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INTRODUCTION
0.1. This article is an attempt to systematize and dispiay the basic structures in a
vast, beautiful, and important mathematical literature which has accumulated during the last

decade as a result of the boom surrounding the Korteweg—de Vries equation #4; =6uu,—tys..

This equation was proposed and investigated in 1895 for describing long surface waves
in a channel with rectangular walls. Korteweg and de Vries also obtained its first solutions:
"cnoidal wave' — an infinite periodic wave train moving with constant speed without changing
form — and its limiting case — the solitary wave or soliton (the terminology of Kruskal and
Zabusky). |

As early as August 1834 Scott Russell observed a soliton on water. He subsequently
described his observations in the "Report on Waves'" (see the reference in [47]) which is
these days widely cited everywhere from the SIAM Review to the Young—Technician. The lively
image of him galloping along the banks of a channel in pursuit of a solitary wave evokes in
the modern reader a mild and pleasant nostalgia harmonious with the general style of a bygone

era.

It is not often that a single problem brings to life an entire theory. It seems that
we are presenting its inception.  The number of publications on this topic is now counted in
the hundreds; what is more important, in the theory of nonlinear differential equations a

clear shift of interests and a reevaluation of priorities are taking place.

For the fundamental equations of classical fields, special hopes rest on the existence
of soliton solutions and their peculiar nonlinear superpositions. The elementary particles

are possibly related to such solutions.

There are still no general notions of what soliton and multisoliton solutions really
are, which classes of equations have them, and how they are related to the presence of an
infinite sequence of conversion laws and the so-called Bicklund transformations. There is
only a rich experimental material which remains to be sorted out. The word "experimental"
is here meant in the broad sense to include direct observations, calculations on the computer,
and investigation of particular interesting classes of equations. It is clear that the
deciphering of the structure of these phenomena must play a fundamental role in understanding
them. A good and to considerable extent algebraic and geometric theory is needed, and this

remains to be created.

Translated from Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki, Vol. 11, pp.
5-152, 1978.
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We shall briefly describe certain properties of the Korteweg—de Vries equation which may

serve to clarify the plan of the present article.

0.2. Derivation of the Equation. The usual linear one-dimensional wave equation is

written in the form 'u,,-#c?u;\v,\:o. Its general solution is a sum of two waves of arbitrary

form u=f(x+tct)+g(x—ct) one of which moves to the left and the other to the right with con-
stant speed ¢. We consider the equation w;4cu,=0, which distinguishes waves moving to the
right. Among its solutions are the harmonic waves u=expi{wf—Fkx)where the frequency © and
the wave number k are related by w=ck, or for waves of both types by w?=c?t? where ¢ is

characteristic of the medium.

If the wave equation remains linear but includes derivatives of higher order, then the
relation between the frequency and the wave number of a harmonic wave may have the-more
general form o’= f(k?), where [ 1is not necessarily a linear function. In the approximation
of long waves, i.e., small k&, we may restrict attention to the first two terms of the Taylor

3
i)fé- Waves with this dispersion relation

series for f and write o?=¢2f*}:k! or w=ck-t
(dependence of the frequency on the wave number) are described by the equation «,4-cu, —

&
Py Uppo= 0.

On the other hand, the simplest nonlinearity enters if it is assumed that the speed
depends on the amplitude u . For waves of small amplitude it may be assumed that the depen-
dence is linear, and the equation can be written in the form w4 (c+au)u,=0. The dependence
of the speed on the amplitude for suitable sign of o may cause the crest of the wave to move
faster than the trough, i.e., curling of the front occurs with subsequent fomatioﬁ of break-

ers and decay of the wave.

Simultaneous consideration of dispersion and nonlinearity, leads to the equation
u,—{—cux—auux—% #.,.,=0. If we go over to a system of coordinates moving to the right with
speed ¢, the term c«, drops out, and we arrive at the Korteweg—de Vries equation up to a

4

normalization constant which can be chahged by scaling z, X, ! (Making use of this fact, in

the main text we shall often write this equation with different coefficients.)

This derivation is good in that it nowhere appeals to hydrodynamics and indicates the
universal applicability of the Korteweg—de Vries equation to one-dimensional media where the

essential features are only weak dispersion and weak nonlinearity.

0.3. Cnoidal Waves and the Soliton. We shall seek a solution of the Korteweg—de Vries

equation u;=6uu’—u’" in the form of a traveling wave u(x,{)=U(x—vt), where U is the wave
form and v is a constant speed (we recall v is really the speed by which the traveling wave
exceeds the wave speed in the simplest approximation u,4cu,=0)."

For [/ we obtain the equation —olJ'=6UU'—U". Integrating we obtain —oU=30U2—

U‘.!
U’4-a , where a is a constant. Multiplying by U’ and integrating again, we find —2 -5 =

1 . 2 . a :
U3-—3U’2 +4-al/--p , where b 1is a new constant, or U =20°%+gU>4-al/-+b. Up to a normaliza-
tion constant, the general solution of this equation is the Weierstrass  function U (x—vf)=

c,®(x —vt)+c, the periods of which are the periods of the elliptic curve T: V?=2X31o0X?4



aX 4+t ; here c¢;,and ¢; are suitable constants. This is a cnoidal wave train if the dis-
criminant of the curve is -different from zero; the perio;l of the wave train is the real
period T , i.e., i"’ » where o=dX 2X3+0vX*+aX4b) ?,and 7 is a real cycle on the

Riemann surface of T .

The soliton is obtained for the curve with a double point at the origin: Y?=2X349X?,
a=b=0 . The explicit formula for it has the form U(x——vt)=—-—;—ch‘2(vv (x——-vt)). This
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is the solitary wave (in the present normalization it is rather a "solitary well") with
trough at the point x=vf . The depth of the well is proportional to its speed which may be
arbitrary. The soliton is the limit of the cnoidal wave train when its period tends to
infinity.

0.4. Superposition of Solitons and Quasiperiodic Solutions. Since solitons decrease

at infinity and large solitons move faster than small ones, we may attempt to consider the
solution of tﬁe Cauchy problem for which u«(x, 0) is the sum of two widely separated solitons
of which the left is larger than the right and therefore begins to move almost independently
of the right soliton and strives to overtake it. After this occurs a period of essentially
nonlinear interaction ensues, and it is of interest to consider what form the solution may
have at a later time. Contrary to usual expectations, numerical experiment showed that
after a rather long time the solution is nearly the sum of the same two solitons of which
the greater has already overtaken the smaller, and the result of the collision is found only

in a shift of phase but does not affect their form or speed.

This provoked attempts to analytically prove the existence of the superposition of soli~
tons. Lax in [42], which had a great effect on the subsequent development of the theory,
established, in particular, the existence of the two-soliton solution, and almost simultaneous-—

ly explicit formulas were found for the superposition of any number of N solitons.

These formulas have the form u(x, t)=~2%—2logdet(E+A), where E is the N XN identity
matrix and the element A of the matrix ij is c¢;c;(a;4a;) " exp [(af—{—a?)t—(a,-—{—aj)x], a; >0,
i=1,...,N, a;2;, for i#/j . Asymptotically for |f|— cc this solution decays into a sum of
N solitons arranged in order of decreasing (as f—~ — o0 ) or increasing (as f-» o) amplitudes

and speeds.

After some time solutions were discovered which are related to the N-soliton solutions
in the same way as cnoidal waves are related to the single soliton solution (for the history
of this discovery see the survey of Dubrovin, Matveev, and Novikov [8]). They were found to
be related to the Riemann theta function for hyperelliptic curves of genus N (with equation
Y2=F (X), where F 1is a polynomial of degree 2N-+1 ). The explicit formulas have the
form  u(x, £) =—2-a%l,og6(xa+t3+1)+consi , where a, 8,1 are certain N -dimensional complex
vectors. (For the details see the review of Matveev [44] and Sec. 7, Chap. 4 of the present
work.) The N-soliton solutions are obtained in the limit as the hyperelliptic curve de-
generates to a rational curve with N double points. Partial degeneration (with reduction

of the genus) leads to a "multisoliton solution on the background of a quasiperiodic solution."



0.5. The Conservation Laws. A conservation law for the evolution equation u,=

K uw,...,u™) (lt(”:;—:;—) is a relation of the form T,—}—-Xx:O , where 7 and X are func-
tions of u(?, j>0 , which follows formally from the equatign. If u is a solution of the
equation which is rapidly decreasing at infinity, then g; S Tdx ==—-S X, dx=0, so that T
is the density of a quantity conserved in time. The first three conservation laws for the

Korte&eg—de Vries equation are obtained without difficulty: they have the form

Ut (—3uP 1), =0;
() +(— 4+ 29u, —i2) =0;
(u3 + —;— uf}t + ( — -3— w430, —6un’ +uu, — —;- u’”x =0.
They can be interpreted as the laws of conservation of mass, momentum, and energy. However,
the Korteweg—de Vries equation has an infinite sequence of conservation laws which are poly-
nomials in the 4% . They were first written out by the method of undetermined coefficients;
this work was practicable up through the ninth law. According to Miura [47}, "in the summer
of 1966 the rumor circulated that only nine conservation laws exist." Miura killed this
rumor by spending a week of summer vacation computing the tenth law; after this a machine
program was written which computed the eleventh law consisting of 45 terms. (With the pre-
vious program all storage capacity was used already at the sixth conservation law.) Very
transparent proofs of the theorem on the existence of an infinite sequence‘cf laws and results
on their structure were then obtained in connection with important theoretical progress: the
discovery of the Lax representation and the applicability of the technique of the inverse
scattering problem.
0.6. The Lax Representation and the Inverse Problem. Lax [42] observed that the Korteweg—
de Vries equation can be written in the form L,=|P, ], where L= — ;Z 4u{x,t) and P=

3 i Y
-—47%;~+3fu(x,t)%%;—k:%;—u(x,t)} Here [P, /] is the commutator in the ring of linear dif-

ferential operators; L, is the coefficientwise derivative of L with respect to the "param-
eter" { . Equations of this form for flows in Lie algebras have been known for a long time;
the best known of these is the Schrbdinger equation in the Heisenberg representation where

P 1is the energy operator of the system and L is any observable. Classical Hamiltonian
equations in the Lie algebra of functions on phése space with the Poisson bracket and also
the equations for the rotation of a solid body can be writtem similarly.

There is a simple formalism of conservation laws connected with such equations: if there

" function Tr on

is a linear representation ¢ of the Lie algebra and a ''generalized trace
it which is zero on the commutators, then Trg(L") for nz=0 is conserved in time, since

(Trg(Ln))=Trg([P, L*]) =0 .

It is, however, far from obvious how to carry thfough this formalism for a Lie algebra
of differential operators. This development led to the formulation of the extremely important

method of inverse scattering theory. In general outline it reduces to tracing the evolution



in ¢ of the space of solutions of the linear problem Ly=7iy (% a constant) in terms of the
"gcattering data.”" The scattering data consist of the discrete part of the spectrum of L,
the normalization constant of the eigenfunctions, and also the scattering matrix for the
(rapidly decreasing) potential « from the continuous part of the spectrum. For further

details see the survey of Faddeev [23], the extensive literature, and also Sec. 4 of Chap. 4.

0.7. The Variational Formalism and the Hamiltonian Property. The Korteweg—de Vries
2 ) oo 0
equation can also be written in the form ut:‘%%‘ (\u3+%1\1 , where 7;-12 =i§(_~l)zd.m is the

Euler—Lagrange operator or the variational derivative. This is a somewhat unusual Hamiltonian

form: the standard form of the equation of a Hamiltonian evolution for a vector-valued func-

. - . . . — \ 8H . .
tion u# of dimension 22 is u,=i’\ OEf)gf—ﬁ_— , where E is the (nXn) identity matrix, H=
—E0. 5
. . SH r&H 8t
F iy 3 1 { — -
Hu") is the Hamiltonian, and I e B

Various aspects of the Hamiltonian property were investigated in the important work of
Gardner [36], Lax [43], and Zakharov and Faddeev [12]; it was shown, in particular, that the
conservation laws commute in the sense of the Hamiltonian formalism. Equations of the form

d &T

U =5—%; » where T,+X =0 is some conservation law for u,=6uu,—u,., have received the
-t ) - .

name of higher Korteweg—de Vries equations. The solutions described in part 0.4 were char-

acterized invariantly as flows induced by the Korteweg—de Vries equation on the stationary

manifolds of conserved quantities defined by the ordinary differential equation {§%==0.

There are other equations. Practically all the effects described above for the Korteweg—
de Vries equation were subsequently found for a large number of physically interesting equa-
tions including the sine-Gordon equation, the nonlinear Schrédinger equation, the equations
for self-induced transparency, etc. For other "suspect'" equations part of the properties

have been verified sometimes by numerical experiment.

0.8. The Plan of the Article. In the vast majority of studies pertaining to the

Korteweg—de Vries equation and its analogues, a substantial role is played by a system of
purely algebraic structures connected with these equations which do not depend on assumptions
of analytic character, the choice of function spaces, existence and uniqueness theorems, etc.
The principal aim of this article, as previously mentioned, consists in displaying and system-
atically expounding the origins of the theory of these structures. This objective has deter-

mined thechoice of the material as well as the order in which it is introduced.

The first chapter is devoted to the foundations of the variational calculus with higher
order derivatives which is necessary for the natural introduction of the conservation laws
and the Hamiltonian structure. Here an attempt is made to follow the invariant interpretation
of the variational calculus in terms of differential forms -and vector fields on spaces of
jets withoutwhich the formulas, which become more complex with increasing order of the deriva-
tives, are hard to interpret and work with in a practical manner. Special attention is

focussed on the basic facts of the Hamiltonian and Lagrangian formalisms.



In the second chapter a detailed study is made of the structure of general Lax equations
as well as of an enigmatic system of wave equations of Benney which displays many of the
features of the systems described above but so far does not fit into the general theory. We

consider it an interesting object for future investigationms.

The third chapter is devoted to the Lax equations of multisoliton and quasiperiodic
type. Here we have also strived to display in the clearest possible way the mechanism of the
appearance of the algebrogeometric structures in the theory of the equations without writing
out explicit formulas for their solutions which is done in a number of other surveys and is
briefly considered in Sec. 6 of Chap. 4. Exceptions are the "solitons of higher rank" which
are here obtained by algebrogeometric methods for the first time. One common feature of all
problems solved should be emphasized: the introduction of an auxiliary fiber bundle over an
algebraic manifold and the interpretation of the equation as the problem of finding a con-
nection in this bundle with certain additional properties. Recently the problem of "instanton"
solutions of the Yang—Mills equations (more precisely, the duality equations) in Euclidean
field theory with the group SU(2) has been reformulated and advanced in this manner (Atiyah
following preliminary work of Penrose, t'Hooft, A. S. Shvarts, Polyakov, and others). It
reduces to the classification of two-dimensional complex vector bundles over P3(C) , which

are trivial on a certain class of lines in P2 .

Finally, facts regarding particular interesting constructions and methods which have
not yet been sufficiently thought out or subjected to systematization are collected in the
fourth chapter. The exposition here follows the sources cited in the corresponding sections;
proofs for the most part are omitted. The only exception which deserves mentionis thebeginning
of Sec. 3 of Chap. 4 where an attempt is made (not entirely successful) to invariantly define
a very interesting Lie algebra introduced by Estabrook and Wahlquist in connection with their

theory of "prolongation structures" and generalized conservation laws.

The reader should not take the scattered references and credit of authorship for various
results too seriously. Many similar works were done almost simultaneously and almost in-
dependently; many approaches revealed a parallelism unknown to their authors; many ideas hung
in the air and continued to hang in the air some time after formal first publications. The

history of our question, if it deserves such, remains to be written.

In spite of the length of the article, many interesting facts have remained beyond its
scope. First of all, the analytic theory of the method of inverse scattering has been omitted
completely in spite of its importance and the fact that it motivated the inception of many of
the purely algebraic constructs described here. Régarding this question, the reader may find
abundant information in the literature cited. Secondly, very little attention is devoted to
specific solutions of particular equations or to their physical interpretation. Third, we
have left untouched the interesting parallel theory of discrete systems such as the 'Toda
lattice" and such of its principal applications as the explanation of the Fermi—Pasta—Ulam
paradox. Fourth, interesting investigations of flows of Lax type in finite-dimensional Lie

algebras and the many-particle problems related to such algebras have been omitted. The



informed reader will probably discover still more omissions voluntary or involuntary. Among
the results not contained in this work but naturally related to it mention should be made of
the investigation of Bogoyavlenskii and Novikov [1] and of Gel'fand and Dikii [3] on restrict-
ing Hamiltonian flows to stationary manifolds of conmservation laws. They are of basic im-
portance for understanding the relation between solitons and conservation laws and merit

generalization to the multidimensional case.

We have not endeavored to compile a complete bibliography. In place of this the bibliog-
raphy includes surveys with large bibliographies and collections devoted to specific aspects
of the theory [2, 8, 23, 26, 33, 44, 47, 50, 53]. Beyond this, papers having a direct rela-
tion to the question touched on here have been selected as have several works to which we do

not refer but which, in our opinion, deserve special attention.

0.9. "It is impossible to overestimate the role that the author's many conversations
with I. M. Gel'fand and also the work of Gel'fand and Dikii [2-5] played in the design and
plan of this paper.

The selection of material for the paper was made during a special course which the
author gave in the mechanics and mathematics department of Moscow State University in 1975/
1976 and from the introduction to a seminar in 1976/1977. The participants in the course and
seminar provided the author with a great deal of material which directly or indirectly af-
fected the content of the paper.

In particular, a large part of the new results of Chap. 1 belong to B. A. Kupershmidt;
their presentation is based on his published papers and notes which were kindly given to the
author before their publication. The investigation of Benney's equations in Chap. 2 was
carried out jointly by B. A. Kupershmidt and the author. The algebraic reworking of the
Gel'fand—Dikii theory in Chap. 2 derives from a report of M. 8. Shubin in the seminar in
which the simplicity of the formalism of pseudodifferential operators over a one-dimensional
base was revealed. The role of bimodules and connections to which Chap. 3 is devoted was
clarified by V. G. Drinfel'd. From the report of S. I. Gel'fand the author first understood
the technique of Estabrook and Wahlquist, while the exposition of the results of Lax in Sec.
5, Chap. 4 is based on the notes of I. Ya. Dorfman. Finally, conversations with B. A. Kuper-
shmidt, M. A. Shubin, V. G. Drinfel'd,'V. E. Zakharov, I. Ya. Dorfman, and D. R. Lebedev were
very useful to the author. I am happy to express my deépest gratitude to them all.

CHAPTER I
THE VARIATIONAL FORMALISM

1. Differential Equations: Three Languages

1.1. The Classical Language. 1In this language we first of all choose a notation for

the independent variables, say, X;,...,X, , and for the unknown functions,'say Biy ooy

m
let k=(ky, ..., Ry) where k,;>0 are integers, and let |k[=2 k,. We denote by the symbol
I
dmu,

u{® the derivative Z
dxf‘ oo 0x,

. A system of differential equations relative to {#} 1is a



collection of relations of the form

Fi(fyeons Xps sy, ooy s u®, L., u®)=0, (1)
where the F; are some functions.

It is sometimes convenient to distinguish one of the variables, say, f (the "time" as
opposed to the spatial coordinates Xi,...,X,), and to consider a system of evolution equa-

tions of the form

(/]
Sh=tj e =F (1, oo X B3 s ooy 3 1P, L u®), )
We point out that F; does not depend on the derivatives of #; with respect to tj=1,...,n.

1.2. The Language of Differential Algebra. Let A be a ring, and let M be a left A-

module. We recall that a differentiation of A into M is any additive mapping d:A— M with
the property d(ab)=adb-+bda for all a, b€A.

The algebraic analogue of the system of equation (1) is a structure consisting of a
ring A, some Lie algebra D with a differentiation into itself, and an ideal /CA, for which
DIcI . More precisely, we suppose that F; in (1) is infinitely differentiable in all its

o0
arguments and set A =U C®(x, ..., X, u®|1<j<n, [k|<l) , where the u'® are formal indepen-
1=0

m .
dent variables. Let further D=2A0,-, where 0; takes x; into §;, and a{® into ufk""“!'),
=t ;
e;==(0...1...0) (1 sits at the j-th place), and let [/ be the ideal in A, generated by all
0%...0%F, . The structure (A,D,I) corresponds to (1). Any smooth solution of (1) corre-
sponds to a homomorphism A—C®(x;,...,x,)=K, which is the identity on K, contains [/ in

its kernel, and takes 0; into 0%, .
-1

If the right sides of (2) do not depend on ! explicitly, then the algebraic analogue
of (2) in this context can be constructed by not introducing !¢ explicitly: it consists of
(A, D) and the additional differentiation of "evolution" X:A—A , defined by the conditions
[X, 9;]=0 for all |, and Xu;=F; (the right sides of (2) for j=1,...,n). Any smooth solution
of (2) corresponds to a K-homomorphism A—C=(xy,...,%Xm, t), which takes &; into 0/0%; and
X into d/dt.

Variations é.re possible in the definition of the ring A. For example, if the F; in
(1) do not depend explicitly om .X'Zi dnd are polynomials in u;%*, it is possible to set
A=R[4;®] and consider the algebraic object modeling (1) to be a minimal ideal in A, which
is D~closed and contains F; . It is also possible to take A to consist of analytic func-
tions, meromorphic functions, germs of functions,etc., depending on the properties of F; and

the solutions of interest to us.

1.3. The Geometric Language. Here we start with some locally trivial, smooth (i.e.,

class C* ) fibration n:N—>M ., The role of the independent variables xi,...,%s in (1) is
played by a point on M, and the role of the unknown functions u,...,H4, is assumed by a

smooth section §:M—N of the fibration m. In order to define a geometric object correspond-



ing to the system (1) it is necessary to introduce the tower of jet spaces of the fibration

i . We recall the corresponding definitioms.

Let s; and S; be local sections of the fibration = . They are tangent to one another
at a point EEN to order k=0, if they pass through this point and their Taylor series in
any local coordinate system for 7(§) coincide through order ¢ . A k-jet at the point § is
the equivalence class of local sections which are tangent to one another at the point E to
order k. Llet Jim be the set of all k-jets. It is equipped with a natural smooth manifold
structure and there is a tower of smooth fibrations ...Jhm—Jt-ig— .. —>I%%x=N—>M . An
analogue of system (1) is then a closed subset in a suitable story of the tower Ik, pre-

scribed by the vanishing of the right sides of (1).

More precisely, the connection of the classical notation (1) with geometry is realized
by means of a choice of consistent local coordinate systems on all the spaces J*z . We begin
with a choice of a pair of neighborhoods (6VCN and =(3)6U==(Y)CM, such that the restric-
tion =:V—U is diffeomorphically equivalent to the projection R™”>Rm™. The choice of this
diffeomorphism is a local chart for =, prescribing it is equivalent to prescribing a local
coordinate system in N of the form (#y,....4,; Xi,...,X,) such that the restrictions of (u))
to each fiber of = give a local chart in this fiber, and the (X;} are lifts from the base.
With respect to this local chart a local chart is canonically constructed in each J*z with a
coordinate system which is denoted by (", x]|l|<k) and is uniquely defined in the following
manner. Let § be some local section of =y , which is represented in a local chart of =

by the functions ui,... ,uflEC""(xl,... ,Xx). Its k-jet is a point of J*=. The value of the

0[1.I s
—-,——u—’-T. Obviously the collection of k-jets

"4 LSm
0.\1‘.._.0xm

coordinate #{’ at this point is by definition

of the section s at all its points is a smooth section of J*z ; it is called the lift of s
to J*z, and we denote it by the same letter § . The lifts of sections are compatible with

the projections of the jet spaces.

It is now clear that the system (1) defines some subset ® in J*=, and its solutions

are those sections of =, whose lifts lie in ©,

The connection of the geometric language with the language of differential algebra is as
follows: A= C=(J*z) (imbeddings with respect to the natural projections), D=D, is the
£=0

Lie algebra of "horizontal' differentiations of A (for the precise definition see the follow-
ing section), /CA is the ideal of functions which vanish on the"lifts ®" (the geometric
definition of a 1ift is most simply introduced by the condition of differential closedness

of the corresponding ideal).

1.4. A Comparison of the Languages. The three languages briefly described are not

equivalent either mathematically or esthetically; each has its advantages and shortcomings.



The classical language makes the fewest explicit assumptions on the form of the func-
tions F;, the sense of the derivatives «;%, the domains of existence of solutions, etc. It
affords the freedom of interpreting, e.g., the u; as various types of generalized solutions
(and therefore, possibly, not elements of any natural ring). It also permits when necessary
accentuating other algebraic structures which are essential for investigating the system and
its solutions, for example, linear topological structures. However, this language is not
suitable for investigating global properties of solutions related to the topology of the
manifold of independent variables and fibrations of the unknown functions. Further, this
language may poorly express the invariant properties of Eqs. (1) and (2) and their conse-

quences.

The language of differential algebra is better suited for expressing such properties
and puts at the disposal of the investigator the extensive apparatus of commutative algebra,
differential algebra, and algebraic geometry; this is especially true if the F; in (1) and
(2) are polynomials, and we are interested in special classes of solutions. The numerous
"explicit formulas" for the solutions of the classical and newest differential equations
have good interpretations in this language; the same may be said for conservation laws. How-
ever, the language of differential algebra which has been traditional since the work of
Ritt does not contain the means for describing changes of the functions «; and the variables
x; and for clarifying properties which are invariant under such changes. This is one of the
main reasons for the embryonic state of the theory of so-called "Bicklund transformations"

in which there has been a recent surge of interest.

The geometric language is especially well suited for formulating and clarifying global
and invariant properties of general systems of equations and for applying to them the theory
of differential—geometric constructs and ideas. Its main drawback is its generality which,
on the one hand, requires a rather lengthy development of foundations without concrete
applications and, on the other hand, creates the risk of overlooking interesting properties

of special classes of equations connected with fortuitous additional structures.

For these reasons the present paper is written in a broken and somewhat eclectic jargon
in which modes of expression from all three languages are mixed in those proportions which to
the author seemed most suitable for the object of study. Equivalent or comparable formula-

tions of the same facts and constructions in different languages are often presented.

1.5. The Lagrange and Hamiltonian Equations. The classes of equations which will be

of main interest to us in this work are engendered either by a Lagrangian or Hamiltonian
formalism. Their choice and investigation is strongly motivated by the finite-dimensional
case which corresponds to the projection sm:N-+ {(point). In this case the analogue of our
"Lagrange" problem consists in choosing a smooth function L:N—R and finding its stationary
points grad L=0, i.e., from a general point of view it is not intrinsically a problem in
differential equations. The "Hamiltonian" problem is obtained if a Hamiltonian structure is
given on N which makes it possible for each Hamiltonian H:N—R to construct the appropriate

vector field Xz on N; it is required to investigate the properties of its trajectories.
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If the base M is not a point then the role of the finite-dimensional configuration (or
phase) is taken over by the infinite-dimensional space of sections §:M—+>N of the fibration
= , and the first problem is to choose a suitable class of functionals on the sections from
which the Lagrangian and Hamiltonian can be selected. Here we adopt the point of view of

the classical variational calculus according to which the initial functionals have the form
;(s)z‘gms , where o in a local chart has the form L(x; a{®)dx;A...N@x,-and o5 1s the
M

restriction of o to the corresponding lift s. (If M is not compact (s) are defined on
all o with compact support or — for a particular o — on sufficiently rapidly decreasing

sections.)

In the Lagrange problem o is called a Lagrangian density (or simply the Lagrangian),
J(S) is the action (for the section s ), and the problem consists in finding those s, for

which the action is stationary: BSmS.—_—.O in classical notation.
M

In the Hamiltonian problem it is, in addition, necessary to give a Hamiltonian structure:
3)~—>X5 , where Xz is the differentiation of evolution corresponding to the Hamiltonian © .
Not every such (linear) mapping defines ar Hamiltonian structure. In analogy with the
finite-dimensional case, we introduce on {®} the Poisson bracket by the formula {5,,52}=X5F>2,
and we require that the mapping @-*Xa be a Lie-algebra morphism: X{(;“‘;'}=[X5l, X‘;.] (the

commutator of the evolution fields).

It is well known that by means of integration by parts the condition 8Sm-‘=0 reduces
to a system of differential equations (the vanishing of the variational deri#atives or the
Euler—Lagrange operators of the form o). This same mechanism works in studying the Poisson
bracket X(;!:)g . The formalism of the variational calculus is based on the fact that essential-
ly all computations are carried out with the integrands, i.e., in the algebra of certain
operators on forms on the space of jets. Since for us Lagrangians and Hamiltonians with
derivatives in x; of arbitrarily high orders are essential, it is important to clarify the
invariant meaning of the classical constructions and formulas; dealing with these objects
becomes complicated as the order of the derivatives increase, while invariance under change
of coordinates is almost not amenable to verification. This is the basic objective of the
first chapter. In Sec. 8 we restrict our consideration to the case of a one-dimensional base

and introduce the class of Hamiltonian structures which are important in the sequel.

In conclusion we remark that the choice of the class of functionals {w} on the sections
is not the only possible one nor even the most important. In field theory, for example, the
class of functionals of. basic importance are those generated by integral transformations of
polynomials of the form P (uf(x®),..., #5(x™)) , where (£, .., xXMEMX ... X M=MN , and u*
are the coordinates of the section. They include, say, Fourier transformations of the co-
ordinates, and, if generalized kemels are admitted, also all functionals of the form o .
Moreover, they form a ring, while functionals of the form o constitute only a linear space.
A systematic development of the variational formalism in this class has apparently not been

carried out in spite of the importance of this problem.
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§2. Fields and Forms on the Space of Jets

2.1. The Basic Model. We consider a fibration N3M, locally diffeomorphic to the

projection R"™7Rm  and we describe a number of concepts and constructions related to
differential forms and vector fields on various stories of the tower of jets. The defini-
tions and formulations of results are given in invariant terms which automatically ensures
their consistency in local models (an exception is the Legendre operator for which see Sec.
4)., For this reason computations may be carried out in local coordinates if desired which
clearly indicates the connection with the classical formalism. We thus introduce a number
of bundles and homomorphisms between them, but we carry out almost all computations in a
single local chart ( #v:V U and a diffeomorphism with projection R*7->R™"), and we assume
as in Sec. 1 that K=C>({), A;=C>(Jizy), i>0,and A,=KcACAC.... A section s:U-V
we identify with the induced homomorphism A—K:P—P:, 1In a local chart we have A;=

C>(x,, .. u® || k| <i); ups= us for any s.

0xf‘...0x"m Y
m

2.2, Vector Fields on Jets. If L is a smooth manifold, B=C~(L) , we denote by D(B)

.
vy Ay

the Lie B-algebra of vector fields on L, considered as differentiations of B into itself.
If C—+B 1is a homomorphism induced by a smooth mapping we denote by D(B/C) the subalgebra
of fields of D(B), which are trivial on the image of C.

For k>i a field X,eD (A,) 1is called an extension or lift of a field X,6D(A), if
Xila,=X;, . Since Jtmy=JimyX R™ , any field X, extends to D(A,). We denote by D(4, A,)C
D(A;) the submodule generated over A, by all elements of D(A) in D(A,). Finally, we
denote by D(A) the set of all differentiations X:A-+A , such that for each i there exists
a k>i, for which X|[4,6D (4; Ap).

In a local chart D(A) is a free A;-module freely generated by the partial derivatives

(52—1. 5£(T)l|ll<i). Any element of D(A) can we written uniquely as an infinite linear combina-
&k

tion X=Z P, a%——}-z Qk.:;%—: P;, Qei€A. The coefficients P;. Qe.: are determined by succes-
7. W “y,

sively restricting X to A, with i—oco. Obviously, P;=Xx; Qu,=Xu{’. It is easily
verified that D(A) forms a Lie A-algebra.

2.3. LEMMA. . Let PGA be such that Ps—0 for all sections S. Then P=0 .

Proof. If P(x;, u{)+0, then there exist £, v{’6R , such that P, v{")#0. We look
for functions u#j6K , such that at the point (§,) we have.(0“'/0x{t...0x;.'m)ui(5j =v{). They define
a section s, for which P +#0.

2.4. LEMMA. There exists a unique mapping D (K)—D (A): XX such that for all sections
s:U—V and for all XED(K), PEA we have (XP)y=XPs. It is an imbedding of Lie K-algebras.
Proof. D(K) 1is freely generated over_K" by the fields ¢/0x; . We set 0/0x_‘=0,-_—-a%+

uy'-"'”l’d/du}‘)e’D(A), where ¢,=(0...1...0) (one sits at the i-th place) and we extend this
Jok



definition by K-linearity to all of D(K) . Obviously, 0;|x=0/0x, (diu;."')‘)s=(u§."+“t)7‘=;z(u}.‘)‘) .
From the fact that P~Ps is the identity on K and from formal properties of derivatives it
follows that (XP)'=XP* for all XE€D(K) and PEA.

The uniqueness of X follows from Lemma 2.3.

The fact that X—X is a Lie-algebra homomorphism follows from the computation

[X,Y| Ps=XYPs—YXPs=X (Y Py —Y (XPy=
=(XYP):—(YXPy=(X, Y| Py

and the uniqueness of [X, Y] .

Obviously, 9; is the "total deriyative" with respect to X; in the classical terminology.
We denote by D,cD(A) the image of D(K) under the imbedding X~X . It is clear that AD,
forms a Lie subalgebra in D(A). 1In a local chart we shall write P(’)=0{'...Ji‘mP. This is

consistent with the notation u{? and the homorphisms P~ P,
2.5. LEMMA. There exists a wnique imbedding of AD(A/K) into D(A):Y~Y such that

[V, X]=0 for all X€D, and YP =YP for all PgA, Its image is the Lie subalgebra of all

fields which commute with D, and are trivial on K .

Proof. The action of Y on x; and u, coincides with the action of Y, and on #{
for |[I|>1 it is defined by the condition [V, DC]—O Yul’ =(Yu,)”. Therefore, the only pos-
sible formula for ¥ has the form YP= Z(Y )(”

du (l)
The required properties of Y are obvious on the generators of D, and A, and are
hence valid everywhere. Any field which commutes with D, and is trivial on K, can be re-
presented in the form ZQU)o (,, , and therefore has the form of Y. Finally, such fields

obviously generate a lie algebra.

We denote by D, cD(A) the image of AD(A(/K)in D(A). Assigning to each Y€Dey
the system of evolution equations #«;:=Yu;, we see that Y:A—>A is the "total time deriva-
tive'" by virtue of this system. The condition [D,, }_’]=0 means that the total time and space

derivatives commute.

2.6. LEMMA. a) [D,,, AD]JcAD, . b) D+ AD,=D,®AD, (sum of spaces) is a Lie sub-
algebra in D(A). The restriction of Dey+AD, to A, defines an isomorphism of this space
with AD (4,).

Proof. a) For YeD,,, XeD,, PEA we have {V.P?]—-—-(l-’P) XeAD,, since [7,7—(]=0.
b) The restriction of ZQ(” d?" +Z R,-ajéDev-{—ADc to A, coincides with ZQ;%-&-

2 R; (ax, +2 uit )o:,, ) 2 (Qz +2 Rju(zl)) 3ax +2RMX €AD(A,). Therefore, Q, and R; are
i

uniquely determined for any field of AD(4;), whence b).

13



For any element XEAD (A;) we denote finally by XeD (A) the corresponding element of
Dy+AD, . As is evident from the proof of Lemma 2.6, on D, and D, this canonical lift

operator coincides with those defined in Lemmas 2.4 and 2.5 respectively.

Although D+ AD, far from exhausts D (A), these differentiations completely suffice in
order that interior products with them should uniquely determine the differential forms on

the space of jets (see below). Indeed, we have the following result.

2.7. LEMMA, Fields of the form X4V, where XeD(Ay/K), YED(K) form a basis of the

tangent space at any point of Jkmy.

— iy @

Proof. Fields X|[,, have the form (IZ‘(Qi)mE;‘m- , and an-argument analogous to that
jl<

used in Lemma 2.3 shows that for any point #€J*r, it is possible to find Q€A with any

prescribed values ) at this point. Thus, X generates the spaces of vertical tangent

vectogjs}, while the spaces generated by Y for YeD (K) project onto the entire tangent space
at n(f) and therefore give the lacking horizontal complement. (It should be mentioned that
Y takes A, onto A,,;, so that, strictly speaking, ¥ does not define an ordinary tangent
vector. However, we shall use this lemma to verify that each differential form on J*r is
determined by its values on fields of the form X4V, and for this purpose our argument
suffices.)

2,8, The de Rham Complex. For i> —1 we denote by RA;= @Q"A, the exterior algebra

of C* differential forms on Jiz with differential d:9%4, —>9""‘A The canonical imbedding
A A, (k>t) define a system of imbeddings QA,»QA,, consistent with d . We set QA=
lim RA, = U R4, QA= U QfA,, .

[E 2 | fo=1

- In a local chart Q/A is freely generated over A by elements of the form duifIA ..
/\du§: ’/\dx.-w/\ v ANBxy, 0< L <Bg i51< ... <ip. For any vector field XeD(A,) and forms
og2/A; the standard compositions ixw€@/7'A; (interior product) and Lxw=(ixd-dix)»6Q/A;
(Lie derivative) are defined. If k>, XeD(Ak), is an extension of X€D(4;), and o€R(A)C2(4,),
then [zo=ixo and Lzo=Lxe. Therefore, ix and Lx are defined for X€D (A), »62(A)and
possess the usual properties. In particular, the Lx (respectively, ix ) are additive in
X, and are differentiations (respectively, antidifferentiations) of the algebra QA . More-
over, [Lx,d]=0, [Lx, Ly] =Lix,vy; Lex=PLx+dPAix; [Lx, ivl=iix,y;; ipx=Pix. We shall sometimes
write Xw in place of Lyo

We now concern ourselves with the restriction of forms of RA to sections. Any section

5 defines an algebra homomorphism QA —»2K: wrws,

2.9, Proposition. a) There exists a unique operator <:24>%2A with @ACAQK such that

(r0)=ws for all sections s.
b) 2=t , and t is a homomorphism of graded algebras with exterior multiplication.
¢) Kert 1is the ideal in RQA, generated by KertQlA.

d) tly=1Llgt for all XeD,+AD, tLz=0Lz* for all XED.,..

