, + "~,,,~'u..,)u. . 

The inclusion ~t~~ k, ~l] i$ equivalent to the identity (~+~)~ffi(~i~+~a~t,,u)~, 

which is checked directly by means of the relations ~aa=k=h-*v, ~u=k~ and analogous equali- 

ties for ~. 
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i0. Other Spaces of Co~u~ing Hamiltonians 

The sequence of Hamiltoniarm {H. ~ constructed in Sec. 9 is an example of a general 

construction which makes it possible to form infinite-dimensional spaces of commuting 

Hamiltonians in the ring R[u, hi. We now develop this construction . 

I0.I. Notation. C2(=) denotes the ring of functions of g; with two continuous 

derivatives; C~(h) and C2(g. fZ) have an analogous meaning. The letters l, ).~ denote 

independent formal parameters; the derivatives of them with respect to tt, /t are equal to 

zero. We consider two formal Laurent series with a finite number of negative powers 

~(~eCqu)((x)), ~,(x)ec~(a)((~)) . we set  

~n and ~ have an analogous meaning. 

isolated points. 

10.2. THEOE~4. ~e Hamiltonians 

3"(k)Wn(k)=23~(g, h)k ~. We write ~u=~u(k), 3?-----3"0.0; 

We suppose that ~u, ~uu, 3a ~aaa vanish only at 

{3~(g,h)} commute pairwise relative to the Hamiltonian 

{0 0A o p e r a t o r  ~dx0}, if and only  if t h e r e  e x i s t  f unc t i ons  

o u t s i d e  a s e t  of  i s o l a t e d  po in t s  and a s e r i e s  a~R((k)), 

,ru=a(~) v~ (u) ~", ~n = a  0,) v~ (~) ~ .  

Example, l~ae Hamiltonians {H ~ are obtained by setting 

9 . 2 ) .  

Vi(tt), V~(h) which are  cont inuous  

such that ~u, ~h satisfy the equations 

(29) 

V , = I ,  V2=tt -~, a(X)=X~ (of .  

Proof. As in 9.2 it suffices to verify that condition (29) is equivalent to the  condi- 
J , 

tion 3~Ed/OxC2(tt, h)((k)), where the derivative with respect to t is taken on the basis of 

equations with Hamiltonian 31: gt=N,hx, ht-----Wlux �9 Computing as in 9.2, we find 

nt = 3,", + W~k, = w.~,hx + ~m~ ---- (%3,~ + Wi,3,ha) h;: + (%m~. + ~i,3,,.,) ux. 

Hence the  c o n d i t i o n  ~t~c)ldxC~(u, h)((A)) i s  equivalen~ to the  i d e n t i t y  

(7.,"lu,,+~A~,.D.= (3.3,,. + %3,u)k. 

u g 
which after cancelling like terms and a suitable division acquires the form (~.u/'~)(31..I~, )-I= 

('qaJ~)(~lhhl~) From this it follows that both sides of the equation are independent of 

g, h. and hence have the form a(k)a(kli "I, where =(k)ER((A)) . Further, this implies that 

W~uIZ --a(k)V1(g),~hl~==(k)V2_(h), where V 1 and V 2 are continuous away from the zeros of 

nu, ~a respectively. Obviously. the converse is also true, and this completes the proof 

of  Theorem 9 . 2 .  

11. Lifts of Equations of Evolution 

Theorem 6.8 is proved in this section. 

ii,I. Writing out explicitly the equation for A~ with Hamiltonian 

introduced in Theorem 6.7, we obtain 

A~, , ~- ~otAt+j-lH(j),x + (lAt+]-lHu))x, H(i) = 8HISA r 

H for the operator 

(30) 

B. 
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In order to derive this system from (15), we consider separately the evolution of A s on the 

basis of (15). 

11.2. Using the expressions for g# and /It of (15), we find 

h h h 

'" ' 1'/" = 3 ,.,,.,v,,, / , r y -  

h y 

o \1>~o I x  \ j ~ o  1~ 
(3l) 

We first transform the second (double) integral in this expression. It has the form 

~) ~,j.>O IX Jy V >'~ Ix  / �9 o \s,~u I . \1~.o / z  

I 
j~o ~ ~j;.o Ix  

h h 

\j~o. /x  ~/>o o j>o 

Substituting the last expression into (31) and cancelling like terms, we obtain finally 

�9 ) 
"6 l>o \o l.~1 -x 

----.~ (iA,+j_zH(j).~-t- (.iA,+j_~H(j)).J, 
j>o 

since the Hu) do not depend on y . This coincides with (30). 

The derivation of ~leorem 6.7 from Theorem 6.8 coincides with that of the Benney lemma 

! (A2-~A02) coincide with the equations in the 6.2 if it is ~ted that Eqs. (30) for I-I=--~ 

Benney 1emma, while Eqs. (25) coincide with the origin system (15). 

12. The Benney Integrals Commute 

12.1. Theorem 6.9 is proved in this section. We recall that it means the following: 

XH/-IjE~x~ . This assertion follows from a stronger fact which we now formulate. As was 

shown in Sec. 7 setting P(k)=k--~(--l)tHik -(~+I), , we have p(k)~-~(p(k))-~-k, where ~(k)----- 
oo i-0 

-----~(--l)IAlk-t/+t); the formal series for p(k) is uniquely determined by this equation. We 
i--O 

choose a variable k not depending on kz and set p=p(k), pz=?(kz) . Exactly as in Sec. 8 

it is possible to define the expressions X~p and X~,~ (on k the differentiations act 

trivially). 

12.2. THEOREM. a) For any H=~c~l we have 
j<~v 

XHp -.~ ( ~o  ~--'~] ( - -  I )J+zPi)x; 

v . I@~ ! 

73 



OH 6H Proof. Let I;~=~c][-[] or H=Nz . As above, we shall write H(/)=~-~--~-/7. 
]<IV 

multiply formula (30) by (--l)~-(:+*) and sum (replacing A~, ~ by XHA~): 

We 

CO CO 

t,-o 1-o  

Taking the summation on j to the outside, we obtain 

1-o t - o  1-,o t-,o 
(32) 

We transform the two inner sums on the right: 

~( -- I) ~ (i + ]) A,+j-,N -ti+t) -----(-- I)JNJ ~ (-- l)~*J-IA~+j_~-(~+n = 

[ ] -----(-- I)I"F/-l 4~x (N)-- ~ (-- 1)kAh.xN -(k+l) �9 

We now substitute these expressions into 

use the following identities (Lemma 8.1): 

~# ~) d~/dl---- --N# �9 We obtain 

(32), multiply the formula obtained by OF~O;, , and 

~t (N) ON~Ok = -- Ft -= -- XHF, ~' (N)d~Idk ----- I -- ON~Ok, 

--X.~=~H(I).x (-- I)1 1 (I I,'*I(.+ I) o j- 

The first terms in the inner sums give a total derivative with respect to x of the form 

Hlj)(--I)INJ . We shall prove that the remainder is zero. After this, part a) of 
\ / = o  / x  

Theorem 6.9 is rapidly obtained, while part b) follows from the formula Fl(y)----- 

OAt--." ~,, (Lemma 8.1) which gives 

j = o  �9 j =o  

We prove, finally, that the remainder vanishes. It suffices to do this for H=N~ . Indeed, 

the coefficient of the remainder for l{(/+*), j>0, then vanishes which corresponds to the 

remainder for /-[~-~-(--])J[-I/; this implies the required assertion for any linear combinations 

of the H/ as well by linearity. 
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The remainder has the form 

s [ auj-~ 2 a , , ] ~  ~-2 .. Ou 
1=0 ~=O j=O ~=O 

OF We f i x  s>O and show t h a t  i n  t h i s  exp ress ion  the c o e f f i c i e n t  o f  ~ ~, van ishes ,  

c o e f f i c i e n t  i s  equal to 

This 

~,~,~..(--1P+~-5 ~ (--1)*+: (k -51) A,~,u),x -5 ~ (--I)*§ 
j,~>~0 j,k>O 

j--~--2--s j - - k - - 2 = s  

Substituting here ~*(1) =(-- 1)]+*~[ -(]+0 0"' , we obtain 

:, -5 (-- I)~+~./A~.x~T~+ ~) 
/ - - / ~ - - 2 = S  " : 

+ ~ ( . . a~.,- (~.~_,_~ (--1) ~+' k+ l)A~i-u+~ ~):  +(s-51) _~_~_~ (--I)~+'A~ ~i-u+,}O,-- u ' -  

~.)~-(I~7~'+'~ '(~I)~ , = 
= ' + "  + 

In passing to the last expression we have again used Lemma 8.1. 

13. Miura's Conservation Laws 

13.1. The evolution of u 

A--'+AoA D has the form 
3 

on the basis of system (25) with Hamiltonian H=TH s- 

# 

u t = (At a' ~ ~ -F Aou -5 -~ ]x-- U , ! ( Ao -s U )xd~ = A, . x -s Ao, xu -s AoU x -}- u 'u;  - -  yu,Ao, x -t- uyw , (33) 
0 

Y 

where w-~---I(ttz)~:dr, �9 (In place of -~-H a it is possible to take cH a with any constant 
0 ! 

c; y was chosen to simplify the coefficients.) The evolution of ~, under the same system 

has, according to Theorem 3.2 a), the form 

~,= ( -- AI -5 Ao~ -5 E~ l x =  --  A,x -5 Aox~ -5 Ao~: -51~j:.  " (34) 

The conservation laws of Miura type of this system are obtained from the following relations. 

13.2 THEOREM. [?' (?+u)-'lt--[(A0-sF 2) F' (F-5u)-*]x --[(~--A0. xy)~'(~+u)-'--=~'l,=O, where 
y 

�9 '=--lU#d~, ~'=O~IO~ [cf. formula (21)]. 
0 

COROLLARY. There exist constants Fin, ~., G..0, G., I, Gn, 2, such that under the evolution 
1 

of u, h according to system (25) with Hamiltonian -~H3, there are local conservation 

laws of the form 

~ / , . ,  + P..  ~ + (O~oy + a ~  v + 0~2~)y = O. 
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To derive the corollary from the theorem it is necessary to expand the expressions under 

the derivative sign in Theorem 13.2 in powers of )-z using the formula (~-~)-~-~---~(--l)~ui~ -(i+~), 
i--0 

and equate to zero the coefficient of I-(,+D in the sum thus obtained. 

13.3. Proof of the Theorem. For the proof it is necessary to differentiate all three 

terms of the expression by the usual rules and multiply the result by (~q_u)2 to eliminate 

the denominator. In the expression thus obtained the right sides of the formulas for ut 

(33), pt (34), pt'=2~'~x+l~l~x'+Ao.:p~: ", and vt~=--ux, ~=--(U~)x are then substituted. An 

algebraic sum of forty-six monomials is obtained, all of which happily cancel if it is note d 

that ~v=~u'=0 . 

14. Compatibilit~ of the Hamiltonian Structures 

14.1. Theorem 6.7 contains a Hamiltonian structure on the ring .~4=Q[A~J)] with 

operator a . In 6.5 a Hamiltonian structure on the ring ~~ ~(I) I with operator 

 0=(o 0i O/ was considered. The rings ~ and ~4 ~ are connected by a homomorphism ~4-+~4~ ~ 

where o ~i--=-bu , which commutes with the structural differentiations in ~ and ~4 ~ ; these we 

denote by the same letter d :A}i)~'A~+~), h(i)~It <~+~, ttu>~tt(~+L Let H6~ be any Hamlltonian. 

With respect to it the evolution differentiations X~:.~-+d and Xt~,:~q~ ~ can be 

defined. The precise formulation of the compatibility theorem 6.11 is as follows. 

14.2. THEOREM. }or any P, Q6d we have (XoP)O=X~P o . 

For the proof we need the following lemma. 

14.3. LF~A. For any Q6~ we have 

8Q. . . 80 " ,  ~ Q *  L . i ( 6Q ~ * 

j>o 

Proof. Let ~i~, ~l~0 be the modules of differentla!s of the rings .~ and ~0, respec- 

tively. They are freely generated over ~, ~0 , respectively, by the differentials 

~A}]), 8uU), ~k U) . The differentiation 0 extends to these modules, and the variational 

derivatives are uniquely determined by the following conditions: 

j ~ - O  ' a ~ l  " 

to~lA, 

Further, the homomorphlsm 

O ' f o r  which (;~Q)O='~Qo �9 

o~%~IAo. 

~/-~4 ~ induces a module homomorphism ~I~-+~Iar176 commuting with 

In particular, (~Al)~176 whence 

Recalling that hu 1-I o =Ai_I and the characterization of 

o b t a i n  the required result. 

~Q01~u, ~QO/~h indicated above, we 
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14.4, Proof of Theorem 14.2. If the identity (XoP)O=XQ,P ~ holds for a given Q and 

for Pl, P2 in place of P , then it also holds for this Q and Plq-P2, PlP 2 , and ~Pl in 

place of P . This follows from the basic properties of differentiations, the commutativity 

of XQ, X~0, and the fact that the homomorphism reduces @. It therefore suffices to verify 

the identity for P=Ai, i>0. 

A c c o r d i n g  t o  f o r m u l a  ( 3 0 ) ,  we h a v e  

XQAI = ~ [(i q- ]) A,+I_, (~Q/~Aj)x q- j A~+j_,.x~Q/SAjI. 
l~o 

Therefore, according t o  Lemr~ 14.3, 

(XQA,)O = ~ [(i q-j) htt'~ J -, (~Q/~Aj)~x + jhmu~+J -, (~Q/~AI)o ..}_ j (i q- ] -- I) Izui+1-~tt(') (~Q/~Aj)o I = 
j>o 

1 + I 
LJ~.O JX L j~.  0 JX 

On the other hand, 

XQ,A ~ = XQo ( hu9 = i[lltt-l Xqo'.z -~ lti Xf t ,  h ~--- ih t t  l-t (~Qo/~[t) x ~_ tit (~QO/gU)x. 

This completes the proof. 

CHAPTER III 

SOLUTIONS OF ALGEBRAIC TYPE 

i. Introduction 

i.I. This chapter is devoted mainly to a description of algebraic structures at the 

basis of explicit formulas for certain classes of solutions of Lax equations. These explicit 

formulas include both solutions of multisoliton type as well as solutions of quasiperiodic 

character written in terms of theta functions and also solutions of mixed type. An invariant 

definition of this class of solutions was given in 3.14 of Chap. II: for nonstationary solu- 

tions of Lax equations and the equations of Zakharov--Shabat these are solutions of a com- 

patible system obtained by adding to the initial equation Lt=[P, L] or Lt +Pu=[P, L] the 

auxiliary stationary equation [Q, L] =0 We shall call them solutions of algebraic type. 

1.2. With this in mind the first object of study are the stationary equations [Q, L]=0. 

According to Sec. 4 of Chap. II, commuting operators are connected by a polynomial relation 

with constant coefficients. This relation defines an affine algebraic curve Co Its most 

important characteristics are the following: the genus g of its nonsingular projective model 

C ; points of C, lying at infinity (relative to Co ) and singular points of the curve Co. 

The singular points of Co , at least when they have the simplest form, i.e., are double 

points with separated tangents, are responsible for the multisoliton component of the solu- 

tions of the corresponding nonstationary equations: to each douhle point there corresponds 

one soliton. In the case of genus g=0 this is the entire solution; in the case g>0 it 
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has a quasiperiodic component related to a motion on the complex torus -- the Jacobian 

variety of the curve C . Points of C lying at infinity control the imbedding of the ring 

of functions O on Co into the ring of differential operators (in the simplest case the 

image of this imbedding is generated by Q and L, where [Q, L]=0) . In particular, they 

make it possible to relate the order of operators to the orders of poles of functions at 

infinity. 

One further fundamental invariant of a solution, its rank, is determined in terms of 

the imbedding of the ring O in ~[~] . The simplest description of rank is as follows: 

under weak assumptions regarding O and ~[0] the order of operators in the image of O, 

greater than some constant consists of all multiples of some integer r>l ; this r is the 

rank. Solutions of rank I have now been described much more completely than solutions of higher 

ranks. For the Korteweg--de Vries equation all algebraic solutions have rank I, since for 

it L-----@=~-=, and Q has a representation as a linear combination ~ci < LStl=>, where $i are 

odd integers, so that the degree of Q is odd, and the monomials LmQ n beginning fromsome place 

onward can have any integral order. 

