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Summary so far of the "Strong Minimalist Theorem”

@ syntactic objects are the free nonassociative commutative
magma on the set SOq of lexical items and syntactic features

@ workspaces are the commutative Hopf algebra of binary forests
@ Merge is a Hopf algebra Markov chain

@ minimal search is a grading of the coproduct that selects
External/Internal Merge as leading order terms; the Sideward
Merge terms are needed for the Markov chain property but are
subdominant for structure formation

e minimal yield can be derived from the Hopf algebra grading
(as a no-complexity-loss principle)

@ countercyclic movement and Late Merge are the insertion Lie
algebra of the dual Hopf algebra

@ head and complement, phases, labeling are additional
structures on a subdomain of syntactic objects defined in
terms of a combinatorial abstract head function
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Additional remaining topics (before discussing Externalization)

@ Theta Theory: thematic roles
o related to the structure of head and complement
e needed for semantic parsing, in addition to head and labeling
discussed earlier
e mathematically related to operad and colored operad structures
@ obligatory control: restriction to diagonals mentioned earlier:
FormCopy
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Linguistic preliminaries: more on head, complement, modifiers,
specifiers

Head: A lexical or phrasal element that is essential in forming
a phrase.

Complement: A phrasal element that a head must combine
with or a head select. These include direct object, indirect
object, predicative complement, and oblique complement.
Modifier: A phrasal element not selected by the verb functions
as a modifier to the head phrase.
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complements are mandatory, modifiers are not
complements:
John placed Kim behind the garage.

John kept him behind the garage.
*John stayed Kim behind the garage.

*John placed him busy.
John kept him busy.
*John stayed him busy.

modifiers:

John deposited some money in the bank.
John deposited some money in the bank on Friday.
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additional notion: specifier

examples:

a little dog, the little dogs (indefinite or definite article)
this little dog, those little dogs (demonstrative)

my little dogs, their little dog (possessive adjective)
every little dog, each little dog, some little dog, either
dog, no dog (quantifying)

my friend’s little dog, the Queen of England’s little dog
(possessive phrase)

Note: language-dependent rules, for example on whether articles
are required or not (or even exist)
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More general: Spec position Spec—Head—Complement

> XP

projection_- /\

Specifier ___.-» X
XP |

> [ X Adjunct
Specifier X . J

X Complement X (Head) Complement

using the older “X-bar theory” terminology and notation
(as in Government & Binding)
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thematic roles
@ predicate may be verb, adjective, preposition, noun

e argument is (usually) required by a predicate to complete its
meaning

@ predicates can take one or more arguments (valence of
predicate)

@ adjuncts can accompany predicates but not required

e theta-roles (thematic roles) are syntactic notions about
number, type, placement of obligatory arguments
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Examples

arguments:
Jill likes Jack. Sam put the pen on the chair.
Sam fried the meat. Larry does not put up with that.
The old man helped the young man. Bill is getting on my case.
adjuncts:

Jill really likes Jack.

Jill likes Jack most of the time.

Jill likes Jack when the sun shines.
Jill likes Jack because he's friendly.

theta-roles: the verb to put assigns 3 thematic roles (valence 3):
someone puts something somewhere; the verb to give also: someone
gives something to someone, different thematic role

(reflected in cases in morphology of languages with noun declension)
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Mathematical preliminary: operads

@ operad (in category of Sets) is a collection O = {O(n)}p>1 of
sets of n-ary operations (with n inputs and one output), with
composition laws

v :0O(n) x O(ky) x +-+ x O(kp) = O(ky + -+ + kp)

plugging output of operations in O(k;) into the i-th input of
operations in O(n)

@ associativity of operad composition
7(7(7—7 T17 ey Tm): T1,17 veey Tl,n17 veey Tm,lv seey Tm,nm) -
’}/( T,’}/( T1, T171, ey T17n1), e ,’)/(Tm, Tm71, ceey Tm,"m))

@ unit 1 € O(1) for composition
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compose

compose
compose

|
i

—_—
compose

associativity of operad composition
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case of symmetric operad: two equivariance conditions with
respect to actions of symmetric groups

R

VLY =T
A

cor& permute
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algebras over operads