14



e) tdt=d and td«d=0,
Proof. a), b). We define an A-homomorphism of algebras 2A-—»~A2K on the generators

m
by the formulas <(dx;)=dx,, ‘c(du'}t”)=2 ui’”l)dx,. It is clear from the definitions that
=1

RACARK, (t0)=w, and t2=r. Uniqueness follows from the fact that AQK is a free A-
module with generators dxg‘/\.../\dx;k, and therefore any of its elements is uniquely deter-

mined by its S-images according to Lemma 2.3.

m
We remark that th=2 d;Pdx; for all P€A .
i=1

c) Since =7, we have Kerz=Im(l —<). The identity oAv—t(@AY)=(0—tw)Av4TOA(Y—1v)
and induction on i show that Im(l —<)NRPLACRTA(Im(l1 —x)NR'A) . The reverse inclusion
follows from the fact that Kerz is an ideal containing Im(l —t)NQ'A

d) We shall show first that LyKertcKert for X€Dg +AD,. Since Ly 1is a differentia-

tion and Kert is an ideal, it suffices to verify this inclusion on the generators of Kerr,

i.e., on u® —2 ufk'}'ei)dxj. Because of the additivity of Ly, with respect to X , it is possible
— -
to consider X separately for X€AD(Ay/K) and X6AD,; we have

Lg (duft — 3wt x| =

—dI -k _ gy (kt+E)) (k+e;) yr__
—deup—Z(Lxu, Pdx;+u"" dLyx;).
7

For 7(=§Q§"> O:S'" the right side is equal to (1—r)dQ(®eKerz. For X=Pd, the right side

is equal to P(1—r<)dul***PgKerr.

Now tlzt—tly=1lz(r—1) and ImLg(=—1)cClm(r—1)=Ker«, whence tly=tlzt. If, moreover,

XEAD (A)/K) , then LylmrcClm< , since by the preceding calculation (for )_(=—_2Q§k) b—a(T))
1,k 4

Ly(-:dugk))=rdQ§”) . Therefore Lgi=tlyr=1lz .

e) Obviously, td—rdri=xd(l—1). If os=0 for all s , then (deo)=d ()=0 for all s,
i.e., dKertcKert and hence <d(l —t)=0. Multiplying the equation d=1dr on the right by
d , we find that (:d)’=0.

3. Integration by Parts

3.1. Probably all the invariant information contained in the classical procedure of
integrating the varied Lagrangian density by parts is contained in the next proposition.
Here we do not even assume that the "form in the variations" «gR'AQ"K (du{® is the "variation"

of u{®) is obtained from a Lagrangian; this case will be dealt with in the next section.

3.2. Proposition. Let o0gR!AQmMK —QA. There exist forms o;GARIAR™K, w,cRIAR™K,
06RLAQ™ K  with the following properties:

a) o=,

b) For all XgD,, we have izeo,=tdizw;. The forms o, w, are determined uniquely. The
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form w; can be normalized by the following additional requirement: we choose YEAR™K arbitrar—

ily and impose on w, the condition:
C) ‘:m3=v.

Then w, exists and is uniquely determined in the case m=1 and also in the case wgR!AQ2"K,
if we require, in addition, the inclusion «,6AR'A,Q™ K.

Proof. Existence. It suffices to verify the existence of ©;, w, with properties a), b)

on the additive generators of the group Q!AQ7K which we take to be the forms Pdu{®A
dxiA\...\dxp in a local chart. We set £k(s)=|k| and carry out induction on k(). For k(0)=0
the forms o;—wv, ®,=w0w,=0 satisfy a) and b). Suppose that k(v)>1and let £,>1 . Then

w=PduP AN ... AdXg= —0,Pdu*~" Ndx, A ... Ndx,}
+0, (PAdul* " OWNd A ..  Ad =0 . ‘

By the induction hypothesis it is possible to choose ®;, v, and o, with o' =o 4o, iz, = digo,
for all XeD,,, and these lie in the described subgroups of 2A . Further,
ipv=iz (d,Pduf"“l’ AdXIA- .. /\dx},) Fiz(Pdu® Ndxi A ... Ndx,)=
=0,P(Xu)* 0 dx\A .. . Ndxp+P Xu)Pdx A .. Ndxp=
=0, (P(Xu)** ydx;A ... Adxy=
=(—1)"di5 (Pdu‘f"’"l) AGXIA e NBXNBX g A - A X, =dizy'.
It remains to set o,=o, wy=w,4v, oy=w,4 .

Without destroying properties a) and b) we may add to o, any element +v'62LAR™ K with
the property Ixv'=0 for all XeD,,. In particular, it is possible to take w3 —<w0y;4-v in
place of o, for any v6A27K, since ix(ARmK)={0}. Then <o, 1s replaced by <v:=v, which gives

condition c¢).

Uniqueness. Let w=w 4o, and Ig=rtdize, for all X, i.e., =, 9,0, is another triplet

of forms which satisfies a), b), c). Then for all XgD,, we have, on setting w,=o,—a;,

igop= —izwy = —<dixe, 3)
From the proof of Lemma 2.7 it follows that any form R2!'A27K is uniquely determined by the
values of izv for all X€D(Ay/K), since such X generate a basis for the vertical tangent
vectors at any point of the space of jets. Therefore, to establish the uniqueness of o, and
w, it suffices to verify that izw;=0. For all sections s we have by (3) and the definition

of =:
(izo) = —d (ixw,)’.

We choose any point x€M., a small open neighborhood I/ of it with boundary dU/, and we
consider the fields X for X with support strictly inside = !(U/). By Stokes' formula S
M

m
d(i?‘;:s)’.:éj(ii%)s:ov for all such X. If 31=2P1du,/\dx1/\---/\dxm and Xu,=Q,, then

i=1
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(EPQ)|,=0 for all s and Qi€A,, whence P$|,=0 and therefore ©;|,=0. We remark that

this conclusion remains in force if it is assumed that "_’3 depends on X. Finally,

0, =0,=0, and according to (3) tdi)—{33=0 for all XeD,,.

Even the normalization of ®; by condition ¢), however, does not guarantee the unique-
ness of o, . We cannot describe the complete kernel _é] Kerdiz, but it contains, e.g.,
X€p
dwd@m2K . Indeed, v

od (izdid)=x (diz) did =
=1 (Lg—izd)dwd =rLydwd —=rLzdrd =0,
according to Proposition 2.9 d) and e).
It remains to consider cases in which we are able to guarantee the uniqueness of ;.
The case m=1. Up to a term in A®7K, which is uniquely normalized by condition c)
and lies in the kernel of all the «diy, the element ®, can be represented in the form

83=2P,,kdu;~>, P, 6A. If rdize,=0, then :d(zp,,,Qg"’)=zo,(p,,,Q}’*’)dx1=o- for all Q,=Xu A,
k

i.e., EPj_kQ}k)=const for any QJ-.‘ . From this it easily follows that P, ,=0.

The case ofRIA;@"K, 0,GAQIAQ™ K. The existence of w, in this subgroup for wgQ!'A,Q"K
is obvious from the construction of «; at the beginning of the proof. Up to a term of AQmK
the element o,6AR'AR™ 'K, the difference of two choices of ®; can be represented in the
form 33-—-—2(&“/\«»1, 0,642 K. Further,

iyga=2 X'uzmz=2 Xu, (2 P dxA... /\tﬁc, Ao /\dx,,,),
i i

digoy= (=119, (Xu,P, ydxi A .. Nxpe
il

If the last expression is identically zero, then, since Xu,—Q,6A may be chosen arbitrarily
and independently, we find that for each i the sumz(——l)"‘XG, (QP,)does not depend on Q .
It is easy to see that this is possible only for Pi",l=0, which completes the proof.

We denote the forms o; and o, constructed in Proposition 3.2 on the basis of the form
0EQ1AC™K by 8o and S, respectively. We shall indicate their explicit forms in co~

ordinates.
We begin with the following classical lemma.

Let B be a (not necessarily commutative) ring, and let 4;,...,8, be its differentiations
into itself. For any sequence of numbers iy, iy, i3..., 1<i;<m we set 6(i,,-...,ik)=ah...d
B—B; d(@)=id .

1°

3.3. LEMMA. For any x, yeB we have
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Oy, i) xy—(—1)rxd (i, ..., 0) Y=
k

=2 ("— l)a—laia (0 (ia+ll caey l'k) xa(ia-h veey il) y)'

g=1

The proof is obvious.

3.4. COROLLARY. We assume that [0, 9;]=0 for all 1<i, j<m. Then there exist numbers
C(ik >0, 1-<j<m; k, IeN™, such that for all seN™, 0-‘=6‘f‘...6;lm

m
Fxy—(—Wxay= X (=D)"C(ik, 0 9, (9*xd'y).
e iims
Proof. We write out the formula of Lemma 3.3 for all sequences (i;,...,{q) with

1s{
Zs,j.—_s , take their arithmetic mean, and collect like terms.

Jw1

We remark that for m=1 we have C(j, & {)=1.

3.5. We can now write down formulas for 8 and S,o. Let w=2P‘,SduS"dx1/\.../\dx,,,.
We set k

drx=dx\.. . NBxp dPx=dx,\.. . Adx A NBX Ao N X
Then by 3.4 we find that
Bo=" (—=1)"0:P, du, Ndmx,

o—bo= ¥ (=1"Cy, £ D0,0'P, dui)Nd"x.
k+[+2j-=.f

For any X€D. we have .ix(0,(?'P, dul Ndmx))=rdigz X (—1)~ (P, du{®)Admx. Therefore

iz (0 —Bu)=<diy h (—1"HC(, b, 1) 0P, duP NdT x.

: kit s
Replacing here du{® by (d—<d)u{® , we do not change the right side. In place of (d—<d) uf®
it is also possible to take du}*’—u,(k'"f)dx, in the term 4mx ; the remainder terms give
zero. After this change the form under -the sign 'cdi; is in the kernel of =+t  Finally,
adding v to it in order to satisfy condition c¢) of Proposition 3.2, we obtain finally

So=v+ 2 (—=D)"C (), k)PP, (du® —ulHDdx ) \dTx.
k+l+:l-s ’

4. The Euler—Lagrange Operators .and the Legendre Transformation

4.1, THEOREM. Let o be any Lagrangian density for the fibration m:N->M , i.e., a

form which belongs locally to AQmK. Then there exist forms 8» and Sw, locally belonging
to ARIAL™K and QAQ™ K , respectively, such that for all )?EDev+ADc we have (locally)
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lyo=r(ixd - diz)o=x(izdo+dizSw) (4)

and, moreover, tSo=o.

The form 3» is always uniquely defined by these conditions, while the form Se is wnique-
ly defined in the case m=1 or in the case ©€AR™K if it is additionally required that
SwAQAR™IK (1ocally).

Here &§ is called the Euler—lagrange operator, and S is the Legendre transform.

Proof. a) The local case. We set 3w ==8dw, Su=S dv,where § and § are defined as in

Proposition 3.2, where v in condition c¢) is w . We then obtain according to 3.2:
dm=8m+w2; i;(uf_,=':di}Su) for )?EDev; So=o0w, (5)

From this we deduce the identity (4) for XeD,, and XEAD, individually.
If XeDev, then i;w:—_O, whence according to (5)
Ly = igdo==tiz (304 o)) =iz 4 tdi;Se.
The uniqueness properties of 3&s and So follow from those proved in Proposition 3.2 if it
is noted that d», 3wEAR'A,8"K, so that these forms are uniquely determined by all values of
ixdo, izdo for )?(ED‘,'v , and these values lie in AQmK ; therefore, t© is the identity on them,

and hence the decomposition dew=3s»-tu, with the properties postulated in Proposition 3.2
follows from (4) for X€D,, .

It thus remain to verify (4) for XEAD,. We shall first establish that T (ix2m*1A) =0,
i.e., (5@ Ap=0 for all sections s . Since (""'Ay={(0}, it suffices to verify that
(g)=ixv* for XeD(K). Since i is a differentiation and restriction to s is a homomor~
phism of the algebraof forms, it suffices to verify it on the generators. On A both sides

coincide. Further,

(ixdx )y =(Xx)=(Xx) =ix(dx),
(ixdu®)s = (Xu®) ____( 2 ugHzl)Xx,)’——— 2 u§k+el) Xx,,
1 .

s
ix (Au®y =ix ( 2 u§k+e’)dx,)s = 2 u*te) Xx,.
] i

Using this, we see that it is necessary to verify the formula
':di)—((n = 1di78w.
We have

1di78(o = ~:L}Sw——t(idem) = 'CLXSQ).

From Proposition 2.9 we have
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LzSo=rlz:So=x[diz+izd] :So=1diztSo.

But tSo=o0,which gives the required result.

'b) The Global Case. Since 6o is locally uniquely defined and the properties character-

izing it are consistent with the operation of restricting to a subdomain, all local con-
structions au‘tomatically fit together. For So an analogous argument goes through in cases
where uniqueness is guaranteed. Aside from these cases, as has been shown, it does not hold;
e.g., it is possible to add locally to Swu any element of dvd (AQm-2K) without changing the
values of 1¥dixSe for all X&Dev +AD. . Therefore, to prove the existence of a global form

Se a special treatment is necessary in order to establish the possibility of consistent
local constructions. This has been done by B. A. Kupershmidt, but we shall not reproduce the
proof, since it will not be needed below. It is essentially a question of the vanishing of
a certain cohomological obstacle, and the problems which arise here merit special attention.
The question as to what addition conditions (functorial property, for example) it is neces-

sary to impose on S@ in order that Se may be uniquely chosen has not been solved.

4.2. Classical Formulas. We shall apply the formulas of 3.5 to the case w=Pdmx, do=

20 (s) du"A\d™x . We obtain

m
8P me P 9P\
8«)=§d&)= ‘-lsgl-dul/\d X, m_ Z(-—l)’-"'(w) .
Further,

Sm"‘m"l"z Py (k+e ) (du}")—u}"‘*"f)dx,)/\d;"x»

where
o
e = 2~ DC G 0 (e )

(it can be shown that C(j; &, {) depends only on k+e,1l).

5. The Variationmal Complex

5.1. Definition of the Complex. The beginning of the complex is locally as follows:

ASAoiY . Bagnkiaciagnk. (6)
The fact that (zd)?=0, is proved in Proposition 2.9 d). The equality ¥d=0 is established

as follows. The operator 'tL;fd on AR 'K can be transformed in two ways. First of all,
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Secondly, by formula (4) and Proposition 2.9 d) for X€De+AD, tLzd =rlztd =rizid 4 d (ixS<d).

From the uniqueness of the Euler—Lagrange operator we therefore find that 3:d=0.

We shall now indicate how to extend complex (6) to the right. The extension operator
will also be essentially an Euler—Lagrange operator but in a larger bundle wXid:NXR—-MXR.

Locally we denote by X,,; the coordinate on the additional factor R , and we set K=

- .
Co X1y v os Xpputh A(‘)=IU0C°°(JC1. u®|i=1,...,n; RGN™*, |k|<l). The canonical inbedding AcCA®,
corresponding to the projection of wXid onto =, in local coordinates can be identified

with the imbedding #{®-*u{*%, which thus has an invariant meaning: the coordinates "along the

fiber" 4, in the extension to N XR are assumed to be independent of the new variable.

The imbedding A->A® determines the imbedding QA —>2A® which also corresponds to the
1ift from = to =Xid . Identifying QIAR™K with its image in QIAMQmK M we may consider
the composition of the operators Q‘AQ"’K—»Q‘A(l)QmK(‘)t—(gA(l)Qm“K(” Mo gmemt M which we
denote simply by 3 (3 is the Euler—Lagrange operator, and <t is the operator = for the
fibration =Xid ). This construction can obviously be iterated which leads to the sequence

. .EiAQ"’KiAQIAoQ”‘KB(”r(‘*)AmglAé”g"me

$(21¢ () (7)
SAQQUADORRI® 5

5.2. THEOREM. Sequence (7). is a complex which we shall call the (local) variational

complex of the fibration =. The global complex is a bundle complex the local sections of

which have the form (7).

Proof. We first of all introduce a new operator ot Qme A 5 QRAQ"K by the condition:
for all X ..., X:6D(A/K) and waQmt:A

ix,. . dxro=c(ix,...ix,0) (8)

The existence and uniqueness of the operator <" are obvious, since a form in Q%*AQ™"K can be
considered a skew-symmetric, multilinear function of %2 fields in D(A/K) with values in

OmK ., It is clear that «<* is A-linear.

5.3. LEMMA. TFor any Lagrangian oGA2"K we have Bu=rt*dSo .

Proof. It suffices to verify that izdo—=rizdSe for all X€D. because of Lemma 2.7.

According to formula (4) and Proposition 2.9 d), we have
Lyo=rLzo=1dizSo+izdo=1(Lz —izd) So+izds=
=1LztSo—rizdSo 4 izdo=1lzo —rizdSe{iydo.
Therefore, <izdSw=ix3s, as required.

5.4. LEMMA. t)—=x(z* on QIAQmK,

Proof. 1In view of the A-linearity of both operators, it suffices to verify this

equality on generators of the form du® Ad™x and du® NduP Nd™x. On forms of the first

kind the operator =" is the identity. Further, as is not hard to check,
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= (du® Adu AdTx)=(— 1) (u}"*'er’du“") — u§k+‘r)du§.”) Ndnx,
whence it follows that the value of <()c* on this form is equal to (even in 24")
(=1 (@ Puttemed — g Bt e mad ) g, AdA L NAg
On the other hand, the value of <) on our form is equal to
(WH0d g, 4 o) A (W, 1 medd s, ) A i,

The last two expressions obviously coincide.

5.5. Completion of the Proof of Theorem 5.2. According to Lemmas 5.3 and 5.4
8‘”:“’6=6“’:"’-c+d.5'=8“’-.“’d$.

But .3":"d—0, by the argument at the beginning of this section applied to the ring AD,
Thus, (7) is a complex at the term 2!A2mK and hence at all remaining new terms: 3'¢tV.(a+lg@ __
0 for all a>0. The fact that it is a complex in the terms to the left of R!A27K was
verified earlier.

The exactness of complex ‘(7) in the terms to the left of AQ™K (the "1ift" of the de
Rham complex to the jets) was recently proved by A. M. Vinogradov. The exactness of the
global complex (7) in the remaining terms was established by B. V. Kupershmidt. We shall
restrict ourselves to the proof of the classical part ("if the variational derivative of the

Lagrangian is equal to zero, then it is a divergence'").

5.6. THEOREM. Kerd=Imtd .

Proof. We consider a contractive homotopy ¢,:V -V, £€[0,1] of the open set V<N , over
which the complex (6) is defined:

@iy, ) (tx;, uyexp{l —(1—#)72)).

It is obvious that ¢, is a diffeomorphism of the fiber space VU onto itself with
0<t<l, gp=1d and o¢:U— (point). Let X,ED(A,)) be the corresponding vector field, and let
X, be its canonical 1lift to L[ (A) according to Lemma 2.6. Since X 6D(A;), it is obvious
that 1L7;°’=L)T,‘” for all «€A2"K. Since X, is the derivative of ¢,, we have X,=(3] ‘1%(?;)
for {<1, and hence -?;Lft=£— ¢}, where ¢ is the 1ift of o, to the jets. Applying v

to formula (4), we find that

d = = e 1; =_;
ar #o=Fkx o =vdiz So+giriz do=

=-.d;:if.$u)+ta‘:i78n, ®
t H
since, as is easily seen, $;r=':5;’ (the mapping 5;‘ is linear on X; and u#{®) . Although
the field X; is not defined, its limit ;:L;‘-‘u) exists as f—1 for all o. Therefore, in-
tegrating (9) on # from 0 to 1, we find

! p ! : : det '

—w=\ 2 gjodt —<d | Fix Sodt § Pz dodt -:-tdr§ Filz Sodt+1 Fiiz dedt = —wdi (o) — b, (o),
0 (1]

0
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since ~<d=+dt. Thus,

1

id| jgm, =1+ 93, ¢ ()= —’CS Su)dt

and we find that if 3%w=0, then o=1d{, (») wvhich proves the theorem.

We remark that if the form o 1is a polynomial in u{® (respectively, in u¥, x;), then
so are also So, 3» polynomials by virtue of the formulas of 4.2 and with these also ¢ (o),
$;(8») , since ;; is linear in z{®, x,

n
5.7. The Formula 3M<()3—=0 in Coordinates. We set o=Pdmx . Then Jo= E L du Ndmx.
—mr =

Fur ther -.(l)du,=z u*dx, +ul*m+) dx,.;, whence
imml

n
8P
Wda= ) 5o, 0 dxm a AAXIA oo NBXe

il

Therefore,
3Dy = 2 :3m+1))dul/\dxm+l/\dmx=
iy
. , 9 &P s) p | Cmr)
=;:.( eZm(—l)l 0P b ufone) | duy At A —,21(6_"5) At N NS -« o NdD).
' sGN . -
Further,

Emar)
sp \Emn 8P ~p (en.:)
(87,) 24 uP) 80y Oty mi

*

Therefore, after division by dx,, Ad™x the formula 3():(M¥w=0 assumes finally the following
form:

n T 0 8P i) gy — . _ m( 9 0P ey, \®
2 0“}”&; ¢ “ o i,}szﬁjvm( b ouf® 8u; Im“ ) du,.
Joml ],keN"' ’

We recall now that over A the variables 0"u}°’ﬂ+l’ are free. Therefore, for all i, j we ob-
tain a family of equalities among differential operators which is equivalent to the formula .

M =0 .

5.8. LEMMA. For any PGA and 1<i, j<n we have

0 6P o 6P
—— = — 1)islgse
se%:,. (au;ﬂ B, 'g,‘,.( Do (au;=) 5 )

We shall need this lemma and its corollary in Sec. 7 to investigate the Hamiltonian struc-

ture.

5.9. COROLLARY. For any )?eDe,,

B = 2 (— /90 (5 32 R ).
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Proof. We apply the identity of Lemma 5.8 to Yuj and sum on .

6. Nother's Theorem and Lagrangian Conservation Laws

6.1. Let w=Pdmx6AQmK be some Lagrangian. It is evident from the formulas of 4.2
that the equation (6m)3=0 relative to unknown series § coincides with the classical
system of Euler—Lagrange equations for the functions u5,...,u4,% with Lagrangian P . Its

solutions are called extremals of the Lagrangian o.

6.2. Integrals, Flows, and Symmetries: Analytic Version. A conservation law or an

integral for the form » isa form vgAQ™ 'K such that d(v)=0 for anyextremal s of the Lagrangian

©. For m=1 this means that v6A is a functional of the space of jets which is constant along
any extremal. In the general case for v=z Pdrx the relation d(v)=0 has the form

m s
(2(—1)"‘0,P,) =0 along any extremal.

{m=l

m
A flow for o is a field FEAD,, such that iyo is an integral. If o=Pdmx, 7= Q0 ,

m im]
then i7m=2 (—D)"'PQdrx . It is evident from this that if P does not vanish on its ex-

il _
tremals, then for any conservation law v there is a unique current Y such that v=iyo.

The classical NSther theorem affords the construction of conservation laws on the basis
of a Lie group U, which acts on *:N >/ and preserves the Lagrangian © or even just the
action S'-’Sm’. If X is an element of the Lie algebra of the group U, considered as a field
on N, th¥ the G-invariance of o implies that Lyo=0. More generally, let XeAD (A be
a field on the jets such that (Lyzw)’=0 for any extremal s of the Lagrangian o. We call

it a (formal) symmetry of the Lagrangian o.

6.3. Integrals, Flows, and Symmetries: Algebraic Version. The definitions of the

preceding section appeal to the set of all extremals of the Lagrangian o, which may be empty
or very complicated, In practice integrals, currents, and symmetries always satisfy the
following algebraic version of the definition whose application does not require vanishing
on the extremals. Let /() be the minimal D, -closed ideal in A, generated by expressions
of the form ixiy,...iy,%, where X€D(A/K), Yy, ..., Y,6D(K). Let J(dw)cQ'AQ™ 'K be the
minimal D ~closed ideal in the ring QA, generated by 7(3») .

We call v an algebraic conservation law if dve/(3w). We call Y an algebraic current
if ipo is an algebraic conservation law. Finally, X€AD(A,) 1is an algebraic symmetry if
Lyo6J (Bw) .

We point out that the use of this definition makes it possible to obtain additional
information. For example, if v is a conservation law, then the explicit representation of
dv as an element of J(3») determines important invariants; the theory of characteristics of
Gel'fand and Dikii [2, 3] is based on this.

6.4. THEOREM. a) If X is a symmetry, then TtizSw is a conservation law (the formal

Néther theorem).
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b) For any flow Y the field YV is a formal symmetry.

Proof. We write the proof in the analytic version; the algebraic version may be con-

sidered analogously.

a) Since X is a symmetry, for any extremal s we have (Lzw)’=0. It therefore follows

from (4) that (izdw)-}d(ixS+)*=0 on the extremals, whence
d (ixSw) =d (tigSw) = —(ixdw)*=0.
The last inequality follows from the fact that locally &o=2§—2/\d”‘x s S0 that iia“’ is a
linear combination of the g%, which are zero on the extremals.
b) Since Y is a flow, we have d(ivm)’=0 on the extremals, so that
(Lyo) =(digo+iydoy =(ipdo).
But the last expression is zero as verified in the proof of Theorem 4.1 a).

7. The Hamiltonian Structure

7.1. We shall give a local definition of the Hamiltonian structure on =:N-—>M; global-

ization goes through automatically.

7.2. Definition. Let T' - be an R -linear operator I':AQ"K D, . We define a

bilinear composition law on ASmK, by setting
{01, ©}r =Lr(a,we- (10)

The operator I gives a Hamiltonian structure if it takes {, }Jr into the commutator in the

Lie algebra D, ,
I {0, ogtr=[T (@), T ()], (11)

and its kernel contains Im<d=Kers.

7.3. Comments. The motivation for this definition was given in Sec. 1; it is parallel

to one of the characterizations of a finite~dimensional Hamiltonian structure. In particular,

here ©EAQ™K is considered as a representative of the functional B(S)=Sw‘ on sections.
M

Since Efdv\=0v(for a form v€AR™'K with compact support or on rapidly decreasing sections),

we require that KerI'DIm-<d .

7.4. The following result is obvious from the definitions. (We sometimes omit I' in

the notation {o;, ®)r).

7.5, THEOREM, If TI:A"K-+D,, defines a Hamiltonian structure, then for any o,6AQ"K

we have

{w;, 0o} + {w,, v, }eKer T,
{1, {3, @3} + {0g, {01, w}} + {02, {05, o,}}€Ker T
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In particular, the operation { . }r induces on AQ7"K/KerI' the structure of a Lie algebra,
and T induces an imbedding of the Lie algebra AR7K/KerT'-D,, .

7.6. Since KerdCKerT , we can always represent I' as a composition AQ”‘K-&lmB-iDe,, .
Indeed, Im3CARIAL"K , and our operator B in all concrete cases will be a differential
operator defined on the whole module AQIAQ"K. We call such an operator a Hamiltonian if

T'=RBo} defings a Hamiltonian structure.

7.7. LEMMA, For any additive operator B:Imd3—D,, we have
BB {w, w2} gy = B3 (i gse,30,). (12)
Proof. For any XED.,, by formula (4) and item 5.1 we have
Lz, = iz8w, mod Ker 8.

Setting here X—Bdw, and applying (10) with I'=RB3, we obtain (12).

7.8. We rewrite the Hamiltonian condition (11) of the operator I'=B3 in terms of

structures related to the choice of a local coordinate system (X;, &;).

Let us first agree on the following notation. Let $# be an A -module. % denotes
the module of column vectors of height n with elements in $# . If Pegr , then P! denotes
the transposed row vector (t will generally denote the transpose of a matrix of any size).

1f Q6Ar, PeP", then Q'PEP denotes the scalar product ,ZQIPI-
=1

The operator %:A—»A" takes PEA into the vector i’:=(6—e) (cf. 4,2). 1In place of

Su duy
(G—f)t we write 6—_‘:.
i ) Sut
Further, let A[D,] be the ring of differential operators over A, generated by total
differentiations along the base. For any PEA we denote by D“z (P)6A[D,] the formal partial
Fréchet derivative
N 9P k ==
D,fi(P)=}’:;a"§',;';ak, 0*=0}...0,m, 0,=0/0x,

Finally, for any vector PGA" we define the "Fréchet Jacobian" D (P)eéM,(A|D,]) as the (nXn)
matrix (nmot the determinant) with the operator D, (P)) at the site ({j) . Its invariant

interpretation will become clear in the next section.

In order to write the Hamiltonian condition (11) in this notation, we identify the A-
modules AQmK, AQUAQ™K and D,,, respectively with A, A", A" by means of the following
mappings: del/\---/\dx,,,'-'P,EP,-du,dxl/\.../\d"‘x-»(P,),)?»(Xu,) for X6AD (Ay)/K). Then the
operator B:AR'A2"K —D,, will be represented by an operator B:A%-»A" which in all ex-
amples lies in M,(A[D,]) .

7.9. Proposition., The operator B:A"—>A” is Hamiltonian if and only if for any P, QEA

we have
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5 (8 80\ _p) (g g2 . p(p 82 p 8P
B——(\_B )]=D (355)3&7 D(BSE)BM. (13)

Proof. We shall verify that the left and right sides of (13) are identical with the
left and right sides of (11), respectively, for I'=B3, u,;=Qd"x, e;=Pd™x .

According to (12), the left side of (11) is B3(ipse,d®:) . According to 4.2, the form

3v; 1is represented by the vector :—g ; the field B3w; is therefore represented by the vector
U

5Q
du

n
. From the formula i7(80)2)=2.g%Xuid'"x it follows that the form ipsedw, is represented
el

by 2—532—9 . Finally, the operator Bi=T is represented by the operator B(—;Z: . This
17 13
reduces the left side of (11) to the left side of (13).

In order to compute the right side of (11), we note first of all that the field Biw,
is represented by the vector ng . Further, for any REA and 7((5Dev we have XR=

n
(/) P
g-‘;u—ﬁ) (Xu,.)(k)-_—z:lDui(R)Xui; this explains the meaning of the Fréchet derivatives. Thus,
’ i -

for any vector REA” we have XR=D(R)Xu . Applying this to the case X=Bd;, and §=Bg§ R

we write BdwBin,z in the form D(B 2—5)32—;—% . Similarly, the second term of the commutator
gives the second term of the right side of (13). This completes the proof.

7.10. We shall now concern ourselves with transformation of the criterion (13). We
recall first the formalism of the adjoints of differential operators. In a local chart we
have A[D/]=Ald,,..., ), [0:;, 0;]=0. Let LEM,(A[D,]) (the ring of (rX#n) matrix operators
which act in the natural way on %" where &P 1is any A[D/]-module). We define an additive
mapping L—L¥, by setting for any matrix a€M,(A):(ad*)"=(—1)*lg*af, where a* is the transpose

of the matrix d .

The following result is classical (and can be deduced without difficulty from 3.3 and

3.4).
7.11. LEMMA. a) For any L, M we have (L*)*=L, (LM)*=M*L*, b) For any P€A", QeP",
where % is an A[D,] -module we have

PLQ — (L*P)'Q€0, P+ ... 40,

The operator L is called formally symmetric (respectively, skew-symmetric) if L*=L
(respectively, L*=—L),

The next result is obtained immediately from Lemma 5.8 and the definition of the Fréchet
derivative.
7.12, LEMMA. For any element PGA the operator D(g-’_-)) is symmetric.

u

It is moreover clea(r.l') from the considerations of 5.7 that the part of the variational
[ oty
complex AQmK — ARQIA QK —~ AMQIAME™* KM with the identifications of 7.8 may be replaced by
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o/bi Dy )—D+(

A A" > M, (A[D.)D),

and the theorem of B. A. Kupershmidt on the exactness of this complex means that D*(Q)=D(Q),
— 8P

if and only if there exists a PEA, such that Q'=2—E' There is thus an effective criterion

for determining if a vector QA" is a vector of partial derivatives of some element of A.
Suppose now that BEM,(A[D,]) is some differential operator.

7.13. THEOREM. a) If B is skew-symmetric and BEM,(K|[D,]), then B is Hamiltonian.
b) If B is skew-symmetric and BEM,(4;[D.]) , then in order that B be Hamiltonian it is
necessary and sufficient that for all P, QEA the following identity hold:

8P p8Q _ 50pd _p(8r o8BS
1D BB G — DBl B =B (g ) (14)

ou! du Su

We begin with the following lemma.

7.14. LEMMA, Suppose that BEM,(A,[D,]) is skew-symmetric. Then

5 (5P poQ B%_p(82 % 2339
ou (GE‘B au) =D (Gu) a (m)B bu +5Efaz 84’ 15
where the last term is a column vector with coordinate “:—g%% at the i-th row, and g—ft is
the result of applying 0%' to the coefficients of the operator B.
Proof. By the definitions
-6= 8P p &Q ) dundmx = Sd( B's—gd'"x). (16)
du \Sut~ ou Su

Further,

d (w B gmy ) =[d 2P g 6Q+W B2 8 +5i§ dB g—%]-d"'x,

< , OB
where dB=2du“ﬂ; and 2A is considered as an A-bimodule with multiplication ®wP=Po for
any PEA, ‘”EEA-

Therefore, for any XeD.,, we _have

aiaons) [RGB o (TR LA G o

du

Using the formula XR—=D(R)Xu , we rewrite the right side of (17) in the form

[(3372) ( Z) Xt BD(6Q>X +(f§%§:—§)tx‘7]- (18)

We now note that for any REA we have 0,Rd™x =(—1)1‘11d(1?d;”x). Therefore, transposing the

operators in (18) while replacing them by their adjoints, as in Lemma 7.11 a), we do not
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change the value of the right side modulo Im-d.

In the first term of (18) we transposed the operator D(gg), and in the second term the
operator BD (i—%) . Recalling that B is skew~-symmetric while D(%uf_) and D(%%) are symmetric,
we obtain finally.

{258 (0 (5)0 2 inas—(0 ()0 5 dinane (328 o] 09

From the uniqueness of the Euler—Lagrange operator it follows that the form following iy

on the right side of (19) is 8d (%—,—:, B%%d"‘x) . This and (16) give the assertion of the lemma.

7.15. Proof of Theorem 7.13. By formula (15) the left side of (13) is equal to

u! du Su

on(i2)s 3-a0(2) s +3(5% % )

1f BeM,(K[D,]) , then %%=0. Moreover, in this case BD(%)=D(B%§—), since when applied
to the vector Xu€A", XeD.,, they give Bz??s—g and XB , respectively, and these expres-

sions coincide, since K[D, commutes with D, . Thus, the criterion (13) is satisfied in

this case.

Using the information obtained, for BEA,[D/] formula (14) obviously coincides with

criterion (13).

In Sec. 8 we shall apply the criterion (14) to prove that two special operators B over a

one-dimensional base are Hamiltonian: the Gel'fand—Dikii operator and the Benney operator.

7.16. Hamiltonian Conservation Laws. Suppose I' defines a Hamiltonian structure on

=:N—>M . For any form o=Qdx,A ... Ndx,6AQ"K to the field I'(w) there corresponds the
— - 58
system of evolution equations ut=I‘((n)u=B-% in the notation of the preceding sectiomns.

We call o or Q its Hamiltonian and B the corresponding Hamiltonian operator.

The form wi=Pdx;A ... Adx,, or the coefficient P, is called an integral or a conserva-
tion law for this system if {o, o;}r€lmtd=Kerd. In the corresponding analytic formulation

this means that for an evolution s, because of our system,

d

e Yor={ o ={ n.on =0,

M M

i.e., wa is a quantity conserved in time. In the notation of 7.8-7.9 P is an integral
M

for the Hamiltonian Q, if

= (58 %)=

29



The integrals P, and AP, are said to commute if {v;,®)p€Kerd, i.e.,

5 (ﬁf—'B -‘LP%):O.
Su \ 8a? du

We note in conclusion that if {o,...,{v,0;}..:}cKerd (£>2 factors ®w) , then on those

sections §, which are uniquely included in the flow with Hamiltonian o, it is possible to

B~
find #—1 quantities conserved in time as follows. We have (%} Sm;=X(L§(,,,)wl)‘=\{w,...,
MM M

{®,0}...}=0 ., Therefore Sm{ is a polynomial in ¢ of degree %#—1 in general. Normalizing
M

the initial time on a given trajectory of the flow so that the (k—2)-th coefficient of the
polynomial is zero, we find that the remaining k2—1 coefficients are invariantly defined,

conserved quantities.

7.17. Stationary Manifolds of Integrals. Let «; be a conservation law for a Hamilton-

ian system of evolution corresponding to a field I'(v). By definition ILrw€lm=d or
ird»€6lmtd . The latter condition means that if s is an extremal of the Lagrangian e,
then within a short time in the linear approximation the evolution of 5, under the field
I'(v), will also be an extremal or that the "field I'(s) is tangent to the manifolds of
extremals o, .," It is possible to give a precise meaning to the last assertion and to prove
it at least for m=1 and polynomial integrals o;, when the manifold of extremals W can be
identified with a finite algebraic manifold by assigning to each extremal its \}alue at x=0.
Then I (0) defines on it a flow whic.h is also Hamiltonian with Hamiltonian computed on the
basis of ® and . This assertion is nontrival because the natural class of functions on
W is not obtained by restricting functionals W to Y ; it consists, for example, of smooth
functions on W in the natural structure of W. For a precise formulation and proof see

the papers of Bogoyavlenskii and Novikov [1] and also Gel'fand and Dikii [3].

We shall make use of this remark in Chap. 3 where in place of the equations Z,=I‘(w)_ti
we will solve jointly the system #,=I'(0)z and %» =0 , where o; is an integral. It is
just this procedure which distinguishes in an invariant way the class of multisolution and
finite-zone solutions of the Korteweg—de Vries equation as already mentioned in the introduc-
tion.