1.3. In order to clarify the mechanism of the difficulties related to the rank, we 

consider the curve C0:~(x,k)=0(~(Q,L)-----0 is the relation coupling Q and L) and for each 

point r163 o we write the system of linear differential equations Q~=x(c)~, L~=),(c)~. 

If ~ consists of (l, l) matrices of functions, then .~ is a column of functions of 

height l . It is found that for almost all points c6C0 the solutions of this system form 

a free (right) module F e over the constants in ~ of the same rank which coincides with 

the number r introduced above, The system of linear spaces {Fc} for each value x can be 

equipped with the structure of a vector bundle over Co, which actually extends to infinity. 

This is proved (for the case l=I and a nonsingular curve Co ) in the work of Drinfel'd 

[7]. It is probably true in general. In any event, all solutions considered in the litera- 

ture possess this property. The functions ~ with respect to c can then be interpreted 

as sections of this bundle; the dependence on x is determined by the variation of the 

bundle. For r= | the generating module of solutions described in a suitable trivialization 

of the bundle is called the Akhiezer function (see, e.g., the work of Krichever [16] and 

Matveev [44]). If a trivialization is not fixed following Drinfel'd [7], then the action 

of Ox on sections is determined by an appropriate connection E7x on the bundle described 
0 

which extends ~ and is trivial along C. 

Since the space of modules of one-dimensional vibrations over the curve C essentially 

coincides with its Jacobian ]c , finding the connection ~Tx reduces to constructing a 

suitable vector field on this Jacobian and verifying its integrability. The integral curves 

of the field are found to be rectilinear coverings of the torus ]c . On the other hand, the 

sections of the corresponding bundle lifted to the universal covering of ]c, are represented 

by the classical theta functions. !~nis explains their occurrence in the explicit formulas 

for the unknown in Lax equations (see the derivation of these formulas in the paper of 

Ma tveev [44]). 
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From this the difficulties related to rank r~2 become clear: spaces of modules of 

bundles with rank ~2 over algebraic curves as well as their analytic uniformization have 

been much less studied. 

1.4. In this paper we have tried to get by with a minimum of machinery from algebraic 

geometry and analysis. Therefore, for us the basic objects will be special algebraic struc- 

tures: the bimodules of Krichever--Drlnfel'd which are described in Sec. 2 and their standard 

realization in Sec. 3. The bimodule technique makes it possible to reduce the problem of 

solving Lax equations to a problem of the variation with respect to x, t, y of certain 

algebraic functions on a curve C, the number of which is exactly the rank. For r=| this 

problem, just as in other versions, is solved almost to the very end, and the basic con- 

clusion regarding the rectilinearity of the motion on the Jacobian is attained in a very 

economical manner. ~ais is the topic of Sec. 4. 

In the case of rank r~2 our technique makes it possible to construct at least some 

solutions of multisoliton type which we call matrix solitons. The justification for this 

name is that explicit formulas for them contain exponents of the form exp(K1xq-K2yq-~l) , 

where 1<i, ]<=, and Q. are matrices of rank r, rather than scalars as in earlier known 

formulas. 

From the bundle point of view our construction is motivated from the fact that if a 

curve of genus zero with singularities is considered as Co , then after lifting the bundle 

to a smooth model of Co it becomes invariable (a not very complicated theorem of Grothendieck), 

Therefore, variations of the bundles over C arise only due to the joining of fibers at 

those points of the smooth model C, which coalesce on Co . The space of modules of bundles 

essential reduces to a product of linear groups over k , and the problem of describing 

suitable vector fields on them and connections can be handled. 

It has been observed repeatedly in the literature that soliton solutions correspond to 

degenerations of conditionally periodic solutions. Nevertheless, a detailed algebrogeometrlc 

investigation of such solutions can provide useful information even in the case r=| , since 

the invariants of complex degeneration are well revealed in the language of the structure of 

singularities of curves but rather poorly in the language of theta functions (see the work 

of bLatveev [44] where the simplest degenerations of hyperelliptic curves are treated analy- 

tically). This is even more applicable in the case r~2, where the corresponding "matrix 

there functions" are unknown. 

In Sec. 5 we construct bimodules of arbitrary rank, and in Sec. 6 we investigate multi- 

soliton solutions of rank 2. We shall here describe the simplest case of a single soliton. 

The ring ~) consists of meromorphic functions of x, I. 

1.5. The simplest Lax equation having soliton solutions of rank two has the form 

0tL=IP, L 1 , where L=04x~-V0~ ~-w0x~-z, P=~0~q-C0x~-U; here ~, cER are constants, and u, 

~, ~', and z are unknown functions of x, [ . Writing out the coefficients and eliminating 

u , we obtain the equivalent system of equations 
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. : I v  t = 2 v x x - -  2 ~  x --r 

- -  " -~Z~ t =--- ~ ~Z'xx ~'. 2 Z~ x x  x - ~  ~dV x - -  C t o - ! ~  x ~ 2Zx, 
_~ I I I 

- -  ,,, z t = ~ v ~ , . ~  + w v . v  ~ - -  z x~ + ~ v . : z  - -  c ~ - '  z ~. 

According to Sec. 3 of Chap. II, this system can be represented in Hami!tonian form. Beginning 

with an operator L of just fourth order an interesting feature of the corresponding Hamilton- 

,an of the differential operator appears for the first time: its coefficients depend explicit- 

ly on the unknown functions (in the present case only on v ). The single-sol,ton solution of 

this system has the following form. We set ~=x+ct and choose an arbitrary real constant 

aER, a~0 . We introduce the auxiliary functions 

, n _ . ~  .ch 2a~ --,cos 2a~ + 2sin 4a~t  ' 

2a~ sh 2a~--sin 2a~ 

Then 

A special feature of the behavior of this sol.ton consists in -the following: i t mo~es a s a 

whole with speed --c, but changes form with period ~(2a2~) -z . At infinity :(with respect to 

~) the amplitude of these variations decays rapidly, but at times when cos4a2~t=--l, infinite 

ejection (in the functions ~h W, Z ) periodically occurs at its cenKer :~=0 . Thus , our 

solution displays a geyserlike behavior and deserves the name "geyseron" or "shooting sol,ton" 

We remark that the vibration of the solution with frequency 4a2~ forma!ly occurs due to the 

same mechanism as the vibration of a free relativistic electron in the Schr~dinger solution 

of the Dirac equation. 

Another interesting fea~gure of ~the behavio~r of the sol!ton is =hat t he speed --c is 

comple~tely determined by the equations while the ~mplitude (measured by th e factqr a) may vary 

arbitrarily. In Sec. 6 where this example is considered on the basis o<f the genera ! theory 

it -is Shown that --c is also the common speed of the muir, so!iron solution s whic h ~thus repre- 

sent a "coupled system" of sol,tons in contrast, e.g., to the mu!tlsoliton so=!ut~ions o~f the 

Kor teweg-Me Vries equations. 

1.6. Finally, ~the last section of this chap~ter is devoted ~to the descr:iption of a 

:special class of solutions of the :Benney equations and ~its analogues. In the notatiqn of 

1.3 of Chap. II these solutions are obtained by add!ing to the Benney equations :the cond iti0ns 

h~--~ , where c is any constant after which the problem reduces to a well known ~ ~ ~ 0 ~ 

problem. The character of these invariant manifolds is not altogether clear in contrast to 

the auxiliary stationary problems for Lax equations. This hinders, in particular, the 

elimination of the condition /r . We remark that since the conservation laws [~ of 
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Benney do not depend on the derivatives of the moments A,, it is here meaningless to apply 

the technique of restricting to extremals of conservation laws, since by the results of 
6H 

Chap. II the set ~=0 is defined algebraically rather than by differential equations. 

Questions hereto related merit further investigation. 

2. The Bimodules of Krichever and Drinfel'd 

2.1. Notation. In this section k is any field of characteristic O, ~ is a central 

k -algebra which is not necessarily commutative, 0, 01, 02:~-+~ are three pairwise commuting 

k -differentiations, and ~[0] is the ring of 0-differential operators with coefficients 

in ~, and the commutation rule Oob--bO=db . The differentiations a, and d 2 act coef- 

ficient-wise on ~[0] . 

We fix some ring O of an affine curve over k . Suppose there is given an imbedding 

of k-algebra i:O-+~[0], ~(~)=L; for any ~O . Obviously, [L~,L~]=O for all ~, 9~O so that 

prescribing i is equivalent to giving an entire class of solutions of the stationary Lax equations. 

We startby assoclatingwith theimbedding ~ a certain ~-linear space J~ having a series of 

additional structures: the (~,O)-bimodules of Krichever and Drinfel'd. We then show that 

the imbedding i is recovered on the basis of the given bimodule, and solutions of the Lax 

equations and the equation of Zakharov-Shabat are also constructed. In the next sections 

we investigate and construct the bimodules themselves. 

2.2. Construction of a Bimodule on the Basis of the Imbedding i. We set ~=~[d] 

and consider the following structures on Jr. 

a) ~ acts on J~ by multiplication on the left and O-----i(O) by multiplication on the 

right. 

b) In ~ there is a distinguished element I -- the identity operator. 

c) In ~ there is an increasing filtration 

V m = a o m  acts on~ . These structures satisfy the d) The k-linear operator E7 : J~-+~, 

following axioms which are trivially verified: 

e) The actions of ~ and O commute so that J~ is a (~, O)-bimodule. 

f) ~_i ----- {0}; ~J~iCJ~ i for all i. 

g) For each [>--I the factor d~i§ i is a free ~-module of rank I; I is the 

free generator of 2W0. 

h) For all b(~-d, ?6(9 we have • (bm)=db.m+b~7m, V (rnL,)=(~Tm)L~. 

X7 is a 0-connection on the ~-module J~. 

In other words, 

i) For each i>--I, ~7~C~i+i and ~7 induces an isomorphism of ~-modules 

J ~ i / ~ _ t  ~ J ~ t + l / ~ i  �9 
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A connection of the action of (9 with the filtration {A4~} isnot postulated,but itcan 

sometimes be described explicitly on the basis of the following Lemm- due to Drinfel'd, 

2.3. LEMMA. We assume that O has no zero divisors, i((9)~k and that for any 96(9 the 

coefficient of the leading power of 0 of the operator Lr is not a zero divisior in ~. 

We denote by C the smooth projective k-model of tile affine curve Spec(9 . Then on C there 

exists a unique closed k-point oo, the image of which does not lie in Spec(9, and such 

that for all ~E(9 the order ordoLr of the operator Lr is equal to r ord~ . The integer 

r> l does not depend on ~ and is called the rank of the imbedding i. 

COROLLARY. Under the hypotheses of the lemma ~t~C~t+rora~. If, moreover, the lead- 

ing coefficient of gr is invertible, then multiplication by Lr induces an isomorphism 

J lJ / , '~ t - I  -)" , ~ l + ,  ora ~lJ.~t+, or~ ~ - l .  

Proof. The mapping ~:(9-+Z, ~(?) =--ord0L ~ , possesses the following properties: 

v((9)~&{0}, ~(k)={0}; v(.~@)----~(?)'q-v(@); ~(pq-,~)>min(~(?), v(@)) . It is easy to see that ~ extends 

to the quotient field of (9 by the formula v(p@-l)-----~(?)--~(@), and all properties described 

are preserved. Therefore, v defines a k-valuation on the field of functions on C . Let 

oo be the k-point corresponding to this valuation. It does not lie on Spec(9 since v(?)<0 

for some ?EO . The group of values of ord~ coincides with Z, while the group of values 

of v is rZ for suitable integral r ; this is the rank of i. 

T~tis lemma is usually employed in the following manner. Suppose that we are interested 

in solutions of Lax equations [Q, L]=0 with an operator L of low order, e.g., L=O2-]-u 

for the Korteweg--de Vries equations. In order to ensure the existence in (9 of a function 

with ord0L~=2, we must have on C a function with its only pole at oo of second order. 

In the case oo6C(k) and the closure of Spec(9 has no singularities at infinity this 

requirement means that C is a hyperelliptic curve, possibly degenerate, and r=1. 

We shall now indicate how solutions of Lax equations are constructed on the basis of the 

bimodule ~. 

2.4. THEOREM. Suppose that a bimodule ~ is given with structure 2.2 a)-d) and axioms 

2.2 e)-i). Then there exists an imbedding i:O-+~[0] and an isomorphism of bimodules ~[01NJ~, 

which preserves all these structures. 

Proof. We denote by ~[~7] the ring of ~-endomorphisms of the space J~ generated by 

multiplications by elements ~ and the operator V . The canonical mapping ~-+~[X7] is an 

N 

imbedding by 2.2 g). Any element of ~I~7] can be represented in the form ~b~ using the 
l=O 

commutation rule ~Tb--b~7-----Ob [2.2 h)]. This representation is unique by 2.2 i). There is 

therefore a unique ring isomorphism ~[~7]--N~[0], V~0, which is the identity on ~. It 

follows from 2.2i) that J$ is a free ~[~7]-module of rank I, generated by I, and that the 

isomorphism .~[~71~$~I01 extends to an isomorphism of the modules ~=~[VI |~[01. We point 
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out that in this argument the O-module structure on d~ was nowhere used. This is important 

for Theorem 2.6 below. 

For each ~s we now define an operator L~6~[O] by the formula [~=L~I using the right 

action of O on d6 . By the foregoing, L~ exists and is unique. The mapping ~L~ is k- 

linear, has trivial kernel, and is multiplicative by 2.2 e)whichcompletes the proof. 

The next two theorems concern nonstationary equations. 

2.5. THEORF~-I. Suppose that a bimodule dl is given with the following additional 

structures: a differentiation 01:.53-+33 which extends to a 01-connection" V1:Jl-+d~% with 

[~7, X71]=0 and (E7, I)~= E71(I~) for all ~EO �9 For ~O we construct the operator Ji~, as 

in 2.4, and we define PE~9[O l from the equality vll=Pl. Then 01Lm=[P, L,]. 

Proof. We have (Lo--ld.-,,)l-----Oand (Vz--P) I=0. Hence [~71--P,L,--ld..~]l=0. But 

[~71, Id.~ll--=O and [P, Id.~]l-----O, while [X71, L~]I =01L~I, since [X71, V]=0 . Therefore, 

(OIL~--[P, L~])I=0, and the operator on the left is zero in 33 [0], since I is the free 

generator of d6 over 3310], by the argument of the preceding section. 

2.6. THEOREM. Suppose that a ~-module ~ is given with the structures 2.2 a)-i) 

in the description of which all mention of O is omitted. Suppose, moreover, the following 

additional structures are defined on d/ : 3~-connections XTl:d~-+JI, extending 0 I, j=l, 9, 

where ~7, ~71, ~2 commute pairwise. We define operators L, PE$~o[O] from the conditions 

VII=LI, v21~P1 . Then OlP+O=L=[P,L]. 

Proof. From the relation [V,--L, X72--P] I=0 we obtain, as above, the required asser- 

tion by noting that [E71, V2]=O, [Vt, P]=olP, [V2, L]=O2L. 

Remark. Although as is evident from the formulation of the theorem, the O-module 

structure on Jl is not essential, those modules which are constructed by the method of 

Krichever and Drinfel'd carry this structure with some O by the very construction. 

2.7. We remark in conclusion that in the ring of symbols 3~((~-I)) it is possible to 

obtain additional information on commutative subrings using Theorem 5.14 of Chap. II. Let 

N 

O,vCSg((~.-1)) be such a subring and suppose it contains an element L=~ r2~ z, for which =N 

is a 0-constant, is semisimple, and UN_I6IUN, ~]=~-. Theorem 5.14, assuming surjectivity 

oo 

of =0:~*-+33 +, implies the existence of the symbol I+~_~.-~-----Q with the property Q-XoLoQ= 
k=l 

~m~ x . Therefore, the entire ring Q-*oOoQ consists of symbols which commute with ~N~ N. 

Now it is evident from the results of Sec. i of Chap. II that the space of symbols 

commuting with ~m~ ~, consists precisely of symbols of the form ~i~, where ~KerO~33 +, 

since all such symbols commute with ~N~. N , and the subfactors of this space, considering 

terms in the given interval of orders, have the required dimension. 

This implies several conclusions. 
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a) If the leading term UN of the operator L is a @-constant and is semisimple, if 

u~-1~- , and ~9 + is commutative, then any two operators commuting with L, commute with 

one another. 

Indeed, then the ring (KeraN~+)((~-l)) is commutative. 