@ algebra A over an operad O (in Sets) is a set A on which the
operations of O act

@ can use elements of A as inputs for operations in O(n)
ya:0(n)x A" — A
e compositionality: for T € O(m), T; € O(n;), {af,j}_;'ll cA
YA(Yo(T, T1, ...y Tm)s @11y -5 @Lngs - @mls -« -5 @monym) =

’}/.A(T)’YA(TL al,lu R 31,n1)7 s ,’YA(Tmy am,17 sty am,nm)) .

with v» composition in operad and 4 operad action
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Merge operad and action on syntactic objects

@ operad M freely generated by a single commutative binary
operation 9

e have M(1) = {id}, M(2) = {m},

M(3) = {Mo (id x M), Mo (M x id)}, etc.

@ action ysp : M(n) x SO" — SO with yso(T, T1,..., Th)
with T € M(n) and T; € SO for i =1, ..., n abstract binary
rooted tree in Tsp, = SO obtained by grafting root of the
syntactic object T; to the i-th leaf of T € M(n)

@ if syntactic objects T; have n; leaves, then syntactic object
v(T, T1,..., Tp) obtained in this way has ny + - - - 4 ny leaves
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a subtlety about abstract trees
@ no choice of ordering of leaves, so better way of writing action

® Ts50,k Tk abtract binary trees with k leaves (with/without
leaves lexical items)

o for T €%, and Ty € Tso, 4,

YT A Te}eer(m))

root of the tree T, is grafted to the leaf £ € L(T)
@ associativity of compositions

YT AT oerm) A To Yo et T A Tedeewny)

= WT AUTe, A ToYoer(ry) Yeer(r))
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action of permutation groups

o first equivariance condition

T o1 {Trin}) = AT, {Te}) o 7’

7 € Sym(L(T)) =~ Sy, with n € #L(T), and S, the symmetric
group, and with 7" € Sym(L(v(T,{T¢})) ~ Sy, &, that
permutes the n blocks of ky leaves, leaving each block
unchanged

@ second equivariance condition

YT ATeooetoer(r)) = WT A Teleer(ry) 0

or € Sym(L(Ty)) ~ Sk, with

o € Sym(L(y(T,{T.})) =~ Sy, «, that permutes the leaves
within each block of k; leaves, leaving the position of the
blocks unchanged

e for simplicity of notation use (T, T1,..., T,) instead of
YT, {Te}eer(m))



compatibility with head function
@ My(n) set of pairs (T, ht) an abstract binary rooted tree
T € T, (with no labeling at the n leaves) and a head function
hr : VIM(T) — L(T)
@ composition in M induces operad structure on
My = {Mp(n)}

@ operad compositiom

TMy - Mh(n) X Mh(kl) XX Mh(kn) — Mh(kl +---+ kn)

e data hr, h7,,..., ht, combine to define a head function on
T =ym(T, T1,..., Tp):
o all vertices of T’ that are vertices of one of the trees T;: set
hr(v) = hr,(v)
o vertices of T’ that are non-leaf vertices of T, we define hy/(v)
by: head function on T determines a leaf hr(v) € L(T); Tjq)
denote the tree that is grafted to the leaf ¢ € L(T); take

hr(v) = ht,0)
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Theta theory and operads

@ so far only used head function: more refined information
theta-theory: identify and remove the ill-formed sentences by
structure of dependants (complements) of the head, in
particular assignment of 6-roles (thematic roles)

@ theta-theory models thematic relations between predicates
and their arguments

@ predicates assign 6-roles to their arguments

@ O-roles of arguments of predicates: “theme”, “agent”,
“experiencer”, “locative”, “instrument”, “possessor”, etc

@ matching condition: there should be a one-to-one
correspondence between theta roles and arguments these are
assigned to
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Dichotomy in semantics:

@ External Merge (EM) sole responsible for assignment of
theta-roles: argument structure, propositional domain

@ Internal Merge (IM) does no theta-structure: clausal domain,
information-related, non-argument structure, displacement