0—E\

E 0)° where E is the identity matrix of
/

7.18. Examples. a) Let n=2r , and B=(
order r . The system of evolution E;=B%€— is traditionally called a Hamiltonian system
u

with Hamiltonian P in "canonical coordinates'". It is also Hamiltonian in our sense accord-
ing to Theorem 7.13 a), since B is a differential operator of order zero and B'=—B,

"cotangent fibration" =:N->M to any

'Below we shall show how it is possible to define a
fibration =:N->M, a canonical Hamiltonian structure on it, and to each local coordinate
system (X, %) on N a system of coordinates (X, #; v;) on N, such that in these coordinates

0E
the operator B corresponding to this structure has the form (——E )
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b) Let m=1 and B=0=0, . That equations of the form u,=0%§ which include the

usual and higher Korteweg—de Vries equations, are Hamiltonian was established by Lax in the
functional version and in terms of Fourier coefficients by Gardner. Our proof of Theorem
7.13 is a generalization of the proof of Lax as reworked by M. A. Shubin. A formalized

version of Gardner's arguments will be given at the end of this section,

7.19. The Cotangent Fibration. The cotangent fibration to =:N—>M we call the fibra-
tion =:N->M, where N=T*(N/M)®A"=*T*(M). Here T (N/M) is the tangent bundle to N
along the fiber =, T(M) is the tangent bundle to M » and the asterisk denotes dualization;

-— - O X — .
the tensor product is taken over N ; = is the composition N—+~N M, where a:N >N is the

natural projection,
Sections of s are naturally identified (locally) with forms in Q!AR"X.

Let {X;, #;) be coordinates on N. On the basis of these it is natural to define co-
ordinates (X;, #;,v) on N (j=1,...,n) as follows. If x6N lies on a section of o, corre-

m
sponding to the form Edeu,/\d'"x » then 7;¢x)=P;(s(x)).
=1

Let A, be the ring of smooth functions on =!(U), where U 4is a neighborhood with
coordinates (x;). Then Ay=C¥(x; #;, v;), and the natural imbeddings K cA,cA, correspond

to the projections % and .

We consider p=2 v,du; Nd"x6AR! (A))@mK. It possesses the following property: if the
section § of the fibration ¢ corresponds to the form wgR!(4,)8"K , then p'=wo, It is easy
to see that this property determines p uniquely. Thus, p is defined canonically and
globally.

Let D,, be the evolution differentiations for = . If X€D, , then izdp6QAR"K and

the formula

i}dp—_—-z (Xvdu;—Xudv)dy

j=1

shows that this mapping D, —>Q'A2"K is an isomorphism of A;-modules. We denote by B the

inverse operator, B:QAQ"K»>D,, , and we set
= —BB:IOQMK—P—D‘U,.

7.20. THEOREM. In the coordinates (X, 4; 7,) on N with the conventions of 7.8 (as

applied to = ) the operator —B 1is represented by the matrix (E o) the operator I' is

Hamiltonian, and the system of evolution corresponding to the Hamiltonian Pd”‘xGXOQ"'K has

the form
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All this follows readily from the definitions and Theorem 7.13 a). We note further

that the classical expression _— e ——
Qdrx

is equal to igy, Bdw, where o;=Pdmx, wy=

7.21. The Hamiltonian Property in Formal Fourier Coefficients. In this and the follow-

ing sections we briefly describe the formalism of variational calculus in terms of Fourier
coefficients in the simplest case: M is the unit circle, N=MXR . We restrict ourselves
to Hamiltonians which are polynomials in # and do not depend explicitly on X, i.e., we

start from the algebra A=Clu,u’,...]. We shall first introduce formal Fourier coefficients

(v,|n€Z) , assuming that the Fourier series of # is F(¥) = 2 0,67, As the Fourier

n=—0o0
series for '’ it is then natural to take F(u‘”)=2 (2=inyv,e™"*, i.e., F@uP)=2rin)v, .
- v
The Fourier coefficients of the polynomials in #“ will, however, be special series of
infinitely many variables 7, . In order to introduce the corresponding ring, we first set
B=C]Jv,] . In this ring we introduce the order function ord (v::...vz:)-—-lﬂxl-l—---'Hﬂkl and
T 7 — 7
ord (E ",T"’,T) min (ord o

then obviously B=N®_OBN (direct sum). We set 3.—:]___[ B, . The elements of the space
- N0

c-::#O) . If B, is the space °g)f polynomials purely of order N,

o0

B  are infinite series 2 far SFn€By . Since o;d(fg)=ordf+ordg for feB,, geBN,é

N=0

has a natural ring structure: (EfN)(E gM) =2hK, hK=2fK—MgM .

We call the ring

B(™)= [2 Jo€%| f46B, 4c >0, ng>0, ¥|n|>ny,

nGeZ

ord f>cln|}

the ring of formal Fourier series; it has the natural multiplication (E f,,,em""')(z g,,e2"“”")=

Ehpem”x , where I,= 2 fmgn - The convergence of the series for %, in B is ensured

mtn=p
by the fact that ord(f,g.)>c(|m|+|n])—> oo together with |m|, [n| . The product lies in

B((™*) , because ordh,> Tin e(fm|+\n))>c|p|.
m+n=p

We extend to é((e~2"ix)) the differentiation -‘;)Tn by continuity: we extend from B to
- o : P}
B and then set —£—;(e‘"'“)=0 . This is clearly possible, since Ord(%f:—)>ordf-n.

We similarly define a differentiation 9, which on B has the form dv,=2riv,.

We introduce a ring homomorphism F:A—B{(¢"™), by defining F (u)=2fa,,e2’""x, F (u'y=8/F (n).
It is not hard to see that F 1is an imbedding which commutes with J. Let F(P)=E F, (P)e¥"m*
m
for any PGA.

7.22. LEMMA. For any PEA we have F,,(%:—)=0—3_—;F0(P).
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Proof. We consider the two mappings of A—B((e*™)):

Py F(P), P~ _‘S‘_, 2 Fu U)F( )

They are both differentiations of A into the A -module B((e¥*)) (relative to F ).
Further, on the generators u) they coincide, taking u() into (2rin)/e?n*, They therefore

coincide everywhere, whence

oo

o FolPy=F (5o- F(P)) = (EO%F(um)F‘(b%g—,)) Fo(s‘a ao; F@ F (5255 ))

We note now that Fgd=0, so that we may "integrate by parts' under the sign of F, , and

the last expression is equal to

F, (2 gins (_1)igJF (0 (1))) =F_, (%),

ju=0

which proves the lemma,

7.23. Corollary. The equation u,=0gi: in terms of Fourier coefficients has the form

(@0)e=0, (v, t—2“m Fo(P)v [n]>1.

Thus, setting Pn=U.ny u=5,+ H(p, §)=iFy(P), we find that on the "hyperplanes" v,=const

our equation formally has the Hamllt:onian form

dpn_ _OH gy oH
OFT T og, ot opn

Further, the Poisson bracket may be written

F(Zagr) =(2 = Fo(Q eﬁw) X @ 7o Fo(P) 21rim,e2mmx> -3 ( S, 2nim 32 Fy (Q) 5= Fa (P)) etuos,

m+n—p

whence

Fo(Q, P}———~2( —2rin) 52— Fy (@) g Fo (P)=

R e 0O

_2m2( Fo(P) 1 5= Fo (Q— 50— Fo(P)n 32 Fy (Q) —zZ("’}}f L0 Q) B 30}

in agreement with the classical formalism.

8. Special Hamiltonian Operators Over a One-Dimensional Base

8.1. 1In this section we set m=1, x,=ux, 0=0,=m K=C»(x), and we work with the
sequence of rings An=lgC“(x; u(jk)|0<j<n, 0< k<i), and also with their union A=;.L_ZA,, .
We point out that the enumeration of the variables u; begins with zero in contrast to the
preceding conventions. In correspondence with this the enumeration of the elements in the
rows and columns and also the enumeration of rows and colummns in different matrices also

begins with zero.
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We define the operator B,EM,, (A,[0]) by the formulas

0

B,;=_2-1[B,,,la'—(—l)iafoB;m], Bu €M, (AL,

{i-’-a (20)
\ ‘; )ua+b+i+l for a{b-ki+l<n,
(Bni)p=10 for a+b+it1>n, atbtit1+£n+2,

""“) for at+-b+i+1=n+2.

®

These operators were introduced by Gel'fand and Dikii [4]. Following i:hei1;l work, we shall
show in the next chapter that the Lax equations L,=|[P, L], where L=0"”2+2 u,0' are

=0
Hamiltonian in the structure defined by the operator B,, with a suitable Hamiltonian

depending on P.
We further introduce the operator BE/Mw(A[d]) by the formulas

B=B0+d-B!, BEM(A),

(B)yy— A,y for atb>1,
26 \0 for al-b=0.

(21)

Here M, (A) denotes the group of matrices with an infinite number of rows and columns down-
ward and to the right beginning with the zero (index) columns and rows. The elements of

Mo (A[9]) are considered as left operators on the A -module A} of finitely supported
infinite columns with elements in A (finitely supported means that only a finite number of
the coordinates are nonzero). The range of such an operator lies in the A -module A% of
all infinite columns. The scalar product P!Q is defined if at least onme of the two vectors
P,Q is finitely supported. All vectors %:—I; for P6A are finitely supported, and there-
fore the -Bg%. are defined but are not necessarily finitely supported. Each row of the
Fréchet Jacobian D(P) is finitely supported for any PEA”, since D,;(P)=0 for sufficient-
ly large J (depending on i; see the definition in 7.8). Therefore, D(P) may be applied

to any vector of A” . The left and right sides of equalities (13) and (14) of Sec. 7 are
thus defined, and we take them as the definition that B be Hamiltonian in the ring A of
functions on the space of jets of the corresponding "infinite~dimensional" fibration (the
projective limit of the finite-dimensional fibrations). It is not hard to verify that the

remaining constructs of Sec. 7 with appfopriate modifications carry over to A;

The opefator (21) was introduced in the work of Kupershmidt and the author [19] to study
the system of equations for 1ong wavés with a free surface suggested by Benney. The infinite
sequence of unknown functions u,, n>0 , is, in fact, the sequence of moments of the horizon-
.tal component of the velocity, and the system of Benney's evolution equations for it is found
to be Hamiltonian with operator B and a corresponding Hamiltonian. Details may be found in

the next chapter.
The following theorem is the main result of this section.

8.2. THEOREM. The operators B, and B are Hamiltonian. The proof follows by means

of lengthy computations. Among the reasons for this is probably the fact that we do not know
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an invariant (coordinate-free) characterization of these operators.

We note that according to formula (20) there is also a formal "limit" B. of the
operators Ba, which is a matrix operator of infinite order. The operator B, is obtained
from B , by setting u,.o=1, u;=0 for j=n+1,j>n+2. Although we are not in a position to
assign B. a substantial meaning, in the computations to verify the Hamiltonian property
it is possible to work directly with Bw, since the identities of interest to us will

obviously be preserved under the substitution u;=0 for j>n, j¥*n+2, upp=1L

These identities are obtained in the following manner. In place of the columns 2—1_2
[/
and %2 ve consider the columns X=(X,, X;,...) and Y=(Y,,Y1,-..) with formal variables

Su
as coordinates; the action of & on them is interpreted as the conversion of X,, Y. into

the formal variables @¢/X,=X{", &/Y,=V{), independently of one another and of u . Each
element of the left and right sides of (14) will then be a formal infinite sum of monomials
in #, X, Y and their derivatives which is trilinear in u, X, Y ; we simply verify that the
coefficients of each such monomial at corresponding places on the left and right coincide.

(Here X and Y are not to be confused with the previous notation for fields on jets!)

8.3, For the reformulation of the Hamiltonian criterion (14) which we shall use below,
we introduce some further notation. Let P,Q6A . Since Du,. is a differentiation, we have
Di,;(PQ)=PDy;(Q+QDy,(P) , or in vector form Dy, (PQ)=PDy (Q+QDx (P), where Dy, =(D,,, D, ..
Now let P, Q be columns. From the last equality it then follows immediately that D (ﬁ‘Q—)=
F'D(QH—-Q’D(T’) . Finally, let C be a matrix and Z a colum. Then CZ 1s a colum, and

D(CZy=CD(2)+2'D (C), (22)

where the expression Z!D(C) is to be interpreted as follows: C is a transfinite object —
an infinite column which contains at the i-th place C,;=(i-th place C), D(C) is an

infinite column containing at the {-th place the matrix D(CT,),. and Z‘D(é) is an in-

finite matrix with i-th row 2 Z,. (k-th row of D(é,))=2 Z D (Ci;) and hence with ij -
20 £>0

th element the operator Z ZDu;(Cip)
®>0

Since d commutes with 0@, the identity d(Pdx) =zDal(P)du,-/\dx implies that D,, and
D commute with d. From (22) we therefore find that !

D(C0!Z)=CD (0'Z )+(9'Zy'D (C) =C 0*-D (Z) +zm‘p(é).
D (04 (CZ))=0%D (CZ)y=*-CD (Z)+8%Z!D (),

where Z()=¢'Z and the circle following J' on the right is inserted in order that, for
example, the notation 0%CD(Z) not be interpreted as (9C)D (Z).

In this notation the criterion (14) after obvious calculations may be rewritten in the

following manner,
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8.4. Proposition. The Hamiltonian property of the skew~-symmetric operator ,_‘(B,.af—

. >0
(—1Y0/eB}) 1is equivalent to the following identities between the infinite columné.

9B, 9B} N ()¢ 9B JB!
t98iyuy — xun L f__ —1Vale Xt 22 _
B(%X Ziyo— X — Y) (1>0X (—1)0 Xd;‘)gy (the same with X<}). (23)

Here the right and left sides of (23) correspond to the left and right sides of (14),
respectively, and the following additional notation is used: 03}/0;‘ is the column of in-
finite matrices containing at the i-th place the matrix :;_ (i -th row of Bj) ; X”"g—f;t’- is

. . . - u I
the matrix with (ik)~element z z(;‘,%,e(B],u); B} =(B}) .
150

8.5. We begin with the verification that the operator (21) is Hamiltonian. The
identity (23) to be verified assumes the form (X'=dX, etc.)

(Ba+03:)( xtBy Xt'f’B‘) (Xf' +aXt )(Ba+a°3t)y_(mesamemmX«Y) (24)

We expand here all the brackets. On both sides there are sums of monomials each of which
contains X%¥ and Y9 (possibly transposed). The ordered pair ij we call the type of the
corresponding monomial, By collecting all terms of the same type, we bring (24) to the

form
B'xt 98 "B Y'+(B+B')X' "—-B"X"_‘?éf’__ty—l-(B-{—Bf)X"—z-%Y' (B+B‘)X"——-—Y'
u

£ ¢ dB! t (25)
—(B+BYX —Y X‘——-B Y4 Xt = (B —|—2B )Y+

+X' B B+BY)Y"+X" "‘B+§’B‘Y+X"i@;f_BL(B+Bf)Y' (the same with X «>¥).

We shall prove that this is an identity by showing that the terms of each type on the
left and right cancel. All calculations making use of the concrete form of the matrix B we
reduce to the following lemma.

8.6. LEMMA., TFor any i>0, and any X and Y the following assertions hold:

a) The expression X' B'(”Y is symmetric in X and Y .

b) (B+BYW Xt 22 98 Y= X' (B+B‘)U’Y

) B"’X‘—Z.—Z—Y=Y‘§—’§—B“”X.

d) The expression X' (B+B’)(‘)Y is symmetric in X and Y .

: ¢
Proof. a) and d). The matrix X‘-‘—’f—'- has at the ad -th place the element ZX,,
da 23>0
Ou (Bip)= 2X,,b84 atp-1 , where 8 is the Kronecker symbol. Further, (B'®)s=cu{) , . There-

fore, the a-th element of the column X‘———Y is equal to
—_ i
2 X bbcur(il-l)-c-—ly“_ 2 bcu:‘z-}-b+c—2X bYc'
b,c»0 b,c>0
d=a+-b—1
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It is obvious that this expression is symmetric in X, Y.
B /]
Similarly, the matrix Xt'}%g‘ has at the ad -th place 2 Xbﬁ'u_d(B‘"’)=2 X @Ba,046-1
550 b>0

while the matrix (B-1B9)® at the dc-th site has the element (C+d)u£l.|).a_x , so that the a -th
element of the column X' (B—l—B’)(”Y is

S Xalt+du®, ¥y =b2>0a(a+b+0——1)uﬂo+c.zXY

b,c>0
d=0+b—~1
and this expression is symmetric in X, Y.

b) The element at the d -th place of the column X‘—a—f—}’ is Xt5— dB Y 2 X b3, b+c—1Yc .
b,c>0

Further, (B+B)Y)=(a+d)u), ;. Therefore, the a-th element of the column (B4-BH)® X‘ Y

is equal to Zb(a—{—b +ec—Du®) XY, .

atbre—2
b,c50

In analogy with the computation at the start of the proof, the a-th element of the

column X’ (B+B‘)‘“Y is

> Xpetrdyul, Y= Db@tote—N)all, XY,
d—a-{?bo—l 5,20

¢c) As above, the a-th element of the column B(,”X‘ -g__i_Y is 2" abuﬂb...c_;»X e o
u .
b, ¢20

On the other hand, the matrix Y* _Qg_ has at the ad -th place the element 5‘ . oZd (B)=
-E_a%d,a+,-l}’c , and (BYY% =bufls.;. Therefore, the a-th element of Y‘ B'“’X is equal to

20

2 Ycabu(ai.){.b+c—2Xb . The proof of the lemma is complete.
b,c>0

8.7. Verification of the Identity (25). j}@ 00, On the left there are no such terms,
while on the right there is X‘ aﬁ - B"Y — (the same with X<V ), i.e., zero by Lemma 8.6 a).

Type 0l. We must verify that

B'xt%y — X'—-—(B 4+2Bryy —yr 2B1E) pey
du out

¥:4
On the right there is the monomial X'%.%—B"Y' and a similar term with opposite sign and
u

X «<Y’, which cancel by Lemma 8.6a). The remaining terms we transform in accordance with
Lemma 8.6 b) and c¢):

Xt 2 (B'+B)Y'=(B +B) X' 2 ¥

._.t'_"ﬁ. X = —BXtI8
vo 2B prx——px1Ly

Their sum is obviously equal to the monomial on the left side.

Type 02. We have the equality at once and it follows from Lemma 8.6 b).
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Type 10. We must verify that

—B'X" "B_ Y =X LB@*-,?JB Y —Y¢ "f (B'+2B") X"

w

By Lemma 8.6 a) the term X" B'Y on the right cancels with the term symmetric to it. We

transform the remaining terms accordlng to Lemma 8.6 ¢) and b):
X"ﬁf;B"Y=B’Y‘a—fX’
ut ou !

—-Y‘ (B' B')= —(B'+B" )yt—x'

The sum of the right sides is equal to —B"Y'%_l.iX'. The proof is completed by the remark

that Y’—‘;—E—X' X"—-Y which is immediately evident from the definition of these expressions.
u

Type 11. We must verify that
@ ’ * OB! v ' B + Bt ' ! B! ’
B+B)X" Ly (B+B X’ Ly =x' 2ELE) B+ByY Y i‘i%‘gl.(g-wt)x.

By transforming the first term on the left according to Lemma 8.6 b) and cancelling with

the corresponding term on the right, we obtain the equivalent identity:
. B! v 3B . (B Bt
—(B+BYy X" ‘%Y’=X‘ %—(B+B‘)Y' Y ﬂ%—%’f—’(B-{—B‘)X’.

On the left we interchange X and Y, replacing B! by B, again apply Lemma 8.6 b), and
cancel by Lemma 8.6 d):

O=X"%_§—(B+B‘)Y’ Y"—(B-{—B’)X

Type 20, We must verify that

,as

—(B+BY Xf"’B Y=—v'2(B+BY) X",

On the left we make the change X"<Y. and B~B; applying Lemma 8.6 b), we obtain the re-

quired result.
This completes the proof that the operator (21) is Hamiltoniam.

We now proceed to verify that the operator (20) is Hamiltonian. In criterionm (23) we

put B=B,=1limB, (formal limit), B;=IlimB,; ; X and Y are infinite columns.
n n

The next lemma is verified by straightforward computations using (20), and we limit

ourselves to formulating it.
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8.8, LEMMA, a) In the @ -th element of the column ZBX“’—;%YU) only the coefficient
) J
of a monomial of the form X&B)Y,(:)uu+z+ﬁ+y+b+2g can be nonzero, and this coefficient is equal

to

2[(a+5+5—i)! @+t @+B+8—i)! @+ ]

ABB—)  alft alpr(d—p!  ¥IjI (26)

Here and below all indices are integers >0; terms with (3— /)l (respectively, (B—j) ) are
considered equal to zero for jf>3 (respectively, j>ﬂ)

b) In the a~th element of the column BX‘U’ ] Y only the coefficient of a monomial
of the form X(ﬂ)Y(s)uf,*]'la_‘_ﬁ_i;\+b+ﬂ+2, can be nonzero, and th1s coefficient is equal to

(.—-1)5+6+"'+l2[(—1)i( (@+B+y+8+n+ 1) (a+i)!__(_1)j (@+B+y+8+n+1) (v+i)z] 27)

- a+y+i+DIBIG—iinl  aljl (@+v+]+DISIB—) I ~yIj

¢) In the a-th element of the column EX”“%%-BY only the coefficient of
i

)Y () g () = i
X Y‘ UM, iaiyo4nse Can be monzero. For y=0 this coefficient is equal to

@+ ®ir@t+ae+p-64 Nl (v +9)!
aTH [('a+a+ﬁ+l)!6! =1 S ] (28)
For %0 this coefficient is equal to
5 (v +0+m)! (a+B)
(=" rstar arpr (29)

d) In the a-th element of the column 2(——1)’“01 X’ jBY only the coefficient of

XPYOuM, otvioinsr can be nonzero, and this ‘coefficient is equal to

2(—1)B+6+1+n+1 (@+8+8—j+ m'(a+a+ﬁ+6+n+1)l'+2(_1)ﬂ+o+,,(a+ﬂ+k+z)x(v+a+n—k—m (30)

— [] — ! — —
& @FaFpro—j+n+ DIaIBI@E—)INJ | & al BIYT (O— D) (n—R) &I 11

We remark that parts a) and b) of this lemma refer to the entire left side of (23),
while parts c¢) and d) refer only to half of the right side, the remaining terms being con-

sidered by permuting X<-Y , i.e., the pair of indices (a, B) < (v, 96).
We now proceed to describe the cancellations of similar terms,

8.9. LEMMA.

3 fetBAB—pl @+ _ (@ +B) @tatBrotlt
G 6—j)! @i ap! (@a+a+PprDiol”

Proof. After division by —(%J)! the sum on the left is the coefficient of X*™y°r® g

the polynomial

P (v 4 1y
X—Y ‘

2 (X -4 T)a+ﬂ+5—] (Y + T)ﬂc-l-/ =(X + T)a+ﬂ (Y+ T)a (X+T

i<8
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Separating from the two first factors the coefficient of X4tB—rVe—s and from the third
the coefficient of X'V*T/ (after the binary expansion of (X4T)+ and (V4T)+!' and division

541 .
by X-—Y), we obtain z (64" )(afp) (:), which is the coefficient of 7% in the polynomial
r4s+j=8 ) :

a : s (a+a+p+8+1)!
(l—'—T)a'H(l-{-T) +ﬁ(1+T)'l , 1.e., just GratpInior *

8.10, CQROLLARY. All terms of the form (26) cancel with the first term of (28) and its
transform under the substitution (a,B)«<(1,9) .

8.11. LEMMA,

3
: 1 !
]20(___1)](6 (+7+6+ 1! (x+)! =(__1)6(?+5)'

—D@+y+i+D "alfl viet

Proof. We make use of the identity

@+r+8+1) (@+7+8)! 4 {3+ 7+0)
G—N@+y+i+ DI G—i—Dla+y+j+ DT E—Pr@+r+) "

8.12. COROLLARY. The expression (27) is equal to

(@+f+y+d+nt+1)! (y+8)
(—Dprotnt Bl (@ +v+6+D! 181

— (the same with (z, B) < (7, 3)).

8.13., COROLLARY. The first sum in (30) is. equal to

_ (@+B+)! (2+6)!
( I)HTH-I a!fin! aldl

8.14., COROLLARY. The second sum in (30) is equal to

@+B+v+8+n+ )l (z+B)
(=D e TGt B Ty + T

Proof. We first sum on [/ for fixed K with the help of Lemma 8.9 (with different

values of the parameters) and then sum on k& using the same lemma.

8.15. According to 8.12 and 8.14, the terms of (27) cancel in the second sum of (30)
and its transform under the substitution (@, B)<-(y, 8). The remaining term of (28) and the
coefficient of (29) cancel with the transform of the first sum in (30) under t}\e substitution
(a, B)<-(y, 6) according to 8.13. Finally, the last remaining terms cancel by symmetry also
by 8.13.

CHAPTER II
THE STRUCTURE OF THE BASIC EQUATIONS

1. Introduction

1.1. The principal purpose of this chapter is to describe the construction, algebraic
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structure, and conservation laws of some classes of nonlinear partial differential equations
and also ordinary differential equations related to them. The introduction is devoted to a

brief description of these classes.

1.2, Lax Equations. Let $B be some associative algebra over a field of character-

istic &, which lies in the center of B ; let d:B—>B be a differentiation of B which is

trivial on % . The algebra of differential operators RB[d] consists of all expressions of

N N

the form Ebidl, b,68B , with the commutation rule deb =0b-1-b0 . 1f L——:Z b,0%, bys£0 , the
=0 =0

number N 1is called the order of the operator L and is denoted by ordLl . It is well

known that the left 9% -module of operators of order <N 1is freely generated by 1,9,...,0d".

Basic examples:

a) B is the ring (of germs) of smooth, analytic or meromorphic functions of the

variable x, of the variables x, £, or of the variables x,y,t; 2=R or C; d=0/dx. .
b) B=~k[uN|i=0,...,n j>O0; 0:u{)—=ulitV; k=Q, R or C.

c) B=M;(By) is the ring of (IX!) matrices over a ring B, of the type described in

a) or b); @ is the unique extension of 4 from By to M;(%Ro) .

We suppose further that in B there are defined two additional differentiations &; and
d, such that @, d,,0; are pairwise commutative. In example a) 8,=0/0¢, 0,=0/0y ; in example
b) 04,0, are some differentiations commuting with & , i.e., formal analogues of the evolu-

tion fields of Chap. I. We shall usually write ,, dy in place of 0;, 0; in case b) as well.

For any L=2 b,0'6B [0] we set 61L=2 0:6;0° and similarly for d; . The symbol [P, ]
denotes the commutator PL—LP of the operators P and L.

A pair of operators P,LE®B [0] is called a solution of the stationary Lax equation
(respectively, the Lax equation, the equation of Zakharov—Shabat) if [P,L]=0 (respectively,
0,P=[P, L], 0,P+3d,L=[P, L]). For brevity, we shall often refer to all these equations as

Lax equations.

We remark that in case b) (and similarly in the matrix case) the "unknowns" in the Lax
equations, in addition to P, L , include the fields 0J,, J;, and solutions of these equations
in such rings correspond to what in algebraic geometry are called "generic points" of the
algebraic manifolds represented by systems of algebraic equations. From the more traditional
point of view, when working with these rings, we shall investigate the structure of the Lax
equations themselves rather than their solutions in the sense of traditional analysis. The

latter case corresponds to rings of type a) and is treated in Chap. III.

The main results pertaining to Lax equations are proved in Secs. 2-5. These include
the following: an explicit description of operators P with the property ord[P, L]<Cord L—1
or ordlL—2 ; establishing that the equations L;=[P, L] are Hamiltonian over commutative

rings of type b); formalization of the method of Zakharov—Shabat. We make use of the
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technique of fractionmal powers of Gel'fand and Dikii in a considerably simplified and form-

alized version. Another version based on the study of the resolvent may be found in [5].

1.3. The Benney Equations. This name we give to the following system of equations

for the two-dimensional motion of a nonviscous, incompressible fluid in a gravitational

field in the long-wave approximation:

y
u,—}—uux——u,Su, dn+ k=0,
0 y=n
A
h,+(§udy) =0.
0 x
Here —oo < x< oo is the horizontal coordinate; O<y is the vertical coordinate; £ is

the time; u=u(x,y,?) is the horizontal component of the velocity at the point (x, y) at
time £ ; h(x,?) is the height of the free surface above the point (x,0) at time £ The

. s 9 :
notation #4; is an abbreviation for 7 u(x,y,¢), etc. The system of units is chosen so

that the gravitational acceleration and the density are equal to one. Integrals of the type
Suxd-q arise from the equation of continuity #,+vy=0 where o is the vertical component

of the velocity and from the boundary condition ©=0 at y=0; these relations make it

possible to eliminate v, by expressing it in terms of &: v(x,y, )= —\u,dy . For the re-

Oy

maining details of the derivation see the work of Bemnney [27] who first discovered an un-
expected property of the system: the existence of an infinite sequence of conservation laws

for it.

The Benney equations display a number of unusual properties. We do now know of a Lax
pair for them; the conservation laws in the interpretation of the present work (in contrast
to the formal derivation of Benney) are obtained from a nonlinear integral equation with a
parameter. This equation enables us to obtain the conservation laws of Miura [46] for the
Benney system. We further establish the Hamiltonian character of the "reduced system" (with
the additional condition u,=0 _) and the commutativity of the reduced integrals. These

results are then generalized to the full system.
Our exposition is based on the work of Kupershmidt and the author [19].

The main results pertaining to the Benney equations are formulated in more detail in

Sec. 6; Secs. 7-13 are devoted to their proofs.

2. The Commutator and Fractional Powers of Differential Operators

2.1. In this section we begin the study of the Lax equations. If 9,=L,=[P,L] or
[P, L]=0 , then in any case ord{P,L]<ordL. We therefore first investigate the conditions

under which the commutator of two differential operators has lower order,

N M
We set L=E u,0n, P-—=2 v,0m.

n=0 m=0
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2.2. LEMMA. Setting 0*w=w for any wé®, « >0, we have

P, L= 2 [( ':) Ut — ( . )u,,'vﬁ,?)J o™,

o, m,n>0

j
Proof. According to Leibnitz's rule d/ (uv)=2 (é )u(“)fa(""“’.
a=0

2.3. COROLLARY, The coefficient of ¢™*¥ in [P,L] is equal to [v,,%&y] . In particular,
ord [P, L} M+ N —1, if u,€ is contained in the center of & .

2.4. COROLLARY. For v€B we have [0, L]=[v,u,]0" +(vuy—Nuyv)d" '+ (terms of

order <N —2), 1In particular, if the center of # 1is infinite~dimensional over %, then

the linear space of those P, for which ord [P, L]<N—1, is infinite~dimensional.

We shall see below that the condition ord[P, L] <N —2 in typical examples already leads

to a finite-dimensional space.

2.5. COROLLARY. The coefficient of o"**, keZ , in the commutator [P,L] depends only

on those coefficients v; of the operator P and their derivatives for which Jj>% . The

terms depending on Uz Upu and their derivatives in this coefficient have the form
['Uk, uN]+[’Uk+1, uN_I]—{—M'Uk_’,lu}V—NuN'U;_{_l- (1)

Below we shall always assume that u, is invertible in # and is a J-constant (i.e.,

Ou,,=0). The operator L is fixed, while P may vary.

2.6. THEOREM. If u,, 2, , lie in the center of B and d is the dimension over p of

the space of OJ-constants in $, then the dimension of the space of operator P&RB[d], for
which ord[P, []<N —2, does not exceed (M4-1)d . It is equal to (M+1)d, if 9:B->B is a

surjective mapping (it is possible to "integrate on x" in the ring B ).

Proof. For k=M, Aéi—1,...,0, —1 we call the "k-th equation" (relative to ;) the
condition that the coefficient of 9% in [P, L] vanish. It is evident from (1) that the
M-th equation is trivially satisfied. Further, for fixed Vpgy ++ -1 Vpye the k-th equation,
according to (1), has the form 'Z);‘+1=w , where @ is a polynomial in a3, u}“’, 0P, M>I>k .
If it is solvable at all, then any solution is obtained from one solution by addition of any
0 -constant in $B . It is clearly solvable if 0:8B—+%B is surjective. This completes the

proof.

2.7. COROLLARY. If the 0 -constants in % coincide with % (e.g., $ is the ring

of germs of functions of x or B=~k[2{/)] ), then the dimension of the space described in
Theorem 2.6 does not exceed M41. (It will be shown below that in the commutative case

it is equal to M1, even if 0:B->B is not surjective.)

For matrix rings #B it is possible to obtain an analogous estimate under less restric-

tive assumptions which we now axiomatize.

2.8. Let adun:B—>RB be the operator ad,, (?)=[unx,b] . We set B"=Keraduy, B =Im adun

and assume that the following conditions are satisfied:
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a) B=R'®B" (as a k -space); BB CH, BHB'TH".
b) The operator aduy:B —+B" is bijective.
c) OBCTH".

For any element wWERB we denote by ', @~ the components of w in B* and B~, respec-
tively. If for uy the conditions a)-c) are satisfied then we call uy semisimple. In a
commutative ring B every element is semisimple: RB*=%HB, B ={0} . In the general case our

terminology is motivated by the following example.

2.9. Example. Let %, be commutative, B=M;(B), and u~ be a diagonal matrix with

nonzero elements ;6K on the diagonal. Then RB* consists of matrices with zeros at those
sites for which ¢,%¢; and %~ of matrices at the sites ij, for which c;=c; It is
easy to verify that all conditions 2.8 a), b), andc) are satisfied. This implies that any
semisimple matrix of M;(k) is also semisimple in our sense of the word. As is known, the

converse is also true.

In conditions 2.8 we denote by d the dimension of KerdNB* over k. In Example 2.9
it is equal to the sum of the squares of the multiplicities of the eigenvaluesof un .

2.10. THEOREM. If uny is invertible, constant, and semisimple and unxy—16%~, then the
dimension of the space of operators P with ord[P,L]<N—2 does not exceed d(M+1) . It

is precisely equal to d{M41) if 0:B*—>B* is surjective.

Proof. The proof is analogous to the proof of Theorem 2.6, but it is somewhat more

complicated due to the fact that the k-th equation now contains U,,; as well as T

['Uki uN] + [vk+1’ uN—l] —_ NUN'U;_i_l =0,

We do induction k downwards assuming that Vpprr Tka2s -+ Uy ATE already defined from equations
with indices greater than or equal to -k£--1. Then the condition for solvability of the
k for w, consists in (by 2.8 b))

[‘Z),,+1, uN-1]+ -_ (NuN'Q;+l)+ =w*

If it is satisfied, then 9, is uniquely determined. On the other hand, ['U,j‘H, Uy-1]*=0, since
un—1€8- . Therefore, [v4. unv—]"=[v5,, ux—1|"* and o7, is already defined by the induction
hypothesis. Hence 'v,j:H is determined up to an element of Kerd®B*, if it exists at all, and
it necessarily exists if 0:B"—>B" is surjective. This completes the induction step and
the proof.

2.11. Using the method of Gel'fand and Dikii', below we construct explicitly for each

order an operator P with the condition ord[P, L]<N—2 as the differential part of an ap-

propriate fractional power of L . To this end we introduce the formal ring of symbols.

We denote by & the free variable and consider the polynomial ring B[f] (¢ commutes
with %) . The mapping L»Z:E bid“-'z 5,5 induces an isomorphism of left B -modules but

not of rings. The transferal of multiplication of operators to R[] we shall call composi-
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tion and denote it by o PL=P.:L . 1In order to describe composition in R[] in terms of
the inner structures, we introduce two differentiations in R[] 0:2 b,E‘H‘EOb,Ei and
0&’2 b »-»'2 ibf! . The next lemma follows from the Leibniz formula.

2.12. LEMMA, PL=Y 1 ozPo"L.

30
The idea is now to use the well~known comnstruct of extensions of commutative rings and

extensions of differentiations to them in order to learn how to extend composition by the

formula of Lemma 2.12 and thus to conmstruct useful ring extensions for differential operators.

]
For our purposes a single extension suffices: ﬂ3=ﬂ8((8"))={ 2 biE‘lb,-eFB_} (the ring of

L xz a0

formal Laurent series). Obviously 0 and 0 extends to B(((™7)) by continuity with the same
formulas. .
We set ord (Zbii’)-———max{klbkg&O} and further [|@|=2°"" for aeB(¢t™)) (we assume that

ord0=--cc). The norm || || is non-Archimedean: |a+b&|<max(|al,|/?]) . Moreover, |abl<
lallioll, llell=1 for aeB\{0} and ||a]|=0 if and only if a=0. The algebra R (™) is

complete in this norm.
For any additive operator F:B->$ we set ||F|I=su;()'|| Fallllall. Obviously, ||d]|<]1, ||d;|l=
- a+

—;—<1 . In analogy with Lemma 2.12, we introduce in R ((}™)) the composition o, by setting
_ 1 o e
acb—z o diad”h. (2)
a0

2.13. LEMMA. Series (2) converges in norm for any a, beR((t™)) and defines on B(((™)) the

structure of an associate k-algebra.

1
Proof. The convergence of (2) follows from ”a—!dg‘ad"b

<27%|[a]|[t]|-0 as a—> o0 .

Bilinearity in @ and & is obvious. The identity is 168 . Associativity is verified as

follows:

a>0 o,8,y<B @

(aob)oc=[2 = agao“b]oc= 2 b) o vaofvaosete,
TIT<

a{boc) =), /IT! 0fa.0" LZO 7317 aga® c] =
>

N _l (A 5a - BaT,sAtB-T
a>0 s DB (r)deadad bo c.

A,B B

It is not hard to see that the substitution a=I, §=A+4+B—T,7=A—TI defines a bijection
of the terms of both series and corresponding terms coincide. The proof of the lemma is

complete,

We now suppose that M is a left % -module to which the action 0:0(bm)=03b-m-bom
has been extended for b6B, mEM . We denote by M((t™)) the left B((E™) -module {2 mEt|
mEM, iy, Vi> iy, m,-:=0} with the obvious action. We extend the action of @ to M((f™)) co-
efficient-wise, It is not hard to see that formula (2) enables us to define on M(((!) a

new structure of a left HB((§7)) -module relative to composition if we take a@€RB((5)), b6 M ((5™).
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Right composition M((E™)XB(E™))—>M((), is defined similarly if M is a right B-module
with action ¢ . Finally, if M is a $B -bimodule, then M((:™")) with left and right composi-
tion becomes a RB((!'))-bimodule. The only nonobvious assertions here concern associativity,

and its verification in the proof of Lemma 2.13 carries over automatically in all the required

cases. We shall need this construction in Sec. 3.