This result is applicable to the case ~=JWl(,~0 ), I~N=diag(cl ..... el), ci--/=r for it~=/. 

In this case the entire ring of symbols commuting with uN~ N, consists of diagonal matrices 

of symbols with constant coefficients. Therefore, l "partial" order functions are defined 

on it: the orders of the symbols at the site (ii), l~<i..<l . The argument of Lemma 2.3 can 

be applied to each of these separately, so we obtain the following result. 

b) If in the commutative subring O~[@ I with ~=Ml(.~o ) there is an element L with 

invertible uN=diag(el ..... r ei=/=cj, =~-16.~-, then on the smooth projective model of SpecO 

there are .~/l infinitely distant points the orders of the poles at which are determined by 

the partial order functions of the symbols of the corresponding operators. 

In the centralizer Z in .~((~-i)) the partial orders do not depend on one another, but 

in 0 they may be related and even completely determined by one of them. Therefore, among 

the points at infinity there are not necessarily I distinct points. 

3. The Standard Realization of a Bimodule Over a Field 

3.1. In this section we assume that the basic differential ring ~ is a field. This 

does not reduce appreciably the generality of the results, since for almost all initial con- 

ditions the solutions of the stationary and nonstationary Lax equations are locally analytic, 

and we can seek them in the field of germs of meromorphic functions. The base field k in 

applications is R or C ; it is assumed to be algebraically closed in ~ and to coincide 

with the @.-constants in ~. 

Let OC~[@] be a commutative subring containing ~ . It contains no zero divisors. 

The orders of its elements form a semigroup; hence, there exists an integer t~, such that 

all those orders greater than n0, form an arithmetic progression with difference r. From 

the proof of Lemma 2.3 it is clear that r coincides with the rank of the (~, O)-bimodule 

~=~[@]. The semigroup of orders of O is finitely generated; choosing its generators and 

operators of the corresponding orders we find that the ring O is finitely generated over 

k . It is thus the ring of an absolutely irreducible curve. Let oo be the point of its 

smooth model defining the orders of Operators of O as in Lemma 2.3. We shall assume that 

the leading coefficient of at least one element of O of nonzero order is a constant. From 

formula (i)of Chap. II it then follows that all leading coefficients of elements of ~) are 

c o n s t a n t s .  

In this section we consider ~ as a left ~| with action (b/)m~-bm~, 
k 

b6~, m@~, /@O, and we realize ~ as a submodule of vectors in the r -dimensional co- 

ordinate space A "r over the quotient field A" of the ring ~O. This realization is called 

the standard realization. 
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In order to describe it and carry over to its 'language the basic structures related to 

~! , it is convenient to use the elements of the theory of algebraic curves. The field K 

is the field of functions on an algebraic curve over ~-- the smooth complete model of SpecO 

with field of constants extended to ~ . The points of the field are local rings in K con- 

taining ~ . Those field points which come from points of the complete smooth model of 

Sper169 are called constants and the remaining points are variables. For example, oo is a 

constant point. The principal part of an element f~K at a point P is called the class 

of f modulo the maximal ideal corresponding to P. 

Any k-differentiation of ~, in particular O, extends uniquely to K by the condition 

0�9 . The same letter O is used to denote the coordlnate-wlse actlonon K r. 

We can now formulate a theorem on the Standard realization. 

3.2. THEOREM. The bimodule J~=~[O l is canonically isomorphic to the ~O-submodule 

~IcK r with the following properties: 

a) (.~ the factor space ~I(.~O) ~ is finite-dimensional over 39. 

b) The element 16.~ is represented by the vector l~-----(l,O ..... O)tE.~. 

c) Let "[[o) denote the subset of elements of ~, the j-th coordinates of which have 

poles at oo of order not exceeding i------L f--c-O, .,r--l. Then d~(0C(~/)~for all i and 
r ~ ' ~ 

J/[(t)~-(.~,i) ^ for all i>/i0, where ~0 is a suitable constant. 

d) The connection ?:Jl[-+./l[ is induced bya connectlonon K r of the form ~-----0~-A, where 

As is a matrix of the form (for r>/2) 

/o: o...o\ 
A=( ~176 ""~ 

,,:oi,;. :,,i_,/ 
Proof. We note first of all that the ~O-module ~ has no torsion. Indeed, suppose 

F is the semigroup of the orders of elements of �9 . For each nEl" we choose an element 

[nEO with leading 0 n . Clearly, the elements {fn} form a k-basis of 0 . They therefore 

form a ,~-basis of 40. If ~ bnf,=/=O is any element of ~O and mE~, re&O, then 

(Xbnfn) m=Xbnmfn Choosing the greatest n 0 with bn,~0 , we find that the leading term 

of (Xb,fn) m is equal to the leading term bn.mfn ,, i.e., is different from zero. This means 

that d[ has no nontrivial torsion. This implies that the canonical mapping J[-+K ~ ~: 

m~l| is an imbedding. 

We establish the isomorphism K | r . We set M'=~lO+...-{-J~vr-llO. Since all 
~O 

elements of P are divisible by r, the orders of the elements of 3~7JIO are all congruent 

to jmodr , and therefore the sum of the ~TJlO is direct. Further, the orders of elements 

of ~' include all integers greater than some no, and therefore ~=~'+~. Since the 

space ~n. is finite-dimensional over 3~, the ~O-module d~/~' is a torsion module. Indeed, 
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if f~ is any element of nonzero order and m~.~l, then there is always a nontrivial rela- 

tion of the form ~gi~/i~,~l ', i.e., ~b~f ~ is annihilated by ~mod~'. 

Thus, the imbedding ~'-+J~ induces an isomorphism K@.~'--,.K| In view of the above, 

K| has the canonical basis {vJll0-.<j~<r--I } (more precisely, {IK| . We identify 

K| and K| with the space K r of columns of height F with coordinates in K by 

means of this basis. This defines the canonical imbedding d[->-K r. We denote its image by 

~. The inclusion (~O)rcJl and the finite-dimensionality of ~/(~O) r over ~ have actually 

already been proved: (~O) t is the image of ~', while .~I(~O) r is isomorphic to the factor 
~t ,~ 

space ~,,/~ N~,.. The element I~' is represented by the vector (I, 0, ,0) t . 

The filtration with respect to order is easily described on (~O)': to the vector 

(bofo ..... b,_,fr_1) t, (5j~,/]EO) there corresponds the operator ~ bjVYlfl, the order of which 

is equal to max(]+ordLfj[b1=/=O ) =max(j--rord~l]bj--/=O)by Le~ma 2.3. Therefore, (bofo ..... 

5,_~f,_~)tE(~) ̂, if and only if j--rord~f~<i , i.e., the order of the pole of fl at oo does 

not exceed i--j for bl--/=O. Taking the order of the pole of the zero element to be --oo 
r 

we may remove the condition bl--/=O. 

~ms ~o)c(~) ^ . In ~ we now choose a finite-dimensional subspace over ~ complemen- 

tary to (~)" . The orders of the poles at oo of all the coordinates of elements of this 

subspace are uniformly bounded. They are therefore contained in ~(~) for the sufficient- 

ly large ~. This impllesthat ~(o=(~) ~ for sufficientlylarge i. We have now verified asser- 

tions a)-c) of Theorem 3 . 2 .  

In order to establish d) we note first of all that the connection V extends uniquely 

to a connection V:K|174 with ET~|174174 for all /EK, mE~ (this is 

a standard fact regarding the extension of connections on a localization). 

With the identification of K| with K r we obtain a connection ~$7:Kr-+Kr. The 

difference ~--0 is a /(-linear mapping K'-+K r. Let A be the matrix of this mapping. 

Since ~7(XTil)=ETI+II , we have on setting ej=(O...O I 0...0) t a representative of ~TJl in K r, 
i 

{ej+~ for j < r - -  2, 

Ij~=o i I , .  l - - - -r-- l .  

~ e r e f o r e ,  A has  t he  form i n d i c a t e d  in  the  theorem.  This  c o m p l e t e s  t h e  p r o o f .  

3.3. Remark. The standard realization of .g shows that the matrix A, or its last 

row (A 0 ..... Ar_1 ) is essentially the unique invariant of ~ (for given .~ and O ): ~ is 

recovered from it as s ..... 0) t, together with the filtration, the action of ~ and 

the connection ~. j-o However, (A0 ..... At_l) cannot be chosen arbitrarily, because the condi- 

tions that .~ be invariant with respect to multiplication by O , have finite type over (9, 

and that the filtration of ~ be described in terms of the behavior at oo, as in Theorem 

3.2, imposestrong and nontrivial restrictions on A . We shall occupy ourselves with them 
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in the next sections. Here we note only that part of these restrictions have the character 

of differential equations: A is to be considered as a collection of functions on the model 

of SpecO, depending on parameters x, (x, t), (x, ~', t) and satisfying certain differential 

equations in these parameters. 

4. Bimodules of Rank 1 

4.1. In this section we give a classification of bimodules of rank 1 which satisfy two 

additional conditions. We can formulate the first one immediately: it is that the ring ~O 

consist precisely of all functions of the field K, having a pole only at the point co . 

This condition is equivalent to the condition that SpecO be obtained from its smooth 

complete model by excising the point at o~. The second condition will be formulated later. 

We fix Jf and its standard realization ~s 

Let AEK be defined as in Theorem 3.2. 

We call a pole of ~ any point P of the field K, for which there exists an element 

/6Jr, having a pole of order >| at P. We call the order of the pole P the greatest 

order of the pole of /E~ at P (oo if there is no greatest order). 

4.2. I~[EOREM. a) There exists a finite number of nonconstant points Pl,-.., P~ of the 

field K and positive integers =, .... , a s such that ~ consists of all functions of the field 

having poles of order -.<ai at Pi (1-.< i -.< s) and a pole of any order at oo. 

b) The degree of the divisor D=~u~P i is equal to the genus g of the field K. 

c) Let z be an element of tile field of fractions of the ring O , which is finite at 

all the points P~ ..... Ps, c~ and such that z--z(Pi), z--z(oo)are local parameters at the 

points P~, oo, respectively. Then the principal part of A at the points Ph ~o, have the 

respective forms a~0z(P~) ~-r b ~c=o, where ci, c~ line inthe fieldsof the residue 
z - - z  (P~) z - - z  ( ~ )  

$ 

classes of the points Pi, oo. The divisor of the poles of A is precisely o~-~p;. 
i=l 

Proof. Let P be any point of the field K, and let Op be its local ring. It is 

oo 

known that @ takes Op into itself (cf. [20, Lemma 2]). Since ~=~9(@~-A)J| , all 
]=0 

poles of J~ must be contained among the poles of A, so that ~ has a finite number of poles. 

We shall first show that at oo ,,~ has a pole of exactly first order. If A had no pole 

at oo then neither would ~#, and this would contradict the inclusion ~Oc.~. If the pole 

of A at oo were of order a>2 , then the order of the pole of (@~-A)J| would be 

precisely ja (an easy induction on j using the fact that 0 does not increase the order 

of a pole at a constant point). But (@~-A)J| corresponds to the operator @]~[@]=J~, and 

by Theorem 3.2 c) the order of the pole at oo of the function (0~A)J 1 for sufficiently 

large j must coincide with ] . Therefore, the case a>2 is impossible. 
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Suppose now that P~ oo is a constant point. We shall show that it cannot be a pole of 

A and hence of 31. Indeed, otherwise, the same argument as in the preceding paragraph 

shows that ~ contains functions with a pole at P of arbitrarily higher order. But 

is finitely generated over ~O, while elements of ~90 have no poles at P at all; this 

is thus impossible. 

We now consider a nonconstant pole Pl of the module .~ . Its order is finite, for 

otherwise, as above, ~ could not be finitely �9 over ~O, since the elements of 

390 have no poles at Pi �9 Suppose that ai>l is the order of this pole. We choose z in 

the field of fractions at O, as in part b) of the formulation of Theorem 4.2 and an element 

/q~ witli a pole of order al at P~ . It may be assumed that f---(z--z(P~))-ai~_ 0 
((z--z(Pi)) -~ . Since (~+A)/~.~C must also have a pole at P~ of order no greater than 

a~, and 

(o+,.x)/'---a.t'q- ~,o~r 4_O((z_z(pO)_o.,, 
( z - - z  (Pt)) at+t 

we find that the expansion of A at Pi must begin with azaz(Pt) 
z - - z  ( P d  " 

$ 

We set D-----~aiP i and denote by ~(D+]oo) in the linear space over ~ of all func- 

tions of /~, the divisor of the poles of which does not exceed D~joo. According to 

Theorem 3.2 a) and c), for sufficiently large ] we have ~(jo~)c~jc~(Dq-joo). Therefore, 

.~j=f~(D~-]oo) for j>>O, since in d~j there are elements with principal parts at Pi of 

order exactly ui, and taking linear combinations of them with suitable coefficients in ~O, 

we can make these principal parts whatever we wish. 

Now the dimension of ~] over ~ is equal to j~-|, while the dimension of ~(D-~joo) 
for j>>O by tile Riemann--Roch theorem is equal to degD--g~-|~-/deg oc. Therefore, oo is 

a point of first degree and degD=g. This completes the proof. 

4.3. We now formulate the second condition imposed on our bimodule ~. It is that the 

divisor PI+...+Ps defined in the preceding section be nonspecial, i.e., there exists no 

differential of first kind that vanishes at PI+...+Ps, But then from the existence of a 

nonconstant function A with a divisor of poles Pl +...+Ps+ c~ it follows that deg(EPi) = 

g, u~=|; the function A is uniquely defined up to an additive constant. 

The divisor PI+...+Ps is clearly nonspecial if this is so at the initial point x=x0, 

and the set of such initial co~itions is dense in the g-fold symmetric product of spec O. 

We shall now show that the conditions on A become a condition on the linear variation 

of the Jacobian coordinates of Pt~-.-.~Ps with respect to x in the functional case. We 

shall assume that ~ is the ring of germs of meromorphic functions of x and represent the 

P~ as germs of holomorphic paths on the Riemann surface of SpecO, parametrized by x. It 

may be assumed that they are distinct, i.e., $~--g. 
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We choose a basis of differentials of first kind ~o~,., .,o~ in the field of fractions of 

O ," a function z as in Theorem 4.2 c), and set %=t~dz. The functions =i are finite at the 
g Pi 

P~ .... ,Pg. We set J~=J~(x)-----~ ~ I ~" We define the element b~ from the condition points 
b j=~oo 

A=z_z(~o~ ) FO(1) n e a r  o~. 

4 . 4 .  THEOREM. a) 0~31=bu.(o~)  f o r  a l l  i = 1  . . . . .  g .  Hence the  J a c o b i a n  c o o r d i n a t e s  o f  

the  d i v i s o r  P~'-F...@Pg move i n  a c o r m t a n t  d i r e c t i o n  (uz (~) )  w i t h  speed  b(x) a t  t h e  p o i n t  

x . 

b) Conversely, suppose D=Pl-}-...-~cPg is a nonspecial divisor of the field K, the 

Jaeobian coordinates of which vary with x as in part a) with some function b6~ . Then 
b 

there exists a unique (up to a constant of ~ ) function A with principal part z--z(oo) 
oo 

at .~ and divisor of poles D@oo, and ~(0~-A)01 is a (~,O)-bimodule. 
]=0 

Proof. a) For any differential ~ of the field /< we have ,~resQ(~A)=0 . There can 
g Q 

be poles of t,,iA only at the points Pl ..... Pc, oo, so that z_~respj(~,~iA)= --resoo(~iA ) . 

Therefore, J=~ 

g g u~ (z) OxZ (P j) g 

b) Conversely, suppose that PI~-.... ~-Pz varies as in part a). Then the calculation of 

OxJi read in the reverse order shows that at the points P] the principal part of ~ begins 

with OxZ (P/) , since the matrix (ul (P])) is nondegenerate because Pl-~... m_pg is nonspecial. z--z (P~O 
Arguments analogous to those given in the proof of Theorem 4.2 show that ~(0~-A)II= 

j>0 

Uf6(pl+...-~-p~-}-]oo), and all the axioms of a bimodule for this space are verified without 
j>0 

difficulty. 