@ this dichotomy is called “duality” in semantics in the
linguistics literature

@ in our setting theta-theory related to operad structure of
syntactic objects (which only uses EM)
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colored operads
@ notion of colored operads similar to passing from group to
groupoid etc: make operad compostions defined under some
matching conditions (matching “colors” in a set ©)

e collection O = {O(c,c1,...,cn)} of sets, with ¢, ¢; € © for
i=1,...,n, ¢ are color labels of inputs and ¢ color label of
output

@ composition laws have to match colors

v O(c,cry...y¢n) X O(cr, €11, 5 Crkg) X oo X O(Cpy Cpts -+ Cniky)
— (Q(C7 C1717"';Cl,k17"'7cn,17'"7Cn,k,7)

@ similar associativity, unity (one unit 1. per color), and
symmetric properties
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main idea: use colors for different 6-roles and matching rules of
colored operad composition ensure correct consistent assignment

@5\@@5 @{

Example of compositions with mismatched and with matched color
assignments (assignment of #-roles)
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Theta theory and colored operads

@ set © of f-roles and 6 relations: labels “predicate” or
“argument” and for arguments 6-roles labels “theme”,
“agent”, “experiencer”’, “locative”, “instrument”,
“possessor”, etc.

e Domg(h) C Dom(h) set of syntactic objects T € SO in
domain of head function h admitting assignment of labels in
© to edges of T compatible, on each substructure accessible
term T, with head and complement determined by head
function h

@ set Domg(h) C SO determines a colored operad
Mpe = {Mno(0,01,...,0h)}

@ consequence: all n-ary theta-structures (elements
(T,h7,07) € Mpo(8,61,...,0,)) are composition of binary
theta-structures through repeated application of binary
External Merge building elements of M
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Obligatory control: an example (“Merge and SMT" §5.3)
@ sentence “the man tried to read a book”

{{the, man}, {tried, {to, {{the, man}, {read, {a, book}}}}}} =

the man read

a book
M= M tried , M( to , M( man,read/xb k))))
00
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@ in terms of operad action: element T € M(6) of the form

T:..'/>>'>>\'

e inputs Tq,..., T in SO, output syntactic object
T
T i
T
@ here take
Ti=Ta S T, = tried T3 = to

"~ the man

Ts = read Tp= a/ﬁok
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Restriction to diagonals (FormCopy)

e for subset Z C {1,...,n} diagonal
Diagy = {(T1,..., T,) € SO" | T, = T € SO, Vi € T}

@ in this example Diag; , C SO° (as inputs to operad action)

@ FormCopy in the linguistics literature is restriction to a
diagonal

o distinction between case of repetitions and copies: repetitions
are isomorphic syntactic objects but not identical, copies are
the same syntactic object

o effect: if repetitions, usual coproduct A in action of Merge

e if copies identified so can only extract all at once (or same
accessible term from all) or none
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@ accessible term extraction with FormCopy and obligatory
control:

=N ReT/R+> (RuT)e(T/R)//T,

sums are over subforests F, C T such that TN F, =0, and
where we write T//T, to denote the quotient with respect to
all occurrences of 'f'v in T as accessible terms of all the
identified copies in Diags

@ still coassociative coproduct
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@ in the example considered start with a workspace forest

the man

read

a book
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@ a term in the coproduct Az

TuT//)T @1, with T//T =

T
ER A
T =
T,
T3
L A
@ this means coproduct term of the form
the man .
tried
to
[the man]
read
book
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@ coproduct term that is targeted by the External Merge

producing
M h/\ , yul
the man tried
to
read a book
the man tried
to
read a book

e if repetitions instead of copies (example “many people like
many people”) then the two accessible terms would be
extracted independently by A not simultaneously by Az
(so would not have cancellation of deeper copy)
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Externalization as a two-step procedure

; /
o section P
‘ISOO
M, constraints
I projection
pl
500 Tsc'JO,L

@ language-dependent assignment of planar embedding
(consistent with word-order constraints of specific language)

@ language-dependent quotient that eliminates non-viable
constructions that are either non-parsable or violate other
language-specific constraints (syntactic parameters)
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planarity and morphism of magmas

@ free commutative non-associative magma of syntactic objects
SO = Magma,,, (S5O0, M) = Ts0,

e free non-commutative non-associative magma (planar binary
rooted trees)