An interpretation of the elements of the ring ®B(((™)) with negative powers of £ as

symbols of integrodifferential operators is given in Sec. 5.

2.14. LEMMA. An element 2b15i=b is invertible in B((:™)) both with respect to
multipl_ication and composition if and only if 2,688 is invertible in B, where n=ord (2 b,-Ei).

Proof. Invertibility with respect to multiplication is well known. Further,

P —
o

(20,2‘)ob,§" =1+4c¢, ordc< —1, as is evident from (2). Therefore, 2(—1)‘C°‘ exists in
{w

BE™), and is inverse to 14¢ in the sense of composition: (1+c)o’2(-—1)’c°‘==1 (we write
=0

¢ =co...0c, i times). Then &,5™"(14¢)°™"Y 4ig inverse to 2515‘ on the right. A left
inverse is established similarly., Finally, if &box =1 or x.p=1, then by (2) the leading

term of X must be equal to b7't", so that b, is invertible.

-\
We proceed to the extraction of roots. If the element c=2, u" is an N-th power of

- n<N
X , then obviously Xs'wE—}-E X£&" and wN=uny . In order to establish the converse as-

150 .
sertion, we introduce the following notation. We call an element wER N -admissible (N>0),

N—1 v
if the mapping 53'-'53:):'-*2 w!xwN-1-! is a bijection. In a commutative ring # with unique
i=0
division by N precisely the invertible elements are admissible. In a matrix ring the
N1
element w=diag(c;,...,¢;) is admissible if and only if all elements 2 cleV-1=t (r,s=1,...,1)
=0

are different from zero.

2,15, LEMMA., Let c=2u,,E”, N>0. Then for each N -admissible root of an N-th
Cerd. LT . |
power w of uy there existsKa unique element XERB((¢1)), for which XN=¢ and X=wt+
O(1) O() denotes some series of order <i).

Proof. We apply the method of successive approximations. We set X_j;=wi. Obviously,
XN = unt¥ +0(EN"1) . Suppose that for some r> —1 we have already proven the existence of

X.6B((f1), such that X,=wt4+0(1), X',v==c 4+0@¢""% and its uniqueness up to OCEV*) ., we

(r+1)

seek X, in the form X, =X,+ x5 Using the distributivity of composition, we have

N—1
— - - — 1 y g .
(X, +x,.t (r+l))°N=X;>N +z x;“ox,+,E (r+ ’ox:(N"’ 1 4 (remainder).
i=0
N-1

We compute the terms on the right up to OE" %) . The sum has the form 2 wix, "
i=0

wV-1-¥"2 L 0tV ~"% . The remainder consists of a sum of products of j<N—2 of elements
Xf
max (—(r+ )N —-))+/)=N—2r—4<N-—r—3 for all r>—1.. Hence, from the admissibility
j<N—2

and N—j elements x, i~ +) in different order. Therefore, its order does not exceed
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of w it follows that X,,, exists and is uniquely determined by the requirement X:_’L:c—{-

O(¢""™ . This completes the proof.
N

2.16. We now choose an operator L=2 u,06¢B[0] and an N-admissible root of an N-th
=0 ~
power @ of uny (if it exists). We constr’:mt a root X of degree N of L, as in Lemma 2.15;
X=wt+0(l). We denote by L for any S=pN7€Qn =ZN! the element XPEB((t)) . Let

Ios=2Y v,(s;m, L)%
i<p ‘

Assuming that @ and L are fixed, we shall often write below %7;(s;®,L)=v,(s). For s>0 we

set

, .
(Lsy =X 9,(5)0.

j=0

2.17. THEOREM. For any s5>0, s6Qn , we have ord[(Ls),L]<N—1. 1If uylies in the
center of $B , then even ord{(Ls), Li<N-—-2.

2.18. COROLLARY. Suppose that &n,Zy—1 lie in the center of 3, that unx is invertible

and is an N -th power of an admissible element w , that the set of & -constants in 3
coincides with k& . Then for any M>0 the space of operators P€RB[J] with the property
ord[P,L] <N —2, ordP< /M is freely generated by the operators (L°), 0< s< MN-L.

Indeed, since the order of the operator (Lf) is exactly sN, and its leading coefficient
wN  is invertible, all (Ls) of order <M generate a space of dimension AM-+41. It re-

mains to use Corollary 2.7.

For matrix rings, however, the operators (Lf), in general, generate only a part of the

space of interest to us.

2.19. Proof of Theorem 2.17. All powers X from 2.17 commute pairwise and, in particu-

—~

lar, commute with L=X". Therefore, in the ring R (™)) with composition we have [¢Lsy™,
I1=|L, [°s— (Ls)~] . But ord (L — ¢(Ls) )< —1 by definition of (Ls). Therefore,
ord[ (L), []<N——1 and is even <N —2, if uy lies in the center of B (use is made of

Corollary 2.3 which remains valid for composition in B((™)), by formula (2)).

3. The Hamiltonian Property for the Nonstationary Lax Equations and Their Integrals

3.1. 1In this section we set B==~k[u{"], where i{=0,....N—2 (N>2), j>0 0:u§f);+u§i+‘),
N-2 '

are algebraically independent variables. Let further L=6N+2 u,0!. We choose w=1
=0

and for any SEQy we set, as in 2.16,

Los= Y v,()¥, v,(s)ER.

j<Ns
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According to Corollary 2.18, all solutions of the Lax equation 0,L=[P, L] in the ring 3
have the following form P=2 ¢, { L'ty c,6k, 5,6Qn, 5,20; 6,=0:,p:B—~RB is an evolution dif-
ferentiation (i.e., it commutes with @ and is trivial on k) uniquely defined by the con-

ditions
Q11 = coefficient of - §* in [2 ;¢ L%y, L], k=0,...,N—2.

We shall here prove the following basic theorem.

3.2. THEOREM. a) The evolution differentiation d;, defined by the condition &L=

[zc,(L’i) , L], is Hamiltonian with operator By (cf. Sec. 8, Chap. I) and Hamiltonian
v, (si+ l)
ZL‘ TSl
b) All Hamiltonians o_(r), réQw, r>0, commute pairwise in this Hamiltonian structure
and are therefore conservation laws for any of the Lax equations described.

We begin with a number of auxiliary assertions. We set Tres (z b,E‘)—_—.b_l.

3.3. LEMMA. Let a, b6B((t™) . Then res(acb—boa)cdR .
Proof. It suffices to verify this for a=—1vi", b=ui* . It follows easily from formula
(2) that

n
) o™t _ ( ) gotmHnh

resfa, b= mantl

m
(m+u+l

- if m4-n+41>0 and either m>0, or n>0, but mrn<0, and resfe, )|=0 in the remaining

cases. Let us suppose that m>0, n<0; the second alternative is treated analogously. Then

( n )= n(n—1)...(—m) _( l)m,mﬂ m )
m+n+1 (m+n+1)’ \mrn+l

Therefore, res[a,b] is proportional to gg(mtat+l) —(—1)ym*s*iygp(mintl) and is a total derivative

by a lemma of Chap. I.

3.4. 1In order to verify that the Lax equations are Hamiltonian, we adapt the results

of Chap. I on the characterization of variational derivatives &z, to our formal case.

To this end we denote by - Q!(%) the universal module of differentials of the ring HB/%
in the algebraic sense of the word, and we let 3:B->2/(B) be the universal differentiation.
It is well known that Q!(®B) is freely generated over #B by the elements 3u{) and 3P=

pEA

This is a formal analogue of the operator La/ox of Chap. I where 0/dx; is the canonical 1lift
of 9/dx, to the jets. Obviously, 30=a3 , since .[3, 8] is trivial on the #{). It is not

5P 8u{. We extend 9:B—>PB to a differentiation 0:21(B)—>2'(B), by setting 9 (u{))=3g{/+1,

hard to demonstrate the validity of the following formal version of Theorem 4.1 of Chap. I.
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3.5, LEMMA., For any PER there exists a unique representation of 3P in the form

N-2
P

» Qlu;+do, el (HB); for this representation Qi=°=6— .
“ ‘ 8u;

(All formulas of Sec. 4, Chap. I pertaining to the computation of variational deriva-

tives are to be "divided by dx», (m=1), and are to have du!" replaced by 3u{" ).

3.6. We now pass to the ring RB(t'). We define the RB((¢™))-module LU(RB)((:!), con~
sisting of series E 0!, ©,621(B) with the usual rule of multiplication on the left and
right. The differentiations 0 and 0; extend to Q'(®)((t!): thefirst coefficient-wise and
the second by the usual formula. This enables us to introduce another action of RB((E™))
on LI(%) () — the composition

boo— Y, L azbomo,
a>0

According to the remark following Lemma 2.13, (B ((E™') is converted into a left (B((E™)), o) -
module. The composition w.yp defined by an analogous formula converts 2!(B)((:™))into a right
B(E™), ©) -module. It in fact becomes a bimodule, since the formula of associativity
bo(wec) =(hew)oc 1s verified in the same way as for the associativity of multiplication in
BE) .

We extend the differential 3:B—>Q(HB) to 3:B(t ) >2'(B)(E") coefficient-wise. The

-1
g

mapping res:QV(BW(E)) -2 (B) picks out the coefficient of

The easily verified compatibility properties of the structures introduced are collected

in the following lemma.

3.7. LEMMA, a) The operators res, d, 8 are pairwise commutative (in the sense of the

commutativity of the corresponding diagrams).
b) 3(act)=3a-b-ta-3p for any a, bEB((EY)) .

The second assertion follows from the fact that 3% also commutes with 0 .

8u_i (s)
Buk

We now apply this formalism to the computation of

3.8. LEMMA., 30_(s)=sresdlol** P modimd for seQy, s3>0 .
Proof. Let X=L°W" s—=pN-1 . Then IL=X°" and v_(s)=res X** ,

We wish to establish that

(p—N)
dres X°F = °

resd (X)X mod Im 9

b
N

and
Nires X7 = p3 (X X°") mod Im 6.

According to Lemma 3.7,
p—1
Nires X =N 1esd(X’)=N resE X b XoX P

im(

Further, X° o8XoX°P~™D_3XoX"" _[8XoX°?~"D X|. 1t is shown by the same argument as

in Lemma 3.3 that the residue of the commutator on the right lies in Imd. Therefore,
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Nires XP=NpresdXoX°? Y mod Ima.

On the other hand,
N—1
pAXM)eXPN —p 3 xlebXoX 07D
=0
and since
Xid Xo X -1 =3 Xo Xr1 — [6X0X°(""“’, X“l],
the same argument shows that

presd(X°N)X (=N = Np res 8 XoX°»- mod 4.

This completes the proof of the lemma.

3.9. COROLLARY. For S€Qy, $>0 and 0<i<N—2 we have

6(;:1 (s) _sz ( ) O*vp ;1 (s—1).

Proof. According to the preceding lemma,

N-2 N(s—1)
S0y (s)ssres((z au,sl)o( > rv,(s—l)Ef))E

jm—

(3)

=s res( )Su 2§ (s — l)E'“'“)sSZ (i+;+l) 0§+ (s — 1) 81, mod Im @,
a,i,] J
whence the required result follows in view of the characterization of variational derivatives
in Lemma 3.5.
3.10. Proposition. For all s>0, s€Q, and 0<i<N-—2 we have

]
1

(;')(—6)1%‘_7 v_1 (8). (4)

1
UV_y1 S——l =?
J=0

Proof. Relations (3) can be considered a system of equations for wv_ (=1 .0,y (5—1),
which has triangular form and can therefore be solved by induction. The closed formulas (4)

are most easily obtained by writing (3) in operator form

s (40T o (s —1), | (5)

where T is the operator for increasing the index by one: T (v) =73)

(%1« Equation (4) then

‘becomes
1
Vi (S —1) =~ (1—doT)! Gg;i (s) )

and the fact that (6) is. the inversion of (5) is obtained by induction on i.
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3.11. Proof of Theorem 3.2 a). It obviously suffices to consider the equation
O L=[(Ls)y,L] . We rewrite it in the algebra (B(¢™)) ), replacing L by L and (L¢)
by (L)~ —IL° (it is recalled that [L°,[]=0). We find on setting uy_ =0, uy=1:

N-2 N o0
> alukik=[2 155 D v, (s)e-ﬂ].
#=0 =0 B=1
This implies the two identities
N2 N N-1
z dlukzk=[z u k" 2 v_g ($) E'ﬂ],
k=0 . a=0 =1
N‘ oo
o=[z uEs v, (s)s“’]
f=N

a=0

(the second follows from the fact that the order of the commutator on the right is <-—1) .
The commutator in the first identity is equal to

[(5)estsr-esorpler

a<N <N —1
y>0
We sustitute in (7) the result of Proposition 3.10:

g1
B—1¢ 1 [\
gy (s)=,§;( s ) (—1)8gv+ (s_+'1— Tapy O s+ l)). (8)

We wish to represent the formula obtained in the form (cf. Sec. 8, Chap. I):

8 v (s+1) 6§ (v (s+1)
a‘u"=?-‘;(3i-u)aj'537 s+1 "("ay(_Bj.tk‘SEﬂ'sH )) (9

with appropriate B,, . In order to compare (7) and (9), we make in (7) and (8) the change of

indices: a—B—1=£k, T4+3=j, B—1—3=[ ., We then find that the sum of the first terms of

(7) leads to the first terms of (9) if we set

i . -
62 (—1)° (k +jl—+6] + 1) (l 4;6) )pai = (1 -i,;k) Hpoh st (10)
=0

Bim= for JHEHIHISN

0 foo j+E+HI+HID>N

(we have used one of the identities for the binomial coefficients proved in Sec. 8, Chap. I).

Similarly, the part of the second sum of (7) corresponding to given J, R, I, can be

written in the form (for k-+Il+4 i+ 1< N and zero otherwise):

i
(F+0\ (148 3 8 v (s+]) i+t 5 onlstl)
=20 (EE)(40) 0 a0 tmna = = () (=0 (a7 235 )

This agrees with (9) and (10) and completes the proof of Theorem 3.2 a). The fact that the:
operator 23107-—(—0)1035 is Hamiltonian is proved in Sec. 8, Chap. I.
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3.12. Proof of Theorem 3.2 b). We fix r and § and consider the evolution of v.i(s),
due to the system ¢, L=[(L"),L]. Repeating word-for-word the proof of Lemma 3.8 with 3§
replaced by J: (it is only important that [d,, ]=[d;, 9g]=0 ) with the coefficient-wise
action 4;:B(E)>B((ET)), we find

0,v_; (s)=sres (dlof.".("")) mod Im d.
Further,
O LoLot=0 = [ (L7 ) T LJoLo6=0 = (L7 y oL’ —To ( L7y oL°G—V =
= (LrySLos—[Lo ¢ Lry [ LoD 4 Lo% ( L1y =[( Lr)", L% —[Lo ( Lr Y, Lo6=1].

Since the residues of the commutators lie in Imd by Lemma 3.3, we finally obtain 0,7_ (s)0%R.

According to the definitions of Sec. 7, Chap. I, this means that v_;(r) and 7. (5) commute.

We shall now clarify the algebraic significance of commutativity. Let w=(d,...,%N-2),
let B be some Hamiltonian operator, and let Q, PeB=Fk[u{)]. Returning to the conventions
of Chap. I, we denote by X the evolution, field Xqﬁ.-—-BZ—g .

3.13. Proposition. If Q, P commute in the Hamiltonian structure with operator B ,

then X, takes the minimal 0 -closed ideal J/p, generated by the components of Bz—g into
itself. In other words, the X¢ flow is tangent to the finite-dimensional manifold of

solutions of the system of ordimary differential equations B§£=O.
u

Proof. Since [d, Xol=0, it suffices to verify that qu—}le./p. But XQ——D(B \ ::Q
e ccsan— / (73

ou ;
and by the Hamiltonian criterion for B the latter expression is equal to B— («Sut Bgf)-{—
D(B :g)B—— . The first term is equal to zero, since the commutativity of P, @ implies
u
that 6?‘ BQEIma CKer— The second term (more precisely, its components) lies in Jp ,
/3

since the Frechet Jacobian belongs to M, ;(B[d)).
This proposition motivates the search for solution (in function rings) of the equations

u,——B—g, which remain for all time on the manifolds Bgf—o where P is an integral.

Actually, instead of the equations ——EKerB the equations %6—0 — the extremals of the
0

Lagrangian P — and the flows mduced on them are usually investigated (cf. Gel'fand and

Dikii [3]). Both formulations of the problem are equivalent if KerB=k¥-! and in place of
the equation gf—cek”-‘ it is possible to consider the equation %(P—E‘E)::O, noting that

P-—ctu is in this case an integral together with P . In the general case the question

merits special investigation.

Regarding the Hamiltonian property for the induced flows see the work of Bogoyavlenskii
and Novikov [1] and Gel'fand and Dikii [3].

3.14. We shall apply these considerations to the Lax equations L,:-—[Ec, (Lsiy, LJ and

their integrals Edif’%—l—)———-Q . By Theorem 3.2 the condition Bg—g=0, implies that
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[2 d; (L), L]=0. Thus, the search for solutions of the Lax equation lying on the "quasi-
extremals" of their integrals (Bgi_)=0 in place of g§=0\), reduces to the joint solution
14

of the system of equations L,=[P, L}, [Q, L]=0. The condition [Q,L]=0 is called the
auxiliary stationary problem (for the nonstationary problem L,=[P, L]). Chapter III is

mainly devoted to the description of such solutionms.

3.15. Example: The Korteweg—de Vries Equation. We set N=2, L=0+u . The equation

Ly=u,=[(L3%), L] is called the Korteweg—de Vries equation, while the equations L,=
[2 (L yey, L] are its higher analqgues. As 5,6Q, it suffices to take half integers, since
(Lsy =Ls for integral § (this remark applies to gemeral N).

We observe that Corollary 3.9 assumes the form i’%“;@=sv_l (s —1), so that increasing s
by 1 corresponds to "variational integration."

3.16. The Matrix Case. We shall now briefly describe the changes to be made of the

definitions and results of 3.1-3.12 in order to extend them to the matrix case. We set

N

L= ZU,,O’* , where Upy=diag(cy,..., ¢;) is a semisimple matrix of M,(k), which is diagonal for
#=0

simplicity and U, ..., Uy_1 are matrices with independent variables as elements: U,=(ui,qg);

Un-1,,3=0 for a, § with ¢a=c¢p .  Having chosen an admissible root of an N-th power W

of Uy , we can construct the fractional powers Z‘;;, as in Sec. 2 for s€Qny . We shall
further investigate equations of the form 01L=201,W(L;}>. We recall that they now do not
exhaust all Lax equations over the ring B[0], B=M,(Ry), Bo=~Fk[u{i),].

We set Z$=ZV_,,(S, W)t-8. A representation analogous to (7) holds as before but only

up to a commutator in the term Uy which dropped out for [=1:

N—1 N N—1
> 0U b= [2 Uqt®, 22 ciwV_p(s,, W) 5_5] + I:UN’ dewVon (s W) ]
k=0 a0 11 i

The contribution from this commutator will vanish if we go over to equations for the matrix-
traces of the U, in place of the U, themselves. This becomes even more necessary if we wish
to carry over to the matrix case at least a part of the results regarding the Hamiltonian
property. Indeed, the key Lemma 3.3 ceases to hold, since the matrix VU<"l+"+‘)—(—1)”‘+ﬁ+‘.
UV(mtr+) no longer need be a total derivative. However, this expression differs from a
total derivative by the commutator [U, Vim+a+D] | and therefore after going over to traces we
again obﬁain Trres{a, b]60%8 . In the considerations of 3.4 and thereafter in place of Q!(®)

it is now necessary to take the $B[dl-module M, (2! (5)); 3:B—>M,; (R (By) is defined coefficient-
wise, and the subsequent constructions are modified in an obvious manner. In Lemma 3.5 we

must represent 3P in the form 2Q,_a58u1,4p+0w, where Q‘-“":&uipaa (coefficient-wise). The

proof of the analogue of Lemma 3.8 leads to the result TrdV_ (s, W)=sTr res3L.L°¢~" mod Im 4.
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Analogues of Corollary 3.9 and Proposition 3.10 now connect E'S——Tr Va(s, W) with TrV,(s—1, W).
’ 1,08

Substitution of expressions analogous to (4) into the equations for Trd, U/, leads to an
assertion that these equations be "quasi-Hamiltonian' which is described in detail in the

work of Gel'fand and Dikii [5]. We refer the reader to that work for further details.

4, The Stationary Lax Equations

4.1. 1In this section the first general result on stationary equations will be proved:
if L, P€#[d] are such that [L, P]=0, then (under weak additional conditions) L and P are
connected by a polynomial relation with constant cpefficients. This reduces the problem of
solving the stationary Lax equations to the problem of imbedding one-dimensional commutative
rings (i.e., rings of functions on affine algebraic curves) in rings of differential opera-

tors. The fruitfulness of such a reduction will be demonstrated in Chap. III.

4,2. We shall actually prove a more general theorem pertaining to rings of operators

generated by several differentiations d,...,0n.

Let $B be a not necessarily commutative " Q -algebra which is free of finite rank as a
module over its center 3B,. Let 9,,...,0,:B—+>R be d":ifferentiations taking %, into itself
and commuting pairwise. We write i=(ii...,L), |i|=2i, d'=af... 3, 33[51-——‘{2 biaiibiEfB}

Je=1
with the usual rules of multiplication.

Let Ly, ...,LERB[J] be a finite family of operators. We call it inrdependent if the sum of

R —modulestBL{"...Lf’ is direct. We write LP=L{'...L"r and {p]=2 p;j -
=1
4.3. LEMMA. We assume that in the category of free %-modules the concept of rank is

well defined (i.e,, %H'=F=r=s5), and the rank of a submodule does not exceed the rank of

the module. If L,,...,L, is an independent family of operators, then r<n.
Proof. There exists a constant /, depending on the degrees of the operators L...,L,
such that for all m>0 there is the following imbedding of free #H-modules: E%LI’C

ipl<m

2 $0' . But the 3B -rank of the module on the left grows asymptotically like ¢i”" and
[<tm

that of the module on the right like c:(/m)". Therefore, r<n.

4.4, We shall call a family of operators L;,...,L,6%[0] maximal if it is independent
and there exists a free $ -module of finite rank Mc$R[d], such that %’[0]=2 ALt and the
i

sum on the right is direct,

Example: in the case n=1 the family consisting of a single operator on0™ 4+ ... + by,

- N=1 ,
is maximal if the coefficlent by is invertible in #B . Indeed, we set M=2 Rot. Since

w (N—1 =0
BoRINH =RPV*, it follows easily that .‘/3[0]=2 (2 .‘/30") L7 and the sum on the right is direct.

p=0\ {=0
4.5. THEOREM. Let L, ...,L, be a maximal family of operators in &% [0] and let PER[0]
be an operator such that [P, Lj]= ... =]|P,L,]=0. Then there exist dJ-constants a, [==
(1, -+ -»in), ¢>0, lying in the center of % and not all zero such that Eal,qLqu.:O .
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We first prove the following auxiliary assertion. Let A, ...,%, be independent variables
over B[] which commute with one another and with $[0]. We choose a module MC®R[J], as in

4.4 for the family L,,...,L,, and set
My, e M= mad | meM) cB0] Py, - ., M-

4,6, LEMMA. There is the direct sum decomposition
"lﬁ
B [01 (;\h ey )‘n)’——'M p‘l’ reey )‘n] @ z B [d] p‘l! LR }‘n] (Li_)"l)’ (11)
i=1

where the last expression on the right is the left RB[0][n,...,7,]-1ideal generated by L;—A;.
Proof. a) We show first that the left side is the sum on the right. Since 55’[0]<=2 ML/,
i

it suffices to verify that for any méM and j the element mL/ is contained in the sum on
the right. But ml/=m} 4+ m(L/—))), so that it remains to check that L/—X/ 1lies in the
left ideal generated by L;—); . Let j=(j,...,f,) and let k& be the largest index for which
Je#0 . We set j'=(jiy.++sj2120,...,0) . Then

Li—W=1i Lik_;_i'k;;k:Li'sz_LJ )\Ilzlz_}.L’ ).ik_)\’ k=

=1 (Llik_}‘ik)’*')‘ik(l‘j'_—}j')'

The first term on the right is divisible by L,—),, while the second is analogous to L/—W,
but the index /' has fewer nonzero components than ;. Therefore, induction on the number

of components gives the required results.

b) We now show that the sum on the right of (11) is direct. For this it suffices to
verify that if 2m,)JeZF/3[0] ["(L;—A), then m;=0 for all . But if Em,)ﬁez BIOIM (L: — 1)),
i i i i

then according to the first part of the proof also EmiL‘e‘Z%[d] [M&;—*). We consider

the homomorphism of left R[J] -modules RB[0][A]|>RB[J], which is the identity on HRB[d] and
takes the free generator )\’i‘...)\f," into Li"...Li," . The submodule 2.’:73[0] M (L;—4), clearly
lies in the kernel of this homomorphism. Therefore, it as well as the entire kernel has

zero intersection with %3|[d].

4.7. Proof of Theorem 4.5. We consider the ®RB[A-module M=%3][d] [k]/z‘%[dl A (Li—X) .

According to Lemma 4.6, it is free of finite rank over RBI[A], since it is isomorphic to M .
It is therefore free of finite rank over B)[A], where B, is the center of the ring 3.
Since the operator PERB[J] commutes with all the L;, multiplication by P on the right
induces a %,[M\~endomorphism of the module M. Therefore, the ring Bo[hi.--»tn P cRBo]

acts naturally on M. On representatives this action can be written as follows:
mebNP/ =bm\Pi, beB,, meM.

Since Al is free over HBy[\, -..,A,] there is a nonzero polynomial F (h,...,As P)€Ro[Ms---,
A, Pl such that MoF=0. According to Lemma 4.6, this implies that B[0][A]oF(A,,... 2, P)C
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2.‘/3[0] [*](L;—}) . From the calculations in the first part of the proof of this lemma it
i

follows that then B[0][:|oF (L,...,L,, P)=0 where the substitution of L; in place of ), must
be done in the reduced notation for F . Applying F(Ly..-1Ln, P) to 168B]9][7], we find that

F(Ly, ..., L,, P)ER[0] 0233[5] [M(L;—*)={0}, by the second part of the proof of Lemma 4.6.

We have thus obtained a polynomial relation between L, and P but with coefficients in

B, . We shall now show that for suitable F these coefficients are ¢ -constants.

To this end we choose a free basis of the %)[i]-module M and denote by D a differen-
tiation By[\|->B[A] and its 1ift M—M with the following properties:

a) On B the differentiation D coincides with 4.
b) Di=0, i=1,...,n.
¢) The chosen basis of M is annihilated by D.

We denote by A the matrix of the endomorphism of multiplication by P in this basis and by F
its characteristic polyriomiai.

In addition to D, there is the differentiation 9:M—>M, induced by multiplication on
the left by @ in RB[J][\]. It also extends 0 . Therefore, D—-9:M-+M is a $By[\] -linear

operator:
(0—D)(bm)=(@—D)b-m+b(0 —D)m=b(d— D) m.

We set U=0—D and identify U with its matrix in the chosen basis. Since right multi-
plication by P commutes with left multiplication by ¢ , on calculating the action on this

basis of the composition of ¢ and P in two different ways, we obtain OGA-+AU=UA or

n—1 n-1
OA=[U,A] . This implies that OA" = AIGAA™1— N A'[U, A|Am+i=[U, A¥]. Therefore, the
i=0 1wl

trace of JA* 1is zero for all 23>0 . This means that the coefficients of the character-

istic polynomial of A are 0 -constant by Newton's formula.

4.8. Integrals of the Stationary Lax Equations. We apply the preceding considerations

N-2

to the case B==~k[uf),...,u{),ij>0] L=0”+i§0 u,;0%, p=20,(L‘1 y. We denote by .@=§(ai) the

factor ring of $B by the 0-closed ideal generated by [L,P]. Let 9:8—% be the induced
differentiation where L, PeR [5] are the images of the bperators L and P. 1t is obvious
that L, P is a "general solution" of the stationary Lax equations with operators of the

given degrees N, M, if the constants .(p...,Cy are taken to be free variables and s;=i/N.

Since the leading coefficient of L is equal to 1, L generates a maximal family, and

L, P are connected by the relation 23,1L1P1=0, where E,, are 0--constants in 5. There

is a canonical relation: EEU)J are the coefficients of the characteristic polynomial
j

of the endomorphism of multiplication by P for the B[\l-module B[O][:)/B[O][F](L—)). The
lifts d;; of the elements d,, to B are integrals of the equation [L, P|=0.
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We note now that by Proposition 3.13 we have another collection of integrals of this

equation. Namely, for any r€Q,, r>0 we have 6—"‘;';5—')8 2 v_,s(s_:_-{-l) =dl,, [,6B so that

0l,=0 in B .
The relation between the integrals d;; and [/, is known for the higher Korteweg—de

Vries equations; in particular, the ones are expressed in terms of the others.

5. The Zakharov——Shabat Formalism

5.1. In this section we present an initial version of the method of Zakharov—Shabat
[13]. Our objective here is to clarify the algebraic side of their construction — the
structure of "dressed" differential operators — while omitting functional-analytic considera-

tions. We begin, however, by describing the basic functionals,

5.2. We consider the space of cplumns d: of height N, the coordinates of which are
functions of the variable x and possibly of the additional parameters f{ and 2 . Let
K(x,y; ¢ 2) and F(x,y;¢ 2) be two (N XN) matrix-valued functions. We assign to them the

integral operators R, F:

-]

&)= (K (x 0 0@ dy, EFO )=\ Flx, )8 @)dy.

—co.

Similarly, for any operator L we understand by (LK)~ the operator with kernel LK and
integration from X to oo, and by (LF)" the analogous operator with integration from — oo to
o . The dependence on #, z is not indicated here explicitly. The functions K, F, and

¢ are assumed such that all classical formulas used below for differentiation of integrals
with respect to a parameter are valid (and, of course, the integrals themselves exist). The
following sequence of lemmas on the commutation of various operators is preparatory to the

formulation of the main theorem.

5.3 LEMMA. [0,, F]=(,F)", [0,,K]=(,K)", and similarly for 0,.

The proof is obvious.

Let L,=3I(x;t 2)¢., where the /; are (N X N) matrices. We denote bby the symbol
FL} the kermnel E(—a,)i(F(x, 91 (x)) and similarly for KL} .

5.4, LEMMA.l Ly, Fl={L,F—FL})".

Proof. Integrating by parts, we have

(L FIN =L, ( Fix v @ dy— § Feolyw=

—c0 —

=\ LF (9 dy— { FLy (x.0) () dy={LF —FL1}.

—_—00

5.5. LEMMA. If L, satisfies the conditions of the preceding lemma, then
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Lx°k ""(LxK)A =% (Lx)’

where the differential operator ox(L;) is additive in L, and for !=I(x, ¢, 2) is defined by

n~1

ok (107)p= — 2¢‘ 10% [(0m-1-1K) (x, X) 4.

Proof, It is clear that the left and right sides are linear on matrix-valued functions
of X, % 2. It therefore suffices to compute ox(07). For n=0 the formula is obvious.

From n to n-41 the computation is as follows:

o O3H) 4 =031 K (x, ) ¢ (9)dy— { (039K) (x, )¢ () dy =

=, [S (@3K) (£, 5) () dy +ox (a;w] —{ @) (%, 9) () dy = — Q3K (%, 1) § (D) + 0,00 (1) ¥ =

n—1

= —OK) (5, 24 () — 2 O (@) (&, ) (9]
The last expression coincides with the formula for ox(0%+!){, indicated in the lemma.
5.6, LEMMA. We assume that the coefficients of L, do not depend on x . Then
KoL, —(KLD" =14 (Ly),
where tx is additive in L,; and

n—1

o (107) = D) (— 1)y (9n--1K) (x, x) L0L.

i=0

Proof. As above, for n=0 the assertion is obvious. We carry out the inductive step

from n to n-+1 . Splitting the second integrals into parts, we have:

oo

[RelO5H—K (1054 9 (x) =K (=, 5) 107+ (y)dy—

x

~{(=1rm e = @ ay=

={K (x, ) 103719 ) dy+(— 1) @) (x, 2) 19(0) + { (= 17" @3K) (x, 9) 10,4 () dy.

Here we have used the fact that Oy (19)=10,% since [=I[({,2) . The sum of the two integrals

here is equal to

[Ko10%— K (107)*] 0, =k (102) 0,%

by the inductive hypothesis. The entire expression is therefore

(— 1P O2K) (x, %) 10,9+ <k (107) 0,9 =1k (107F1) §.
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5.7. We now comsider the ring $B[0.] of matrix-valued operators in d,, the coefficients
of which are polynomials of the restrictions to the diagonal of the partial derivatives
02K, 08K and the derivatives of these restrictions along the diagonal. Let LMy (k)[0,]
( £ consists of the constants, i.e.,' R or C in the analytic case). Then (l-+1%)L, has
the same order as L,, and its coefficients depend only on X, £ 2, It is therefore permis-
sible to apply ox and its powers to it while remaining in #[J,] . But the operator
og: B0 ) >B[0,], as is evident from Lemma 5.5, reduces the order. Therefore, the following

expression is meaningful:
L;=(l +OK)—11KLx=(1 —GK+G2K— “ee +('— I)MGI‘?) TKL"E% [0x],
where M>ordL, .

The operator L* is called the "dressed" operator L,, and the mapping L ~(1-4os)ltel
- x X Kleg

is called the "raiment" of L, .

The first part of the next theorem shows that L% is roughly speaking the differential

part of the operator obtained from L, by means of conjugation with the operator 1+i( :

5.8. THEOREM. a) L;(14+K)—(1+4+R)L,={L:K—KL}}» . b) We assume that the functions
K,F satisfy the equation

K (x, 9)+F (x, y)+SK(x, $)F (s, y)ds=0

x

or, more briefly, K-+ FJK*F=0 . There is then the identity

(L:K—KL))4+(LF—FL)) +(L:K —KLy)*F +K*(L F —FL,)=0.

c) Under this same condition we have

atK+0,F+0,K*F+K*0,F=O
and similarly for 4, .

5.9. Application of Theorem 5.8. If K-+F+K+*F=0 and RK+SF+RK*F +K*SF=0 for
some operators R,S, we shall say that the pair (R,S) "differentiates" (K,F) . According
to Theorem 5.8, the pair (L;—L;+ad,+f0,, L;—L +ad,+Bd,) differentiates (K, F), if a,P

are any constants.

We now suppose that the kernel F satisfies the system of linear differential equations

L,F —FL*+a0,F =0,
L.F—FL}4B0,F =O0.

We f£find by Theorem 5.8 b) and c) that

LYK —KL 400K + (LK — KLy +ad,K) +F =0,
{L;K — KL 4-B0,K +(L2K — KL} +80,K) oF =O0.
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We suppose, moreover, that from this it can be concluded that
L;K—KL;+a0,K=O,
L;K—KL;+P0,K=0.

Using Theorem 5.8 a) and Lemma 5.3, we obtain, on the other hand,

(L:+ad,) (14 R)—(1+ K ) (L +ad)={L:K —KLy+ad K| =0,
(Lz 480, )1+ K)—(1+K) (Le+Bo)={L:K — KL, +8d,K} " =0.
Assuming further that l-}—l? is invertible, we find that the differentiation operators

L}+ad, and L;+Bd, are adjoint to L,-+ad, and L,-}Bd,, respectively.

We now take the initial matrix operators L, , and Lz'_‘. to have constant coefficients.

We obtain the following result.

5.10. THEOREM. If [L;,,L;,]=0 and F,K satisfy the conditions of 5.9, then L], L;,

satisfy the equations of Zakharov—Shabat

[L;,+ad,, L3, +89,]=0,

or
a0, Ly, —B0.L}, =[L;. Li]-
We proceed to the proof of Theorem 5.8.
5.11. Proof of Theorem 5.8 a). According to Lemmas 5.5 and 5.6
LR =(L:K)" o, (L),
RoL,=(KLy)" + (L)
Therefore,

L 0+R) —(+K) L =(L;K — KL}V + L, — Lt (L) —x (Ly)-
But L; =(1 +q,)"‘ (147 L,., Hence
Ly —L—oxli el =[(14+0k) (1+wx)— 1 +og (1 4ox) (1 +tx)—x] L, =0.

5.12. Proof of Theorem 5.8 b). Applying the operators of Lemmas 5.5 and 5.6 to the
identity K4+ F+K*F=0, we obtain

LK +LF+(LKyF+ox(L)F=0, (12)
KL+ FLi+K+FL}=0. (13)

By Lemma 5.6 applied to the columns of F , we have

K*FLy = — KWL F —FL¥) KL F = — KL F —FL})+KL§+F g (L) F.
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Substituting this expression into (13) and subtracting the result from (12), we find
L,K—-KLj‘—i—L_,F—FL;"—l—(LxK—KL;l')*F +K*(LxF—FL;')+(GK—'tK) (L) F=0. (14)

We set LO=L, LB=c'(x— )L, for i>1 and apply (12) to L{ in place of L® . We

obtain

LOK 4 LOF +(LOK)F 4o (LP) F=0. 14) 4
We take the alternating sum of Egs. (14)]._ with signs (—1)! over i=0,.., M, M>ordL,.
Noting that
M

2("‘ l)lL,(:)=Lx'_(°K—"K) L,+tox(ox—t)Li—-.. =L, —(! +°K)—1.(°'I(—Tz() L;=L:,,

i=0

we obtain
L}K—KL;,"+L,F—FL;"-I—(L;K—KL;")*F +K*(L,F—FL;,“)=O,
which completes the proof of the theorem.

5.13. Formal Analogues. Under appropriate analytic assumptions we have

K (%, )= X7 0L K) (x, x) (y—x)

and

Ky= X (0:K) (x, x)Siy—,.","—)i () 8y

(yfx)i

7 under the integral by integrating by parts

It is possible to eliminate the factor

i times. Therefore, setting (d‘yK)(x, X)=u,;, it is natural to assign to the Volterra

operator K its symbol
k= D(—1yuti=R.
f=]

Here the #; may be considered arbitrary elements of some differential ring %, or matrices

with independent coefficients as in 3.16.