4.5. Theorem 4.4 gives almost a complete classification of bimodules of rank i over a 

field. In order to apply it to find solutions of nonstationary equations, it is useful to 

have in mind the following situations. 

a) Let us assume that .g~ is a ring of germs of functions of x, t . To solve nonstation- 

ary Lax equations we must extend 0 t to ~ by the condition [~x, ~tl=0. This extension 

of ~t must have the form Ot-~-At where ATE/< . Since (Ot-~-At) 16J[, we necessarily have 

Ats . The commutation condition has the form OxAt==--OtA. Since each element of J[ is 

uniquely determined by its principal part at oQ (because Pl ~-...-~pg is nonspecial), A t 
2 

can only have the form --i OtAdx-}- (an element with a 0x-COnstant principal part at oo ). 
A'0 

On the other hand, since the connection ~t must take J~ into itself, the behavior of A t 

near P/ is determined by the same sort of conditions as in Theorem 4.2 c). The argument used 

in the proof of l~leorem 4.4 shows that the motion of P1~-... q-Pg with respect to t also 

becomes rectilinear in Jacobian coordinates; its direction and speed are determined by the 

principal part of A t at oo. The same is true for the motion in y for solution of the 

Zakha rov--Shaba t equations. 
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Jr 

5 ~x 
b)  We s e t  9-~-e x~ . Then f o r  any  ~ we h a v e  I (0x~-A~m]~=Ox(nz~) . .  T h e r e f o r e ,  

can also be realized as the space ~, to which all structures carry over in an obvious 

way, while the connection ~x goes over in to ordinary differentiation with respect to x . 

TLIe function ~ is called the (stationary) Akhiezer function. Prescribing this function is 

equivalent to prescribing A and hence the bimodule ,/~ in the standard realization. In the 

papers of Krichever [16] and Matveev [44] this function is taken as the initial object. If 

A does not depend on t nor A t on x , then in the nonstationary case the function ~(x, t)---- 

io) exp Adxq- AAt . On ~ the connections Vx and ~t become O x and 0t, respectively. 
X# 

c) Since A, At are determined by their divisors and principal parts at co, they can be 

written out explicitly in terms of the classical Riemann theta functions. The coefficients 

of all operators which enter in the solution of Lax equations are expressed in terms of A, At 

and their derivatives. This leads to explicit formulas for the solutions. For further 

details we refer tile reader to the papers [16], [44], and Sec. 6 of Chap. IV. 

5. Bimodules of Higher Rank dyer a Rational Curve with Double Points 

In this section a class of bimodules is constructed which may have arbitrary rank r~l. 

For the motivation see 1.4 and 2.2. The realizations given here are close to the standard 

realizations but do not coincide with them. 

5.1. The Initial Objects. We set k=R or C, and we let ~0 be a ring of germs of 

k -analytic or infinitely differentiable functions of the variable x (for stationary Lax 

equations), of (x, t) (for nonstationary Lax equations), or of (x, t, y) (for the equations of 

Zakharov-Shabat); ~=A/l(~0) (the matrix algebra of order I over ~0); O:-ax=O/Ox, ~=~,= 

0/0t, 02=0,=0/c)y. 

To construct O we choose 2N distinct numbers ~i, ~C, i=I ..... N with the condition 

~-----~ if k=~ and we set 

O =  {f (k)6k [~] Irk = 1 . . . . .  N,  f (~i)=f(~i)}- (1) 

I t  i s  o b v i o u s  t h a t  0 i s  a r i n g  o f  f u n c t i o n s  on  t h e  a f f i n e  l i n e  w i t h  AT p a i r s  o f  i d e n t i f i e d :  

p o i n t s  r e a l i z e d  a s  a s u b r i n g  o f  t h e  f u n c t i o n s  on  t h e  l i n e  i t s e l f ,  i . e . ,  k [ t ] .  

S i m i l a r l y ,  we c o n s t r u c t  ,~ a s  a submodule  o f  t h e  t r i v i a l  ( ~ , k [ l ] ) - b i m o d u l e  ~ = ~ [ ~ ] r  

o f  r a n k  r w i t h  i d e n t i f i c a t i o n  c o n d i t i o n s  a t  t h e  p o i n t s  (~i, ~i) �9 

We shall write elements of ~r and ~e=,~[~]r as columns of height r with coordinates 

in ~, ~[~I, respectively ( ~ commutes with ~ ). We introduce on ~r the left action of 

by the formula 

b l "  l b i b t \  

b : = : , 
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where t is the transpose in ~=~t(,~0). We define the right action of k[k] on ~ as co- 

ordinate-wise multiplication on the right by k[k]E r , where Er is the identity matrix in 

OL(r, 03=3) . Finally, we introduce on ~ the natural left action of the group ~L(r, ~). 

Obviously, the actions of ~ and k[k I on ~ are effective and commute with one another and 

with the action of ~L(r, ~). 

The identification rules defining de are described by a collection of N matrices 

gi~@L(r, C| on which additional conditions will later be imposed. Having chosen this col- 

lection, we set 

= { m  (~ , ) e~  iXl' = ~ I v i  = 1, , N ,  m (=,,) = g,m (.~,)}. (2) 

If k=R and ~==i, this implies the condition g~-----g[~. 

The remainder of this section is devoted to describing those conditions on (gi) and 

(ai, ~i), which enable us to introduce on ~ the bimodule structures with the axioms of 2.2. 

5.2. The Actions of ~ and ~. We have described above the actions of kik] and 

on ~. It is obvious from definitions (i) and (2) that ~gc~, ~C~ and the actions 

of ~ and ~ on ~ commute. That these actions are effective will become clear below 

following construction of the element I~. 

5.3. The Filtration. We first describe an auxiliary filtration on ~ by setting 

~_i={O}, and for any a>O, O..<k~<r ; 

~'ar+~= E~[k] r, bl .... , bk are polynomials in k of degree ~<a ; 

tkb,/ 

b~+l . . . . .  b r are polynomials in X of degree .<. a - -  1 }. 

o o  

(A polynomial of degree ~<--I is zero.) It is obvious that ~C~t+t and d~=OM't. 

Further, ~t~-----~t| where el+i has 

( 3 )  

/=0 

XaE r a t  t h e  s i t e  k q - 1  f o r  I t - e r A - k ,  a > O ,  O~<k~<r--1 

and zeros elsewhere. Therefore, ~ t + I / ~ t  is free of rank i. 

The filtration we need on ~ will be induced by this filtration on ~" and the follow- 

ing shift. We temporarily set d~(~)~---~:r:nJ~ . It is obvious that ~-----~(~) and ~(k)c~(~). 
4=0 

We impose the following conditions on the collections (gi), (ai, ~i). 

5.4, The Nond~generacy Condition. The block matrix in MrN(~): G-----(a~E,--~), I~< 

i~<Y, O~<]~<N--I is nondegenerate, i.e., belongs to GL(rN,~). 

5.5. Lemma. If the condition of nondegeneracy 5.4 is satisfied, then ~(i)={0} for 

i~<rN, and the natural mapping ~t+I/~t-+~'~t+i/~'t is an isomorphism of ~-modules for 

l > r N q - 1  . 

The filtration ~k~-Jg.(~+rN+i> for k>/--I therefore satisfies conditions 2.2e, f, and 

g where any ~-generator of the module ~(r,v+l) may be taken as I . 
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Proof. According tO (3), ,-~"r.,v={ ~ ~/)JI,"~i6,~J~'} �9 
j<N--] 

Therefore, by (2) 

. , ~ ,~ )  - .  m y  I v i  = 1 . . . . .  N ,  ( = { E , - -  ~{g~) m~=O. 
I,j<N--1 1=o 

The condition in braces may be written 

I:o. 
\ ~ - ~ /  

Since O is nondegenerate by hypothesis, it follows that 

i ~< rN) . 

In order to verify that ~+~/~t-+.~§ 

to show that in ~g~+, there is an element e~+~ 

described in 5.3. 

5.6. 

we may set 

~(,N)~---{0} (and hence ~(~)-----0 for 

is a ~-isomorphism for i>rN, it suffices 

of the form et+~-etmodJ~,, where et.+, is 

To find e-~+~=~ml).i we must write down the system of linear equations for the m I, cor- 

responding to the conditions (2). After displaying them over the commutative ring ~0 we 

find in the system a nondegenerate minor of maximum possible rank rHV corresponding to the 

matrix O . The system is therefore solvable. 

The Explicit Form of I. From the proof of the preceding lemma it is clear that 

~ - ~  k~v. 

where t h e  m I form a solution of the system (i=l ..... N): 

N--I 

E ' "  
{ : ie , -  ~!g,) mj + (=~e, - , ,  g'~li =o .  

j=O \0  
(5) 

5.7. The Connection ~7=~7 x . The following results with obvious modifications will 
L 

also be applied to the construction of the connections V~=Vt, V2=Vy. 

We first continue 0x:~-+ ~ coordinate-wise to ~r and then to J~t[k] so that a~k=0. 

Inasmuch as Ox(bib~)=a.~(b~)b~+bl(~b2): for bl, b26~ , this action is a 0~ -connection on Jt '~ �9 

Any other connection extending Ox and trivial on ~, has the form Ox+d x, where d~E:~Jr($~[),])= 
End~[k] r . (Triviality on k gives the condition ~Tx(m?)-~(Vxm)~ for m6~4 ~, ~k[k]) . 

We use the freedom in the choice of d, to ensure the condition ~7x.I~CJI. 

5.8. LEMMA. Let Vx=~x+dx(k). Then ~7.~gc~, if 

vi---- 1 . . . . .  N ,  a~g~ =gidx( ,3 i ) - -d~Q,t )g  i. (6) 
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Proof. 

whence 

According to (2 ) ,  mQ,)fid~, i f  and only i f  tn(~)=g~m(~O for  a l l  i = 1  . . . .  , N  

~erefore, 

On the other hand, 

[COx + d~) m] (~) = O,,g~m ([~0 + g~O~m (~) + d x C~) g~m (~0- 

g, [(o~, + a.j ml @~) =g~o,m @,) + g,a~, @,) rn @,). 

From (6) it is obvious that the right sides of these expressions coincide. 

5.9. Solutions of Eqs. 

tively with exp(idx(a~, ~)d~) 

d. 0,, y)l =o) .  

(6 ) .  We assume t h a t  dx(a~,x ) and .dx(~i,x ) commute r e s p e c -  

and exp d.~([~,~)d~ ( t h i s  i s  so i f  [dx(ai, x),dx(=i,y)l=[dx([~i,x), 

Then an explicit solution of (6) can be written in the form 

gi (x)=exp (--  i d.~ (~, ~,)d~ ) g~ (O) exp ( i  d~(,~i, ~) d~ ). 

In the examples we shall take dx(k)fiMr(Mt(k [k]) ), and then 

gi (x) = exp (--  xd x (~,)) g~ (0) exp (xcl,: @~)). 

5.10. ~,e Connection of ~z with the Filtration in ~. LEMMA. Let ~Tx~C~, ~x= 

Oxq-d ~ . Then ET~,C~z+ I for all />--I and ~Tx induces an isomorphism ~t/~t_1-~+,/~l, 

if the following conditions are satisfied: 

for r = l :  d,~=do.~+dtfl, , d,~6~*=OL(1,~) ;  

for r > 2 :  dx=dox-l-dlxk, 

where d0xs ) has zeros on the main diagonal and above and invertible elements (in ~*) 

along the diagonals below the main diagonal, while dxxE]~r(~ ) has an invertible element in 

the right upper corner and zeros elsewhere. 

Proof. Since JQ=Jgn~IV't+vN+X and ~t+t/~t~---~t+rN+2/dr'Z+rN+i for l>rN, it suffices to 

verify that under the hypotheses of the lemma Vx~'tc~t+1 and Vx induces an isomorphism 

~t+i/JJ'z-~N~l+2/.~'l+, . But the action of ETx on the last factor coincides with the action dx, 

since O~'tc~Pt, and the required result is checked by direct computation. 

We have now completed the construction of the class of bimodules ~ . The result of 

the section is devoted to some further remarks. 

5.11. The Rank of J~. It is equal to r in the sense described in the introduction 

and also in the sense of Lemma 2.3 and its corollary. Indeed, if ,~EO is a polynomial of 

degree n t then JC~?cJgz+,,, and multiplication by ? induces the isomorphism ~t/~[t_~-~ 

(7) 

(8) 
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~/t§ �9 It suffices to verify this on the corresponding filtration submodules of 

where all is obvious from the definitions. 

5.12. The Connections ~Tt, ETy . We set ~Tt=Ot-~dt, ~Ty:-o~-dy. For solving nonsta- 

tionary equations these connections must satisfy conditions analogous to (6) but not Lemma 

5.10. In place of it we need the commutation conditions |~Tx, Vt] =[~Tx, ETy]=[~Vt, ET~]=0 

(cf. Theorem 2.5, 2.6). They can be written in the form 

o a t  - atdx-k [dx, de] = 0  

and s l m i l a r l y  f o r  t he  r e m a i n i n g  p a i r s .  Zn the  e a s e  d~, dt~Mt(M~(k[),]) ) t h e y  become s imp ly  

[dx, dt]=O e t c .  I f  t h e s e  c o n d i t i o n s  a r e  s a t i s f i e d ,  t hen  t h e  m a t r i c e s  gz(x, #) f o r  t h e  Lax 

e q u a t i o n s  have  the  form 

(9) 

g, (x, t) = e x p  (--  x d  x (=,) - -  td, (a,)) X g, (0, O)exp (xd x (~,) + td t (~!)). 

Conditions (9) with constant dx, dr, dy are most simply satisfied by taking 

nomials in d x . 

(I0) 

dr, dy to be poly. 

5.13. The Order of the Operators. According to 2.3 and 5.11, the order of L~, is 

equal to rdeg? . It is not hard to see that the order of P, found from the condition 

X7tl-----Pl, does not exceed r degd t (degree in k ) and similarly for ~Ty. These considera- 

tions determine the choice of O, E7t in the next section. 

The case where O contains polynomials of degree 2 and r=l. leads to multlsoliton 

solutions of the Korteweg--de Vries equation and its higher analogues and has been treated 

in the literature in various ways (by the method of inverse scattering, the metltod of 

Zakharov-Shabat, Hirota's method). The next most difficult case is the case r=2. 

6. Example: Solitons of Rank 2 

6.1. Parameters of an N-Soliton Solution. We shall constrUCrt an N.soliton solu- 

tlon of a nonstatiouary Lax equation of the form Lt=[P , L] , where the order of L is equal 

to four and the order of P is two. The parameters of the N-soliton solution are con- 

stants which go into the construction of the appropriate bimodule ~. 

We take k-~-P., ~=~0 be the germs of meromorphic functions of x, f over R ; the number 

of solitons N is the number of pairs (ak, ~) of dual points. 

In order that O contain a polynomial of degree 2, it is necessary an d sufficient 

that ak~-~k not depend on k . Replacing ~ by i-~const , we may assume that ak~-~k=O 

for all k; then X~60. Real a~ lead to nonlocalized solutions. We therefore take =~ 

to be pure imaginary. For convenience of subsequent computations we set =k=2/a~0, ~k =--- 

--2ia~b, a k, b@R, where b is chosen as follows. 

According to Lemma 5.10 and (8), the connection ~7; has the form Ox-}-dx, where dx= 

(Oa~), a,b~R* . Replacing i by a-1~ and modifying the ~alue of a~, correspondingly, we 

may assume that a~---1; b remains free. 
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We subject the choice of ~t to the condition that the operator P, for which Vtl-----Pl, 

have order 2. According to 5.12, it suffices that for ~7:----dt~-d: the matrix d t depend on 

linearly; moreover, for constant coefficients of d x and dt the condition that ETx and 

~t commute leads to the condition dt=mAE=~cdx, where ~R, r (the u ~P~oP~ admissible 

term %E=, %~R, does not lead to alteration Of the solution). 

To construct the identification matrix g~(x, {), which finally defines the bimodule ~, 

it is necessary to further choose initial conditions g~(0,0)~L(2, C). According to 5.1, we 

must have g~(0,0)-----g~(0,0) -t . We represent g~(0,0) in the form g~(0,0)=T~t.~, ~OL(2, C) . 

We further set ~:b(x+c~), "=~-~ob~. Then formula (i0) becomes 

g, (x, t )=O, (x, t)-'G, (x, t), (1l) 

where 

(12) 

Thus, --r has the interpretation of a certain "group velocity" of the N-soliton 

solution; ~ is the common frequency of oscillation, and b is a scale factor; ak and ?h 

determine the shape of the k-th soliton. 