SO = Magmana’nC(SOo, M) = ‘Igloo

@ it generates the planar binary rooted trees with leaves labelled
by SOq
~ P!

write these as T™ (with T for abstract tree, m for choice of
planar embedding)
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@ asymmetric Merge

nceTm o oTmy N PN

= M(T5, T{)
e I projection IN: T™ +— T (forgetting planar structure):
N: T2y, = SO™ - SO = Tso,

@ [1is a morphism of magmas and canonical (independent of
choices)
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@ Problem: the map I : SO"™ — SO runs in the opposite
direction to Externalization

@ and... there is no morphism of magmas going the other way
from SO to SO

@ because since (SO, ) is commutative it should map to a
commutative sub-magma of (SO"¢, 9M"°)

@ but (SO™, M) does not have nontrivial commutative
sub-magmas: if a nonempty planar tree T™ is in a
commutative sub-magmas then 9t"°(T™, T™) also is but this
contradicts commutativity since

S)")’II7C(7'7'("i))’tnc(7'ﬂ'7 Tﬂ')) # mnC(mnC(Tﬂ', 7'7T)7 TTI')

so what is to be done?
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Externalization first step: section o; of the projection 1

@ can construct (non-canonically: dependent on choices) a
non-unique section [loo; =id

oL

o Fons Ts0,
@ a choice of a point in each fiber M~1(T) of the projection
o taking the one-way street I1 in the opposite direction comes at
a cost (loss of some good properties of the map):
Q 0. :%Tso, — ‘Ig’oo is not a morphism of magmas
Q o:%s0, = ‘Igloo is not unique and depends on choices
@ linguistic consequences:

@ Merge can act either before Externalization (New Minimalism
SMT) or after (on planar trees as in Old Minimalism) but not
both ways consistently

@ Externalization is necessarily language-dependent and not
uniquely defined
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_ /
first step o, : Ts0, — Sg‘oo

@ planarization o via a language-dependent non-unique section
of the projection

@ only requirement on ¢ is compatibility with word-order
parameters of given language L

@ obtain in this way a planar tree T™ = ¢,(T) for every
syntactic object T € SO no further restriction

Externalization second step: other constraints

@ need further elimination of those objects Tt € SO"° that
violate linguistic constraints (more syntactic parameters) of a
particular language L (not word order related)

@ other language dependent conditions: theta-theory, obligatory
control, etc (eliminate trees that fail these)

quotient map My : fg’oo — Tglbﬁ) projection that eliminates what
does not satisfy these further constraints
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Externalization as correspondence

@ two-step externalization: section of a projection followed by
another projection ... correspondence

@ the simplest way of describing transformation is through
functions f : X — Y (single valued x — f(x))

@ but sometimes functions are not the best way of going from X
to Y and a better notion is correspondences

SN\

X Y

climbing one arrow “the wrong way"” then going down the
other one (includes the case of multivalued functions)
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correspondences

@ a correspondence Z transfers structures (e.g. vector bundles,
spaces of functions, etc.) from X to Y, pulling back to Z and
pushing forward to Y

@ in a category C that has pullbacks correspondences as
1-morphisms in a 2-category of spansin C.

@ 2-category Spans(C) with

e objects given by the objects of C;
e 1-morphisms given by correspondences C-diagrams
e composition given by the pullback

ZXyZ/

e 2-morphisms between spans X <~ Z; — Y and X < 2, = Y
are morphisms Z; — 2, in C with commutative
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cospans vs spans (co-correspondences)
e diagrams for algebras (if correspondences for spaces)

N

@ typically for algebras morphisms are given by bimodules
@ but can also consider co-correspondences as spans

s

W EE 5 N)o(A—EDL A
pullback: restricted direct sum

Edu & ={(e€)|f(e) =g(e)}
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What happens to action on workspaces in Externalization?