In order to write formulas for the operators ox, tx, it is useful to introduce further
the generator 9; corresponding to (0 K)(x, x). It is not hard to see that they are linearly
expressed in terms of the #; and their derivatives (using the formula ((3,49y)/K)(x, x)=

0L(K (x,x)) :

i
o= 3 )i,
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Comparison with formulas (3) and (4) indicates that conversely the #; are expressed in

terms of the 9, . In these generators we obtain
n—1

ox: B[0] > B[9]: 00" — X100, ,,

im0

n—1

w: B[0] - B[9]: 007~ X (— 1)y, y_jlot.
i=0

Conjugation by means of K=1-} 2(—1)‘1&15‘1 takes commuting operators in (B((™)), o)
=

into commuting operators:
[Lh Ll]=0$[[?—th R"q 1?—1[-2](7]‘——0
(we here identify IL;, and L, with their symbols). Generally speaking, the operators KR

are not purely differential operators. Considering only their differential parts (KLK Y,

we find
ord[ (RLK Yy, (KL,K y]<maxord L, —1.

Thus, this method leads to the comstruction of certain "general" solutions of the equatiomns

of Zakharov—Shabat.

In conclusion, we shall clarify which differential operators are conjugate by way of

some K .
N N A
Now let Eu,-E’, Zw,-E‘EFB[E] be two symbols (#;, ®; are any elements). We shall assume
i=0 =

that Juy=0 , uy is semisimple in the sense of Sec. 2, and that 0:B"—+B" is surjective.

5.14. THEOREM. For the existence of a symbol 1+2 v_,t™* with the property
. k]

N ) o [
> u,-E"o(l + 'u_,,E"’) = ( 14> v_,,e—k)oz;‘ wt
iu=()

Rw=l L i=0

it is necessary and sufficient that #v=wy and uy_;—WN-1EB".

Proof. We rewrite the last equation in the form

N
i ) —k\ ikt __
[(L)woed—(JH) w7 = 3 (@) — ) ¥
52)00.k>1 j=0
i=0,...»

We call the k~th equation (for o ) the equality for the coefficients of & on the left
and right sides.

The N ~th equation gives uxy=wxy ; the (N—1)-st equation has the form [un, v ]=
Wy—1—Un—1 . This shows the necessity of the condition of the theorem and uniquely deter-
mines v;. The rest of the argument is parallel to the proof of Theorem 2.10. We suppose

that from the equations with indices N,...,N_,,, the quantities Vg v ooy Wy have been
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determined. Then the (N —#&)-th equation uniquely determines the element

UN-1V_p 1 — Vg 1 WN—1 + NuN'v:_k.H + [uNf 'v-k] =uw.

Since Wy-1=Un-1+X, XEB", the first two terms can be rewritten in the form [uny_i, Vo .]—
XU_p,1 » For determining of, 41 we obtain the equation
. — s
Nuy (vEeq) — (%02, =2",
which is solvable if 0:B*—$B* is surjective.

6. The Benney Equations: Main Results

6.1. We recall that the system of Benney equationms has the form

]
utuu,—uy é Uglyandn+ k=0,

h,+ (§ udy) =0.

(/]

(15)

The meaning of the notation is explained in Sec. 1 of this chapter. The formal investiga-
tion of the equations is based on the following lemma of Benney.

h

6.2. LEMMA. We define the moments A,(x, t)=Su(x, y, ty*dy, n>0. From system (15) there
EE—— o

then follows an infinite system of equations for the moments:
Ant+ At et 1A 140, =0, n>0. (16)

Proof. Multiplying the first equation of (15) by m™! and regrouping terms, we obtain
without difficulty

y

(@™, 4 (@), — (u" S u,dn) +nu*h,=0.
0 y

We now integrate this relation on y from O to # . The fourth term becomes nA,;A¢x, and

the third [because of the second equation of (15)] becomes u"(h;-uh;)y=n . Adding the
B A

first term of the last relation to §(u"),dy, and the second to S(u'!“),dy , we obtain A,
0
and Appi1,+, respectively.

In Benney's work it is shown that there exist two sequences of polynomials H,6Q
[Ags -y Al and F,€QJAq, ..., Ap,] such that (16) implies local conservation laws for the
system (15) of the form

Hy i+ Fr =0, n>0, an

In Miura's work [14] it is shown that there exist two further sequences of polynomials

H,, F,,eQ[u, Ay, ..., A,4] such that (16) implies local conservation laws of the form
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h
Hut4Foe+ )y =0; n>1, v=—{udn, (18)
0

(In Miura's table the coefficients of ¥ do not coincide with H, because of misprints and
omissions.) As usual, under the assumptions of rapid decay of solutiong at infinity, from

this it is possible to obtain quantities conserved in time: these are S H.dx, n>0.

The next two sections are devoted to a new construction of relations (17) and (18). The
description of the generating function of the system of polynomials H, as solutions of a

certain integral equation with parameter plays a central role in the construction.

oo k
6.3. THEOREM. We set d)(k)=2(—1)fA,l_‘i+” =S(l+u)‘1dy. Then there exists a unique
i=0 §
solution p(d) of the equation

M+ (e A)=2 (19)

a) in the class of formal series of the form A+Q[Ao, 4i,...][[A"']]; b) in the class of func-
tions analytic in A of the form A+o(A™!) in a neighborhood of w (depending on u(x,y,1?),
hx,t)) .

6.4. THBOREM. System (15) implies equations for u(A) of the form

pp— (8224 Ag), =0, ' (20)
[% @+ ay] —[p25 e+0], [ A et §u,dn] =0. (21)
¥

Theorems 6.3 and 6.4 are proved in Secs. 7-8. The Benney conservation laws (17) (up to

constant factors) are obtained from (20) by setting p= A—Z(—l)’!—[ ATED w20 A= 02724
2( 1)F, AU+ ang equating coefficients of A, Miura s conservation laws are deduced

_similarly from the relations (21) in which (#+#)? is to be interpreted as 2(—1)‘11’ "“"'”EQ [u,
f ]
AT

6.5. The Reduced Equations. As already mentioned, the reduced system is obtained from

Egs. (15) by adding the condition ju,,=0: the horizontal component of the velocity does not
depend on height. The reduced system for the functions u(x, f), A(x, {) has the form (the

classical equations for long waves):

uy=— (g k), =5 (5 ) (22)
=~y =5 (5 ), H=—222

0 0 . .
This system is Hamiltonian with Hamiltonian operator B= ( Py 'y ), and Hamiltonian H.
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The integrals H, of the full system (15) are converted into integrals 9 of the
reduced system (22) after substituting A,+~hu"=A% H6Q[u, h] . We explicitly compute these
integrals in Sec., 9, we show there are no others, and we establish their commutativity.

[n/2]
6.6. THEOREM. a) Up to constant multiples we have H?,=E ¢, IR yhere
0

¢ n!

n,k=(

n—2k)1kl (& + 1)1 (23)

and any polynomial H of u, k, for which H,60,Q[z, ] is a linear combination of the H?.
b) [H?,, H?u]ede[u, A].

Theorem 6.6 enables us to introduce the "higher reduced equations"

()
AH\ H=2 ¢, c.€R. (24)
n=(a), =

From what has been said, they admit conservation laws of the form H?,,,+F2.x=0, where the

Fy depend on €y .oy Cpye

In Sec. 10 it is shown that the construction of commuting Hamiltonians {H.°} can be

considerably generalized.

In Sec. 11 we pass to the investigation of the full system (15) or, more precisely, of
the system of equations for the moments (16). We begin by showing that they are Hamiltonian
as a system of evolution for infinitely many unknown functions An(%, ) of two variables by

establishing the following facts.

We set B=B3+0-B, where By, =iAi4j-1, i, j==0. Then, as was shown in Sec. 8 of Chap.
I, the operator B is Hamiltonian.

6.7. THEOREM. The Benney equations for the moments are Hamiltonian with operator B

1 1
and Hamiltonian —3 H,= -5 (A2 + Ag)

(The Hamiltonian formalism is here applied to the ring A=£k[AP], i, />0, A’ being the

independent variables. It is also possible to work in the ring kU;)C‘”(x, A{i’,'i+j<k) or in

various intermediate rings.)

6.8. THEOREM. Let /H6A be any element. Then a system of equations for #, I of the

form
oo y [/ o
,u,——-(z ume) —u,S( juf“Hm> dx,
je=0 x 0 \j=0 Xl y=n (25)
]’l¢=(2 jAj—lH(j)) 1
§ i=0 x
SH . . . < SH . .
where H(i)=6_A-" implies the system of equations A,=Bﬁ with Hamiltonian / .
7
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This theorem is proved in Sec. 11. Theorem 6.7 is a special case of it for H=—%H2,

when the system (25) becomes the original system of equations (15) of part 1 and Theorem

6.7 becomes the Benney lemma. Theorem 6.8 indicates the rather surprising situation: in-
spite of the loss of information on passing from u, £ to A, the equations of evaluation
for A with any Hamiltonian can be lifted to equations of evolution for u,% . Of course,

the question of lifting solutions requires separate investigation.

6.9. THEOREM. Let the elements ;64 be defined from Benney's conservation laws (17).

Then they commute relative to the Hamiltonian structure with operator B .

This theorem is proved in Sec. 12. It makes natural the consideration of systems of
the form (25) with Hamiltonian H=Ec‘-H;, which we call higher Benney equations in analogy
with the higher Korteweg—de Vries equations. By the general formalism the higher equations
possess conservation laws of Benney type Hl’,—{—ﬁi,x-——o, where the £, depend on H . Con-

servation laws of Miura type hold for one of the higher equations.

6.10. THEOREM. There exist Miura conservation laws for the system (25) with Hamilton~
ian H=CH3.

Unfortunately, we have been unable to determine if this fact holds for the other higher

equations. Theorem 6.10 is proved in Sec. 13,

We began by considering the reduced higher Benney equations (with the additional con-

dition #,=0), for which A,=hu’ . As was mentioned, they are Hamiltonian related to the

04 R
operator (0 0) in the ring A°=Q[z, B |j>0].

6.11. THEOREM., The Hamiltonian structures described in the rings A and A° are

compatible .

A precise formulation and proof of this theorem is given in Sec. 1l4. That section

also contains an explanation of the reasons for which the system (25) contains the operators

0

2! uJEI,' 2 JAj5a M/ .

7. The Function u(d)

In this section Theorem 6.3 is proved, and further information regarding the function

u(A) and its coefficients needed below is presented.

7.1. The Function p(\) as a Formal Series. We set p(k)-—l—-z(——l)‘H,x (+1) and seek
=1

the coefficients FH; from Eq. (19) which we rewrite in the form

—(i+1)
3 (— 1y —ZH‘M(— 1A, [1 3 YHp- “+2’] =0. (26)

ima—] j=-1

This obviously implies that H_; =0, H,=A, H;=A; and further H,=A,+P,, where P,6Z
[Ags ... Angy Hy,...,H,,] for n>2 . Induction on n immediately shows that the H.eA,+
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Z[A, ...,A, ;] exist and are uniquely determined. The first H, are: Ay, 4;, A+ AL A+
34,4, Agt-4AgAy 247 £ 243

7.2. The Function p(A) as an Analytic Function. For given differentiable u(x, y,t),

k(x, ) the moments A, become functions of Xx,t; it would be possible to attempt to estimate
the [H,(x,?)| and show that they grow no faster than C"(x,?) for a suitable function C(x,1t),
and this would establish the analyticity of p(\) in X , However, it is inconvenient to
obtain such an estimate directly, a't‘ld instead of this we apply the method of iterations to

the integral equation (19): u(}) +§(p(k)+u)‘ldy==0 . We set p-(k)=k+s()\)f The uniqueness

of a function p analytic in A with the property (19) and the estimate e=O0O(\"!) follows
h

from the uniqueness of the formal series. To prove existence we set ¢&=0, ey =—S(u+
0

Atev_1)'dy and show that e=limey exists (for given (x,£)) uniformly in A, when [A| is

-0

so large that the following inequalities are satisfied:

{h(i N —UYt (1 —4k (A —UF < (A —UN2, -

IN—=U>2Vh; U=sup{u|0<y<h}.

In particular, if u, % are bounded there is a domain of analyticity p, not depending on x, t.

To this end we establish the following # inequalities by induction:

[en| < (X [—U)i2; , 4h
{’e"'—en—1|<elsn-l—en_2|- (=mepr <t W enl (28)
h
Indeed, |&|= Sudfk <hsupjutr[<EQ@VE)! <M‘—_U<”";U . Further, for any N>1 we
0
have |ews1—en| <Asup|(u4-rden)@+A4ey i) [exy—en_i|. Setting here N=1 and using (28)
for N=1, we find by (27) [2+AT<(M—=U)",  Jat+rte'<2(1=U)", vhence |e—e|<

2h(|N[—U)?|e|<4h(|M|—U)?|e;| . This provides the basis for induction. Suppose now that
the inequalities of (28) are satisfied for all n<N . Then

lensi—en | <hsup| (@At en)utrten)| | ev—en1]-<8few—en—ls
by (28) for n=N—1,N. Hence

N1
fenil < D len—enat (T —0) Ui < (1 —6) (N — Uy T < (N = U)12,
n=1
by (27). This completes the proof of Theorem 6.3.
Below we shall mainly use p(A) as a formal series. The validity of the corresponding
computations in the analytic version can be trivially verified. We shall establish several

curious algebraic properties of the series for n(A) and its coefficients H;.

7.3. Homogeneity. We call the number A, the weight of the variable #+2, and we

introduce the corresponding graded ring Z[A,]. In this gradation the polynomials H, are
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homogeneous of weight n+2. This fact is obtained by an obvious induction on n from the

identity (26).

7.4. The Symmetry A~—H; . Ve define a homomorphism o of the ring Z[A}[[r]]

into itself by the conditions o(A)=—H;, ¢(A)=p. It is obviously an automorphism. We

shall show that it is an involution: o?=id.

oo
Applying ¢ to (19), we obtain 0(9)—-—21‘/,(0(9))"”“'") =p. On the other hand, by the
) i=0

definition of p, l-—Z(—-l)’Hi}.—(H'”:p. . But from the first equation, as in 7.2, the element
i=0

s(wep 4+ Z [A][[w =2 +Z[A][[AY])] is uniquely determined. Hence o(w)=X . Applying o again

to the .series for p , we find p—Z(-l)’c(Hi)p"("+U=)\; since p—}—Z(-—l)‘A p-_(’+”=)\ by (19),
i=0 =0

in view of the uniqueness of the expression for *» in terms of p, we obtain o(H)=—A4,
i.eo, 0(—H,')=Ai.

7.5. Summation of the Benney—Miura Series. In the work of Bemney [27] and Miura [46]

the generating series for the conservation laws were constructed in a different way. Benney

[ 00 (-]
\ . 9 |1 [+ gnst
~ started from the series P(z)=2, A,z" and showed that Ean"=z (22 02/‘ T?;?Z_I)T' similar
n=0 n=0 n=0

formulas are given in [27, 46] for other series from (20), (21). After the substitution
zZ=—)"1! and passage to (D(k)—l’iP( A1) all the series of Benney and Miura can be rep-

resented in the form l LAY "W (A)], where o= —®, ¢6Z[A]((}* ). Our basic integral
! X

/
n=0
equation (19) was obtained by applying to these series the following identity which is of

independent interest.

7.6. Proposition. Let %k be some Q -algebra, and let ¢€R[[A7Y]], €& ((A"")). Then

2;;1,-(1)” [e"4] =0p/0) - (), where pEA+E[A7']] is the unique root of the equation p=4¢(p)-42.
n-Q

o0

Proof. We note first of all that the series for (.;x)"kp"ﬂ begins at least with the
terms A~2rteonst g4 that the sum converges A™! -~adically. We introduce the auxiliary vari-
able C and denote by p, the root of the equation u,=ce(w)+X in Atk[e][P]. Its

existence and uniqueness follow immediately from Theorem 6.3a). We shall show that

o0
n
Z:—’;(a%) [ed]= 0""4)(90) in the ring k[c|[[\']]. For c¢=1 this implies the result of the
=0
f)roposition.

! a

This identity is equivalent to the sequence of identities kdi [e"] = (56—) [“‘qa(p.,)]
which we establish by induction on #n. For #=0 the result is obvious, since - Pcfe—0=24,
3——',“] =1+ Suppose that it is true for n<N and all ¢, . In order to make the inductive

: le

step, we use the following remark. Differentiating the relation p,=co(p,)+A with respect
to ¢ and A, we find dp/dc =[1—co' () o)y Om/ON=[1—c9'(1,)]"!, whence Op,/dc =0p,/d\-(x,)
and further 02 /0\dc=0%.,/0 % 9(s) (0 /00)2¢ (1) «

We now have
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7} N+1 0 \N

(21 vl = 2 (5" o] =] [ -],
(&) e o0 0+ (2 T D 02 ¥ G |,

— (2T e+ v e 5% = () [ ]

4=

=0

This completes the proof.

8. The Conservation Laws

In this section we shall prove Theorem 6.4. In order to establish a formal version of
it, we introduce the independent variables A, A®=A; {, j>0, and we consider the follow-
ing differentiations of the ring Z[AM][[\!]] into itself. The differentiation 0/0A; takes
A, into 1, and it takes A{) for k=i, A) for j>1 and i into zero; 0/0x takes A}
into AY*Y and \' into zero; 0/0f commutes with 0/dx, and takes A; into —A{}),—iA,Af)
[cE. (16)] and X! into zero. Moereover, all these differentiations are continuous in the

A7l -—adic topology.
8.1. LEMMA. Let D be one of the differentiations described above. Then (14 @’

(w)) Dp =D\ —®P (p), where, by definition, ®'(.)= 2(—1)’“14 @G+ ()", @P( )= 2( 1¥DA,(-)—¢+D

i=0

COROLLARY. a) (I4®'(p))dp/or=1 ; b) dp/0x=—-6®/6x(9)0—’; ; c) 09/0t———( )ox 3 d)
0;1 _ ou
g =(— 1yp=ngh,

Proof. We apply D to the relation (19); we obtain Dp-+@2(p)4 &' (p)Dp=D]\, i.e.,
Lemma 8.1. Setting here D=4/0\, we obtain Corollary a). Finally, putting successively
D=20/9x, 8/0¢, 3/0A;, and using Corollary a) and the fact that @A (Y =(—1)(-)"UHD, we
obtain Corollaries b), c), and d).

8.2. Proof of Formula (20). We multiply relation (16) by (—I1)u—(»+!) and sum on 7
from O to 0. We obtain 0®/0f(u)—p(00/0x (1) — Ao xp™")+ Ao, D’ (r)=0, or 9D/t () —pdD/0x (p)+
Ao s(14+ @ (1))=0 . Multiplying the last equality by Op/dr and using Corollaries a), b), c),

we obtain (20).

8.3. Proof of Formula (21). We carry out the proof by analogous formal computations

in the extended ring ZI[AY, u®D, o(®][A7']], where &I, mn>0 209 =y; ‘vgg;=v and cor-
u

responds to ""S“xd"l ; all the new variables are independent of one another and of the pre-
° ) ; 1 )
vious variables. The differentiation @/dx takes u(*) into au*+LD, o(m into o{m+D, Af

into A{+), and A into zero; the differentiation 0/0h is trivial on the new variables;
the differentiation ¢/0¢ commutes with d/dx, @/0\ and takes '0{,’{‘)) into 'vgﬂn, A, into
—A , U into'-—uu(l’o)_u(o-l)ro_ Apm; and ! into zero; the differentiation 4/dy commutes with
d/0x, 3/0t and takes gy(*.» into ykI+D, oW into —(9/9fyu(m+L0 and is trivial on A{) and
Al (the differentiations are chosen in correspondence with the first and second equations
of (15)).

We now calculate (21) using the prime to denote differentiation with respect to A
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0 (0 ) =[(04u) p'—p (2 2] (0 +2)7
— (" (@ 2) = —[(r+2) (e’ +pi,) — 0" (e o) (0 +2)72,
(v’ (v +2) ™)y =1(»+ ) (vyp’ + o)) — V" (y + )] (2 +2)72

Substituting into the numerators of these expressions the right sides of the relations
py=p, =0, vy=—u,, p=pp,+A, [formula (20)], p,=p'p,+op, (the derivative of (20) with
respect to 1), #4;,= —uu,—u,v—Aor and collecting like terms, we find that the sum of all

numerators is equal to zero. This completes the proof of Theorem 6.4.

There are a number of relations between the "densities" of conserved quantities H, H,

and the "local currents" F,, Fi which we now describe. We introduce two further differen-

0 N 4 0 S, 9
tiations $=H+§1Aj—lm and D-—=20u10_A_i__
- -

8.4. LEMMA, a) @p=09/?>~-—‘; b) Dyp= —dp/0\ (x4 u) .
Proof. a) Using Corollary 8.1 d), we find
Dam 3 A, 4 (= 1)/ 6400101 = — O (1) Ot N = IO — 1
=1
(the last equality follo:rs from 8.1 a)). b) Similarly,

o

Dp= 2, w (—1Y* p=U+Ddy/ 9k = — 0/ 9\ (p 1)L,

j=0

8.5. Proposition. The following relations hold:

0 Fpu . 0
a) DH,=nH,_,; b) Hn=ﬂ:‘ i © gA—lHn=5Ail:Fn;
& DH,=—H,, DF,=—F, & TH,=nfl,_;

70 Fa, v 05 0 =
f) H»nfa;q:;,—_l_—l', 8 EH"_MM Fh.

Proof. Relation a) follows immediately from Lemma 8.4 a); d) is obtained from 8.4b) and
(21). Further, according to 8.1 d), @/0A4,(»*2-+A))= —0w/dr-+1; this and (20) imply b).
Relation c) is obtained similarly: /04, (%2 + Ay =(—1)ip—+Vdu/dh= —0dp/0A; . The rela-
tions e), f), and g) follow from a), b), and c) respectively if to the latter we apply D
and note that [D, D|=[D, 0/0A;,]=0.

8.6. Homogeneity. Setting the weight of u equal to 1, we find from 7.3 and Egs.

(20), (21) that the F, are homogeneous of weight n-3; H, and F, are homogeneous of

weights n and n-1, respectively.

9. Integrals of the Reduced System

Theorem 6.6 is proved in this section.

9,1. Proof of Theorem 6.6 a). The derivative of w%h!, by virtue of the system (22)
is equal to (u*4),= —(k-1)uthlu, —(ku*'h'+ 12" 1K)k, Therefore, for any polynomial P¢

Q|u, k], represented as the sum of terms homogeneous in u, £, P:EP‘. of degree degP,, we
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have p ———zdegP XPu,— V dh +du)P h,. The Poincaré lemma implies that the condition
PtE 3% Qi u] is equivalent to the requirement that

‘ def P
A(P)=010h (Y, deg P, P,) —5o(ud 0+ 0/0u) P=0.

In Q[u, k] we introduce the gradation with weight @, by setting w(u)=1, w(#)=2 (cf. 7.3).

Obviously, A is a homogeneous operator of weight —2. Therefore, the kernel of A is the

direct sum of its homogeneous components, anc}ﬂlt suffices to compute it on a component of

weight n , i,e., to solve the equation A E Cnalt"2p% |=0. Somewhat complicated computa-
k=0

tions show that A=0 on Q-+Qu, while for n~>1 we have ¢€n0=0 and cpap1=(n—2k).
(n—2k—1) k1 (k+1)"c,, for k>1 . This implies that all homogeneous components of the

kernel of .A are one-dimensional and are generated by polynomials HY of the form (23).

Remark. The explicit form of H,? could also be obtained by computing the coefficients
of the function p°(A), which in the reduced case satisfies the equation p°(A)+A(u®(A)+4) =4
It cannot, however, be proved that the integrals found form a complete system. On the other
hand, by generalizing our arguments to the full system (15) it is possible to show that the

Benney integrals also exhaust the space of integrals which are polynomials in A

9.2. Proof of Thecrem 6.6 b). According to the general formalism of Chap. I, the

Poisson bracket [Hpn® H.] is the derivative with respect to f{ of H,% by virtue of the
system u;=(0Hn'/0h)x, h: =(0H%/0u),.

In order to cover all pairs (7,m) simultaneously, we introduce the new formal generat-

ing function a(k)_ZHO M/n! and in the ring Qlu, A[[[X, ]] we compute the derivative with

n=j

respect to f of v(A) on the basis of the system «&;=v(A)p., #,=v(X),,. More precisely,
setting v=v(}), vy=v(\), we show that v€0/0xQ]u, 2][[A,4]]. The conventions regarding the

differentiation are analogous to those described in Sec. 8.

We note, first of all, that because of (23)

o« |n/2]
- = 3 AR B (13t ) @)
v=,§ok§ot"'ku RNl = ,,Z,,(n_zk)! 2RI+ 1) —hzk,(k+,), —— =0 (k) eM,
()

where w(-)=X\"2 It is important below that [e(AA?)],,=Ah"lw(hA?), which is obvious

HE+ DO
=0
from the definition of o , and similarly Ym=»A2"v, Moreover, v,=Av.

Now the evolution of v, due to the Hamiltonian v;, is determined by the relations
Ve = Vs + Yl = Vovine  VaV1ur = Ve tanle - Vinal) T Va(uale F V10ue) = CuV1aa HVaV1m) e+ (VY140 VRV 100)0 s
a . : .

The inclusion VY€ Q4. A][[A, M]] is equivalent to the identity (VVisa—t Vavian)s=(VuVira + VaV1ua)ns
which is checked directly by means of the relations v,;,=AMA%%"'v, v,=1v and analogous equali-

ties for V.
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10. Other Spaces of Commuting Hamiltonians

The sequence of Hamiltonians {H:%} conmstructed in Sec. 9 is an example of a general
construction which makes it possible to form infinite-dimensional spaces of commuting

Hamiltonians in the ring R[4, #]. We now develop this comstruction .

'10.1, Notation. C2(x) denotes the ring of functions of #; with two continuous

derivatives; C?(#) and C%*(u, 4) have an analogous meaning. The letters A, }; denote
independent formal parameters; the derivatives of them with respect to &, # are equal to

zero. We consider two formal Laurent series with a finite number of negative povers

N ECT@(N), TMECEM((A) . Ve set (X) "I"(;*)-‘:E n (e, M. We write 7w =v(Q), % =7*();
w* and %% have an analogous meaning. We suppose that 7% 7 7%, 7}, vanish only at
isolated points.

10.2. THEOREM. The Hamiltonians {m;(#, )} commute pairwise relative to the Hamiltonian

0 .
operator (d‘%‘), if and only if there exist functions Vi{#), V() which are continuous
outside a set of isolated points‘and a series -@€R((})), such that 'fz‘-’; 7* satisfy the equations
7,=a) Vi@ n,=a@})V,y(A)" (29)

Example, The Hamiltonians {F/%} are obtained by setting V=1, V=47, a(})=2* (cf.

9'2)'

Proof. As in 9.2 it suffices to verify that condition (29) is equivalent to the condi-

tion v,60/0xC?(u, h)(())), where the derivative with respect to 't is taken on the basis of
equations with Hamiltonian " #;="y Re=",, « Computing as in 9.2, we find

M=l ¢ Ml = N1+ M Mr = M=+ M an) Bx = (laMae M) s

Hence the condition 760/0xC?(u, k)((\)) 1is equivalent to the identity

(Muaan F MaMe8)e= (MaMau + Whiaadsr

which after cancelling like terms and a suitable division acquires the form (Mi/%*)(nf, /%) "=
() (b, M . From this it follows that both sides of the equation are independent of

@, h, and hence have the form a(\)a(\)™, where 2(\)€R((})) . Further, this implies that

e r=a(0) V@), i,/ =a() Vo (h), where Vi and V, are continuous away from the zeros of

%%, 7*, respectively. Obviogsly, the converse is also true, and this completes the proof
of Theorem 9.2.

11. Lifts of Equations of Evolution

Theorem 6.8 is proved in this section.

11.1. Writing out explicitly the equation for A; with Hamiltonian H for the operator
B, introduced in Theorem 6.7, we obtain

A,, == 2 iA[+j—1H(j),x+ (iAi+i—-1H(i))x! H =8H/8A}' (30)

120
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In order to derive this system from (15), we consider separately the evolution of A4, on the

basis of (15).

11.2. Using the expressions for #; and #;, of (15), we find

A A h
». r- »
A, ,=_—§-t ‘ u’dy=§ i udy+ut lphy = iut™ (20 u’H(i)) dy—
Fy 0 iz

x

S u“‘u,dy§(2 jur ‘Hm) dn-tu/l, (E iA;-me) - (31)
0 EL x x
We first transform the second (double) integral in this expression. It has the form

‘(2 juf 1H(i)) dy— Su‘ (%ju/“ﬂ(,,) dy=

0 \i=0 x

h

@ o ] o (G fos =t

0 j>0

h
(/] i . g (* ' -
=ul|, {5; X jw 1f'fu)d!/—golu’ IIhH(I)hx} “é”‘(z jul 'H(i)) dy=
P 4

>0 720

K h

. [ . fo

=u'|, (2 JA}-IHU)) — 3% 2 jutt ‘H(ndy—l-sz Ju H ) (1)) dy.
iz0 x HOEX 0 i>0

Substituting the last expression into (31) and cancelling like terms, we obtain finally

h
=§2 it g, xd!/+(sz Jjut ‘H(,)dy) _V (lAt+;_1Hu) s+ A Hp)),
0 X

i=0 021

since the H(; do not depend on y . This coincides with (30).

The derivation of Theorem 6.7 from Theorem 6.8 coincides with that of the Benney lemma

6.2 if it is noted that Eqs. (30) for H= ——~—(A2+A) coincide with the equations in the
Benney lemma, while Eqs. (25) coincide with the origin system (15).

12. The Benney Integrals Commute

12.1, Theorem 6.9 is proved in this section. We recall that it means the following:
XHIHIGG,.A . This assertion follows from a stronger fact which we now formulate. As was

shown in Sec. 7 setting P()\)—)\—-Z(—-l)'ﬁ A=), we have p(A)4+®(x(R))=X, where ®(\)=
i=0

——2(——1)‘,4)\ (i+); the formal series for #(\) is uniquely determined by this equation. We
1=0

choose a variable A not depending on A, and set p=p(}), py=p(A) . Exactly as in Sec. 8

it is possible to define the expressions Xup and Xu,P (on A the differentiations act

trivially).

12.2. THEOREM. a) For any H=EC,H, we have
J<N

aH
o
HP (]>OoA1(

x

b) X" (g;-hn llx—l"ll )

73



Proof. Let H=2€Hj or H=p, . As above, we shall write H == OH _ o ye

P =34, ~54;

multiply formula (30) by (—1)p—@¢+) and sum (replacing A;: by XgA):

o0

]
(1) = 2 (— Vo040 B A uH e +J Arja 1))
im0 J=0
Taking the summation on j to the outside, we obtain
=) oo o o
o, (P‘)=2 H(!).xz (— DE + DAy pap—etD +2 JH 2 Ay, ep— (1),
1=0 =0 J=0 =0
We transform the two inner sums on the right:

E(“l)i () Argjpm 0D = (1)) 5 dp (2(—1)“1 1A - 19—(i+n)

{aa()
0 I/} iz
=(=g, [ 2@)-2 (— l)kA,p—ww]:
2(—1)’At+1 (D) = _1y-lpl—12(_l)i+] VA g )1, 20~ (l+1))
=0

]—-2
=(— 1yt [@x O (—l)kAk.x;»-wn].
Fexn()

(32)

We now substitute these expressions into (32), multiply the formula obtained by OJp/dr , and

use the following identities (Lemma 8.1): ®,(p)0p/dk= —p,;=—Xnpup, O’ (p)0p/0Ah =1—0p/0k,
@, (+)0p/0h=—p, . We obtain

] j—-2
—Xup=§oﬁm.x [(—l)’u’ (1~ )+E(—l)"*f(k+l)A,,p!—k—2o ]+

]1-2
+2 H(i)[ —1y (P/):+2(—1)"+’IA1: w2 5 ]

The first terms in the inner sums give a total derivative with respect to x of the form

(2 H(,-,(—l)lpi) . We shall prove that the remainder is zero. After this, part a) of
j=0 .

X

Theorem 6.9 is rapidly obtained, while part b) follows from the formula pi)=

3&‘ — 1) prs “"‘” (Lema 8.1) which gives
1 oy 1
—Z prp (—1)pl = 2 py U+ ’P’T — =
j=0 - =0

We prove, finally, that the remainder vanishes. It suffices to do this for A/ =p, . Indeed,

the coefficient of the remainder for M U+Y, j>0, then vanishes which corresponds to the

remainder for H=(—1)H;; this implies the required assertion for any linear combinations

of the H; as well by linearity.
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The remainder has the form

du
2 1), [(-—1)’”9’ o +? (— 1y (k1) Agpi=® 2ox] +2 B1() 2. (10241 jAg, opf 472 55

j=0

We fix $>0 and show that in this expression the coefficient of p‘g—;} vanishes. This

coefficient is equal to

. ﬁ 2
p‘l(s).x("'l)3ﬂ+ 2 (—1)k+’(k+1)Ak‘."l(i).x + I_ZI (—'1)k+"jAk,xp‘l(i)'

. k>0
J k20 H
KB Jmbtzas

Ouy .
Substituting here g)=(—1y"p U+h =2 dx we obtain

)

on
—(s+1) Y
{Px ““a,a“,,};-“ >

e A (~+< T

f=hot=s 1/ X
. ) . o
(2 DA B) F D T (Ao

= (e 20 (0 (o) ) (s DD, 0t =
0 0
= (PT“*‘" .%J,'F[!‘r“*” (1 e )] + (s + 1) py e+ py =0.
In passing to the last expression we have again used Lemma 8.1.

13. Miura's Conservation Laws

13.1. The evolution of # on the basis of system (25) with Hamiltonian H=—;—H3='

‘43—’—|—A0A,, has the form

t-—-\A1+A0u+ } —"uy((Ao—“u )x Ui "—Al x+A0 xu+Aou +u u —yuyAO x+uyw, (33)
Sy 1
where w=—§(u3), + « (In place of —3—1"13 it is possible to take c¢/7; with any constant
0 .
¢ 1 was chosen to simplify the coefficients.) The evolution of p, under the same system

3
has, according to Theorem 3.2 a), the form

pe={ — A1+ A5 ) = — Ai Ao+ A 070y (34)

The conservation laws of Miura type of this system are obtained from the following relations.

13.2 THEOREM. [p' (p+a)"],—[(Ac+d) ¢’ (+ 0y, —[(w—Ao, 291’ (0 +u)" —op']y=0, where
v .
v=—\udy, pw=0po) [cf. formula (21)].

p

COROLLARY. There exist constants #H,, F,, G, o, Gn 1, Gn 2 such that under the evolution
of u, h according to system (25) with Hamiltonian -:l,’—Ha, there are local comservation

laws of the form

F{n, t+Pn, x+(an0y+ anl'a'*'én?w)y::o'
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To derive the corollary from the theorem it is necessary to expand the exprgssions under

the derivative sign in Theorem 13.2 in powers of A~!, using the formula (p+:§)‘1=2(—1)iui9—(i+l>,
i=0

and equate to zero the coefficient of A—(r+) in the sum thus obtained.

13.3. Proof of the Theorem. For the proof it is necessary to differentiate all three

terms of the expression by the usual rules and multiply the result by (u+u)2 to eliminate
the depominator. In the expression thus obtained the right sides of the formulas for u

(33), m (34), uz'=2lill’ux+u”ux'-i-_onux'-, and uvy=—Uy, Wy=—(4%)x are then substituted. An
algebraic sum of forty-six monomials is obtained, all of which happily cancel if it is noted

that py=u,/=0,

14, Compatibility of the Hamiltonian Structures

14.1. Theorem 6.7 contains a Hamiltonian structure on the ring 4 =Q[A] with

operator B, 1In 6,5 a Hamiltonian structure on the ring A°=Q{z), A] with operator

B°=(/g gl was considered. The rings 4 and 4° are connected by a homomorphism .40 P~PC,
where A?=hu!, which commutes with the structural differentiations in 4 and 4°; these we
denote by the same letter ¢:A— AU+, AN pUth, gllsyli+h,  Let HE.4 be any Hamiltonian.
With respect to it the evolution differentiations Xy:A—~A and Xm:ﬂﬁ—h/l‘" can be

defined. The precise formulation of the compatibility theorem 6.11 is as follows.

14,2, THEOREM. For any P, Q64 we have (XoP)=XqpP? .

For the proof we need the following lemma.

14.3. LEMMA. For any QEA we have
8Q°  wi: Q0 8Q 8Q \°
b= U Amsn ) = )
iz0 j>»0
Proof. Let 2'4, 2'4° be the modules of differentials of the rings .4 and A% respec-
tively. They are freely generated over 4, A" , respectively, by the differentials
3A(N, du), 34) , The differentiation 0 extends to these modules, and the variational

derivatives are uniquely determined by the following .conditions:

5 Q. 8Q° £Q° )
- wERlA, «0gRLAS,
Further, the homomorphism £ ->.4° induces a module homomorphism £'4—2'4° commuting with
0 for which (3Q)=3Q® . 1In particular, (aAj)°=5A(}=j-fllt‘j“5lt+uf3[l , Whence
) ©5Q 10, . _ .
0_-—_6 0o 3 - - j-1 - J .y 0,
(3Q)=5Q E}l\m) (F B3+ 1/sh) + 0w

Recalling that Aw'=A%_, and the characterization of 3Q8x, 3Q%3k indicated above, we

obtain the required result.
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14.4. Proof of Theorem 14.2. If the identity (XoP)'=XqP? holds for a given Q and
for P, P, in place of P, then it also holds for this Q and P, +P,, P\P, , and OP; in

place of P . This follows from the basic properties of differentiations, the commutativity

of Xg, X@, and the fact that the homomorphism reduces 0. It therefore suffices to verify

the identity for P=A4;, i>0.

According to formula (30), we have

XQAi = ;} [(l + j) Ai+j—-1 (SQ/aAj)x + in+i—l,xaQ/5Aj]-
>

Therefore, according to Lemma 14.3,‘
(XoA) = ,;0 [+ 7) a7~ GQRBADE + A w7 GQUBAN + ] (14 ] — 1) a2 BQ1A )] =

= ihut | 3w QAN +ut [ jhut CQIIAY] < ihuit GQUA) -+ w (QUrBu),.
X . X

i»0 i»0

On the other hand,
XA} = X o (hu?) =i hui ' X ot + i X goht = it (3Q0/3R), + ! (Q'18u),.