6.2. The Element I . The coefficients mj of the element I, defined according to 

formula (4) are found from the system of equations (5) by transforming with the use of rela- 

tions (ii) and (12) (/ =I,..., N): 

~-~ 1 

~ [(2ia~lb)'G J--(-- 2ia, b)~ j)] m, =[(2ia~b)~rO j--(--2ia~b)~V~]( i ). (13) 
h--O 

6 .3 .  The Opera to r s  L and P .  We s e t  L=O4x-~-uO~.-~-~O~.~-~vOx-~-z. To f i nd  u, v, ~v. z 

we solve in ~g the equation 

4 3 + v V ~ + ~ 7 ~ q - z )  1 = l ~ 2 b  2 ( V x q - u V  x (14) 

The coefficients of L are uniquely expressed in terms of the components of the coefficients 

and mN_2--\tL4 / by the  formulas  

g ~ O ;  v----- --4axe2; ~----- --6d2x~2--4bd~tL1 q-4~20x~2; 

z = -- 40~2-- 6b0~.~ -- 4bdx~1-1- 8 (0x~2) ~ q- 4b~ldx?2--~- 6720~x72 -~ 4b~=Ox~-- 47~0x~. (15) 

To obtain them it suffices to equate the coefficients of ~r ~N+I, ~ on the left and 

right sides of (14). 

Similarly, for the equation ETt|-----P|, we find 

(16) 
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The condition Lt=[P, L] has the form of a system of equations for ~, W, z: 

- -  bto-l~j t _~ 2~xx- -  2r x - -  bco,-l~x; 

- -  b~~ = - -  ~Vxx Jr 2~)xxx Jr *Ox - -  bc~~ 2Zx; 
.oj_ I I . I I --0 Z t = - ~ x x x x - t -  -~ *J~xx-- Zxx Jr -~ ~x~- -be~o- l z  x. 

Thus, the constants b~ -1 and the "speed" of the solution c determine the form of the 

equations; the remaining constants of N -soliton solutions can vary. 

6.4. A Single Soliton. We solve Eq. (13) for the case N=|, at=a, u 

acquires the form 

(17) 

The system 

whence 

whet e 

Since 

exp 

( t ' a /=  2a2 (Re Go)-x Im Go (1), p.,,/ 

o = e "  '-exp [1 0 ] ~'" 

0 ~' ~1{02ia~20 ] =~[2ia20 2ia2}=\0 ~ ((l+i)a(t+i)a~,O } by separating 

we obtain without" difficulty 

(18) 

(19) 

even and odd powers in the series for 

. .  2 , . , . / c h ( l + i ) a L  ( l + i ) a s h . ( l + , i ) a ~  
:u0 = e "[0 + 0-'a -I sh (1 + i) a~., c h 0  + 0 at" (20) 

To s i m p l i f y  t h e  n o t a t i o n  we s e t  ch=cha~. ,  s h = s h u ~ , c = c o s a ~ ,  s = s l n a L  r  s i n =  sin 2a~.  

Compu:ting (20) explicitly, we obtain 

/ c h  c co s - -  sh s sin, a (sh c cos - -  ch s cos - -  sb c sin - -  ch s sin)~ 
ReG0 = I , 

~a(sh c cos + ch s c o s -  ch s sin Jr  sh r sin), chccos - -  sh s s in)  (21) 

/ c h  c sin Jr sh s cos, a (shc sin Jr  sh c cos Jr  sh s c o s - -  ch s sin) 
lm Go = ~ (sh c l  sin+. ch s sin Jr ch s c o s - - s h  c cos), chc,sinaL sh s c o s ) .  

: A f t e r  r a t h e r  l e n g t h y  b u t  s t r a i g h t f o r w a r d  t r a r m f o r m a t i o n s ,  we f i n d  f rom t h i s  

d e t R e  Oo ---- 1 (ch 2a ~. -}-cos 2a[ Jr  2.cos 4a~)  (22)  

and t h e n ,  u s i n g  ( 1 8 ) ,  (21), ,  and ( 2 2 ) ,  

9_9 ch 2a~--cos 2a~ § 2 sin 4a2T 
~1 ~ - - ~  ch 2a~ + cos 2a~ + 2co,~ 4aZT 

sh 2 a~s in  2a~ 
1~2 ~ --. 2a ch 2a~ + cos 2a~ + 2 cos 4a2~ " 
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IR, e qualitative behavior of the corresponding (v, ~, z) was described in the introduction 

where, for simplicity, we set b=l. 

7. Solutions of the Reduced Benney Equations and Their Analogues 
| 

7.1. The reduced Benney equations are Eqs. (22) of Chap. II. In attempting to find 

solutions of them for which h=~(u), we find that h= (u+c)2/4, c~R is a constant from the 

compatibility condition. We have, moreover, the following result. 

7.2. THEOREM. Let cER, h=(u+c)2/4, and let u be a solution of the equation ut=-- 

(3u~/4+cu/2)x . Then the pair (u, h)is a solution of system (22) of Chap. II. 

Proof. Under the hypotheses of the theorem we have 

h, = (u + c) u d 2  = - (u + c) (3u + c) ux/4  = - (u (u + c)-"/4)x = - (uh),~, 

u t ----- - -  (3g~/4 + ucl2)x = -- (u~l 2 Jr (~-I- c)214)x-- - -  (g~/2 + k)x. 

We now c o n s i d e r  t he  e q u a t i o n  ut+(3u~/4+cu/2)x. The f o l l o w i n g  method i s  c l a s s i c a l .  

7.3. Proposition. Let $ be differentlable, let ~ be twice differentlable, and let 

u=u(x, t) be a smooth solution of the functional equation u=~(x--~p'(u)t) in the range of the 

variables (x, t) . Then in this range [ut+~(u)x][l+~"(u)t.~'(x--~'(u)t)]=O. 

COROLLARY. Under the hypotheses of the proposition u(x, l) is a solution of the equa- 

tion ut+q~(u)x -- 0 at points not in the set where l+,~"(u)t.,'(x---~'(u)t)=0. 

Proof, Differentiating the relation u=$(x--~p'(u)t) with respect to x and t , we 

obtain ux=~;'(x--~p'(u)t) [l--~"(u),~/], ut=$'(x--~p'(u)t) [--~'(u)--~"(u)tut] We multiply the first 

equation by ~'(,), replace ~'(U)Ux by ~(u)x, twice, add the relations obtained, and take 

all terms to the left. We obtain assertion 7.3. 

If the Cauchy problem is posed for the equation ut+~(u)x=0, then $ has an obvious 

physical interpretation: $(x)=u(x, 0). We shall investigate for what initial conditions $ 

the reduced system has a unique solution for all x%R and t>0. We must put ~(,)=3u~[4+cu/2 

(obviously, any constant can be taken in place of 3/4). 

7.4. Proposition. The equation u=$(x--(3u/2+cl/2))has a unique solution for all I~R ~ 

and l>0, if and only if the smooth function $ is nondecreasing everywhere. 

Proof. For given x and t>O the graph of #(x--3u/2--ctl2) as a function of u is 

obtained from the graph of ~ by reflection in the vertical axis (call thisthe graphof ~), 

compressing ~ horizontally 3/2 times, and translating to the left by x--oil2. In order 

that after any compression with positive coefficient and any translation the graph of 

have a unique intersection with the diagonal, it is necessary and sufficient that @ be 

nonincreasing. Indeed, a small neighborhood of any local maximum or minimum of ~ under 

compression and translation can be made to intersect the diagonal twice. Hence ~ must be 

monotone. If it is noD~ecreasing everywhere, then it cannot be a nonhorizontal line, since 

a suitable compression and translation will take this line into the diagonal. If it is not 

a horizontal line, then there is a point u0 with ~'(~)>0, ~'(u0)~&O ; ~ then lieslocally on 
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both sides of the tangent at the point u 0 . A small translation of this tangent will inter- 

sect ~ twice. A suitable compression and translation takes this secant into the diagonal. 

Remarks. a) The initial condition @(X)----x on some segment leads to the classical 

2x--c't  b (X +C)' 
s o l u t i o n  ~----- 2+ct . . . . .  ( 2 ~ '  which  i s  c a l l e d  t h e  " r u p t u r e d  d i k e "  s o l u t i o n .  

b) If the velocity profile ~ at the initial time has an inflection polntwith a horizon- 

tal tangent, then by an arbitrarily small deformation it is possible to obtain from it a 

profile with a maximum and minimum which leads to nOnuniqueness of the ~ solution in finite 

time. 

7,5; We now present a method for finding invariant manifolds of the form h-----~(=) for 

the Hamiitonian system described in Sec. i0 of Chap. II. Our calculations will show that 

the manifold b--("+c)' -. 4 is invariant also for the higher reduced Benney equations. It would 

be of interest to find an analogue of it for the unreduced equations. 

Ih the notation of Sec. 'i0 of Chap. II we seek solutions of the equations gt=~*ax, ~t=W~.x, 

subject to a relation of the form S(=, ~)---c~R, where S is a suitable differentiable func- 

tion. We must ensure the consistency of the system 

O=S, S h ~,, . h S z. ~ ,~ h = .ut+Sh t=S~(~,.~,hU;q-~,%hhk;)+ h(~,,,,,n,Ux+%~,~hx), 
(23) 

(24) 

We multiply (24) by --~,,~m" h and add to (23); into the result we substitute the relations 

~aa,.-~a().1)V1~ and ~ha-~u(kl)V2v~ and divide by u( kl)~1~la . ,~ We obtain the equation 

ShViu. + S,,V2h. = O. (25) 

in order that the system of equations (24) and (25) have nontrivial solutions (gx, hx) it is 

necessary thaC S~VI--S2.V2~-O, i.e., S.IVVi(u)+_ShlV~(h)=O. This is satisfied if S is a 

- h 

function of I~IV11dg--I~~ , Sinte we are interested in the relation S=co.St . it is 

possible to set simply 

- h 

s K  I VV, _+ f V dh = contr.  26) 

For the higher Benney equations the conditions (25) reduce to u~2~=const, i.e., 

It----(u--Fc)~/4, as above. 

We express h in terms of ~ from Eq. (26): h----h(u) (when this is impossible we express 

u in terms of /t and argue analogously). 

Under condition (26) the equation ut----~1~x becomes an equation at=(~lhlh=al,)) x of the type 

considered in 7.3. The equation ht~'q,,, x is automatically satisfied. Indeed, from Eq. (23)and 

then (25) we find (always with h~h(u)): 
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k 

S,, SS~ Su h,=--~ u t = -  ( " h , , b = -  ~(~,h.~tt.,+~,h,,U;) = 

Su 
= --  ~ (aV~.~hx + ",,n,.Ux )---- aV~%Ux + ~h nultx = ~a,,uttx + ~an,,kx = ~l,,x. 

From linearity considerations it is clear that the same formalism remains in force if the 

formal series ~i is replaced by any linear combination of its coefficients (as the Hamilton- 

x h 

ian). This shows that the manifold ~ ~ d u  +__~dh=const is invariant with respect to 
0 

equations with any Hamiltonian from the corresponding space. 

CHAPTER IV 

INDIVIDUAL RESULTS 

i. The Hirota Formalism 

i.i. In this section we describe the semiheuristic method of Hirota for solving non- 

linear equations. The method consists of two steps: reduction of the equation to so-called 

bilinear form by finding a suitable substitution and then solving the bilinear equation by 

means of some version of perturbation theory or a lucky guess. The Hirota formalism has a 

great deal in common with the Zakharov-Habat formalism described in Sec. 5 of Chap. II, but 

their exact relationship has not been clarified. Our presentation is based on the papers 

[38, 39] ; see also the literature cited in these works. 

1.2. The Hirota Operators. Let [(x, t), g(x, t) be two functions of two variables which 

are differentiable an appropriate number of times. For a pair of integers m, n we define 

the expression 

. , ,  . ( o o o _ ' 
D t D x  f g = Ot or' } ~ 0--~ Ox" ] ~ t-e,x=~" 

A system of equations in bilinear form is obtained by equating to zero some system of linear 

combinations of such expressions for the unknown functions f and g (the coefficients of 

the linear combinations in all examples are constants). 

1.3. The Hirota Substitutions. We shall present a sequence of substitutions which 

reduce well-known nonlinear equations to bilinear form. 

a) The Korteweg-de Vries equation ut+6UUx+Uxxx=O. Substitution: u=2(logf)xx. Bilinear 

form: 

Dx(Dt+D~)f /=O 

b ) The  e q u a  t i o n  u t -5  45u2ttx -5  15 (u,,Uxx W UxxxU) + Uxxxxx = O. Sub s t i t u t  i o n :  tt ---~ 2 ( log f)xx �9 B i l  i n e a r  

form: 

D x ( D t + D ~ x ) f  . y = o .  

l~lis equation is similar to the second of the higher lorteweg--de Vries equations (corresponding 
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to the  o p e r a t o r  < (O~q-a) s/'9 ) i n  t h e  n o t a t i o n  o f  Chap. 2) which has t he  form ttt.q-3Ott2ttx.~- 

lO(2ttxttxx+ttttxxx)+ttxxxxx=O. However, as a i r o t a  obse rves ,  the  l a t t e r  does not  reduce  to 1.3 b) 

by l i n e a r  t r a n s f o r m a t i o n s .  

c) The equation for waves on shallow water: 

co 

u,- t t=t  - 3tttt, + 3tt,, I tttd~ + tt, = O" 
Jr 

Substitution: u=2(|og/)xz. Bilinear form: 

m x (m t- D~D,+ Dx)/-/=0. 

Utt--ttxx--3(tl2)xx--Uxxxx---O. Substitution: u = 2 ( l o g f ) x x .  d) The Boussinesq equation: 

Bilinear form 

2 2 4 (Ot - -Dx--Dx)  f . f  =O. 

e) The two-dimensional Kbrteweg--de Vries equation: 

tion: =-----2(log~x x . Bilinear form: 

(DtDx+ D ~ + D ~ ) f . f = O .  

f) The modified Korteweg-de Vries equation: Vt'-l-6~V~t.q-Vxxx=O. 

Bil inear form: 

= - -  i ( log ~r + ig) 
, / - - i t  )x" 

tttx + ttyy + 6  (tutx)~, + ttxx==O . Substitu- 

(Dr -~ D~ ) ( f  + ig). 0 e -  ig) = 0 ,  

D~ ( f  + ig) . ( f  --ig)=O. 

g) The sine-Gordon equation: v~t=sin~ . Substitution: 

Bilinear form: 

DxDtg.[----g[, OxD t (f./--g.g)=O. 

h) The two-dimensional sine-Gordon equation: ~x+vyy--~t t=sln  v .  
~= - -2 i log0rq  - i g ) / ( f - i g ) . .  B i l i n e a r  form: 

2 2 (D x..F Dy --D~)g. f = g f  , (D~x-I-D~ --D2t) ([.[--g.g)=O. 

i )  The equa t i on  i~t+3ialo/l~?x+~o/xx+iT~xxx+Blt~l~?=O, ~, ~, "L B~R, ~=TB.  

,O/=GIF, F a real function. Bilinear form: 

j) The equation 

form 

Substitution: 

.o -----. 2i log ( f  q- ig)l(f -- ig) . 

Substitution: 

Subs titution: 

( iDtq-D~--l)  O.F=O, (D2x--k) F . F =  --21OI 2 

i%q-~=--21~12~=0.  S u b s t i t u t i o n  @=OIF, F a r e a l  f u n c t i o n .  B i l i n e a r  

(IDtq-D~--),)O.F----O, (D~x--L)F.F= - -210  1 ~ 
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The constant k is determined by the behavior of @ as lxl-+oo. 

k) ~e equations of two waves 

SubStitution: ?l=GilF . 

?i t  -5 v*?Ix ----- -- 71P',, 
?~t -5 v~?2x = ?,72. 

Bilinear form: 

(Dt-bviDx)Oi'F----O, i=I,2. 

I) The  equations of three waves: 

%t + ~~ ~ qiq ' ]%, 

Substitution: ?~=OdF. 

{i, ./, k}={1 ,2 ,3} ;  

Bilinear form: 

(Dr + v~Dx) GI"F---- qtO jGk, 

q t =  :h i .  

i = 1 , 2 , 3 .  