This completes the proof.

CHAPTER TIII
SOLUTIONS OF ALGEBRAIC TYPE

1. Introduction

1.1. This chapter is devoted mainly to a description of algebraic structures at the
basis of explicit formulas for certain classes of solutions of Lax equations. These explicit
formulas include both solutions of multisoliton type as well as solutions of quasiperiodic
character written in terms of theta functions and also solutions of mixed type. An invariant
definition of this class of solutiomns was given in 3.14 of Chap. II: for nonstationary solu-
tions of Lax equations and the equations of Zakharov—Shabat these are solutions of a com—
patible system obtained by adding to the initial equation L;=[P, L] or L; +P,=[P, L] the

auxiliary stationary equation [Q, L]=0. We shall call them solutions cf algebraic type.

1.2. With this in mind the first object of study are the stationary equations [Q, L]=0.
According to Sec. 4 of Chap. II, commuting operators are connected by a polynomial relation
with constant coefficients. This relation defines an affine algebraic curve C. Its most
important characteristics are the following: the genus g of its nonsingular projective model
C ; points of C, lying at infinity (relative to C; ) and singular points of the curve ;.
The singular points of Cp, , at least when they have the simplest form, i.e., are double
points with separated tangents, are responsible for the multisoliton component of the solu-
tions of the corresponding nonstationary equations: to each double point there corresponds

one soliton. In the case of genus g=0 this is the entire solution; in the case g>0 it
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has a quasiperiodic component related to a motion on the complex torus — the Jacobian
variety of the curve C . Points of C lying at infinity control the imbedding of the ring
of functions @ on C; into the ring of differential operators (in the simplest case the
imag.e of this imbedding is generated by Q and [, where [Q, L]=0). 1In particular, they
make it possible to relate the order of operators to the orders of poles of functions at
infinity.

One further fundamental invariant of a solution, its rank, is determined in terms of
the imbedding of the ring O in %[d] . The simplest description of rank is as follows:
under weak assumptions regarding @ and $[0] the order of operators in the image of O,
greater than some constant consists of all multiples of some integer r>1; this r is the
rank., Solutions of rank 1 have now been described much more compietely than solutions of higher

ranks. For the Korteweg—de Vries equation all algebraic solutions have rank 1, since for
2
it L=¢*4u, and Q has a representation as a linear combination Ec,(Lsi/ Y, where S, are

odd integers, so that the degree of Q is odd, and the monomials /mQ" beginning from some place

onward can have any integral order.

1.3. In order to clarify the mechanism of the difficulties related to the rank, we
consider the curve Ci @(x, \)=0(®(Q,L)=0 is the relation coupling Q and ) and for each
point ¢€C, we write the system of linear differential equations Qb=x(c)¢, L{=2XA(c)}¢.

If B consists of (/,/) matrices of functions, then ¢ is a column of functions of
height [ . It is found that for almost all points ¢6C, the solutions of this system form
a free (right) module F, over the constants in # of the same rank which coincides with
the number r introduced above, The system of linear spaces {F. for each value x can be
equipped with the structure of a vector bundle over C; which actually extends to infinity.
This is proved (for the case /=1 and a nomsingular curve Co ) in the work of Drinfel'd
[7]. It is probably true in general. In any event, all solutions considered in the litera-
ture possess this property. The functions % with respect to ¢ can then be interpreted

as sections of this bundle; the dependence on x is determined by the variation of the
bundle. For r=! the generating module of solutions described in a suitable trivialization
of the bundle is called the Akhiezer function (see, e.g., the work of Krichever [16] and
Matveev [44]). If a trivialization is not fixed following Drinfel'd [7], then the action
of 0. on sections is determined by an appropriate connection V, on the bundle described

which extends 0% and is trivial along C.

Since the space of modules of one-dimensional vibrations over the curve C essentially
coincides with its Jacobian Jc » finding the connection V., reduces to constructing a
suitable vector field on this Jacobian and verifying its integrability. The integral curves
of the field are found to be rectilinear coverings of the torus J¢ . On the other hand, the
sections of the corresponding bundle lifted to the universal covering of J¢, are represented
by the classical theta functions. Tnis explains their occurrence in the explicit formulas
for the unknown in Lax equations (see the derivation of these formulas in the paper of
Matveev [44]).
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From this the difficulties related to rank r>=2 become clear: spaces of modules of
bundles with rank >>2 over algebraic curves as well as their analytic uniformization have

been much less studied.

1.4, 1In this paper we have tried to get by with a minimum of machinery from algebraic
geometry and analysis. Therefore, for us the basic objects will be special algebraic struc-
tures: the bimodules of Krichever—Drinfel'd which are described in Sec. 2 and their standard
realization in Sec. 3. The bimodule technique makes it possible to reduce the problem of
solving Lax equations to a problem of the variation with respect to X, f, y of certain
algebraic functions on a curve C, the number of which is exactly the rank. For r=1 this
problem, just as in other versions; is solved almost to the very end, and the basic con-
clusion regarding the rectilinearity of the motion on the Jacobian is attained in a very

economical manner. This is the topic of Sec. 4.

In the case of rank r>=2 our technique makes it possible to construct at least some
solutions of multisoliton type which we call matrix solitons. The justification for this
name is that explicit formulas for them contain exponents of the form exp(Kix+Kyy+Qf) ,
where Kj, K3, and Q are matrices of rank r, rather than scalars as in earlier known

formulas,

From the bundle point of view our construction is motivated from the fact that if a
curve of genus zero with singularities is considered as C, , then after lifting the bundle
to a smooth model of C; it becomes invariable (a not very complicated theorem of Grothendieck).
Therefore, variations of the bundles over C arise only due to the joining of fibers at
those points of the smooth model C, which coalesce on C; . The space of modules of bundles
essential reduces to a product of linear groups over £ , and the problem of describing

suitable vector fields on them and connections can be handled.

It has been observed repeatedly in the literature that soliton solutions correspond to
degenerations of conditionally periodic solutioﬁs. Nevertheless,.a detailed algebrogeometric
investigation of such solutions can provide useful information even in the case r=1, since
the invariants of complex degeneration are well revealed in the language of the structure of
singularities of curves but rather poorly in the language of theta functions (see the work
of Matveev [44] where the simplest degenerations of hyperelliptic curves are treated analy-
tically). This is even more applicable in the case r>==2, where the corresponding "matrix

theta functions" are unknown.

In Sec. 5 we construct bimodules of .arbitrary rank, and in Sec. 6 we investigate multi-
soliton solutions of rank 2. We shall here describe the simplest case of a single solitomn.

The ring @ consists of meromorphic functions of x, .

1.5. The simplest Lax equation having soliton solutions of rank two has the form
dL=[P,L] , where L=0%+4002 4+ wd,+2, P=wd%+cd,+u; here o, c€R are constants, and #,
v, @, and 2z are unknown functions of Xx,f . Writing out the coefficients and eliminating

i , we obtain the equivalent system of equations
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— gy, = 2'2),'“ —2w,— w0,
- "rlwt === Wy + 2 Irxy + VU — c")_l‘wx - 23_@

- 1 I 1 -
—w lzts'-j'vxxxx']f‘zi'vvx—zxx'l"‘r_‘i"vxw—cﬁ 1z,

According to Sec. 3 of Chap. II, this system can be represented in Hamiltomian form. Beginning
with an operater L of just fourth order an interesting feature of the corresponding Hamilton-
ian of the differential operator appears for the first time: its coefficients depend explicit-
ly on the unknown functions (in the present case only on v ). The single-soliton solution of
this system has the following form. We set I=x+c/ and choose an arbitrary real constant

a€R, a#0 . We introduce the auxiliary functions

ch 2at —cos 2at + 2sin 460t

* :‘Za-ch'.?ag + 08 2aE + 2cos 4a¥0L’
v — %2 sh 24t —sin 2aE
i ch 24k + cos 20§ + 2cosdator

Then

V= —4par) W= —Opoge— e+ diaor;
Z= —4pore — O +8(210) 14 (}’-—192)-_.\‘ + 5&*2!*‘-3_4'3 - 4?;:9%,-

A special feature of the behavior of this soliton consists in the following: it moves as a
whole with speed —¢, but changes form with period n(20%0)'. At infinity (with respect to

t) the amplitude of these variations decays rapidly, but at times when cos4a’ef=—I1, infinite
ejection (in the functions Wi, @, 2 ) periodically occurs at its center t=0 . Thus, our
solution displays a geyserlike behavior and deserves the name "geyseron" or "shooting soliton"
We remark that the vibration of the solution with frequency 4d’e0 formally occurs‘dué to the .
same mechanism as the vibration of a free relativistic electron in the Schrddinger solution

of the Dirac equation.

Another interesting feature of the behavior of the soliton is that the speed —c is
completely determined by the equations while the amplitude (measured by the factor a) may vary
arbitrarily. In Sec. 6 where this example is considered on the basis of the general theory
it is shown that —c is also the common speed of the multisoliton .solutions which thus repre-
sent a "coupled system" of solitons in contrast, e.g., to the multisoliton solutioms of the

Korteweg—de Vries equations.

1.6. Finally, ‘the last section of this chapter is devoted to the description.of a
special class of solutions of the Benney equations and its analogues. .In the notation of
1.3 of Chap. II these solutions are obtained by adding to the Benney equations the conditions

uy=0, h:=g£§ﬁ£ , where ¢ dis any constant after which the problem reduces to a.well known

problem. The character of these invariant manifolds is not altogether clear in contrast to
the auxiliary stationary problems for Lax equations. This hinders, in particular, the

elimination of the condition u,=0 . We remark that since the comservation laws H of
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Benney do not depend on the derivatives of the moments A,, it is here meaningless to apply
the technique of restricting to extremals of conservation laws, since by the results of
Chap. II the set %—%:0 is defined algebraically rather than by differential equations.

Questions hereto related merit further investigation.

2. The Bimodules of Krichever and Drinfel'd

2.1. Notation. In this section £% is any field of characteristic 0, 5 is a central

k -algebra which is not necessarily commutative, 0, 0, 0;: B> are three pairwise commuting
k -differentiations, and % [0] is the ring of dJ-differential operators with coefficients
in 9B, and the commutation rule 0ob—b3=0b . The differentiations ¢,and d, act coef-

ficient-wise on %R[0] .

We fix some ring O of an affine curve over k£ . Suppose there is given an imbedding
of k-algebra i:0->RB[d], i(p)=L, for any €0 . Obviously, [L,, Ly]=0 for all 9, PO so that
prescribing i is equivalent togiving an entire class of solutions of the stationary Lax equatioﬁs.
We startby associatingwith the imbedding i a certain k-linear space # having a series of
additional structures: the (%,0)-bimodules of Krichever and Drinfel'd. We then show that
the imbedding i 1is recovered on the basis of the given bimodule, and solutions of the Lax
equations and the equation of Zakharov——Shabat are also constructed. In the next sections

we investigate and construct the bimodules themselves.

2.2, Construction of a Bimodule on the Basis of the Imbedding i. We set M#=%R|J]

and consider the following structures on ..

a) B acts on # by multiplication on the left and O=i(0) by multiplication on the
right.

b) In # there is a distinguished element 1 — the identity operator.

c) In # there is an increasing filtration
m,:{Z b,07 | b,63).
i<i

d) The k-linear operator V: (-, Ym=dom acts on # . These structures satisfy the

following axioms which are trivially verified:
e) The actions of B and O commute so that # is a (B, O)-bimodule.
£) M ={0}; BM,cM, for all i

g) For each i> —1 the factor /M, is a free PB-module of rank 1;1 is the

free generator of M;.

h) For all &EB., €O we have YV (dm)=0b-m+-b<m,V (mLly)=(Ym)Ly,. In other words,

V is a 0 -connection on the HB-module /.

i) For each i> —1, VwAM,cM,; and ¥V induces an isomorphism of R -modules
My My Mg M
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A connection of the action of ¢ with the filtration {M,} isnot postulated, but itcan

sometimes be described explicitly on the basis of the following Lemma due to Drinfel'd.

2.3. LEMMA. We assume that O has no zero divisors, {(0)¢k and that for any ¢€O the
coefficient of the leading power of 0 of the operator L, is not a zero divisior in 3.
We denote by C the smooth projective k-model of the affine curve Spec® . Then on C there
exists a unique closed k -point oo, the image of which does not lie in Spec®, and such
that for all ¢€O the order ordsL, of the operator L, is equal to roi‘dm_cp . The integer
r>1 does not depend on ¢ and is called the rank of the imbedding i.

COROLLARY. Under the hypotheses of the lemma MLgCMiyrorae . 1f, moreover, the lead-
ing coefficient of L, is invertible, then multiplication by L, induces an isomorphism

Myl My~ Migr ord o/ Mitr ord g1

Proof. The mapping ©:0-—Z, v(p)= —ord;L,, possesses the following properties:
v(0)#£ {0}, v(k)={0}; v(eP)=o()Fv(P); v(p+ ) >min(v(e), v(§)) . It is easy to see that v extends
to the quotient field of @ by the formula v(p¢)=v(p)—v(¥), and all properties described

are preserved. Therefore, vdefines a k-valuation on the field of functions on C . Let
o0 be the k-point corresponding to this valuation., It does not lie on Spec® since v(¢)<0
for some 960 . The group of values of 0rde. coincides with Z, while the group of values

of v is rZ for suitable integral r; this is the rank of .

This lemma is usually employed in the following manner. Suppose that we are interested
in solutions of Lax equations [Q, L]=0 with an operator L of low order, e.g., L=0%}u
for the Korteweg—de Vries equations. In order to ensure the existence in O of a function
¢ with ord;Ly=2, we must have on C a function with its only pole at oo of second order.
In the case o06C(kK) and the closure of Spec® has no singularities at infinity this

requirement means that C is a hyperelliptic curve, possibly degenerate, and r=1.

We shall now indicate how solutions of Lax equations are constructed on the basis of the
bimodule £ .

2.4, THEOREM. Suppose that a bimodule # is given with structure 2.2 a)-d) and axioms

2.2 e)-1i). Then there exists an imbedding i:0-—>%[0] and an isomorphism of bimodules 3B [0]==.4#,

which preserves all these structures.

Proof. We denote by B[V] the ring of %-endomorphisms of the space # generated by
multiplications by elements % and the operator V . The canonical mapping B->®B[V] is an

N
imbedding by 2.2 g). Any element of RB[V] can be represented in the form zbivi using the

i=0

commutation rule V&—bV =05 [2.2h)]. This representation is unique by 2.2 i). There is
therefore a unique ring isomorphism RB|V]|=B[d], V0, which is the identity on B . It
follows from 2.2i) that # is a free RB|V]-module of rank 1, generated by 1, and that the
isomorphism B [V]=#[d] extends to an isomorphism of the modules #4=R[V]1=B[¢]. We point
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out that in this argument the O--module structure on # was nowhere used. This is important

for Theorem 2.6 below.

For each 960 we now define an operator Ly&R[d] by the formula lp=/L,1 using the right
action of @ on J# . By the foregoing, L, exists and is unique. The mapping 9—Ly is & -

linear, has trivial kernel, and is multiplicative by 2.2 e) whichcompletes the proof.
The next two theorems concern nonstationary equations.

2.5. THEOREM. Suppose that a bimodule . is given with the following additional

structures: a differentiation 0,:%—% which extends to a 0, -connection V.-, with
[V, Vi]=0 and (V, 1) =vV;(l¢) for all ¢eG. For ¢EO we construct the operator Lo, as
in 2.4, and we define PER[6] from the equality Vil=Pl, Then 0,Ly=[P, L]

Proof. We have (L,—Ild-¢)1=0and (V;—P)1=0. Hence [V,—P,Ly—Id-9]1=0. But
IV ld-¢]1=0 " and [P, 1d-¢]t=0, while [V, Lg]l=0,Lyl, since [V, V]=0. Therefore,
(0:Lo—[P, Le])i=0, and the operator on the left is zero in #|[d], since 1 is the free

generator of J# over $|d], by the argument of the preceding section.

2.6. THEOREM. Suppose that a % -module # is given with the structures 2.2 a)-i)

in the description of which all mention of O is omitted. Suppose, moreover, the following
additional structures are defined on .J# : % -connections V;:f—M, extending d;, j=1, 2,
where V, Vi, Vi commute pairwise. We define operators L, PERB[d] from the conditions
Vil=L1l, Vy1=P1 . Then 0,P+0d,L=|P, L].

Proof. From the relation [V;—L, V,—P}1=0 we obtain, as above, the required asser-
tion by noting that [Vi, Vil=0, [V, P|=0,P, [V L]|=0,L.

Remark. Although as is evident from the formulation of the theorem, the O -module
structure on ¢ is not essential, those modules which are constructed by the method of

Krichever and Drinfel'd carry this structure with some O by the very construction.

2.7. We remark in conclusion that in the ring of symbols ®R((¢™') it is possible to

obtain additional information on commutative subrings using Theorem 5.14 of Chap. II. Let

N
OycC#@((t)) be such a subring and suppose it contains an element L=2 ut, for which uan
=0
is a 0 -constant, is semisimple, and #~-16Juy, B]=9% . Theorem 5.14, assuming surjectivity
of 0:R"—>RHB*, implies the existence of the symbol 1+2w_,,2"‘=Q with the property Q loloQ—

k=1
uni¥ . Therefore, the entire ring Q'e0«Q consists of symbols which commute with wuniV.

Now it is evident from the results of Sec. 1 of Chap. II that the space of symbols
commuting with Y, consists precisely of symbols of the form 20,5‘, where v,6Kerodn%*,
since all such symbols commute with «n%¥ , and the subfactors of this space, considering

terms in the given interval of orders, have the required dimension.

This implies several conclusions.
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a) If the leading term uny of the operator L is a J -—constant and is semisimple, if
Un-167" , and B* is commutative, then any two operators commuting with L, commute with

one another.
Indeed, then the ring (XerdN®B*)((t!)) is commutative.

This result is applicable to the case B=M,;(B,), un —diag(c,, ce s Cy)s CiFc; for ik,
In this case the entire ring of symbols commuting with ux%¥, consists of diagonal matrices
of symbols with constant coefficients., Therefore, [ "partial" order functions are defined
on it: the orders of the symbols at the site (ii), 1<i<! . The argument of Lemma 2.3 can

be applied to each of these separately, so we obtain the following result.

b) If in the commutative subring OCRB|[d] with B=M,(By) there is an element L with
invertible uy=diag(c,,...,¢;), ¢,%c;, un-16B~, then on the smooth projective model of SpecO
there are <! infinitely distant points the orders of the poles at which are determined by

the partial order functions of the symbols of the corresponding operators.

In the centralizer L in $B((t™)) the partial orders do not depend on one another, but
in O they may be related and even completely determined by one of them. Therefore, among

the points at infinity there are not necessarily [ distinct points,

3. The Standard Realization of a Bimodule Over a Field

3.1. In this section we assume that the basic differential ring %# 1is a field. This
does not reduce appreciably the generality of the results, since for almost all initial con-
ditions the solutions of the stationary and nonstationary Lax equations are locally analytic,
and we can seek them in the field of germs of meromorphic functions. The base field % in
applications is R or C ; it is assumed to be algebraically closed in R and to coincide

with the @ -constants in 3.

Let OC$B[d] be a commutative subring containing 4 . It contains no zero divisors.
The orders of its elements form a semigroup; hence, there exists an integer #) such that
all those orders greater than #,, form an arithmetic progression with difference r . From
the proof of Lemma 2.3 it is clear that r coincides with the rank of the (B, O)-bimodule
M=R][0]. The semigroup of orders of O is finitely generated; choosing its generators and
operators of the corresponding orders we find that the ring @ is finitely generated over
k . It is thus the ring of an absolutely irreducible curve. Let o0 be the point of its
smooth model defining the orders of 6perators of O as in Lemma 2.3. We shall assume that
the leading coefficient of at least one element of © of nonzero order is a constanf. From
formula '(1)'of Chap. II it then follows that all leading coefficients of elements of O are

constants.

In this section we consider # as a left %?0=%‘0—module with action (bf)m=bmf,
b6B, me#, f60, and we realize # as a submodule of vectors in the 7 -dimensional co-
ordinate space K’ over the quotient field K of the ring $BO.. This realization is called

the standard realization.
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In order to describe it and carry over to its ‘language the basic structures related to
J , it is convenient to use the elements of the theory of algebraic curves. The field K
is the field of functions on an algebraic curve over % — the smooth complete model of Spec®
with field of constants extended to 7 . The points of the field are local rings in K con-
taining % . Those field points which come from points of the complete smooth model of
Spec®, are called constants and the remaining points are variables. For example, oo is a
constant point. The principal part of an element fE6K at a point P is called the class

of f modulo the maximal ideal corresponding to P.

Any k-differentiation of $#, in particular 0, extends uniquely to K by the condition

00={0} , The same letter ¢ is used to denote the coordinate-wise actionon K.
We can now formulate a theorem on the standard realization.

3.2, THEOREM. The bimodule #=32][0] is canonically isomorphic to the $BO ~submodule

JtcK' with the following properties:
a) (BOYcJ; the factor space MI(BOY is finite-dimensional over B

b) The element 16.# is represented by the vector 1A=(1,0,...,0)'e./f£.

c) Let .,IAL“.) denote the subset of elements of ., the j-th coordinates of which have
poles at o of order not exceeding i—r" , j=0,...,r—1. Then JZ(,.)C(./%i)“for all i and
JIZU)&—_(JM‘.)"“ for all i>iy,, where i, is a suitable constant.

d) The connection V:./—.# is induced bya connectionon K’ of the form Y7=0+A, where
AeM,(K) 1is a matrix of the form (for r>2)

Proof. We note first of all that the @$BO -module # has no torsion. Indeed, suppose
I' is the semigroup of the orders of elements of @ . For each #€l' we choose an element
f.60 with leading d" . Clearly, the elements {f,} form a k-basis of @ . They therefore
form a % -~basis of F£O. 1f 217,,}’,,#0 is any element of PO and mEAL, m=+0, then

(2b,,f,,)m=2 b.mf, . Choosing the greatest n; with b”ﬁ'tO, we find that the leading term

of (Eb,,f,,\)m is equal to the leading term bnomfno, i.e., is different from zero. This means

that # has no nontrivial torsion. This implies that the canonical mapping Jf#—K g /:
B0
m—~lgm is an imbedding.

We establish the isomorphism Kg; M=K" . We set M' =R1O+...+BY10. Since all
elements of T are divisible by 7, the orders of the elements of BYV/10 are all congruent
to jmodr , and therefore the sum of the $BV/10 is direct. Further, the orders of elements
of M#' include all integers greater than some #n; and therefore J%=./%’+./ﬂn°. Since the

space ., is finite-dimensional over 3 , the BO -module M/ M' is a torsion module. Indeed,
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if fE€0 is any element of nonzero order and mE.#, then there is always a nontrivial rela-

tion of the form zbimf"erﬂ’, i.e., Eb,.f" is annihilated by mmod /#'.

Thus, the imbedding #'— induces an isomorphism K®M' +-K®# . 1In view of the above,
K®M' has the canonical basis {V/1{0<j<r—1} (more precisely, {l,@V/1}) . We i&entify
K®#' and K®M with the space K’ of columns of height r with coordinates in K by
means of this basis. This defines the canonical imbedding #-—>K’, We denote its image by
M. The inclusion (BOYC.# and the finite-dimensionality of M|(BOY over B have actually
already been proved: (BOY is the image of ', while /(BOY is isomorphic to the factor
space M, /M '\ M,. The element 1€4#' is represented by the vector (1,0,...,0) .

The filtration with respect to order is easily described on (5130)’: to the vector
(bofos -+« -5 bpa fra)s (0;6B, f,60) there corresponds the operator ijvflf,, the order of which
is equal to max(j—}-orde,_'lbﬁEO) =max(j—rord_f;|b;#0) by Lemma 2.3. Therefore, (bofy, .-,
b f 1 )E(#)", if and only if j—rord_ f;<i , i.e., the order of the pole of f; at oo does
not exceed % for b;#0. Taking the order of the pole of the zero element to be —oo,

we may remove the condition &;+0.

Thus J‘Z(,)C(Jti)“ . In J we now choose a finite~dimensional subspace over & complemen-
tary to (BOY . The orders of the poles at oo of all the coordinates of elements of this
subspace are uniformly bounded. They are therefore contained in ./szm for the sufficient-
1y large i. This implies that Jl(i,———(uﬂ.-)“ for sufficientlylarge i. We have now verified asser-

tions a)~c) of Theorem 3.2.

In order to establish d) we note first of all that the connection V¥V extends uniquely
to a connection V:K®M—~K®M with T (f®m)=0f®m-+ f®Vm for all [fEK, mEM (this is

a standard fact regarding the extension of connections on a localization).

With the identification of K®.# with K’ we obtain a commection V:K'—K'. The
difference V—0 is a K-linear mapping K'—~K’. Let A be the matrix of this mapping.
Since V(V/1)=v/*1 , we have on setting ¢;=(0...010...0) -a representative of V’l in K,

i

e]+l for j<\r—21
(v"_o)e — r—1 ]
g Z)Ajej(AjeK) for j=r—1.
=
Therefore, A has the form indicated in the theorem. This completes the proof.

3.3. Remark. The standard realization of .# shows that the matrix A, or its last

row (A ...,A.;) 1s essentially the unique invariant of # (for given B and 0 ): M is

recovered from it as 253(0—}—13)1'(1,0,...,0)‘, together with the filtration, the action of B and
the connection V I-Ig;voever, (Ags ...y, ;) cannot be chosen arbitrarily, because the condi-~
tions that 4# be invariant with respect to multiplication by © , have finite type over O,
and that the filtration of  be described in terms of the behavior at oo, as in Theorem

3.2, impose strong and nontrivial restrictions on A . We shall occupy ourselves with them
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in the next sections. Here we note only that part of these restrictions have the character
of differential equations: A is to be considered as a collection of functions on the model
of SpecO, depending on parameters X, (X,f), (X, 4, ?) and satisfying certain differential

equations in these parameters,

4. Bimodules of Rank 1

4.1. In this section we give a classification of bimodules of rank 1 which satisfy two
additional conditions. We can formulate the first one immediately: it is that the ring RO
consist precisely of all functions of the field K, having a pole only at the point o ,
This condition is equivalent to the condition that Spec® be obtained from its smooth
complete model by excising the point at oo. The second condition will be formulated later.
We fix  and its standard realization u,“\EK .

Let AeK be defined as in Theorem 3.2.

We call a pole of M any point P of the field K, for which there exists an element
f€4, having a pole of order >1 at P. We call the order of the pole P the greatest
order of the pole of feﬁ at P (o0 if there is no greatest order).

4,2, THEOREM. a) There exists a finite number of nonconstant points Py,..., P, of the

field K and positive integers a,...,a; such that M consists of all functions of the field

having poles of order <a; at P;(1<i<s) and a pole of any order at oo.
b) The degree of the divisor D=EaiP,- is equal to the genus g of the field K.

c) Let 2- be an element of the field of fractioms of the ring © , which is finite at
all the points P,,..., P, oo and such that z—2z(P)), 2—2z() are local parameters at the
points P;, oo, respectively. Then the principal part of A at the points Pj, &, have the

a;0z (P b

_z:?(—'P}')"+Ci’ ?:5—(;—)-+Cw,'where Ci, Cx line inthe fieldsof the residue

respective forms —

s
classes of the points P;, o©. The divisor of the poles of A is precisely 0°+2P;.

i=1

Proof. Let P be any point of the field K, and let Op be its local ring. It is
known that ¢ takes Op into itself (c¢f. [20, Lemma 2]). Since jl=2 B@+4y1, all
j=0

poles of J! must be contained among the poles of A, so that M has a finite number of poles.

We shall first show that at oc .# has a pole of exactly first order. If A had no pole
at oo then neither would .f#, and this would contradict the inclusion ROcC.#. If the pole
of A at oo were of order 23>2 , then the order of the pole of (0+A)Y1 would be
precisely Jja (an easy induction on /j using the fact that ¢ does not increase the order
of a pole at a constant point). But (d+4A)1 corresponds to the operator /6B 0] =H, and
by Theorem 3.2 c) the order of the pole at o of the function (073-A)Y1 for sufficiently

large / must coincide with Jj . Therefore, the case a>2 1is impossible.

87



Suppose now that P=s£00 is a constant point. We shall show that it cannot be a pole of
A and hence of .# . Indeed, otherwise, the same argument as in the preceding paragraph
shows that J# contains functions with a pole at P of arbitrarily higher order. But .
is finitely generated over RBO, while elements of $BO have no poles at P at all; this

is thus impossible.

We now consider a nonconstant pole P; of the module M . TIts order is finite, for
otherwise, as above, M could not be finitely generated over BC, since the elements of
BO hdve no poles at P, . Suppose that @,>1 is the order of this pole. We choose z in
the field of fractioms at O, as in part b) of the formulation of Theorem 4.2 and an element
f6M with a pole of order @, at P, . It may be assumed that f=@—zP)™ 14+ 0
((z-—z(P,‘-))""i'H) . Since (d—I-A)fE./{Z must also have a pole at P; of order no greater than

a;, and

O+2) f=2f + 222D 1 0 (z—z(PY) ",
(z—z (P
we find that the expansion of A at P; must begin with — ?"f_ii(%%_ .

5
We set D-—=2a;P; and denote by Z(D-4jo) in the linear space over & of all func-
tions of K, thei’:i‘ivisor of the poles of which does not exceed D--joo. According to
Theorem 3.2 a) and c), for sufficiently large J/ we have ,(E(joo)cﬁjcﬂ'(D+joo)-‘ Therefore,
./!21.=$(D+joo) for j»0, since in .jl,- there are elements with principal parts at P, of
order exactly ;. and taking linear combinations of them with suitablé coefficients in R0,

we can make these principal parts whatever we wish.

Now the dimension of ./t?, over @ 1is equal to j-1, while the dimension of Z(D+jo)
for j2>0 by the RiemanmRoch theorem is equal to degD —g-4 1+, jdegoc. Therefore, oo is
a point of first degree and degD=g. This completes the proof.

4.3. We now formulate the second condition imposed on our bimodule . It is that the
divisor Pi+...+P, defined in the preceding section be nonspecial, i.e., there exists no
differential of first kind that vanishes at P,+...+P;., But then from the existence of a
monconstant function A with a divisor of poles P;+...+P;+® it follows that deg(ZP;)=

g, a;i=1; the function A is uniquely defined up to an additive constant.

The divisor P;+...4+P, is clearly nonspecial if this is so at the initial point X=X,

and the set of such initial conditions is dense in the g -fold symmetric product of spec O,

We shall now show that the conditions on A become a condition on the linear variation
of the Jacobian coordinates of P;,+...+P; with respect to X in the functional case. We
shall assume that B is the ring of germs of meromorphic functions of X and represent the
P, as germs of holomorphic paths on the Riemann surface of Spec®, parametrized by x. It

may be assumed that they are distinct, i.e., s=g.
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We choose a basis of differentials of first kind ®;,...,%, in the field of fractions of

O, a function 2 as in Theorem 4.2 c), and set o;=#;dz. The functions #; are finite at the

g P
points Py, ...,P,. We set J,=J, (x)=2 S o;+ We define the element 07 from the condition
J=1 00

A=;:?bm—|-0(l) near .

4.4. THEOREM., a) 6,J,=bu;(oc) for all i=1,...,8. Hence the Jacobian coordinates of

the divisor P;4 ...+ P, move in a constant direction (#;(o)) with speed b&(x) at the point

X .

b) Conversely, suppose D=P;+...+P, is a nonspecial divisor of the field K, the
Jacobian coordinates of which vary with X as in part a) with some function b€B . Then

there exists a unique (up to a constant of % ) function A with principal part

2—2z (o)
at oo and divisor of poles D+ o, and EEB(@-}—A)E)I is a (33, O)-bimodule.
. =0
Proof. a) For any differential o of the field K we have zresq(wA)-_—_O . There can
- £ Q
be poles of ®;\ only at the points Py, ...,P, oo, so that Zresp_(miA)= —res_ (w;4) .
j oo

i=1
Therefore,

g g g

R ~ u; (2) 0,z (P;

0,,/,-=2 u;(P;) o,z (P,-)=z res I3 **-—12__;;(1.)') dz = -—2 respj_ (0,)=res_ (v;3)=bu; (oc).
j=1 j=1 i=1

b) Conversely, suppose that P,--...+4 P, varies as in part a). Then the calculation of

0./, read in the reverse order shows that at the points P; the principal part of A begins

with —-% ,» since the matrix (z,(P;)) is nondegenerate because P+ ...+ P, is nonspecial.
Arguments anaiogous to those given in the proof of Theorem 4.2 show that 253(6—}-A)il=

i>0
Uz(Pl+...+Pg+joo), and all the axioms of a bimodule for this space are verified without
i>0

difficulty.

4.5. Theorem 4.4 gives almost a complete classification of bimodules of rank 1 over a
field. 1In order to apply it to find solutions of nonstationary equations, it is useful to

have in mind the following situations.

a) Let us assume that B is a ring of germs of functions of x,f{ . To solve nonstation-
ary Lax equations we must extend J, to Jt by the condition [@x, VA,«]=O- This extension
of V; must have the form 0,+A, where A,6K . Since (3,48, 164t , we necessarily have
A4 . The commutation condition has the form 0,0;,= —09,A. Since each element of Mis

uniquely determined by its principal part at « (because P1+...-}-Pg is nonspecial), A,

x
can only have the form —S J,Adx+ (an element with a ¢,~constant principal part at o ).
On the other hand, since f\ﬁe connection V} must take ./M into itself, the behavior of A,
near P; is determined by the same sort of conditions as in Theorem 4.2 c). The argument used
in the proof of Theorem 4.4 shows that the motion of P;+...+P; with respect to ¢ also
becomes rectilinear in Jacobian coordinates; its direction and speed are determined by the
principal part of A, at oo. The same is true for the motion in y for solution of the

Zakharov—Shabat equations.
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x
[ ade

b) We set ¢=e™ . Then for any mE.f we have [(0,+48)m]¢=0,(my). Therefore, M
can also be realized as the space £}, to which all structures carry over in an obvious
way, while the connection V‘, goes over in to ordinary differentiation with respect to x .
The function ¢ is called the (stationary) Akhiezer function. Prescribing this function is
equivalent to prescribing 4 and hence the bimodule # in the standard realization; In the
papers of Krichever [16] and Matveev [44] this function is taken as the initial object. If
A does not depend on f nor A, on X, then in the nonstationary case the function ¢(x, f)=

x 4
exp (S Adx+§ A,dt) . On uf?q) the connections V; and V}g become 4, and @, respectively.

X
c) Since A, A; are determined by their divisors and principal parts at o, they can be

written out explicitly in terms of the classical Riemann theta functions. The coefficients
of all operators which enter in the solution of Lax equations are expressed in terms of A, A
and their derivatives. This leads to explicit formulas for the solutiomns. For further

details we refer the reader to the papers {16], [44], and Sec. 6 of Chap. IV.

.5. Bimodules of Higher Rank over a Rational Curve with Double Points

In this section a class of bimodules is constructed which may have arbitrary rank rz>=1.
For the motivation see 1.4 and 2.2, The realizations given here are close to the standard

realizations but do not coincide with them.

5.1. The Initial Objects. We set k=R or C, and we let B, be a ring of germs of

k ~analytic or infinitely differentiable functions of the variable X (for stationary Lax
equations), of (x,f) (for nonstationary Lax equatioms), or of (x, t,y) (for the equations of
Zakharov—Shabat); B=M,(#)) (the matrix algebra of order ! over By 0=0,=0d/dx, 0,=0,=
3/0¢t, 0,=0,=0/dy.

To construct & we choose 2N distinct numbers a;, B3,6C, i=1,..., N with the condition

a;=5, if 2=R and we set

O={f(MELM|Vi=1,...,N, f(a)=7(p)} L
It is obvious that O is a ring of functions on the affine line with N pairs of identified
points realized as a subring of the functions on the line itself, i.e., R[]\

Similarly, we construct .# as a submodule of the trivial (B, B[\]) -bimodule A& =B[A]

of rank r with identification conditions at the points (2, 8.

We shall write elements of %’ and 4 =%R[\]' as columns of height r with coordinates

in B, B[A], respectively ( A commutes with # ). We introduce on " the left action of 3B

b b6
o))
b6,) \ou

By the formula
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where ¢ is the transpose in B=M,;(B)). We define the right action of k] on 4 as co-
ordinate-wise multiplication on the right by R[A\]E,, where E, is the identity matrix in
GL(r, ) . Finally, we introduce on . the natural left action of the group GL(r, RB).

Obviously, the actions of B and E[A\] on 4 are effective and commute with one another and

with the action of GL(r, ).

The identification rules defining # are described by a collection of N matrices
g.6GL(r, C®%A), on which additional conditions will later be imposed. Having chosen this col-

lection, we set
M={mMNEB\ =" |Vi=1,..., N, m(z;) =g,;m(3)). (2)

If k=R and B,—g;, this implies the condition g;=g;'.

The remainder of this section is devoted to describing those conditions on (g;) and

(2:, B)), which enable us to introduce on 4 the bimodule structures with the axioms of 2.2.

5.2. The Actions of # and ©. We have described above the actions of R[A] and B
on . It is obvious from definitions (1) and (2) that RBHCH, MOCM and the actions

of 3 and @ on # commute. That these actions are effective will become clear below

following construction of the element 164

5.3. The Filtration. We first describe an auxiliary filtration on A" by setting

A 1={0}, and for any a>0, 0<k<r;

(/b

Narie = 6B, by, ..., b, are polynomials in A of degree <a ;
b

' (3

by.oy-+.. b,  arepolynomials in X of degree < @— 1}.

(A polynomial of degree < —1 is zero.) It is obvious that 4'CAH° 1 and #"=UL" .
1=0

Further, 4, ,=4",®%Re,,;, where ¢,; has IE,  at the site k41 for l=ar+k, a>»0, 0K r—1
and zeros elsewhere. Therefore, °,//4" is free of rank 1.

The filtration we need on # will be induced by this filtration on " and the follow-
ing shift. We temporarily set Hwm=A",4# . It is obvious that M= My and BM ) CHMap).
k=0

We impose the following conditions on the collections (g:), (a; B)).

5.4, The Nondegeneracy Condition. The block matrix in M. (B): G=(aJE,—Big), 1<

i<N, 0<j<N-—1 is nondegenerate, i.e., belongs to GL (rN, %)

5.5. Lemma. If the condition of nondegeneracy 5.4 is satisfied, then #;={0} for

i<rN, and the natural mapping of,./M;—>N";,1/A" is an isomorphism of % -modules for
>

The filtration J#,=Jwurn+1y for > —1 therefore satisfies conditions 2.2e, f, and

g where any % -generator of the module (.~ may be takemas 1 .
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Proof. According to (3), ./V‘,N={ E mi)\f[m,;(iffé}’}. Therefore, by (2)

J<N=1
N—-1
./u(,,,,,={ Y mpi|vi=1,...,N, X (ajE,—Big)m;=O0}.
J<N-—1 j=0
The condition in braces may be written
Mo
G . =0,
MN -1

Since G is nondegenerate by hypothesis, it follows that #wx=1{0} (and hence ;=0 for
igrN) .

In order to verify that o, M,—~.¥ /A, is a B-isomorphism for (>rN, it suffices
to show that in J#,,, there is an element '—eHl of the form E,+,_——:e,mod# 1» where e;. is

described in 5.3.

To find e-,+,=2m,)\f we must write down the system of linear equations for the m; cor-
responding to the conditions (2). After displaying them over the commutative ring %y we
find in the system a nondegenerate minor of maximum possible rank 7 IN corresponding to the

matrix C . The system is therefore solvable.

5.6. The Explicit Form of 1. From the proof of the preceding lemma it is clear that

we may set

N-—-1 )\N
1= E :mi)J+ O ), m;eR", (4)
=0 0
where the m; form a solution of the system (i=1,...,N)
N—1 i
\ ' _ o
(aij'Er - ?{gl) mj _ll" (a‘:vEr - ‘Bﬁvgl) : =0. (5)
=0 0

5.7. The Conmection V=YV,. The following results with obvious modifications will

also be applied to the construction of the comnections Vi=V; V,=V,.

We first continue 9.:B— B coordinate-wise to B’ and then to #|A] so that 9,1=0.
Inasmuch as 9,(b;05)=0,(b)) b5+ b, (0,b,) for &, H,68 , this action is a J, -connection on /.
Any other'cc’mnecti.on-‘extending d, and trivial on A, has the form d,.+d,, where d M (B[\])=
End B[\’ . (Triviality on } gives the condition V.(m9)=(V,m)e for meA", sek[A]) .

We use the freedom in the choice of 4, to ensure the condition VM A

5.8. LEMMA, Let V,=0,+d,(x). Then V .#CMH, if

Vi::l, ...,A’, dxgi=gt.dx(‘8i)_dr(ai)gi_ (6)
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Proof. According to (2), Mm(\EW, if and only if m(a)=gm(3) for all i=1,...,N,

whence
(0, (@;) =0,8:m (8,) +g.0.m (3,).
Therefore,
10:+d,) m] (2)=0.8:m (B)) + g.0,m (B) +d (2:) g (B)).
On the other hand,

810, +d)m(B)=g0,m(B)+gd.(B) m )

From (6) it is obvious that the right sides of these expressions coincide.

5.9. Solutions of Eqs. (6). We assume that d,(a;, x) and 4,(B;,x) commute respec-

tively with exp(de(a,-, E)dE) and exp (de(Bi,E)dE) (this is so if [d,(a;, x), d, (2, »)] =]d,E: X),
b b

d,(8,9)]=0). Then an explicit solution of (6) can be written in the form

g: (x)=exp (— Ve, (@9 dE) g: O)exp (de(ﬁi, 3| dﬁ)- )
0

]
In the examples we shall take d, (MNEM,(M;(£[A\])), and then
gi(x)=-exp(—xd(2)) g; (0) exp (xd () (8

5.10. The Connection of V, with the Filtration in #. LEMMA. Let WV, . #CH, V, =
d,4d, . Then VM, CM,;,, for all [>—1 and V, induces an isomorphism M,/ M, = M1l My,

if the following conditions are satisfied:

for r=1:d,=dy +d\, d; £B*=GL (1, B);
for r>2: dx=do_¢+d1x)\s

where d, €M, (%) has zeros on the main diagonal and above and invertible elements (in %$*)
along the diagonals below the main diagonal, while d,,6M,(%) has an invertible element in

the right upper corner and zeros elsewhere.

Proof. Since ;= MNA"1peny1 and My, My =N ngol N v for [>rN, it suffices to
verify that under the hypotheses of the lemma V. A4",CA",; and ¥V, induces an isomorphism
Nyl A SN el N« But the action of V. on the last factor coincides with the action d,

since 0,4°,CA4";, and the required result is checked by direct computation.

We have now completed the construction of the class of bimodules # . The result of

the section is devoted to some further remarks.

5.11. The Rank of .7. It is equal to r in the sense described in the introduction

and also in the sense of Lemma 2.3 and its corollary. Indeed, if ¢€O is a polynomial of

degree n , then JMoCHM; m and multiplication by ¢ induces the isomorphism /4,5

1]
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Mynl Myny « It suffices to verify this on the cerresponding filtration submodules of

J4 where all is obvious from the definitions.

5.12. The Connections V,, V, . We set V,=0,+d,;, V,=0,+d, For solving nonsta-
tionary equations these connections must satisfy conditions analogous to (6) but not Lemma
5.10. In place of it we need the commutation conditions [V, V,]=|V,, V,|=[V, V=0

(cf. Theorem 2.5, 2.6). They can be written in the form
0,d;—0d, +[d,, d]=0 (%)

and similarly for the remaining pairs. In the case d,,dEM,(M,(k[\])) they become simply
[d,,d]=0 etc. If these conditions are satisfied, then the matrices §£;(X, #) for the Lax

equations have the form

&:(x, t)y=exp (—xd, (a,)—td,(a;)) X &: (0, 0).exp (xd (B,) + £d, (B.)). (10)

Conditions (9) with constant d,,d, d, are most simply satisfied by taking d,,d,to be poly-

nomials in 4, .

2.13. The Order of the Operators. According to 2.3 and 5.11, the order of L, is

equal to rdegy. It is not hard to see that the order of P, found from the condition
V:l=P1, does not exceed rdegd, (degree in ) ) and similarly for V,. These considera-

tions determine the choice of O, ¥V, in the next section.

The case where O contains polynomials of degree 2 and r=1, leads to multisoliton
solutions of the Korteweg—de Vries equation and its higher analogues and has been treated
in the literature in various ways (by the method of inverse scattering, the method of

Zakharov-Shabat, Hirota's method). The next most difficult case is the case r=2

6. Example: Solitons of Rank 2

6.1. Parameters of an N-Soliton Solution. We shall construct an N =soliton solu-

tion of a nonstationary Lax equation of the form L,=[P, L], where the order of L is equal
to four and the order of P is two. The parameters of the N -soliton solution are con-

stants which go into the construction of the appropriate bimodule ..

We take k=R, B=%R, be the germs of meromorphic functions of x,# over R ; the number

of solitons N is the number of pairs (% By} of dual points.

In order that © contain a polynomial of degree 2, it is necessary and sufficient
that a,+f, not depend on k. Replacing *» by Ai-tconst, we may assume that .a,4B,=0
‘for all k; then A0 . Real «, lead to nonlocalized solutions. We therefore take a,
to be pure imaginary. For convenience of subsequent computations we set .a,=2ial), B,=

—2ia’h, a,, b6R, where & is chosen as follows.
] f ]

According to Lemma 5.10 and (8), the connection V. has the form 0,-}d,, where dx=

(2a01), a, b6R* . Replacing A by a'A and modifying the value of @,, correspondingly, we

may assume that a=1; § remains free,

94



We subject the choice of V/ to the condition that the operator P, for which V,=Pl,
have order 2. According to 5.12, it suffices that for V;=0,+4d, the matrix d, depend on
A lipearly; moreover, for constant coefficients of d, and d, the condition that ¥V, and
V: commute leads to the condition &;=wAE,+cd,, where o€R, c6R* (the a priori admissible

term «F,;, 96R, does not lead to alteration of the solution).

To comstruct the identification matrix g.(x,?¢), which finally defines the bimodule J,
it is necessary to further choose initial conditioms g,(0, 0)6GL(2,C). According to 5.1, we
must have g£:(0,0)=g,(0,0)" . We represent g,(0,0) in the form g,(0,0)=1;'Ts T:€CL(2,C) .

We further set &=0b(xtcf), t=wbt. Then formula (10) becomes

gr(x, tYy=0,(x, )G, (x, ?), (11)
where
2 ‘ o2
G, (x, )=, exp (‘1) 26%) . (12)
Thus, —c has the interpretation of a certain "group velocity" of the N -soliton

solution; ® is the common frequency of oscillation, and b is a scale factor; a; and "

determine the shape of the £k -th soliton.

6.2. The Element 1. The coefficients m; of the element I, defined according to

formula (4) are found from the system of equations (5) by transforming with the use of rela-
tions (11) and (12) (j=I1,...,N):

N-1 1
| ;0[(2ia3b)k0 = (—29a26G )] m, =[(2ia3.b)~G,—(—2ia3.b)~G‘,]( 0) 13)
0

6.3. The Operators L and P. We set L—=0%440%+v0% +wd,+2z. To find 2,0, w, 2

we solve in £ the equation

(Vituvi4+ovi+av,+2)1 =122 (14)
The coefficients of L are uniquely expressed in terms of the components of the coefficients
MN—1=(S;) and mN_z=(::j) by the formulas
u=0; v=—40,py; W= —60%py-—450 1+ 4po0 po;
= —40%py—6b60%p; — 450 11 +8 (0 ,18)° + 410,00+ 607100+ 4bpy0 py — 430,04 (15)

To obtain them it suffices to equate the coefficients of AN+Z AN+l AV on the left and
right sides of (14).

Similarly, for the equation V/1=Pl, we find

P —0b710% + 0, — 20b™0 . (16)
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The condition L,=|[P, L] has the form of a system of equations for 9, ®, z:

— by, =2y, — 2w, —bculo;
—bo™lw, = —wx_,+2fa,“+vv,——bcm lw, —22,; an

_ I —
—bw 1z,=—fo“,x+ 5 VVpr—2er+ —fa,'w——bcm 12,
2 2 2

Thus, the constants be™' and the "speed" of the solution ¢ determine the form of the

equations; the remaining constants of N -soliton solutions can vary.

6.4. A Single Soliton. We solve Eq. (13) for the case N=I,a,=a,y1=iE;. The systenm

acquires the form

(1Go+ i) (41) = a0 — 20704) ),

whence

(“‘)— 22 (Re Gy Im G (1) (18)

po) = €U, 0l0)
where

. 0 2ia?
Gy==cla ‘exp(l 0 )‘ 19)
» : y212 22 ] 2 .

Since (?231) =(260 2?‘1_) f\(l -|6t)a(1 _}? i) a) , by separating even and odd powers in the series for

exp we obtain without difficulty

o (CB (14D as, (14+i)ash(l+i)at
Gy=:e “((1 +i'atsh(l4-i)at, ch(l13-i)at): (20)
To simplify the notation we set ch=chaf, sh=sha, c=cosat, s=sinai. cos=-cos2a?:, sin=sin24’t.

‘Computing (20) explicitly, we obtain

‘ ch ¢ cos—sh s sin, @ (sh ¢ cos —ch scos —sh ¢sin—chs sin)
Re G, = (sh ¢ cos - ch s.cos —ch s sin-sh ¢ sin), chccos—sh s sin |’

(21)
ImG. — ch ¢ sin+-sh s cos, a(shcsin--shccos4-shscos—chssin)
o (sh ¢ sin4-ch s sin-}-ch s.cos —sh ¢ cos), .ch.c sin-sh s cos;
‘After rather lengthy but straightforward transformations, we find from this
detRe G, — 4 (ch 2a% + cos 245+ 2 cos 4a%) (22)

and then, using (18), (21), and (22),

—9g2 ch 28t —cos 2at + 2 sin 4a’c
ch 2a% 4 cos 2ak + 2vos 4adt ’
— 9% sh 2at—sin 2at
- ch2at 4 cos 2aE +2 cos 4a’t
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The qualitative behavior of the corresponding (v, w, 2) was described in the introduction

where, for simplicity, we set b=1,

7. Solutions of the Reduced Benney Equations and Their Analogues

7.1. The reduced Benney equatiomns are Eqs. (22) of Chap. II. In attempting to find
solutions of them for which h=¢(u), we find that A= (u+c)?/4, c€R is a constant from the

compatibility condition. We have, moreover, the following result.

7.2, THEOREM. Let c€R, h=(u+c)?/4, and let u be a solution of the equation ui=—
(3u?/4+cuf/2), . Then the pair (#, h) is a solution of system (22) of Chap. II.

Proof. Under the hypotheses of the theorem we have

hy=@u+-c)u 2= —(u+c)Butc)uld= —(u(@+c)/4). = —(uh),,
uy=—@ut4tuc/2), = — 2+ (@ -+ )4 = — (4?24 b),.

We now consider the equation u;+(3u?/4+cu/2).. The following method is classical.

7.3. Proposition. Let ¢ be differentiable, let ¢ be twice differentiable, and let

u=u(x, ) be a smooth solution of the functional equation u=y(x—¢’(#)f{) in the range of the

variables (x,!) . Then in this range [u,+¢(u):][l+e”(u)t ¢ (x—¢ ' (u)t)]=0.

COROLLARY. Under the hypotheses of the proposition u(x, f) is a solution of the equa-
tion u,+¢(u), = 0 at points not in the set where 1 +¢”(u)f -}’ (x—¢’(¥)t)=0.

Proof, Differentiating the relation u=v{(x—¢’(u)f) with respect to x and { , we

obtain u,=v (x—q’ () ) [l—¢" (4)ust], wy=y (x—¢’ (¥)f) [—¢'(¢)—9" (#)!4:]. We multiply the first
equation by ¢'(4), replace ¢’(#)u, by ¢(u)x, twice, add the relations obtained, and take

all terms to the left. We obtain assertion 7.3.

If the Cauchy problem is posed for the equation 4;+¢(#)>=0, then % has an obvious
physical interpretatiom: Y(x)=u(x, 0). We shall investigate for what initial conditions ¥
the reduced system has a unique solution for all x€éR and {>0. We must put q)(u)=3u2/4+cu[2

(obviously, any constant can be taken in place of 3/4).

7.4. Proposition. The equation u=+(x—(3u/2+ct/2)) has a unique solution for all x€R

and ¢>0, if and only if the smooth function Y is nondecreasing everywhere.

Proof. For given x and t>0 the graph of ¢(x—3u/2—ct/2) as a function of u is
obtained from the graph of ¢ by reflection in the vertical axis (call thisthe graphof ),
compressing ¢ horizontally 3/2 times, and translating to the left by Xx—c#/2. In order
that after any compression with positive coefficient and any translation the graph of ¢
have a unique intersection with the diagonal, it is necessary and sufficient that @ be
nonincreasing. Indeed, a small neighborhood of any local maximum or minimum of ¢ under
compression and translation can be made to intersect the diagonal twice. Hence ‘P_ must be
monotone. If it is nondecreasing everywhere, then it cannot be a nonhorizontal line, since
a suitable compression and translation will take this line into the diagomal. If it is not
a horizontal line, then there is a point #; with V() >0, $"(uy)+0 ; @' then lieslocally on
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both sides of the tangent at the point #4y . A small translation of this tangent will inter-

sect § twice. A suitable compression and translation takes this secant into the diagonal.

Remarks. a) The initial condition ',')(x)=x on some segment leads to thée classical

i —c?t X h_(x-{-c)’

solution U==4 =@T which is called the "ruptured dike" solution.

b) If the velocity profile % at the initial time has an inflection point with a horizon-
tal tangent, then by an arbitrarily small deformation it is possible to obtain from it a
profile with a maximum and minimum which leads to nonuniqueness of the solution in finite
time.

7.5. We now present a method for finding invariant manifolds of the form A=¢ (1) for

the Hamiltonian system described in Sec. 10.of Chap. II. Our calculations will show that

. 2 Lo .
the manifold h=(-'f—z—cl is invariant also for the higher reduced Bennmey equations. It would

be of interest to find an analogue of it for the unreduced equations.

Ih the notation of Sec.'l0 of Chap. II we seek solutions of the equations ="y, A=,
subject to a relation of the form S(u, #)=c€R, where S is a suitable differentiable func-
tion. We must ensure the consistency of the system

0 =§,= Suut + Shht = Su ("f{',,’ﬂ;'hux + n'f"){lhhhx) + Sh ('r‘ll‘uhﬂiiux + ‘nlllu"qfhhx), ( 23)

0=S,—S,u,+5,h,. | (24)

We multiply (24) by —m#x% and add to (23); into the result we substitute the relations
12Tin

"jfﬁu,?a(}-l) Vgt and 7%, =a(A)Vy# and divide by @(A)%'* . We obtain the equation
S,‘Vlux-{-S,IVghx:O. (25)

In order that the system of equations (24) and (25) have nontrivial solutions (e, k) it is
necéssary that SiV1—83V2'=0, ies, SUVV, @) £ SV Vo(h)=0. This is satisfied if S is a

, 8 ko . ,
function of \VVidu+\VV.dh . Since we are interested in the relation S=const, it is
1% | 2

possible to set simply
‘ u h
S=(VVidux S V Vidh =const. (26)
For the higher Benney equations the conditions (26) reduce to u+ 2} %=const, i.e.,

'h=(u+c)?/4,' .as above.

We express h in terms of u from Eq. (26): h=h(z) (when this is impossible we express
# in terms of /& and argue analogously).

Under condition (26) the equation u#,=v,,, becomes an equation u,=(Wlsen(), of the type

considered in 7.3. The equation A;==7;,, is automatically satisfied. Indeed, from Eq. (23)and
then (25) we find (always with &—#()):
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s S S
m=—§uF“}ﬁML=—§@m@+mwm=

S
= —S_: (avﬂ'fllhx + Tinulls )= ﬂvmﬂx + "“huhx =N1yully + nlhahx =Ny

From linearity consideratioms it is clear that the same formalism remains in force if the

formal series "1 is replaced by any linear combination of its coefficients (as the Hamilton-
& h

ian). This shows that the manifold g}fviahti:Sl/V}dh==const is invariant with respect to
v o °

equations with any Hamiltonian from the corresponding space.
CHAPTER IV
INDIVIDUAL RESULTS

1. The Hirota Formalism

1.1. In this section we describe the semiheuristic method of Hirota for solving non-
linear equations. The method consists of two steps: reduction of the equatioﬁ to so~called
bilinear form by finding a suitable substitution and then solving the bilinear equation by
means of some version of perturbation theory or a lucky guess. The Hirota formalism has a
great deal in common with the Zakharov—Habat formalism described in Sec. 5 of Chap. II, but
their exact relationship has not been clarified. Our presentation is based on the papers

[38, 39]; see also the literature cited in these works.

1.2. The Hirota Operators. Let f(x, f), g(x, ) be two functions of two variables which

are differentiable an appropriate number of times. For a pair of integers m,nwe define

the expression

— d a n a o \m r ’
DiD2f8 = gr =5 (G—aw) St 0EE 2,
A system of equationsin bilinear form is obtained by equating to zero some system of linear
combinations of such expressions for the unknown functions f amd g (the coefficients of

the linear combinations in all examples are constants).

1.3. The Hirota Substitutions. We shall present a sequence of substitutions which

reduce well-known nonlinear equations to bilinear form.

a) The Korteweg—de Vries equation #;+6utty+t.x:=0. Substitution: u=2(logf)sx . Bilinear

form:

D, (Dy+D3) f-f=0.

b) The equation u,-+45u2u,+ 15U, Uepsld) -+ Uypxper=0. Substitution: n=2(og f);,+ Bilinear

form:

D (D +D3) f-f=0.

This equation is similar to the second ofthehigherRbrteweg—deVriesequations(corresponding
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5/2

to the operator ((d5+44)”" ) in the notation of Chap. 2) which has the form u,-+30u%, .1

10_(2u,u“+uu“,)+ux,,xx=‘0. However, as Hirota observes, the latter does not reduce to 1.3b)
by linear transformatioms,

c) The equation for waves on shallow water:

L

Ug— Uy —3un,+3u, S u,dE+u,=Q.

X

Substitution: #z=2(log f),,. Bilinear form:
D, (D—D3D,+D,) f-f=0.

d) The Boussinesq equation: #;—#,,—3 %), —U;ex=0. Substitution: u=2(log f),, .
Bilinear form

(D3—D2—D3) f-f=0.

e) The two-dimensional Korteweg—de Vries equation: u,,+#yy +6(ux,). 44, ., —0. Substitu-
tion: #=2(logf),, . Bilinear form:

(DD, + D24 D%) f-f=0.

f) The modified Korteweg—de Vries equation: % +6v%v,+9,.,=0. Substitution:

o —i{ ey,

Bilinear form:

(De+D3) (f +ig)-(f —ig)=0,
D (f4-ig)-(f —ig)=0.

g) The sine-Gordon equation: v, =sinv . Substitution: ov=—2ilog(f+ig)/(f—ig) .

Bilinear form:

h) The two-dimensional sine-Gordon equation: 7.+ vyy—7,==sin v . Substitution:
v=—2ilog(f +ig)(f —ig).. Bilinear form:

(D%+ D, —D)g-f=gf. (D%+D}—D3) (- —g-8)=0.

i) The equation i¢,+3ia|¢|2p, 4 B0,  + i1, c+8|9]29=0, a, B, 1, 36R, 2f=13. Substitution:
$=0G/F, F a real function. Bilinear form:

(iD,4+D%—1)G-F=0, (DL —\)F-F=—2|G|>.

j) The equation iy, +¢,,—2|¢[2¢=0. Substitution ¢$=G/F, F a real function. Bilinear

form

(iD,+D%—NG-F=0, (D:—)\)F-F=—2|GJ.
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The constant A is determined by the behavior of ¢ as |x|—oo.

k) The equations of two waves

{‘Pu + V191 = — 9194
Pos -t V2Poe == 1P

Subgtitution: ¢,=G;/F . Bilinear form:
(D;+v,D)G,-F=0, i=1,2.
1) The equations of three waves:
Pt VP =419 {i, /) B}={1,2,3}; ¢,;= %1
Substitution: ¢;=@,/F. Bilinear form:
(Dy+v:D,) G- F=q,G,G,, i=1,2,3.

1.4. Sample Solutions. We present two examples of solutions of the bilinear equations

and refer the reader to the papers cited of Hirota for other solutioms.

a) The interaction of three waves (Eqs. 1.31). We expand F, G; in powers of an auxili-

ary small parameter g:

F=l+232nf2n1 G|=g10+252ng1m

n>l1 npl

G,= Z g ont, j=1,2.

n>1

We substitute these expansions into the bilinear equations 1.31 and equate coefficients of
like powers of e Writing out the conditions for thevanishing of the leading coefficients,

we find two types of solutions:
The solution with gro=0. Here

@23 €xp (N2 +1;5)

P1== T a,, exp 2Nz + bz eXp 20, *
. Qs €XP N2

P2 T, exp Iz + bez €Xp 2M;
Q31 €XP M

PB=TF Bqz €Xp 21z + bz €xp 20,

where

No=Pa (X —Dsk), n3=py(x—04t),
89,85,
Qyo={q 2'—"‘—"“"(":_‘_:“) 7’
e (aa;)z
oz (11434 (v, —0y) (V2 —v;) Pg ’
(21,)*
4 (v,—v,) (v2—v;) Pg )

boe= — 192
The letters a; and as; denote arbitrary constants, while p2 and p; obey the conditions

(v1—02) p2= (v1—Us) Ps-
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This solution was obtained by V. E. Zakharov and S. V. Manakov by methods of inverse scatter-
ing theory.

The solution with g10%0. Here

_ 1—exp 2n;
B=81 Trexpon,

___G&expy,
P2= I4exp2n, '

— b, expny
PB=T exp 2y, ’

where

m=px—L,
(81— v21) (21— 031) = 29383
= —q19;- 4 (Q; — 1 21) (21— 13P1),
bi= —1g:-4(2; —0,7) (21 —V:)).

c) The two-dimensional sine-Gordon equation (Eq. 1.3 h). For this equation Hirota found
solutions of three-soliton type. It is interesting that there are apparently no known

‘solutions with a different number of solitons. The Hirota solution has the form

3
ftig= 2 exp 2 Ay + E (i +in/2) pg,

0,1 3>i>j>1 i=l
where

n=p:x+q,y—2t,

and the constants obey the following restrictions:

(Pi—p)? +(qi—q)— (=) _ diy—1

XD A= T R W T G @ T g T T’
di;=pP;+9:9;—j
PPaPs
det(d‘l)=%det q1 42 43 | =V.
1822

1.5. The Hirota Identities. In seeking suitable substitutions relating the equations

in the usual form to bilinear equations, Hirota makes use of identities samples of which are

given below. The reader will have no difficulty in extending this list by induction.
Dma.-b=(—1)"D™b-a;
Dma-b=Dm""1(a,-b—a-b,);
D7 exp (p1x)-exp (Pox) = (P — P2} exp (P11 P2) X3
0 .
D.ab.c= t:bc+a(Dxb-c);

0? 7]
Dab-c= 55 bc+25 Db-c+a(D2b-c);

dx?
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exp 3D,) [exp(2eD,)a-b]-cd =
==exp (eD,) [exp (D +3D,) a-d] [exp :D,—3D,) c-b];
exp (c0/0x)a/b=|exp(sD,)a-blicos 4 (:D,) b-b;

0 a Dyab
oxb &t
02 (ay Diab 4 DLbeb
072(77): & 75 6
#a Dia b_3Dra s D266
X T [Z
2cos h(ed/0x)log f=logcosh(zD,) f-f;
92 Dif-f
2nlogf=—F=u;

DS F1 ety 303
DEf-f1f?=u, 155, + 1503,

2. Poles of the Solutions

2.1. 1In [40] Kruskal suggested considering the process of soliton interaction by trac-—
ing the poles of the analytic continuation of a multisoliton solution in the complex domain.
For the equation ¥;-+97%--7,,, which is closely related to the Korteweg—de Vries equation,

Ve (x—et)
h —

the single-soliton solution has the form wv(x, f)=3) c't The expansion of thz

in a sum of principal parts near the poles has the form thz=2 (z—'%")”l, whence
n=1(2)

v (x, £)y=6 D, (x—ct—n=i/V e )"
n=1(2)
Therefore, according to Kruskal, the evolution of the soliton may be considered as a "parade

of poles" moving in strict file with speed c.

The two-soliton solution can also be represented in the form of a sum of principal parts:

V(x, £ =6 ) (X — x0 — 5L 46 D (x— X — @),
ne=1(2) n=1(2)
where x{, j=1,2 are constants, and the £/’ are functions of time which for large |[{]
behave like ¢Wié-4nxi/V ¢, where ¢! is the speed of the j-th soliton. The speed of a
soliton is proportional to the square of the density of its poles. When a fast soliton over-
takes one which is twice as slow, pairs of poles of the first soliton momentarily coalesce
with the poles of the second. If the speeds are close part of the poles of the fast soliton

spring into the gaps between poles of the slow soliton.

2.2. 1In the joint workof Airault, McKean, and Moser [25] Kruskal's remark was developed
and led to the discovery that the poles of multisoliton solutions evolve in correspondence
with known Hamiltonian equations of the type introduced earlier by Calogero and investigated

by Moser.

One of the results of their work which is most simply formulated is the following. We

suppose that the function
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v(x, =2 (X —x, (£))2 (1)

=t
is a solution of the equation vt+3vvx——%—'v“,=0. Then the functions X,(f) satisfy the

system
.’&]=62(x]~—xk)—2, j—"——-l, .o-,ﬂ.
ko]

with the additional condition
n
N —x)3=0, j=1,...,n. (2)
=1
. . d(d+1)
The set (2) is empty if it is restricted to real values. However, for n==—%—, d>1,

the set of its complex points is isomorphic to a Zariski-open, dense part of d -dimensional

complex space (after symmetrization in (x,...,%,))-

2.3. 1In [30], which was completed almost simultaneously with the work of Airault,
KcKean, and Moser, D. V.Choodnovsky and G. V. Choodnovsky obtained analogous results for
other equations. Especially interesting is their remark that the evolution of the poles of

the Burgers—Hopf equation u;=2uu.+u,. is free from restrictions of type (2).

2.4. Proposition, Function «(x, t)=2(.x:—x,-(1.‘))‘1 is a solution of the equation
i

u,=2utte+u,., if and only if the x,;(f) satisfy the system
Xy ()= —2 2 (x; () — xa ().
kefj

(For an infinite set of indices j the following computations are formal; convergence re-

quires a separate investigation.)

Proof. If u(x, t)=2(x—.:cj(t))‘x , then
i

Qutt = —2 X (£—x; () (£ — x4 ()2,
. 1. k; 148

= 2 %3 (6) (6 — 50 ()2,
&
Comparing the poles of these expressions (assuming that the Xi(f) do not pairwise coincide),
we immediately obtained the required assertiom.

2.5. TFor the modified Korteweg—de Vries equations algebraic restrictions on the motion
-of the poles again arise: the function z(x, t)=20,(x——xj(t))‘1, c;= +1 satisfies the equation
J
u=6uu,—u,,, if and only if

X == 2 (x;—xp)2,
Py

2 Cp (xj—xk)‘1=0.
kentj
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2.6. The results briefly considered here are close in spirit to classical expansions
in the theory of elliptic functions and a]:so to the approach for obtaining solutions of Lax
equations of algebraic type described in Chap. III. We recall that for the bimodule of rank
1 introduced therethe invariant A ‘also evolves in such a way that the poles of its deriva-
tive cancel in a particular manner with the poles of the function A itself. It is true
that the poles considered there refer to the auxiliary "spectral parameter' — the variable
point on the Riemann surface of the curve Spec.O — rather than to X as a function of f.
However, it appears likely that recalculation of the evolution of A in terms of ﬁhe poles

of solutions will lead to a generalization of the results of 2.2 and 2.6.

3. Pseudopotentials and Generalized Conservation Laws

3.1. This section gives an introduction to the interesting formalism proposed by
Estabrook and Wahlquist [54, 32] and further investigated, in particular, in the work of
Corones [31], Corones and Tests [26], and Morris [49]. |

The central feature of these papers is a certain generalization of the concept of a
conservation law for evolution equations of the form E,=K(B, @',...) where E=(u1,...,u,,) .
As we have repeatedly mentioned, an ordinary ("algebraic" in the terminology of Chap. I)

conservation law for such an equation is a relation of the form F,—G,=Q‘, which is a
pu— P ]
formal consequence of the equation #,=K. More precisely, let A=k[u’] or U C=@u"
‘ ~ =0

I jl<?), KéA, and let 3,:4-A be an evolution differentiation corresponding to #,=K; then

F,GéA with F,=G, constitute a conservation law.

If u° is a solution of the system, then in terms of it and a comservation law it is

possible to construct a potential < : a solution of the system "0x=F(7t‘)'v,=G(ZZ~‘).

Suppose F, G are vector-valued functions of u{/) of height N and the auxiliary
variables ¥=(v;,...,Un) . We assume that the following system of equations is consistent

(the right sides do not contain derivatives of ©; ):

u=K(@, u,...); v,=FQ@,u,...;o);

‘ U (3
Then for any solution (uf, v¥) the relation (%F(u‘, ..-,'U’)=-5;G(u‘, ..., ¥)is satisfied. It is
called a generalized conservation law, and 75 is called the corresponding pseudopotential.

In all examples considered F and G lie in A®BY, where £=R,C and B=C=(2,

ce s UN) o An algebraic model of this situation can be formed as follows.
3.2. Ve consider the ring .4?% . On the subring A®! there act the differentiations

O, uN®l—>u(i+H®1 and 9,:u®1+—K®1; [d,,d,]=0 . The right sides of the two last equations
of (3) can be considered as the extension of these differentiations to all of .44?%, which

acts on the generators according to the formulas

0,:1®v~F, 0;:180->G.

105



The formal consistency condition of the system v,=F and 'U—,=G under the condition u,=K
means simply that the differentiations o“x and 5: commute., We may therefore pose the

following problem.

3.3. Problem. Given a k-algebra 4 and two commuting K -differentiations 01, 0;: A—>A.

For some k -algebra B describe the set of extensions 0, 52:A®33+A®3§ with the condi-
tion [?1’ 52]20.

3.4. Without practical loss of generality, we may assume that _01,526u4§D (58)+D(./l)§f/3.
In order to solve Problem 3.3, under certain restrictions on 4 we construct a Lie algebra k
over %£=%(s#,0,,0,), such that the set of all extensions Pg is in bijective correspondence
with some subset of Lie algebra morphisms of Hom(Z, D (%)), where D(B) is the algebra of k&

differentations of $B into itself. The restrictions on 4 are as follows.

3.5. We consider a basis (U)), j6J of the algebra 4 as a linear space over &, which

determines the set of structure constants by
OUj= U, 0= D e®U;
igd igt

UjUk =Ed1kl(",l’
Colgd

(4)

where the right sides are finite linear combinations with coefficients in k.

We suppose, moreover, that these coefficients possess thefollowing property: for each
l6J there exists only a finite number of pairs (/, )6/ XJ (respectively, elements j@J),
such that d;,#0 (respectively, c)’.}’#O, D +£0).

3.6. TFor the algebra (k[u{)], d,,d,) the basis of momomials in u{) obviously satisfies
(4); moreover, d;,+0 only' if U; U, divide U,, and these are of finite number. Further,
we define the weight w(U;) by additivity, setting w(u{)=j. Then ¢, is homogeneous and
increases the weight by one, and the space of polynomials of a given weight is finite-
dimensional; therefore, U, can enter in only a finite number of the derivatives 0,U;.
Thus, only the condition on the Cﬁ) (for 0y=0,) can be nontrivial. For evolution according

) it can be satisfied as for 0,, by introducing the new

nr

to Korteweg—de Vries (i,=uu'+tu
weight w,(u))=i-2. Then the field ‘%=E(uu’ —%u'”)“,);% is homogeneous with respect to @
and increases this weight by 3, so that U/, can enter the expansion of 0,U; only for

w, (U)y=w,(U;)—3 ; there are a finite number of such / . Similar considerations are pro-

bably applicable to other Lax equations.

3.7. We now fix the algebra (4, 01, d;) and basis (U;), jéJ, satisfying the conditions
of 3.5. We consider the free Lie algebra &, generated by X, Y, j, k6J, with relations

jzc;.py,_zcg)x,:z] do IV ;0 Xol, 164 (5)
7 Js
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The condition of 3.5 ensures that all these linear combinations are finite.

3.8. Proposition. The set of commuting extensions (@, 0s) of the pair (0,, 03) to

A®D (B)+D(A)®B corresponds bijectively to the set of homomorphisms of the Lie algebra
Z to the Lie algebra D(%), which vanish on all but a finite number of the X, V; .

Proof. Any extension has the form
0,=0,81+ JU,8%,, £,6D (B),
il

e

where almost all the §; 7; are equal to zero.

The condition [0}, J,]=0 means that

20U,8m,— 2 0.U,8% = RUU,® [y, &, -
i i ik
where the commutators are evaluated in the Lie algebra D(%). Substituting here the right

sides of the identities (4), we find

<\ 9 -
}.J C§})®Ul®"1j—2 C(,~'1)U1®Ej= 2{ diklUl® ["Ij’ &l
i it ok

Equating coefficients of the U, we obtain the identities (5) with Xk,.Y, in place of & N,

This completes the proof.

3.9. In 3.7 an almost invariant definition of the Lie algebra % over £ with respect
to the pair (A, ), d;) was given. The dependence on the choice of basis (U;) with conditions
3.5 is probably not essential in the sense that for a certain class of bases all Lie algebras

£ obtained are canonically isomorphic.
We call £ the EW algebra for (A, 0:, d;) (in honor of Estabrook and Wahlquist).

The search for pseudopotentials forl the evolution equation represented by (%, d,,0s),
naturally breaks into two steps: a) description of the EW Lie algebra £ ; b) descriptidn

of its representations in the Lie algebras of vector fields D(C% (v, ...,7,))-

Both problems are far from being completely solved even for the Korteweg—de Vries equa-
tion. Apparently, even a finite-dimensional EW algebra for it is unknown. In the papers
cited at the beginning of the section a sequence of factors of EW algebras is constructed
for some interesting triples (A, 01, d2), which are generated by a finite number of generators

and relations, and some particular representations of them by vector fields are given.

Factors of a finite-type EW algebra % are most easily obtained by setting Xj, Yi=0,
if Uj, Up contain derivatives of u; of sufficiently high order. In examples "sufficient~
ly high" usually means =3, and the additional wonder is that then by virtue of the rela-

tions (5) all but a finite number of the Xj, Y, automatically vanish.
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If the factor obtained has a nontrivial, finite-dimensional factor Lie algebra <,
then it is not hard to comstruct its representation by invariant vector fields on the cor-
responding Lie group. We observe that representations with an Abelian image, as is evident
from (6), lead to the usual conservation laws, so that non-Abelian representations and the

corresponding pseudopotentials are of special interest.

Another class of representations which can be constructed is obtained in the Lie algebra
of fields over a one-dimensional base. Corones suggested calling the corresponding pseudo-
potentials simple. This class is nice in that over a one-dimensional base [& 1]=0 implies
that E=cm, ¢ a constant, which makes it possible to avoid the many relations (5) and their

consequences.

With these rudiments of a systematic theory, we now present several samples of computa-

tions from the works cited above.

3.10. The Korteweg—de Vries Equation: & +uyx+12uux=0. 1In the work of Wahlquist and

Estabrook [54] (see also Corones and Testa [26]) a factor EW-algebra £ is constructed which

is given by the following generators and relations:

[X1, Xgl=[X,, Xa}=[X1, X |=[X,, Xi]=0; (7)
(X1, Xol + X,=0; [X,, X;]—=X;=0; [X,, X;]—X;=0;
(X1, Xol 4+ [Xa Xo]=0; [ X3, X J4+[X0, Xg]+ X,=0.

The generalized conservation law F;=G, has the form

F=2X,+43uX,+3u’Xy;
G=—2(u,,+6u%) Xo+3 (42 —8u®—2uu,,) X,+
+8X,+8uX;+4uP X+ 4u X,.