1.4. Sample Solutions. We present two examples of solutions of the bilinear equations 

and refer the reader to the papers cited of Hirota for other solutions. 

a) The interaction of three waves (Eqs. 1.31). We expand F, G~ in powers of an auxili- 

ary small parameter 8: 

P=t +X.'"l,., a,=g,o+X."g,., 
n > l  n ~ l  

G j, = X ~+lgm"+*' ]----- 1,2. 
n > ~ l  

We substitute these expansions into the bilinear equations 1.31 and equate coefficients of 

like powers of a. W r i t i n g  o u t  t h e  c o n d i t i o n s  f o r  t h e v a n i s h i n g  o f  t h e  l e a d i n g  c o e f f i c i e n t s ,  

we find two types of solutions: 

The solution with gt0----0. Here 

+* ----- i~- a,~ exp 2TI,+ b,~ exp 2n,' 
at,  exp tit 

? l  == I + ae2 exp 211,+ bet exp 2",h ' 
a .  exp 1Is 

?a = 1 + a.~ exp 2,1, + be2 exp 2"q. ' 

where 

The letters a2, and az] 

~2 ---- P2 (x -- e#), ~3---- P3 (x -- %0, 

- -  ~ ,  a = t a ~ t  , ,  

2~ -- VI 2 (V,--vt) p=' 
�9 (a,O" 

a~ =r 4 (.,--v,)(v.-v,) p~' 
(a,,)' 

bo2 w- --qlq2 4 ( v a - - a , i  (v,--v,i p~" 

denote arbitrary constants, while 

(v~--v~) p2 = (vl--v3) p3. 

P2 and P3 obey the conditions 
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This solution was obtained by V. E. Zakharov and S. V. Manakov by methods of inverse scatter- 

ing theory. 

~ze solution with gl0ffi~0 . H e r e  

1 - - e x p  2q~ 
?z-----glo l + e x p 2 " q ,  ' 

a ,  exp 'q, 

b~ exp ~h 
cp3 ~ 1 + exp 2q~ ' 

where 

(~1 -- "02Pl) (~l -- 'vsPl) = q2qag~o, 

a21 = - -  q,q3 " 4 (9.1 - - ' o l p O  (~ - - 'vaPO,  

b2z = - -  qlq'," 4 (o  I - - ' v l p  0 (~.~ - - 'o~pt) .  

c) The two-dimensional sine-Gordon equation (Eq. 1.3 h). For this equation Hirota found 

solutions of three-soliton type. It is interesting that there are apparently no known 

solutions with a different number of solitons. The Hirota solution has the form 

~.-0,1 [ 3 > l > j > l  i~I 

where 

~t = P i X  + q~y " o ~ t ,  

and the  c o n s t a n t s  obey the  f o l l o w i n g  r e s t r i c t i o n s :  

i ~ ' I I  l --'' 

exp A~s = ( P l - - P J ) e  + ( q l - - q i ) l - - ( ~ l - - Q J ) 2  d t l - -  1 
- -  (p~ + ps) ~ + (q~ + qD'--(Q~ + Os)' = d~--';'~l' 

d~s = P~P s @ q~q ] - -  ~ i j ;  

[P~ P~ Pf~ 
det (d~s) = O ~ e t  |q~ q2 q3] --0. 

\~i  o2 ~  

1 . 5 .  The H i r o t a  I d e n t i t i e s .  In  seek ing  s u i t a b l e  s u b s t i t u t i o n s  r e l a t i n g  t he  equa t i ons  

in  the  u s u a l  form to  b i l i n e a r  e q u a t i o n s ,  H i r o t a  makes use o f  i d e n t i t i e s  samples o f  which a r e  

g iven  below.  The r e a d e r  w i l l  have no d i f f i c u l t y  in  ex t end ing  t h i s  l i s t  by i n d u c t i o n .  

D'~ a . b = ( - -  1)",O~ b .a ;  

__ m--|  D ' ~ a . b - - D  x ( a x . b - - a . b x ) ;  

D~ exp (PzX). exp (p~x) =(Px --P~)~ exp (Pl -I- P2) x; 

Oa 
D x a b .  c --- "E~ bc + a  ( D x b .  c); 

D2ab .c - - - -  O'a " . ~ Oa ~. . oc -t- z i~ z., ,o, c + a (D~b.  c); 
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exp (~D,) [exp (2*-Dx) a. hi. cd  = 

:= exp (~Dx) [exp ( ,D  x + ~D,) a.  d]. [exp (~D::-- ~D,):c. hi; 
exp (~O l O x )  a l b = [exp (-=D;) a .  b]/cos h (sD x) b . b; 

O a Dxa.b. 
o-~ T = --P--, 

O* a D3x a'b D.ra.b O2x b'b 
"6"s a T = "  b 2 - - 3  b~ b" ; 

2 COS h (~c)/c)x) log f----- 10g cos h (~Dx) f . f ;  

o, . . D~ / .  y 
2 ~-~ t o g / =  ~ ----U; 

D4x/. f / f 2  ..= ll.2; JC 3/22; 

D ~ f  . f l f  = = U~x + 15~2x + 15u ~. 

2. Poles of the Solutions 

2.1. In [40] Kruskal suggested considering the process of soliton interaction by trac- 

ing the poles of the analytic continuation of a multisoliton solution in the complex domain. 

2_1_ For the equation ~t~-~x , Vxxx, which is closely related to the Korteweg--de Vries equation, 

the single-soliton solution has the form ~(x, t}=8~c-th ]/c-(x--cO 2 The expansion of thz 

=~i(( n~i-1  
thz = z---.- 1 , whence in a sum of principal parts near the poles has the form z ] 

n 2) 

(x, t )=6 ,~. (x--ct--n=i/}:c)-'. 
nml(2) 

Therefore, according to Kruskal, the evolution of the soliton may be considered as a "parade 

of poles" moving in strict file with speed c. 

The two-soliton solution can also be represented in the form of a sum of principal parts: 

(x,  0 = 6  ~,~ (x - -  x(') - -  ,,~'(')t~-', -l-6~-r ( x - - x  (2) __}(,=)t)-', 
aml(2) nml(2) 

where x(]), ]--=-|,2 are constants, and the ~]} are functions of time which for large ItI 

behave like c(J)t~-n~i/~, where c(J) is the speed of the j-th soliton. Ale speed of a 

soliton is proportional to the square of the density of its poles. When a fast soliton over- 

takes one which is twice as slow, pairs of poles of the first soliton momentarily coalesce 

with the poles of the second. If the speeds are close part of the poles of the fast soliton 

spring into the gaps between poles of the slow soliton. 

2.2. In the joint workof Airault, McKean, and Moser [25] Kruskal's remark was developed 

and led to the discovery that the poles of multisoliton solutions evolve in correspondence 

with known Hamiltonian equations of the type introduced earlier by Calogero and investigated 

by Moser. 

One of the results of their work which is most simply formulated is the following. We 

suppose that the function 
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n 

(x,  t) = 2 ~ (x  - x j  (t))-2 
j= l  

1 
is a solution of the equation ~:+3~x--~-~xxx=O. Then the functions 

system 

xj(t) satisfy the 

( l )  

. ~ j = 6 ~ ( x j - x , ) - L  j = l  . . . . .  n, 
k4.1 

with the additional condition 

n 

X(Xj- -Xk) -a=O,  ] = 1  . . . . .  ft. (2) 

The set (2) is empty if it is restricted to real values. However, for ~=d(~TI)A• d>l, 

the set of its complex points is isomorphic to a Zariski-open, dense part of d-dimensional 

complex space (after symmetrization in (xl ..... xn)). 

2.3. In [30], which was completed almost simultaneously with the work of Airault, 

KcKean, and Moser, D. V.Choodnovsky and G. V. Choodnovsky obtained analogous results for 

other equations. Especially interesting is their remark that the evolution of the poles of 

the Burgers--Hopf equation ut=2uux+uxx is free from restrictions of type (2). 

2.4. Proposition. Function u(x, t)=X(x--x](t))-t is a solution of the equation 
J 

#t-~-2tzgx+uxx, if and only if the x]( 0 satisfy the system 

xj  (t) = - 2 ~ (xj  (0 - x~ (0)  -I. 
k §  

(For an infinite set of indices ] the following computations are formal; convergence re- 

quires a separate investigation.) 

P r o o f .  I f  u(x, t )=~(x -x j (O)  -1 , t h e n  
J 

2uux + uxx = - 2 ~ ( x -  x j  (t))-1 (x  - x~ (t))-L 
1, !~; J--t:k 

~, = ~ ,  ;c~ (t) ( x  - x~ (t))-~. 
k 

Comparing the poles of these expressions (assuming that the xj(t) do not pairwise coincide), 
we immediately obtained the required assertion. 

2.5. For the modified Korteweg~de Vries equations algebraic restrictions on the motion 

of the poles again arise: the function u(x, O=Xc](x--x](t))-1, c]= +I satisfies the equation 
] 

ut=6==ux--gxxx, if and only if 

�9 ~ j ~ X  (X j - -  Xk) -2 , 
k.#,] 

ca (x j -  x~)- ' - -o.  
k §  
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2.6. The results briefly considered here are close in spirit to classical expansions 

in the theory of elliptic functions and also to the approach for obtaining solutions of Lax 

equations of algebraic type described in Chap. III. We recall that for the bimodule of rank 

1 introduced there the invariant A also evolves in such a way that the poles of its deriva- 

tive cancel in a particular manner with the poles of the function A itself. It is true 

that the poles considered there refer to the auxiliary "spectral parameter"-- the variable 

point on the Riemann surface of the curve Spec O -- rather than to x as a function of t. 

However, it appears likely that recalculation of the evolution of A in terms of the poles 

of solutions will lead to a generalization of the results of 2.2 and 2.6. 

3. Pseudopotentials and Generalized Conservation Laws 

3.1. This section gives an introduction to the interesting formalism proposed by 

Estabrook and Wahlquist [54, 32] and further investigated, in particular, in the work of 

Corones [31], Corones and Tests [26], and Morris [49]. 

The central feature of these papers is a certain generalization of the concept of a 

conservation law for evolution equations of the form gt=K(u, u', ...) where -i----(=i ..... u=). 

As we have repeatedly mentioned, an ordinary ("algebraic" in the terminology of Chap. I) 

conservation law for such an equation is a relation of the form Ft--Gx---- 0' which is a 

formal consequence of the equation -it----K. More precisely, let ~-----k[u} ])] or ~ C~ I) 
i-0 

!ljl-.<l), KE~, and let #t:Jr be an evolution differentiation corresponding to ut=/(; then 

/r O@~ with Ft=Ox constitute a conservation law. 

If u -~ is a solution of the system, then in terms of it and a conservation law it is 

possible to construct a potential v : a solution of the system ~x=F(= s) ~t=G(~s). 

Suppose F, G are vector-valued functions of =~J) of height N and the auxiliary 

variables ~-----(~t ..... ~) . We assume that the following system of equations is consistent 

(the right sides do not contain derivatives of ~ )" 

it=K(=, u',...); ~=F(u,  u',...,~); (3) 
~=o(~,-i', ...; :o). 

d - ,  . ,~ ' )=~xO~s;  . . . ,~ ' ) i s  sa t i s f i ed .  I t  is Then for any solution (#s, ~s) the relation ~F(u,,. 

called a generalized conservation law, and ~s is called the corresponding pseudopotential. 

In all examples considered /= and O lie in Jr t~, where k----R,C and ~=C~(~t, 

.... ON) �9 An algebraic model of this situation can be formed as follows. 

3.2. We consider the ring ~ . On the subring A| there act the differentiations 

Cgx:tt~J)|174 and dt :u |  ~K' |  [r x, dr ]=0 . The right sides of the two last equations 

of (3) can be considered as the extension of these differentiations to all of ~@~, which 

acts on the generators according to the formulas 

~ : I @ ~ F ,  d--t: 1 |  (7. 
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The formal consistency condition of the system $x=F and ~-----O under the condition ut=K 

means simply that the differentiations ~x and St commute. We may therefore pose the 

following problem. 

3.3. Problem. Given a k-algebra ~ and two commuting k-differentiations dl, a2 : ~-+~. 

For some k-algebra ~ describe the set of extensions dl, O=:~|174 with the condi- 

tion [@I, O~l~--~O. 

3.4. Without practical loss of generality, we may assume that 01, O=6~@D(~)-~-D~JI)@~. 

In order to solve Problem 3.3, under certain restrictions on ~ we construct a Lie algebra 

over f~-----f~(~, @i,'0=), such that the set of all extensions .98 is in bljective correspondence 

with some subset of Lie algebra morphlsms of Hom(~, D(~)), where D(~) is the algebra of k 

differentations of ~ into itself. The restrictions on ~ are as follows. 

3.5. We consider a basis (UI), ]~J of the algebra ~ as a linear space over k, which 

determines the set of structure constants by 

UIU~ ---- Z dj~zUt, 
rE: 

(4) 

where the right sides are finite linear combinations with coefficients in k. 

We suppose, moreover, that these coefficients possess thefollowing property: for each 

l~J there exists only a finite number of pairs (], k)~/XJ (respectively, elements ]GJ), 

such that d]~O (respectively, c~)~O, c(~)~0). 

3.6. For the algebra (k[u~o], dx, dr) the basis of monomials in ui(J) obviously satisfies 

(4); moreover, dikl~&0 only if Uj, U k, divide U t, and these are of finite number. Further, 

we define the weight ~(U]) by additivity, setting ~(u~/))~---]. Then a x is homogeneous and 

increases the weight by one, and the space of polynomials of a given weight is finite- 

dimensional; therefore, U t can enter in only a finite number of the derivatives 01Ui. 

Thus, only the condition on the c~) (for 02-~-Ot) can be nontrivial. For evolution according 

to Korteweg--de Vries (ttr it can be satisfied as for Ox, by introducing the new 

weight ~1(u(o)=i+2. Then the field ----~--t=Z(uu'-ru"%(0J~- is homogeneous with respect to Wl , , Ou(i) 
and increases this weight by 3, so that U~ can enter the expansion of 02Uj only for 

~1(Ui)----~1(Ut)--8 ; there are a finite number of such ] . Similar considerations are pro- 

bably applicable to other Lax equations. 

3.7. We now fix the algebra (~, dl, 02)and basis (Ui), ]s satisfying the conditions 

of 3.5. We consider the free Lie algebra f~, generated by X~, Yi, ], kEJ, with relations 

c(gY,--  ~ .  c(~)X.--~.  X,], lEJ. 
j : j ,k  

(5) 
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l~e condition of 3.5 ensures that all these linear combinations are finite. 

3.8. Proposition. The set of commuting extensions (@~, 02)of the pair (al, @2) to 

~|174 corresponds bijectively to the set of homomorphisms of the Lie algebra 

to the Lie algebra D(~), which vanish on all but a finite number of the X~, F1 . 

Proof. Any extension has the form 

iEJ 

JEJ 

where a lmos t  a l l  the  ~.1, ~1 a re  equal  to ze ro .  

The covAir [J,, ~ ] = 0  means tha t  

= U , u , |  IT,. 
1 j j , / t  (6) 

where the commutators are evaluated in the Lie algebra D(~). Substituting here the right 

sides of the identities (4), we find 

1,1 j , l  j , k , l  

Equating coefficients of tlte U t, we obtain the identities (5) with Xk, Y I in place of ~k, ~j 

This completes the proof. 

3.9. In 3.7 an almost invariant definition of the Lie algebra k over ~ with respect 

to the pair (.A, 0h 02) was given. The dependence on the choice of basis (Ui) with conditions 

3.5 is probably not essential in the sense that for a certain class of bases all Lie algebras 

obtained are canonically isomorphic. 

We call ~ the EW algebra for (.A, 01, 02) (in honor of Estabrook and Wahlquist). 

The search for pseudopotentials for the evolution equation represented by (~, 0~, 02), 

naturally breaks into two steps: a) description of the EW Lie algebra ~ ; b) description 

of its representations in the Lie algebras of vector fields D(C~(vl ..... v~)). 

Both problems are far from being completely solved even for the Korteweg--de Vries equa- 

tion. Apparently, even a finite-dimensional EW algebra for it is unknown. In the papers 

cited at the beginning of the section a sequence of factors of EW algebras is constructed 

for some interesting triples (~, 01, a~.), which are generated by a finite number of generators 

and relations, and some particular representations of them by vector fields are given. 

Factors of a finite-type EW algebra ~ are most easily obtained by setting Xj, Yh----0, 

if Uj, Oh contain derivatives of ui of sufficiently high order. In examples "sufficient- 

ly high" usually means >3, and the additional wonder is that then by virtue of the rela- 

tions (5) all but a finite number of the Xj, Y~ automatically vanish. 
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If the factor obtained has a nontrivial, finite-dimensional factor Lie algebra ~0, 

then it i s not hard to construct its representation by invariant vector fields on the cor- 

responding Lie group. We observe that representations with an Abelian image, as is evident 

from (6), lead to the usual conservation laws, so that non-Abelian representations and the 

corresponding pseudopotentials are of special interest. 

Armther class of representations which can be constructed is obtained in the Lie algebra 

of fields over a one-dimensional base. Corones suggested calling the corresponding pseudo- 

potentials simple. This class is nice in that over a one-dimensional base [~, ~] =0 implies 

that ~=c~, c a constant, which makes it possible to avoid the many relations (5) and their 

c o n s e q u e n c e s .  

With these rudiments of a systematic theory, we now present several samples of computa- 

tions from the works cited above. 

3.10. The Korteweg-~e Vries Equation: u~+Uxx~+lluux =0. In the work of Wahlquist and 

Estabrook [54] (see also Corones and Testa [26]) a factor EW-algebra ~ is constructed which 

is given by the following generators and relations: 

IX,, x31 = [x~, X~l = IX,, x41 = IX2, X,l =o; 
[x,,  x 2 1 + x , = o ;  IX,, X , l - X ~ = O ;  IX.~, X , l - X ~ = O ;  

IX,, X,l+[Xl, X4l=O; IXs, X,l+IXl, Xel+X,=0. 

(7)  

The generalized'conservation law Ft=G x has the form 

F = 2XI -F 3uX2 -}- 3u~X3; 

G = - -  2 (uxx + 6u 2) X2 -F 3 (u~ -- 8u 3 -- 2uuxx ) X 3 + 

+ 8X4 + 8uXs + 4u2X6 + 4u,:XT. 

Any representation of (7) in the algebra of vector fields on an N-dimensional mani- 

fold gives N concrete generalized conservation laws (Xi, F, O are expanded in terms of 

components). 

In order to obtain a nontrivial factor of the algebra (7), Wahlquist and Estabrook set 
8 

Xs= [X4, X3] and impose the new relation 

to the zero algebra in all cases except 

corresponding factor by Z~ . 

[XI, Xs]= Z cruX m. They then verify that this leads 
m=l 

Cl--...-~-Cs~---0, Cz---~--Ca-----k, k@O. We d e n o t e  t h e  

According to computations of S. I. Gel'fand, ~ has asa directcomponent the Lie algebra 

sl(2), engendered by the generators 2Xs~-kX s, X 6, XT--X s , and the representation of Wahlquist 

and Estabrook coincides (up to a formal diffeomorphism) with a representation of the left- 

invariant fields on SL(2). In their notation this is a representation in D(C~ y3, ys)), 

which is described as follows: 

0 0 2 d 0 0 2x~+~x~ ~-~' oy~ w - ~ - y ~ ; ,  x6~o~, x,-xs~l-o-~+y6 oy," 
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The generalized conservation law corresponding to -~?~, has the form 

(2u q- y~--),)tq-4 [(u +k)(2uq-y~--),)q-2u.~x.2uxy.]=O. (8) 

If U is a solution of the Korteweg--de Vries equation and Ya is a solution of (8), then 

u=--u--gl-~k is a new solution which is obtained by "adding" to u a single soliton with 

speed k . The reasons for the appearance of the "B~cklund transformation" in such a con- 

text remain somewhat puzzling. 

3.11. The Hirota Equation ut=--3,,~Ux--~Itxxx-Jci'~Uxx Jci~u~'~, Here U is a complex 

function and = is its conjugate, they are considered algebraically independent, and the 

Hirota equation corresponds to a pair of equations for ~. u: the second is obtained by formal 

complex conjugation from the first. In [31] Corones constructs the following factor E%V 

algebra for it: 

- =x,  + ~ IX,, IX,, x211 =o; 
�9 x++.~ [x+, IX,, X+ll =o; 

[ x z ,  [x,,  X2]l =0;  
1 t~,x,+i.~Ix,, [x,, X , l l -  13 [x,,  IX,, [x~, X,lll - ~  ~ [x:, IX,, [x~, X, l l l - � 9  [xs, X,l=O; 

1 - i~x: - i . l  IX~, [x~, Xdl- i3  IX:, IX:, IX~, X d l l - - ~  13 IX,, [x~, [x~, X: l l l -~  IX~, X,l =o; 

I - ~ ~ ix, ,  IX,, [x~, X, lll =o; 
1 - +  ~ [x~, IX+, IXa, X+lll=O; 

- i+[x, ,  IX,, x311-+ Ix3, IX,, IX+, X , l l l - ~  IX,, Ix,, IX3, X~lll=O; 

- i T  IX2, IX2, x311-~ IX2, IX+; IX.,, X : i l l -  

2 ~ I x3' IX2, Ix3, x2111--o; 
- i+ IX,, IX2, X+ll + ~T IX.,, IX+, X,ll + iT IX3, IX2; X , l l -  

- ~ IX,, IX3, IX3, X : l l l -  ~ IX2, IX+, IX.,, X, lll-~ 
- I3 [x+, IX+, IXs', Xdl1.4- [Xb, X+l =0; 

- i ~  Ix.,, IX,, X~l l -  B IX3, [x~, [x~, Xtl l l+IX,,  X~l=O; 
i~ [xa, IX2, X~l l -~  [x.~, IX~, IX~, X:lll + [x2, x41--- o; 

[x~, X~l--- O. 

The corresponding conservation law does not depend on u (n, u(J) for ]>3. 

Corones observes that it has non-Abelian representations by one-dimensional fields only 

in the case ~8--=y=0. It is interesting that this is precisely the condition obtained by 

Hirota for multisoliton solutions of his equation. 

3.12. The Equation 3uttq-uxxxx+6(uux)x=0. This equation was investigated by Morris [49] ; 

the substitution v=ut reduces it to the usual system of evolution. 

The E%V factor algebra constructed by Morris is defined by the relations 

109 



Mmrr is cons truc ts 

IX,, X~l=X,o; IX,, XaI=4X,; IX,, X~I=Xn; 

IX,, X,l=X~; IX,, 3 9 X,ol = u X, + ~ ~X~; 

IX,, X,,l=-} x , - ~ x ~ ;  IX~, X ~ l = - x . ;  

9 
[X:, X~I = -- ~ X,; 

[X~, X,ol= a -- ~- X_~; 
3 [ X  o, X , l  = --~ X~; 

[X=, X,I = -- 3 X.~; 

9 
IX,, X,,] = ---4- X,; 

3 
[X., X,o] = -- ~ X~; 

9 4 3 
X4] = ~ X,o; X,o] = - -  -~ X~; [X~, Xnl  = --  ~- X~; [X,, [X.~, 

1 IX~, Xnl=X~; [X~, X~I-------3~X,; [X~, X~I= --$~X~--~ X,; 

IX,, X~ol= ~- x , - a x , ;  [x~, X,l=-%~x~; 

3 1 
IX,, X,ol = -- ~ X,; [X,, Xul = - ~ X,o; 

[X,o, a X , , ]  = - -  -$ X , , .  

its representation in the algebra D(C| x2, x3)) by  setting 

X ,  = - -  Ixxl03--  x2a~ - -  x302; 
3 

X3  = xlO~; 

X ~ = x~O~ + I~ ( x,O~ + x2a3); 
1 

1 

X,o = ~ (x,O, - -  xsOs); 

3 X,, = ~ (xsO.,_ -- x~O0. 

From the equation for the generalized conservation law Morris defluces the relations 

.... 3 0 3 , 

I 
tx,a+Sx~ +ux(=O, " 

3 I it"" 3 where ~ is a trivial potential: ~x=--~gt, ~t=~ ~-~(g~')'. Equations (9) make it pos- 

sible to apply the technique of scattering theory to the original problem. 

] -2 3.13. The Nonlinear SchrSdinger Equation: i=t~-Uxx--~zuu =0, u is the formal complex 

conjugate. The following factor EW algebra for this equation was found in the work of 

Estabrook and Wahlquist [32]: 

I 
[x, .  X=l = IX,. Y,I = IX2, Y,] = IX2, z~] = lZ,, z2] =o ;  IX,, Z,l = z , ,  [z,, Z,l = y Y,; 

! iX~, Z2I+ [Y,,Zd--~Z, =0; [Xi, Z~l+2 IY~,Z,I=O; (i0) 
2 

IX,, Yd + IX2, Y~] ---- 2 [~ ,  Z21-- 2 [Z,, ~ l "  

ii0 



(To these relations are to be added their formal complex conjugates.) 

0_o o 
Denoting complex variables by ~i, Y~ and by i--~, ~=~ the standard differentia- 

tions, we obtain the following representation ( k is any complex constant): 

yl=~(ylOl_ylOl_g 02.~_ ~ .1 -02); 

Y9 ---~ - -  2 (k2y101 - -  k2y101); 
1 

Z2 = - -  (ky~d i + 6~01 - -  ky10~). 

(ll) 

Equations for solving by the inverse-scattering method can also be obtained from the corre- 

sponding psuedopotential. 

According to computations of S. l. Gel'fand, algebra (i0) has the factor gI {2) X g[ (2), and 

representation (ii) coincides with a representation by left-invariant fields. 

4. B~cklund Transformations 

4.1. A B~cklund transformation B, relating two systems of differential equations 

E(u~-~-0 and F(~)=0, is a system of differential equations B(u, ~)~---0 such that E and B 

formally imply F, and F and B formally imply E . In the language of differential 

algebra, suppose that E corresponds to an ideal l~c~, F to an ideal IFc~ and ~ to an 

ideal I~| Then ]s~l~|174 Thus, a B~cklund transformation is an analogue of 

a "correspondence" in algebraic geometry. (In our case ~, ~ are differential rings over 

a common base differential ring K, over which all tensor products are taken; the ideals are 

assumed to be differentially closed and to be radical for analytic applications.) 

There is no systematic theory of B~cklund transformations, and we limit ourselves to 

describing a portion of the experimental material at hand taken from [26]. 

4.2. The B~cklund Transformation for the slne-Gordon Equation. While investigating 

surfaces of constant negative curvature, B~cklund in 1880 found the following transformation 

relating the slne-Gordon equation uxy-----sinu to itself: 

B "/(u~ --  ~~ 2a s i n ' ~ '  

where a is any constant. This transformation makes it possible to obtain a sequence of 

solutions of the equation in quadratures starting from the solution u0=0. Bianchi observed 

that the pair of transformations Bal, Ba, commutes in the following sense: starting from 

the initial solution u 0 , the compositions BaloBa, and Ba.oBa, generate a certain common 

solution U s, for which 

ua--u o .a~-{-a, t g  U,--u~ tg --T------- a,-- a~ 4 ' 
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where ~r and =2 are the solutions generated by B,, and Ba, from t/0 . 

4.3. A Remark of Rund. In his work in [26] Rund put forth the following idea. We 

suppose that the equation E is the Euler--Lagrange equation with Lagrangian ~: 6~=0 (of. 

Chap. I), and we are interested in B~cklund transformations of E into itself. One can 

then seek ideals 1~ such that r ; onsolutions ofthe system B the 

Lagrangians e(u) and ~(v) differ by a divergence and therefore have zero first variation 

simultaneously. Rund shows that the transformation (12) belongs to this class. A certain 

modification of his idea is applicable to the Korteweg--de Vries equation. 

4.4. B~cklund Transformations for the Korteweg-de Vries Equation. We consider the 

spectral problem related to this equation defined by the Lax pair 

1 ,(Or Jr 40~ q- 6uO x q- 60:u) ~ = O. (13) 

Setting ~----~x[~, we see that it is possible to eliminate u from (13). The result is the 

modified Korteweg--de Vries equation for v: 

vt--6v=vxq-6kv~.q-vx~=O, (14) 

discovered by Miura. Equation (14) has the trivial transformation ~--v; then applying the 

transformation inverse to (13) we obtain a B~cklund transformation of the Korteweg--de Vries 

equation into itself which we denote by B~ . 

Estabrook and Wahlquist found that if =i=B~l(u0) , i----I,2, then B~tBz.(tto) and Bz.B~.,(u0) 

c o n t a i n  t h e  s o l u t i o n  

g 3 =  gO ~ /.i,z __ U= �9 

an analogoue of Bianchi's formula for the sine-Gordon equation. 

4.5. Flaschka and MacLaughlin in their paper contained in [26] studied how the trans- 

formation (12) acts on the spectrum of the Schr~dinger operator. Changing the normalization 

slightly, we write the equation in the form ut--6UUx+Uxxx=O and the Schr~dinger operator in 

the form O=2+u=l. Setting u=2Wx, we obtain the new Schr~dinger operator Ox~+U=L, where 

U=2Wx: , and W is found from the equations 

{ w~,= - w ~ + ( w - ~ ) 2 + ~ , ;  
wt= --wt+4 p,w, + w~ + ~x (W- ~)2 + ~,~,(W.-- zv)]. 

Here w-w---~/~, where l~--~ . 

If u is rapidly decreasing as Ixl -+co, the scattering data for l=--Ox2+u are determined 

as follows. For any complex number k with link>0 there are solutions of the problem Lr=k~V, 

distinguished by the asymptotic behavior at infinity: 
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. . . , , [e  i~x, x--+ -q- o~; 
f l (x, k)-- I b (k) e-ik.,._F a(k) e.kx ' x- , .  - -  oo; 

f ~(x, k)~-I --b(k)e~k" q-a(k)e-"% x-+ -F oo; 
( e- ikx~ X ~ -- O0. 

On the  i m a g i n a r y  a x i s  t h e r e  may be a f i n i t e  number o f  p o i n t s  o f  the  d i s c r e t e  spec t rum o f  

l : k~=- -~ ,  j = l  . . . . .  N,  which d e t e r m i n e  c o n s t a n t s  c/, j = l  . . . . .  N,  by c o n d i t i o n s  on t h e i r  

e i g e n f u n c t i o n s :  ~ i ~ f ~ e x p ( - - ~ j x ) ,  i f  ~ ~ ( x ) d x = l .  The c o l l e c t i o n  (a(k), b(k), ~q], cl) i s  c a l l e d  
- - o o  

the  s c a t t e r i n g  d a t a  f o r  b. 

I f  ',~0(x, 7,.0) i s  any s o l u t i o n  o f  l~0=I0~0, and ~(x, 1) i s  a s o l u t i o n  o f  l ~ = I ~  , t hen  

(x, ~) = ~' (x, x ) -  ~ (x, x) r (x, ~.) is a solution of the equation LtF=~IF . In order that ~(x, ko) 

not vanish it suffices that A0 lie to the left of the spectrum of L 

We choose ~0-~---~= and denote by (A(k), B(k), H], Cl)the scattering data for L . 

According to the analysis of Flaschka and MacLaughlin, there are the following facts. 

a) If 90-----fi(x,i~) , then 

n--ik C --~--~J c A(k)=a(k), B(k)----n--T-ff b(k ), ]--n--4--~ ~" 

and the discrete spectra of l and L coincide. 

b) I f  ~o=f2(x,i'q) , t h e n  

A(k)=a(k), B(k)--~-~Tfb(k), CJ- -T l_n  ] j,. 

and the discrete spectra of l and L coincide. 

c) If 90=DJ1(Jc, iri)-~-D2f=(x, i~), DI, D2 nonzero constants, then 

ik+qa k C --q+rl/cl~ A ( k ) = ~  ( ) ,  B(k)=--b(k),  j - - n _ ~  

N points of the discrete spectra for l and L coincide and, moreover, L has an additional 

point --~, with normalization constant depending on DI and D2 �9 

l~lis implies several curious conclusions. 

First of all, there are B~cklund transformations which add no solitons (these correspond 

to points of the discrete spectrum). They only shift the phase of solitons present in the 

old solution (cases a) and b) : Cj~cj) �9 

Secondly, iteration of the transformations defined by ~9(x, i~) and then DIF~(x,'i~l)+ 

D~F=(x, i~):u-+U does not change b(k)/a(k) and c~, but adds the elgenvalues --~=. For it 

we have 

U ( x ) - - . ( x ) - 2 0 ~ ( x , i ~ )  ~ + D  fg(z ,  i,~)dz , 
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where D is a certain constant. 