Any representation of (7) in the algebra of vector fields on an N-dimensional mani-
fold gives N concrete generalized conservation laws (X,, F, G are expanded in terms of

components) .
In order to obtain a nontrivial factor of the algebra (7), Wahlquist and Estabrook set

8

Xy=[X4, X3] and impose the new relation [X, X5]———2 ¢mX, They then verify that this leads
=1

to the zero algebra in all cases except 01_:.'.:26:0’ ¢;=—Cg=hr, A3£0. We denote the

corresponding factor by £, .

According to computations of S. I. Gel'fand, &, has asa directcomponent the Lie algebra
s|(2), engendered by the generators 2X;+AX; X; X;—X,, and the representation of Wahlquist
and Estabrook coincides (up to a formal diffeomorphism) with a representation of the left-
invariant fields on SL(2). In their notation this is a representation in D(C” (Y, ¥3, ¥s)):

which is described as follows:

—2y, 0 9 ) 0 - 10, , 9
WX H MM e ™ g — Vs gy — g Koy Ko X gty

108



The generalized comservation law corresponding to 0—3:’ has the form
(25— 2)+ 4[N (2 + 53— 1)+ 20, —20,95] =0 (8)

If u« is a solution of the Korteweg—de Vries equation and 4z is a solution of (8), then
%= —i—ys+r is a new solution which is obtained by "adding" to # a single soliton with
speed ) . The reasons for the appearance of the "Bicklund transformation" in such a con-

text remain somewhat puzzling.

3.11. The Hirota Equation u,=—3auz—tux—3u“x+i1u“ +ieu?n. Here # is a complex

function and #- is its conjugate, they are considered algebraically independent, and the
Hirota equation corresponds to a pair of equations for u, u: the second is obtained by formal
complex conjugation from the first. In [31] Corones constructs the following factor EW

algebra for it:

—aX;+B[X1, [X1, Xo]]=0;
“X2+;B [Xa, [ X1, Xo]l=0;
X5 [X1, XoJl=0;
iy Xy i1 [ X1, [ X Xx]]—ﬁlxx’ [X2, [ X5 Xi]ll “%Mxm [X1u X, Xl]]]““[XBv Xi]|=0;
'—iEX2—iT[X2' [X2’ Xl]l_?’[X% [X2v [X31 Xl]]] —% p[XI, [Xi» [Xa, X2]]]—ﬁ[X3, X2]=0;

— 3 BIXu, X, [Xp Xil=0;
— 5 B [Xe, [Xa, [Xa, Xoll] =0
_..i"[[Xh [X], Xa]]_@lxav [Xh [X:s, X1]]]—@ [Xh .[Xa, [X:h X4l]]=0;

—i1[X,, [X,, Xa"'—ﬁ [Xo, [Xa; [X3 Xolll—
— 5 BX, [Xa, [Xo, Xoll]=0;

— [ Xy, [Xo Xall 271X, [ X5, Xl 461 [ X [ X Xall—
— B X1, [Xs, [Xa Xo]ll—B [ X, [ X5, [Xa Xill]—
— B [ X [ Xy, [ X Xalll [ X6 X (] =0
— i1 [ X3 [ X1, X5l] =8 [ X [ X, [ X X[l +[ X1 X =0
i7[ X, [Xo Xall =B [ X, [Xa [Xa XoJll +[Xa, X =0
[st X51=0- ’

The corresponding conservation law does not depend on u!/, ') for j>3.

Corones observes that it has non-Abelian representations by one-dimensional fields only
in the case fpe—ay=0. It is interesting that this is precisely the condition obtained by

Hirota for multisoliton solutions of his equation.

3.12. The Equation 3+ Usesx+6(utts),=0. This equation was investigated by Morris [49];

the substitution v=u; reduces it to the usual system of evolution.

The EW factor algebra constructed by Morris is defined by the relations
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Xy Xal=Xi6; [Xy X =4Xs [Xoo Xol=Xus
X Xd=Xg [X,, Xul=3 X, + 3 pX;;
X Xul= S X = 3Ky [ Xy, X = — Xy
[Xo, Xgl=—3 Xg [ X, Xo = — 3 Xy
[Xa, Xiol = —3 X5 [X3, Xl = — 3 X,
[ X2, Xg]= —% Xg  [Xs Xil]= —'i‘ Xo;

[Xo Xul=—3 X [Xo Xd=1% Xit [ Xs Xuol= — 5 X
Xy Xul=X5 [Xo Xel=—3uXg [Xo XJ= —3pX,— 1 Xu;
[Xo Xid=3 X, —3Xs; [X,, Xu]=—3uXs;

X5 Xs]-‘—:lf X5 X5 Xul= -Tgs‘Xx—"lgE X
[Xo Xil=—3 Xg [Xs Xul=— 5 Xu:

Ko Xul= — 3 X,

Morris conmstructs its representation in the algebra D(C®(x;, X2, X3)) by setting (0,-——:%):

Xy= —px,0;— x50, — %302
X,= % (%102 + x205);
Xy=x,0
X = x50, +p (%1054 Xx205);
Xy= % (%101 4 X305 — 2x,0,);

1
Xg=7 (x10;— x,05);
3
Xio=7 (X101 — x30);

Xu= % (%302 — x501)-

From the equation for the generalized conservation law Morris deduces the relations

ot 3 . (3 ’ 4
£+ guxit(g e +o)x=un, )
X432 +ux, =0,

r3 » e 3 I rrs 3 nr ] .
where @ is a trivial potential: ®,= —j#, w,=74"" +5(u’). Equations (9) make it pos-

sible to apply the technique of scattering theory to the original problem.

3.13. The Nonlinear Schrddinger Equation: iu,+tu,, '—%ezfuzzo, u is the formal complex

conjugate. The following factor EW algebra for this equation was found in the work of

Estabrook and Wahlquist [32]:
7 1
(X1, Xal=[X0, Yol = [ X5, Vil = [ X5, 2 =[20. 2] =0; [X\,Z =2 [Z0,Z]=5 s
. 10
X ZJ V0 Z]—eZi=0; (X, Zi]+21V 0 2] =0; (10)

(X0 Vil +[X0, Vo] =2[Z21,Z5]—2(Z), Z)-
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(To these relations are to be added their formal complex conjugates.)

9

Denoting complex variables by Y1, ¥» and by 0,—— d,-=3_-— the standard differentia-
Y:

ayy’

tions, we obtain the following representation ( & is any complex constant):

=2 (k9,0 +£5,0,);
Yi=e (_!/151 — 4.0 “‘;’ 02-!—-;- 52);
Vo= _2 (k%,0, — k2y,0,);
Zi= — 5 (01— 3, — 10,);
Zy= —(ky20,+<ck0\— ky\0,).

(11)

Equations for solving by the inverse-scattering method can also be obtained from the corre-

sponding psuedopotential.

According to computations of S. I.Gel'fand, algebra (10) has the factor 6!(2)X8l(2), and

representation (1l1) coincides with a representation by left-invariant fields.

4, Bicklund Transformations

4.1. A Bicklund transformation B, relating two systems of differential equations
E(@=0 .and F(9)=0, is a system of differential equations B(z, v)=0 such that E and B
formally imply F, and F and B formally imply £ . 1In the language of differential
algebra, suppose that E corresponds to an ideal /zC.A4, F to an ideal /rc®B and B to an
ideal I;{:A@ﬂa. Then [3>/g®14-1®/r. Thus, a Biacklund transformation is an analogue of
a "correspondence" in algebraic geometry. (In our case 4, B are differential rings over
a common base differential ring K, over which all tensor products are taken; the ideals are

assumed to be differentially closed and to be radical for amalytic applications.)

There is no systematic theory of Bicklund transformations, and we limit ourselves to

describing a portion of the experimental material at hand taken from [26].

4.2, The Bdcklund Transformation for the sine~Gordon Equation. While investigating

surfaces of constant negative curvature, Backlund in 1880 found the following transformation

relating the sine-~Gordon eduation Uzy=sinu to itself:

Ly +u.

u,—u, 12)

(ul —uo)x—2a sin 15—

(u1+uo),=-— sin 22

where a is any constant. This transformation makes it possible to obtain a sequence of
solutions of the equation in quadratures starting from the solution #,=0. Bianchi observed
that the pair of transformations B,, B, commutes in the following sense: startving from
the initial solution g, , the compositions BsoB;, and Ba,éBa‘ generate a certain common

solution #3 for which

ua_‘uo __;al+a2t & —u,

tg 7 —a €7
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where #; and #; are the solutions generated by B4, and B, from u,.

4.3. A Remark of Rund. In his work in [26] Rund put forth the following idea. We

suppose that the equation E is the Euler—lagrange equation with Lagrangian @: 8w=0 (cf.
Chap. I), and we are interested in Backlund transformations of E into itself. One can
then seek ideals /p such that o(#)—o(v)€lmtd+ (Ip) ; onsolutions of the system B the
Lagrangians o(#)and o(v) differ by a divergence and therefore have zero first variation
simultaneously. Rund shows that the transformation (12) belongs to this class. A certain

modification of his idea is applicable to the Korteweg—de Vries equation.

4.4, Biacklund Transformations for the Korteweg—de Vries Equation. We consider the

spectral problem related to this equation defined by the Lax pair

(9% +2u) =2y
{0, +40% -+ 610, 460 011) 9 =0. (13)

Setting v=19,/¥, we see that it is possible to eliminate # from (13). The result is the

modified Korteweg—de Vries equation for wu:
v;—60%v,+6\v, v, =0, (14)

discovered by Miura. Equation (14) has the trivial transformation v~ —9; then applying the
transformation inverse to (13) we obtain a Biacklund transformation of the Korteweg—de Vries

equation into itself which we denote by By .

Estabrook and Wahlquist found that if u1=B;,i (5), i=1,2, then BB, (1p) and Bi,Ba, (1)

contain the solution

Ay—As,
u—uy

uy=1uy+

an analogoue of Bianchi's formula for the sine-Gordon equation.

4.5, Flaschka and MacLaughlin in their paper contained in [26] studied how the trans-
formation (12) acts on the spectrum of the Schrédinger operator. Changing the normalizatipn
slightly, we write the equation in the form u,—6uu,+u,,,=0 and the Schrodinger operator in
the form 4,2+u=! Setting u=2w,, we obtain the new Schrddinger operator &,2+U=L, where

U=2W. , and W is found from the equations

(Ve —mt @ ay i
Wt= —wl+4[)‘Wx'*—wi"*‘wx(w_w)z—l’wxx(W—w)]'

Here W—w=—}./P, where =AY .

If u is rapidly decreasing as |x|—>%, the scattering data for /=—9,2+u are determined
as follows. For any complex number %k with Imk=>0 there are solutions of the problem Lf=k%,

distinguished by the asymptotic behavior at infinity:
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e, x— 1L oc;
Ji(x, k)—{b(k)e—ik.v+aofk)efk,v' X — 00
[a(x, B)= {_b(k)e”“-l-a(k)e_’“, x—>+oo,

ikx X — —

On the imaginary axis there may be a finite number of points of the discrete spectrum of

[:R°=—=), j=1,...,N, which determine constants ¢;, j=1,...,N, by conditions on their
eigenfunctions: %P,-~Vc_j exp(—m;x), if Sq»f (x)dx=1. The collection (a(k), &(k), ¢;) is called
the scattering data for b.

If ¢5(x, %) is any solution of [Y;=Xiydy, and ¢(x,)) is a solution of I¢$=A¢, then

) Vo (%1 1)
T (x, D=9 (£, N—$(6 Ny

not vanish it suffices that 2 lie to the left of the spectrum of /.

is a solution of the equation L¥=AY . 1In order that $(x, Xy

We choose Ay==—7? and denote by (A(k), B(k), H; C;the scattering data for L .
According to the analysis of Flaschka and MacLaughlin, there are the following facts.

a) If Yp=rf1(x in) , then

A(R)=a(k), B(k)=1=i%

n+ik +n
and the discrete spectra of ! and L coincide.
b) If $y=fa2(X,in) , then
Ak)=a(p), B(r)=1E7 =L,

and the discrete spectra of [ and L coincide.

c) 1If $o=D f1(x, in)+Dyf2(x, iv), D,, D, nonzero constants, then

A(k)—'k+"a(k) B(k)= —b(k), c,_.:"ﬂ‘l;c,,

N points of the discrete spectra for / and L coincide and, moreover, L has an additional

point — n?% with normalization constant depending on D; and D, .
This implies several curious conclusions.

First of all, there are Bicklund transformations which add no solitons (these correspond
to points of the discrete spectrum). They only shift the phase of solitons present in the

old solution (cases a)and b): C;¥c;j).

Secondly, iteration of the transformations defined by fa(x, in) and then D,F (x, in)+
DyFy(x, in) : u=U does not change b(k)/a(k) and c¢; but adds the eigenvalues —n2% For it

we have

U (x)=u (x)—2D12 (x, in)<1+o ng(z, in)dz)—,

-0
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where {) is a certain constant.
Finally, if u(x,f) is a solution of the Korteweg—de Vries equation, then, as is known

%b(k, t)=8ik%b (k, 1), ;—t-c,(t)='8n§c,(t) . This implies that Bdcklund transformation by means of

Y]—lk

fi(x, in; £), changing 0(k, f) into +0(k, f), takes the solution # into the new solution U,

i.e., it commutes with theKorteweg—de Vries flow.

With this we conclude our brief discussion, referring the reader to the literature for

further information.

5. Lax's Method for Generating the Algebra of Korteweg—de Vries Integrals

5.1. We consider the algebra A=£k[u{/)] and some operator B which is Hamiltonian in
: 8
the sense of Sec. 7 of Chap. I. It generates a Lie algebra structure on A/KerB_af“ . Ex-
plicit description of operators B, for which in this Lie algebra there exists large, e.g.,

infinite~dimensional, Abelian subalgebras is a very interesting question. Equations

=—-B-%—';: , where F 1lies in such a subalgebra have infinitely many conservation laws. 1In
Chap. 1I we described such subalgebras for the Gel'fand—Dikii operators corresponding to

Lax equations and for both the reduced and unreduced Benney operator.

In this section we present the recurrence method of Lax for the operator B=d,, which
leads to the Korteweg—de Vries algebra. The exposition is based on notes of I. Ya. Dorfman

who has kindly permitted the author to use them.

5.2. Let A=~R[uUi[j>0], d:u~>yU+). We set A=A/JA and for any fEA we denote

by f the image of f in A. We shall write f~g, if f=g. There is a Lie algebra

structure on A: {f, §}=( %i._ %)

symmetric in the sense that fHg4-gHf~0 for all f, g€A.

Let H:A->A be a linear operator which is formally anti-

We consider a sequence of elements f.i, fo,..., fa€A, foi=cu, ¢#0. The following result
is motivated by the remark in 3.15 of Chap. II.

5.3. Proposition. If H'5 = w1, —lLi<n—1, then
Gu +

a) {fi,71}=0 for —=1<i,j<n
8
6) H-an~0.

Proof. From the antisymmetry of H and g it follows that for 1< j<ig<nm 9 éafui %=
) fo _8fia H8F) 8f1-1 8fin ; . o
Hg—fi_x Bul g 6;‘ ~a 6“‘ . Iterating this argument, we obtain
Gfs 6f.f = - .
. f {— j=29¢
9871 5f1 6f1 Su da’ [—j=2s;
6” 61‘ 6fs+| afs . 6fs 6f$ s 2 s
OT' S =H == T if l—j—2$+l.

Both expressions on the right lie in Imd (the second by the antisymmetry of H) which proves

. 81 1 8 8y _ _ 1 8fn 58f
assertion a). Further, H 6u"~—-c‘—8-a—-H—GE--— L d o 0. This completes the proof.
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5.4. Proposition 5.3 makes it possible to continue the commuting collection of elements

fas-++» fn€A to the commuting collection Jf_is-.-y fa» four if 0°'H -aa—u-f,,elm%; :as fpa we
8 8
take any element of (_67} 0 H [

In order to guarantee the solvability of the equation for fn,a» we impose additional

conditions on H. We recall that the Fréchet operator D(g) for g€A has the form D(g)=

2 005) 0.  We define a mapping [D, H]: A>L(A, A), where L(A, A) is the space of linear
>0

operators on A by the formula
{D,H}f=D (Hf)—H-D(f)

(cf. Sec. 7 of Chap. I). If H=Zh10i , then
[D, H] f= 2 0'f-D (k).

We call the antisymmetric operator H Laxitive if for any pair f, g6A with the con~
dition Hf=dg the operator [D,H|g.d—|D,H]f-H is formally symmetric.

5.5 Proposition. If M is a Laxitive operator and f.;,..., fn satisfy the condition of

Proposition 5.3, then the equation Hﬁuf,. 05ufn+1 is solvable.

Proof. We set gi='§'ufi' i=—1,..., n, and let g, be a solution of Hg,=0g,,, which
exists by 5.3 b). According to the results of Sec. 7 of Chap. I, it suffices to verify that
the operator D(g,,;) is symmetric: this implies that g,mE%A. This, in turn, is equivalent

to the symmetry of the operator doD(g,,)°0.

We begin with the case n= —1. The operator [D, H]|cod is symmetric because of the
Laxitivity of H (for the pair f=O0, g=c¢ in the definition of this property). This means
that the following operator is symmetric:

02D (g4)0 =D (08,)°0 =D (Hc)od =D, H] ¢-0.

Now let 7> —1.. Inasmuch as Hg,=0dg,,, we have, D(Hg,)=0:D (g, ), i.e., [D,‘H]g,,;l-
HoD(g,)=0-D (g,.1). Similarly, from Hg,,=0g, we find [D, H| g1+ HoD (g,) =0°D(gs) - ‘
Multiplying the first equation on the right by d, the second by —FH and adding, we obtain

0oD (gns)0=[D, H|gr00—[D, H| g, ,oH+4H°D(g,)0+ 9D (g,)-H — H-D (&,.)°H.

From the Laxitivity of H it follows that the sum of the first two terms is symmetric. The
operators D(g,) and D(g,,) are symmetric, since g, and g,; are variational derivatives.

Finally, 0 and H are antisymmetric. This completes the proof.

5.6. Thus, for any Laxitive operator H and €k the recurrence formula

= (62) o tHYy e
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defines the generators of an Abelian Lie subalgebra in A.

5.7. Proposition. Let ¢, c;6k. Then the operator

H=0034+2(cquu+¢,) 09 +cou’
is Laxitive.

The proof is obtained by direct verification. Direct computations show that this is the

general form of Laxitive operators of third order lying in k [u, u'][d].

1 .
Setting ¢=v, C=—2, ¢,=0, we obtain by the formulas of 5.6 a sequence of integrals
of the Korteweg—de Vries equation (in the form u;=6au’'—u"). The first members have the

form

1

ag” 5 . 5 5, 10 5, 1 .
,—2u+§uu +—3-uu—2uu .

u, w3
7y T3 g

6. Solutions of Algebraic Type and Theta Functions

6.1. This section is to be considered as an appendix to Chap. II: the formulas pre-
sented here can be obtained from the facts proved there regarding the structure of bimodules
over a field if they are augmented to include the classical results from the analytic theory
of Riemann surfaces and Jacobian varieties. Our exposition is based on the survey of Matveev
{44]; for the proofs the reader should see this survey, the literature cited there, and also

the paper of Krichever [16].

6.2. The Topology of Riemann Surfaces. To each field K , which is finitely generated

and one-dimensional over C, there corresponds a one-dimensional compact, complex variety
I' , the Riemann surface of K. The field K is isomorphic to the field of meromorphic func-

tions on I' . The genus of K and T is
a) half the first Betti number of T ;

b) the dimension of the space of holomorphic differential l-forms on I : Abelian dif-
ferentials of the first kind.
A Riemann surface of genus zero is the Riemann sphere or the set of points of P!'(C)of the
2g+1

projective line over C- . The genus of the curve I":y2=H (z_.Ej) is equal to g; the dif-
=1 '

ferentials of first kind on I have the form f(z)y'dz , where feC|z], degf(2)<g—1. Such
curves are called hyperelliptic (elliptic for g=1). An invariant definition of a hyper-
elliptic curve is given by either of the following two conditions (provided the genus >1).

a) On I there is a function with a single pole of second order.
b) The ratios of differentials of first kind generate a field of kind zero.

On a compact Riemann surface [' of genus g>1 it is possible to choose a basis of the

homology group f71(T' Z) of the form {a,, b}, i, 7 =1,...,g, where (@, a)={(b;, b))=0, (a;, b))=3;;.
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28+1
A typical choice of {a,,6;} on I: 2= H (z—E); E, real, is as follows. We take two

i=1
copies of the Riemann sphere with cuts along the intervals (E,, Ey), (£, Ej), ..., (Eyga, ) and
we glue them together crosswise along the edges of the cuts. A clockwise contour around
the cut (Egjo1s Eoj) is a; ; a contour which on each of the sheet joins an interior point of

(Egj-1, Eyj) with an interior point of (Ey,:, o) is b

6.3. Differentials and Periods. Any meromor_phic l-differential won T is called

Abelian. The numbers A]‘(W)=Sw; B (w)= Sw are called its periods (along a; b)). The numbers
a; b; ’ ' 0

Cj=5— ‘,,( (w (over a circle around a logarithmic singularity) are its residues. If all the

residues of w are trivial o is called a differential of second kind; all differentials of

first kind are also differentials of second kind.

A basis of differentials of first kind (mk) is called normalized if A;(wx)=0j (0 for

ik, and 1 for i=k).

Any Abelian differential is uniquely determined by its A -periods and principal parts
at singular points. For differentials of second kind it is possibie to uniquely cllefine‘ ®
by the conditions Aj(@)=0 and any value of the princ1pal parts. For genefal differentialls
thé& same is true if the sum of the residues of the prescrxbed principal parts is equal to |

zero,

6.4. The Riemann Theta Function. We consider g -dimensional complex space C¢ and the

lattice ZezcCe.  Let B be some complex (gXg) matrix for Wthh there exists a constant

c‘>;0, such that (ImB&, R)> cEk” for all kEZE, k= (kl,... k). Corresponding to this matrix

i=1

there is a theta function 6:Cé—C :

6 (p)= 2, exp {vi (Bk, #)+2ri (p, k)}, PEC.

r€z8
if B —Bj(w,,) it is called the theta functlon of the Riemann surface r, referred to the
basis {a; b;} of the group H:(T, Z) and the normalized basis of dlfferentials of first kind

(») on T . The matrix B is called the matrix of perlod_s of I'j; it is _symmet_rj.c.
The following properties of the theta function are easily verified:

a) 6(—p)=5(p).
b) 6(p4v)=b(p) for all veZs.

c) Q(p+BJ)=e”"iBfi’?“i?fe (p) , where B/ is the j-th column of B.
; : ; = )
‘We now assign to each point A€l its Jacobian coordinates: P—o(P)=| ) o €Ce.  Here
Py, is a fixed point of r. The Jacobian coordinates of P are defined up. to the lattice

of periods of I' spanned by the columns of the matrix B, 51nce dlfferent paths of 1ntegra-

tion from P, to P differ by some cycle representing a homology class in H, (I‘ Z).

The multivalued function I'—>C:Pw—f(w(P)—e¢), where e€C¢, is called the Riemann theta

function. It is meromorphic and is either identically zero or has exactly g zeros on T.
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The Jacobian coordinates of these zeros are €—%, where the vector x is defined by the

relations

P
"'m=';_Bmm—'2"_2 S “’](P)§ ©p

i+ma;

(the Riemann constants).

If the Riemann theta function is nonzero, then the divisor of its zeros is nonspecial,
and any nonspecial divisor of degree g is a divisor of the zeros of a suitable theta func-

tion.

From properties b) and c¢) of the theta function it follows that dlogb(w(P)—e) is a
meromorphic differentialon I, having as its divisor of poles the zeros of ©. All poles

have first order.

6.5. Analytic Description of the Akhiezer Function, We fix the folloging data: a

Riemann surface I' of genus g , a point PyT’, a nomspecial divisor D=2P,- on I' ; a
i=1

local parameter A~! in a neighborhood of P,, and two polynomials R, QEC[Z] of degrees n

and m , respectively.

6.6. THEOREM. There exists a unique meromorphic function ¢:C¥X(I'\\ Pgj)—~Cwith the

following properties:
a) The divisor of the poles of ¢ in P coincides with D for any X, v, £6C3.

b) At the point Po the function ¢ has an essential singularity of the form

b(x, 9, t; PYy=exp [ (P)F+ R (R (P)+Q(&(P)]-(1+O (%, (P)™).
¢) $(0,0,0; P)=1.

This function has the form

p
py o B@P)—e ey, )0(=e0,0,0) (T
¢85 EP) =GP —e@ 0,00 (—e (x5, ) P (;.,(U"H%H%t))’

where ;, ©,, 0; are normalized Abelian differentials of second kind with a pole solely at

P, and principal parts d(k-Fclogk), dR (%), dQ(k), respectively, and

£
e (%, 4, )= g3 (B (o) X+ B (@) y+ B () D+ Fa(P)x

Bw)= Sm, , %==(%,) isthe Riemann vector,
5
6.7. The connection of this construction with the results of Sec. 3 of Chap. III is
as follows. Let B be a field of meromorphic functions in X, 4, f, and let © denote the ring

of meromorphic functions on I with pole at P, . Then on the space of functions &[0,]¢

it is possible to introduce the structure of a (%,0)-bimodule with ¢ as 1 , in which the
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filtration is induced by the filtration of $[d,], and V,, V,, V; coincide with d,,4d,,4, ,

respectively; multiplication by O is the natural multiplication.

Further calculations along the lines of Chap. III 'bu‘t using the analytic information

now at hand lead to the following explicit formulas.

6.8. The Korteweg—de Vries Equation u,=6uu As was explained in Chap. III, in

x— Bxye

order that under the imbedding . O—$B[0,] the image of O contain a Schrddinger operator

of second order —0%+u, it is necessary that I' be hyperelliptic. Let I be the Riemann
2g4+1

surface of the curve y2= H(z j), E;#E, We choose a normalized basis of differentials of
i oml

first kind

0= (2 c,kzg"‘) yidz,

r=1

where the ¢€;» are found from the system of equationms S"»’i=81k' and the a4, are defined
ak o

as in 6.2. Then for Py=o0 and a nonspecial divisor D=P,+ ... + P, we have

u(x,t)y= —29% logﬂ(x’g_]_t@_*_l)_;_c‘,

where g,7%,[6C8, c¢C and

2g41
g,=2icll; ‘:U]-—_—‘Sl( Cﬂ(EE )—I—ciz),

g Pk g

2g+1 g |
Z Z S b9
F=1 Jyme=1a

om

(The nonuniqueness in the choice of path of integration in the formulas for [; does not
affect u(x,?)).

The Akhiezer function

P
9 (x, 1, P)= B(e(P)+xg+tv+1)B(tv+1) exp\(i:vav)

0(w(P)+tv+1)0(xg+tv+1)

is a solution of the Schrédinger equation (—0%-u(x,?)d= y(P)qg Here PEr  and v is a
normalized differential of second kind with v=dV z +0" 3/f"dz) as 2— o0, and hav1ng no

other poles.

If all or part of the pairs (E,, E,,) coalesce the limit solutions will be g -solitons

or solitons on an almost-periodic background.

6.9. The Kadomtsev—Petviashvili Equations. These correspond to the Akhiezer function

Y(x,y, t; P), defined in Theorem 6.6 for which T is any Riemann surface, _Po is any point
on it, R(k)==k? Q(k)=Fk3. 1In the ring $B[0,] with the help of the bimodule RB[J,]¢ we seek

operators
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L=0%+4u(x,y,t), P=0+v(x, 9, )0, 4v,(x, y, t),

satisfying the Zakharov—Shabat equation O0,P—d,L =[L, P]. 1In terms of the coefficients

4, v, V2 this system can be rewritten in the form

Vgy— By + Vo — U — Vitt, =0;
Digr 4+ ,27’2.:: - 3uxx +vyy= 0;
2'le == 311;.

Solutions constructed on the basis of the bimodule actually even satisfy the condition
2v;=3u. ., Eliminating v, and v, from this system, we obtain the Kadomtsev—Petviashvili
equation

3 1
T Yy +a.+ vy (8 gex+6uu,)=0,

which is also called the two-dimensional Korteweg—de Vries equation. Its solution can be

written in the form 20,%logf(xg+tv+yh+1).

LITERATURE CITED

1. 0. I. Bogoyavlenskii and S. P. Novikov, "On the connection of the Hamiltonian formalisms
of stationary and nonstationary problems," Funkts. Analiz Prilozhen., 10, No. 1, 9-13
(1976).

2. I. M. Gel'fand and L. A. Dikii, "Asymptotic resolvents of SturmLiouville equations
and the algebra of the Korteweg—de Vries equation," Usp.Mat. Nauk, 30, No. 5, 67-100
(1975).

3. I. M. Gel'fand and L. A. Dikii, "The structure of Lie algebras in the formal calculus
of variations," Funkts. Analiz Prilozhen., 10, No. 1, 28-36 (1976).

4, I. M. Gel'fand and L. A. Dikii, "Fractional powers of operators and Hamiltonian systems,"
Funkts. Analiz Prilozhen., 10, No. 4, 13-29 (1976).

5. I. M. Gel'fand and L. A. Dikii, "Resolvents and Hamiltonian systems," Funkts. Analiz
Prilozhen., 11, No. 2, 11-27 (1977).

6. I. M. Gel'fand, Yu. I. Manin, and M. A. Shubin, "Poisson brackets and the kernel of the
variational derivative inthe formal calculus of variations,'" Funkts. Analiz Prilozhen.,
10, No. 4, 30-34 (1976). '

7. V. G. Drinfel'd, "On commutative subrings of some noncommutative rings," Funkts. Analiz
Prilozhen., 11, No. 1, 11-14 (1977).

8. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, "Nonlinear equations of Korteweg—de
Vries type, finite-zone linear operators, and Abelian manifolds," Usp.Mat. Nauk, 31
No. 1, 55-136 (1976).

9. V. E. Zakharov, "A kinetic equation for solitoms," Zh. Eksp. Teor. Fiz., 60, No. 3,
993-1000 (1971).

10. V. E. Zakharov and S. V. Manakov, "On complete integrability of the KdV equation and
the nonlinear Schrédinger equation,' Preprint IYaF, No. 68-73, Novosibirsk (1973).

11. V. E. Zakharov, L. A. Takhtadzhyan, and L. D. Faddeev, "A complete description of sine-
Gordan solutions," Dokl. Akad. Nauk SSSR, 219, No. 6, 1334-1337 (1974).

12, V. E. Zakharov and L. D. Faddeev, "The Korteweg—de Vries equation — a completely in-
tegrable Hamiltonian system,' Funkts.Analiz Prilozhen., 5, No. 4, 18-27 (1971).

13, V. E. Zakharov and A. B. Shabat, "A scheme for integrating nonlinear equations of
mathematical physics by the method of inverse scattering," Funkts. Analiz Prilozhen.,
8, No. 3, 43-53 (1974).

14, A. P, Its and V. B. Matveev, '"On a class of solutions of the Korteweg—de Vries equa-
tions," in: Probl, Mat. Fiz., No. 8, Leningr. Univ., Leningrad (1976), pp. 70-92.

15. I. M, Krichever, "Potentials with zero reflection coefficients on a background of
finite-zone potentials," Funkts. Analiz Prilozhen., 9, No. 2, 77-78 (1975).

16. I. M. Krichever,"Integration of nonlinear equations by methods of algebraic geometry,"
Funkts. Analiz Prilozhen., 11, No. 1, 15-31 (1977).

120



17.
18.

19.

20.
21.
22.
23.
24,
25.

26.

27.
28.

29.

30.
31.
32.

33.
34.

35.

36.

37.

38.

39'

40.

41,

42,
43.
44,

45.

E. A. Kuznetsov and A. V. Mikhailov, "On the complete integrability of the classical
two-dimensional Thirring model," Teor. Mat. Fiz., 30, No. 3, 303-314 (1977).

B. A. Kupershmidt, "The Lagrangian formalism in the calculus of variation," Funkts.
Analiz Prilozhen., 10, No. 2, 77-78 (1976).

B. A. Kupershmidt and Yu. I. Manin, "Equations of long waves with a free surface. 1I.
Conservation laws and solutions. II. The Hamiltonian structure and higher equations,"
Funkts. Analiz Prilozhen., 11, No. 3, 31-42 (1977).

Yu. I. Manin, "Rational points of algebraic curves over function fields," Izv. Akad.
Nauk SSSR, Ser. Mat., 27, No. 6, 1397-1442 (1963).

S. P. Novikov, "The periodic problem for the Korteweg—de Vries equation. I," Funkts.
Analiz Prilozhen., 8, No. 3, 54-66 (1974).

L. A. Takhtadzhyan and L. D. Faddeev, "An essentially nonlinear one-dimensional model
of classical field theory," Teor. Mat. Fiz., 21, No. 2, 160-174 (1974).

L. D. Faddeev, "The inverse problem of quantum scattering theory. II," in: Sovr. Probl.
Mat. (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1974), pp. 93~180.

L. D. Faddeev, "In search of multidimensional solitons," in: Nonlocal, Nonlinear, and
Nonrenormalizable Field Theories," JINR (1976), pp. 207-223.

H. Airault, H. P. McKean, and J. J. Moser, "Rational and elliptic solutions of the
Korteweg—de Vries equation and a related many-body problem," Preprint (1976).

R. M.Miura (editor), Bidcklund Transformations, the Inverse Scattering Method, Solitons,
and Their Applications, NSF Research Workshop on Contact Transformations, Lecture Notes
in Mathematics, No. 515, Springer-Verlag, Berlin (1976).

F. Calogero, "Exactly solvable one-dimensional many-body problems," lst, di Fisica G.
Marconi, Univ. di Roma, Preprint (1975).

F. Calogero and A. Degasperis, "Nonlinear equations solvable by the inverse spectral
transform method. II," Ist. di Fisica G. Marconi, Univ. di Roma, Preprint No. 20 (1976).
F. Calogeroc and A. Degasperis, "Backlund transformations, nonlinear superposition
principles, multisoliton solutions, and conserved quantities for the boomeron nonlinear
evolution equation," Lettere Nuovo Cimento, 16, No. 14, 434-438 (1976).

D. V. Choodnovsky and G. V. Choodnovsky, "Pole expansion of nonlinear partial differen-
tial equations," Preprint (1977).

J. Corones, "Solitons and simple pseudopotentials,' J. Math. Phys., 17, No. 5, 1867~
1872 (1976).

F. B. Estabrook and H. D, Wahlquist, 'Prolongation structures of nonlinear evolution
equations," J. Math. Phys., 17, No. 7, 1293-1297 (1976).

Exact Treatment of Nonlinear Lattice Waves, Progr. Theor. Phys., 59, (1976).

L. D, Faddeev, "Quantization of solitoms," Preprint, Inst. for Adv. Study, Princeton
(1976).

L. D, Faddeev, "Some comments on many-dimensional solitons," Preprint, CERN, TH 2188
(1976) . '

C. S. Gardner, "The Korteweg—de Vries equation and generalizations. IV. The Korteweg—
de Vries equation as a Hamiltonian system," J. Math. Phys., 12, No. 8, 1548-1551 (1971).
P. Hasenfratz and D. A. Ross, '"Are quarks short-range solltons7" Phys. Lett., 64B, No.
1, 78-80 (1976).

R. Hirota, "A direct method of finding exact solutions of nonlinear evolution equations,
Lecture Notes in Mathematics, No. 515, Springer-Verlag, Berlin (1976), pp. 40-68.

R. Hirota and J. Satsuma, "A variety of nonlinear equations generated from the Bidcklund
transformation for the Toda lattice,"" Progr. Theor. Phys., No. 59, 64-100 (1976).

M. D, Kruskal, "The Korteweg—de Vries equation and related evolution equations," Lect.
Appl. Math., 15 61-83 (1974).

M. D. Kruskal R. M. Miura, and C. S. Gardner, "Korteweg—de Vries equation and general=~
izations. V. Uniqueness and nonexistence of polynomial conservation laws," J. Math.
Phys., 11, 952-960 (1970).

P. D. Lax, "Integrals of nonlinear equations of evolution and solitary waves," Comm.
Pure Appl. Math., 21, No. 5, 467-490 (1968).

P. D. Lax, "Periodic solutions of the KdV equations,'" Comm. Pure Appl. Math., 28, No.
1, 141-188 (1975).

V. B. Matveev, "Abelian functions and solitons,'" Inst. Theor. Phys., Univ. Wroclaw,
Preprint No. 373 (1976).

H. P. McKean and E. Trubowitz, "Hill's operator and hyperelliptic function theory in
the presence of infinitely many branch points,'" Comm. Pure Appl. Math., 29, No. 2,
143-226 (1976).

121



46.
47.
48.

49,

50.
51.

52.
53.

54.

122

R. M, Miura, "Conservation laws for the fully nonlinear long wave equations," Stud.
Appl. Math., 53, No. 1, 45-56 (1974).

R. Miura, "The Korteweg—de Vries equation: a survey of results,” SIAM Rev., 18, No. 3
412-459 (1976).

R. M. Miura, C. S. Gardner, and M. D. Kruskal, "Korteweg—de Vries equations and
generalizations. II. Existence of conservation laws and constants of the motion," J.
Math. Phys., 9, No. 8, 1204-1209 (1968).

H. C. Morris, "Prolongation structures and a generalized inverse scattering problem,"
J. Math. Phys., 17, No. 10, 1867-1869 (1976).

Nonlinear Waves, Lect. Appl. Math. 1974, AMS, Providence (1974).

A. Patani, M. Schlinwein, and Q. Shafi, "Topological charges in the field theory,"

J. Phys. A: Math. and Gen., 9, 1513-1520 (1976).

K. Pohlmeyer, "Integrable Hamiltonian systems and interaction through quadratic con-
straints," Comm. Math. Phys., 46, 207-221 (1976). .

A. C. Scott, F. Y. F, Chu, and D. W, MacLaughlin, "The soliton: a new concept in
applied science," Proc. IEEE, 61, 1443-1483 (1973).

H. D. Wahlquist and F. B. Estabrook, Prolongation structures of monlinear evolution
equations. I," J. Math. Phys., 16, No. 1, 1-7 (1975).