Finally, if g(x,t) is a solution of the Korteweg--de Vries equation, then, as is known 

~tb(k, t)~-8ik3b(k, t), d~e](t)=8~c~t) . This implies that B~cklund transformation by means of 

q - - i k  . , .  
ft(x, i~; t), changing b(k, t) into ~ot~, t), takes the solution u into the new solution U, 

i.e., it commutes with theKorteweg--de Vries flow. 

With this we conclude our brief discussion, referring the reader to the literature for 

further information. 

5. Lax's Method for Generating the Algebra of Korteweg--de Vries Integrals 

5.1. We consider the algebra A=k[u}S)] and some operator B which is Hamiltonian in 

the sense of See. 7 of Chap. I. It generates a Lie algebra structure on A/KerB 8--8~ " Ex- 

plicit desc'ription of operators B, for which in this Lie algebra there exists large, e.g., 

infinite-dimensional, Abelian subalgebras is a very interesting question. Equations 

u t = B  ~ 6u ' where F lies in such a subalgebra have infinitely many conservation laws. In 

Chap. II we described such subalgebras for the Gel'fand--Dikii operators corresponding to 

Lax equations and for both the reduced and unreduced Benney operator. 

In this section we present the recurrence method of Lax for the operator B=ax, which 

leads to the Korteweg--de Vries algebra. The exposition is based on notes of I. Ya. Dorfman 

who has kindly permitted the author to use them. 

5.2. Let A=kl=(s~Fj>0l, 0:u(s)~=(s+1,. We set A=AIOA and for any lEA we denote 

by f the  image o f  / i n  A. We s h a l l  w r i t e  f . - . g  , i f  /=g" There  i s  a L i e  algebra 
( 8: structure on A: ~, g}----- g~-u-u "~-~ " Let [-f:A-+A be a linear operator which is formally anti- 

symmetric in the sense that ff-fg+gf-ff~-,O for all f, gEA. 

We consider a sequence of elements f-i, f0 ..... fn@A, /_i--=-cU, c~0. 

is motivated by the remark in 3.15 of Chap. II. 

#I  6 . ~ 8  . 5.3. Proposition. If ~-fi=u~fi+i, - - l ~ < i ~ < t ~ - - I  , then 

a) tL,  L }  = ~  for - -  1 < i, S < n. 

0 6) 

Proof. From the antisymmetry'of H and 0 it follows that for l~<]<i..<n: 

H~6 jl-i" -K&-uSfs N --~.0~0 8ft_,6u ~f/+'Tff Iterating this argument, we obtain 

f.~ By. By. 
- 8 / l  8/1 |t,-~-.-~-, if i--]=25; 

O-~--.-~- ~ i,~ 8f,+, By, =H 8/, 8f; 
t ~ - - - K Z  "-~-d" -~d-u " - ~ - '  i f  i - -  j = 2 s  + l . 

The following result 

O 6f~ ~bf] 

Both expressions on the right lie in lma (the second by the antisymmetry of H) which proves 
" 6 f n  ~ .  __C-  i f i fn H 8 f_ ,  __C_ 1 BY. "0 8 /~  0 assertion a). Further, /~-B~- -~...-~ff-= -~ -~ . This completes the proof. 
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5.4. Proposition 5.3 makes it possible to continue the commuting collection of elements 
8 /-i ..... fn6A to the commuting collection /-l,...,fn,/n+l, if O-IH-~/nE|m-~-j : as /,+t we 

I 8 ~-' t a k e  a n y  e l e m e n t  o f  t " ~ - )  a-IH-~-~ ln" 

In order to guarantee the solvability of the equation for /,+i, we impose additional 

conditions on H. We recall that the Fr~chet operator D(g) for g6A has the form D(g)----- 

Og Ol We define a mapping [D, HI: A-+L(A, A), where L(A, A) is the space of linear 
1~o duN) " 
operators on A by the formula 

[D, N] I = D (HD-- HoD 00 

(cf. See. 7 of Chap. I). If 1-/=~#ti01 , then 

[D, HI f = ~ 0' / .  D (k,). 

We call the antisymmetric operator H Laxitive if for any pair /, gEA with the con- 

dition H/-----Og the operator |D, H]goO--[D, HI/oH is formally symmetric. 

5.5 Proposition. If /-I is a Laxitive operator and /_i,..-, /, satisfy the condition of 

Proposition 5.3, then the equation H86--~/, = 8 0 ~/,+x is solvable. 

8 Proof. We set gi--__~u/i , i-------I .... , n, and let g,+, be a solution of [-Ig,=Og,+,, which 

exists by 5.3 b). According to the results of Sec. 7 of Chap. I, it suffices to verify that 

the operator D(gn+l) is symmetric: this implies that gn+iEAA. This, in turn, is equivalent 

to the symmetry of the operator OoD(g.+i)oO. 

We begin with the case n= "I. The operator [D,/-/] co0 is symmetric because of the 

Laxitivity of /-/ (for the pair /=0, g=c in the definition of this property). This means 

that the following operator is symmetric: 

Oom (go),O = D (Ogo)oO = D (Hc),O = [D, H i coO. 

Now let n > - - 1 .  , Inasmuch as Hg,z=Og,,+l, we have, D(Hg.)=OoD(g.+i}, i.e., [D,H]g.i I- 

HoD(g.)=OoD (g=+i). Similarly, from ]-Ign_,-----Ogn we find [D.I-S]gn_,+HoD(gn_,) =OoD(g~) �9 

Multiplying the first equation on the right by 0, the second by --/J and adding, we obtain 

OoD (g.+t)o0 = [D, H I  g~oO -- [D, H] g n_aoH-t- HoD (g.)oO + OoD (g.)oH-- HoD (g ._t)oH. 

From the Laxitivity of H it follows that the sum of the first two terms is symmetric. The 

operators D(g,) and D(g,_ 0 are symmetric, since g, and g,-t are variational derivatives. 

Finally, 0 and H are antisymmetric. This completes the proof. 

5.6. Thus, for any Laxitive operator J-1 and c6k the recurrence formula 

i . =  
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defines the generators of an Abelian Lie subalgebra in 

5.7. Proposition. Let 

is Laxitive. 

Co, c16k.  Then the operator 

H = Oo s + 2 (CoU + cO Oo + CoU" 

The proof is obtained by direct verification. Direct computations show that this is the 

general form of Laxitive operators of third order lying in k [u, u' l[@]. 

1 
Setting c=~, r r we obtain by the formulas of 5.6 a sequence of integrals 

of the Korteweg--de Vries equation (in the form ut=6~'--~" ). The first members have the 

form 

u u 2 u g  u 5 - 5 , . .  1 0  2 - 1 . .  ~; ---f; its--T-; -- ~u4+--fuu'+yu u -- -~uu 

6. Solutions of Algebraic Type and Theta Functions 

6.1. This section is to be considered as an appendix to Chap. II: the formulas pre- 

sented here can be obtained from the facts proved there regarding the structure of bimodules 

over a field if they are augmented to include the classical results from the analytic theory 

of Riemann surfaces and Jacobian varieties. Our exposition is based on the survey of Matveev 

[44]; for the proofs the reader should see this survey, the literature cited there, and also 

the paper of Krichever [16]. 

6.2. The Topology of Riemann Surfaces. To each field K, which is finitely generated 

and one-dimensional over C, there corresponds a one-dimensional compact, complex variety 

F , the Riemann surface of K. The field 1< is isomorphic to the field of meromorphic func- 

tions on r . The genus of K and r is 

a) half the first Betti number of r ; 

b) the dimension of the space of holomorphic differential 1-forms on r : Abelian dif- 

ferentials of the first kind. 

A Riemann surface of genus zero is the Riemann sphere or the set of points of px(C)of the 
�9 2g+l 

projective line over C . The genus of the curve F:Y 2= H (z--Ei)is equal to g ; the dif- 

ferentials of first kind on P have the form f(z)y-idz , where/6C[zl, degf(z)~.<g--| . Such 

curves are called hyperelliptic (elliptic for g-----l). An invariant definition of a hyper- 

elliptic curve is given by either of the following two conditions (provided the genus >i I). 

a) On F there is a function with a single pole of second order. 

b) The ratios of differentials of first kind generate a field of kind zero. 

On a compact Riemann surface P of genus g>/l it is possible to choose a basis of the 

homology group HI(F, Z) of the form {al, hi}, i, / -----| ..... g, where (ai, ~])-----(bl, b])=0, (•i, b])=~u. 
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2 g +  ! 

A typical choice of {a~, b~} on r: ~------~ (z--E~); E z real, is as follows. We take two 

copies of the Riemann sphere with cuts along the intervals (E~, E~), (E~, E~) ..... (E~g+~, oo) and 

we glue them together crosswise along the edges of the cuts. A clockwise contour around 

the cut (E=~_~, E=]) is a) ; a contour which on each of the sheet joins an interior point of 

(E2]_~, E=]) with an interior point of (E~#+I, oo) is b]. 

6.3. Differentials and Periods. Any meromorphic 1-differential c0)on P is called 

Abelian. The numbers A](~)-~-I% B ] ( ' ~ ) =  Iu~ a r e  called its periods (along a i ,  b]). The numbers 

cj-----,)~(o (over a circle around a logarithmic singularity) are its residues. If all the 2=i ,} ~ . : 

residues of ~ are trivial co is called a differential of second kind; all differentials of 

first kind are also differentials of second kind. 

A basis of differentials of first kind (~) is called normalize d if Aj(~k)=6jh (0 for 

j~k, and 1 for j=k). 

Any Abelian differential is uniquely determined by its A -period s and principal Parts 

at singular points. For differentials of second kind it is possible to uniquely define 

by ~he conditions Aj(~)=0 and any value of the principal parts. For general differentials 

th~ same is :true if the sum of the residues of the prescribed principal parts is equal to 

zer 0 �9 

6.4. The Riemann Theta Function. We consider g-dimensional complex sPace C# and the 

lattice ZzEC z. Let B be some complex (gXg) matrix for which there exists a constant 
g 

c>O, such that (ImBk, k)>cZk ~- for all k6Zz, k-----(k~, ,kg). Corresponding to this matrix 
�9 i , ~176 

i=l 

there is a theta function 0:Cz-+C : 

O ~)= ~ exp {=i (Bk, k)+2~.i(p, k)}, pECg. 
~6zg 

If Bjk =B/(~o~) it is called the theta function of the Riemann surface r, referred to the 

basis {al, bj} of the group HI(F, Z) and the normalized basis of differentials of first kind 

(~/) o n r . The matrix B is called the matrix of periods of r ; it is symmetric. 

The following properties of the theta function are easily verified: 

a) 0:(-p)=0(p). 

b) 0(Pnu~) =0.(P) for all ~6Zz. 

c) 8 (2-}-BJ)----e-'~iBH-2=IPJO (p) , where 

P0 

of periods of 

tion from P0 

B ] is the j-th column of B. 

We now assign to each point P~r its Jacobian coordinates: P~(P)= C~. Here 

is a fixed point of r. The Jacobian coordinates of P are defined up to the lattice 

P spanned by the columns of the matrix B , since different paths if integra - 

to P differ by some cycl e representing a homology class in H,(P, Z). 

The multivalued function P-+C:P~0(~(P)--e), where eECg, is called the Ri~mann there 

function. It is meromorphic and is either identically zero or has exactly g zeros on P. 
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The Jacobian coordinates of these zeros are 

relations 

p 
I I 

i+m aj 

(the Riemann constants). 

e--z, where the vector x is defined by the 

If the Riemann theta function is nonzero, then the divisor of its zeros is nonspecial, 

and any nonspecial divisor of degree g is a divisor of the zeros of a suitable theta func- 

tion. 

From properties b) and c) of the theta function it follows that dlogO(o~(P)--e) is a 

meromorphic differentialon F, having as its divisor of poles the zeros of 0. All poles 

have first order. 

6.5. Analytic Description of the Akhiezer Function. We fix the following data: a g 

Riemann surface P of genus g , a point P0EP, a nonspecial divisor D=XP i on r , a 
i= 1 

local parameter k, l in a neighborhood of P0, and two polynomials R, QEC[k] of degrees n 

and m , respectively. 

6.6. THEOREM. There exists a unique meromorphic function 9:Ca)<(P\P0)-+Cwith the 

following properties : 

a) The divisor of the poles of ~ in P coincides with D 

b) At the point 

for any x, y, t6C 3 

P0 the function ,,~ has an essential singularity of the form 

(x, g, t; P) = e xp [k ( P ) +  R (k (P)) + Q (k (P))]. (1 + 0 (k (P)-~). 

c)  9(0 ,  O, O; P ) = l .  

This function has the form 

(x ,  g, t; P)  ~ o (o~ (pJ--e (x, v, t)) o (--  e (o, o, o)) exp 
0 (ra ( P ) - - e  (0, O, 0)) 0 ( - - e  (x, g, t)) 

I ) 
\Po 

where at, ~2, % are normalized Abelian differentials of second kind with a pole solely at 

P0 and principal parts d(k~-clogk), dR(k), dQ(k), respectively, and 

g 

e (x, v, 0 = ~ (B (~0 x + a (~) v + B (,,~) t) + ~ ~ (Ps) + ~, 
1=1 

6.7. The connection of this construction with the results of Sec. 3 of Chap. III is 

as follows. Let ~ be a field of meromorphic functions in x,y,t, and let O denote the ring 

of meromorphic functions on ~ with pole at P0 �9 Then on the space of functions ~[0x]~ 

it is possible to introduce the structure of a (~,O)-bimodule with ~ as | , in which the 
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filtration is induced by the filtration of ~[Ox], and X7 x, ETy, ETt coincide with 0x, @y, @, , 

respectively; multiplication by O is the natural multiplication. 

Further calculations along the lines of Chap. III but using the analytic information 

now at hand lead to the following explicit formulas. 

6.8. The K0rteweg--de Vries Equation gt=6ggx--gxx x. As was explained in Chap. III, in 

order that under the imbedding O->~[@xl the image of O contain a Schr~dinger operator 

O f second order --@~+u, it is necessarY that F be hyperelliPtic. Let F be the Riemann 
2g+ 1 

surface of the curve y2= [[(z--E]), Ei=/=Ek. We choose a normalized basis of differentials of 
i-) 

first kind 

to#-----(~ cs.zr" ) y-~dz, 

where the 

as in 6.2. 

CS~ are found from the system of equations I~s=~s~, and the ak are defined 
a k 

Then for P0=oo and a nonspecial divisor D=Pt+... +Pg we have 

u (x ,  t)---- - -  2a~x log  0 (xg + tv + 0 + c, 

where g, ~, I~Cg, c6C and 

i /2g+, \ 1 �9 I 

Bm]; , : ,  
2l+!  g 

:=i j , , . - 1  a m 

(The nonuniqueness in the choice of path of integration in the formulas for 

affect g(x,t)). 
lj does not 

The Akhiezer function 

~(x, , t ,P)= O(e(P)+ xg+tv+llO(tv+l) X~ O(~(P)+t'~+OO(xg+tv+O exp i 

is a solution of the SchrSdinger equation (--O~+g(x,t))~-~-y(P)~." Here P6r and ~ is a 

normalized differential of second kind with ~-d]/z@O(z-3/2dz)as z-+c~, and having no 

other poles. 

If all or part of the pairs (Em, Em+!) coalesce the limit solutions will be g -solitons 

or solitons on an almost-periodic background. 

6.9. The Kadomtsev--Petviashvili Equations. Thesecorrespond to the Akhiezer function 

~(x, y,t; P), defined in Theorem 6,6 for which F is any Riemann surface, P0 is any point 

on it, R(k)=k 2, Q(k)=k a. In the ring ~[Ox] with the help of the bimodule ~[ax]@ we seek 

operators 
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z.=a~+,~(x, y. O, p = ~  + ~,~(x. ~, Oa,: +~,~(x.. y. O, 

satisfying the Zakharov-Shabat equation ayP--@tL =[i, P]. In terms of the coefficients 

u, v,, w this system can be rewritten in the form 

~2y ~ Ut "~- ~O~x ~ Uxx ~ ~I//x = O; 
"vlxx-1" 2 ~ 2 x  - -  3gxx + vly = O; 
2~ix = 3Ux. 

Solutions constructed on the basis of the bimodule actually even satisfy the condition 

2v1=3u. Eliminating vl and v2 from this system, we obtain the Kadomtsev--Petviashvili 

equation 

3 I 
7 u,, + u;t + T (uxxx + 6uux)t = O, 

which is also called the two-dimensional Korteweg--de Vries equation. Its solution can be 

written in the form 2ax~logO(xg+tv+yh+l). 
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