@ since all Merge operations happen with symmetric Merge
before externalization it seems one cannot see at all this
action after externalization (because magma structure not
preserved by planarization o)

@ but one can still see part of it
° Apac = (V(Tso,), M) non-associative commutative algebra

@ representations for a non-associative algebras A are just linear
maps (not algebra homomorphisms) p : A — End(V),
endomorphisms of vector space V

o fix an argument of Merge: M7 (T') := (T, T')
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@ then representation (in the above sense) from action on
workspaces F = L, T,

p(T)(F)=Uo(MT @1)oA(F) = Ls(M(T, Tay)U To/ Tay)

suffices to determine full action if known for all T

@ image of the p(T) recovers image of the Ms s

UP V(Fs0,)) = | Ms.s(V(Fs0,))

S5

here union as the common span as vector spaces
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@ the projection part is compatible with action of asymmetric
Merge

@ but section o, is not a magma morphism so only projection in
the other direction is compatible with Merge action

na nc,L & V(@gloi) (Sgléi)
MM
/ %
-Ana nc @ V(% V(%SOO)
il’l@l’l il’l
Apac @ V(Fs0,) —~ V(Ss0,)

@ but climbing up the projection Il with the section o, leads to
only a partially defined Merge action on the image

@ indeed in old Minimalism, where Merge is after planarization,
Merge is partially defined with specific conditions on domains
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role of syntactic parameters
@ syntactic parameters account for syntactic variation across
languages
@ part of externalization (determine choice of o, and I,

@ assume all syntactic parameters are binary (sometimes ternary
as undefined value due to relations)

@ set of syntactic parameters of possible languages as a subset
P C FY with some large (N > 200) configuration space

@ large number of relations expected

e rough picture: g : FY — FY projection to word-order
parameters = responsible for constraints on choice of o;

@ remaining parameters affect I1;

@ can think of setting parameters as a collection of maps to
Grassmannians for m = (7;) € P

E,'jg P — Gl"(dm.,g, dg)

that selects subspaces of V(Kg’cf,o) compatible with value of a
given parameter
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Data on syntactic parameters

@ Syntactic Structures of World Languages (SSWL) now
TerraLing

@ World Atlas of Language Structures (WALS)

© another set of data from Longobardi—Guardiano, 2009

@ more complete set of data by Giuseppe Longobardi’s
LanGeLin Collaboration, 2016

e Data Analysis of syntax of world languages with various
mathematical tools (dimensional reduction, persistent topology,
phylogenetic algebraic geometry, etc.)
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SSWL list of parameters (253 languages)

The 116 binary variables recorded in the SSWL database include:

variables describing word order properties, from 0/—Subject Verb to 22-Noun Pronomial Possessor

variables AOI-A04 describing relations of adjectives to nouns and degree words

variable AuxSel01 about the selection of auxiliary verbs

variables CO/—C04 related to word order properties of complementarizer and clause and adverbial subordinator
and clause

o variables N20I1-N211 on properties of numerals

e variables Neg01-Negl4 on negation

e variables OrderN301-OrderN312 on word order properties involving demostratives, adjectives, nouns, and
numerals

variables Q0I-Q15 regarding the structure of questions

variables Q16Nega—Q18Nega and Q19NegQ—022NegQ on answers to negative questions

variables V201-V202 on declarative and interrogative Verb-Second

variables w0la—w01c¢ on indefinite mass nouns in object position

variables w02a—w02c on definite mass nouns in object position
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SSWL list of parameters

variables w03a—w03d on indefinite singular count nouns in object position
variables w04a—w04c on definite singular count nouns in object position

variables w05a—w05c¢ on indefinite plural count nouns in object position

variables w06a—w06¢ on definite plural count nouns in object position

variables w06a—w06¢ on definite plural count nouns in object position

variables w07a-w07d on nouns with (intrinsically) unique referents in object position
variables w08a—w08d on proper names in object position

variables w09a—w09b on order of article and proper names in object position
variables w10a—wI0c on proper names modified by an adjective in object position
variables wila—w11b on order of proper names and adjectives in object position
variables wi2a-w12f on order of definite articles and nouns in object position
variables w20a—w20e on singular count nouns in vocative phrases

variables w2la—w21e on proper nouns in vocative phrases

variables w22a-w22e on plural nouns in vocative phrases.
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LanGelLin list of parameters
(64 languages including microvariations)

FGP  gramm. person “GSI grammaticalised inalienability
FGM  gramm. Case ALP  alicnable possession

FPC gramm. perception “GST grammaticalised Genitive

FGT  gramm. temporality GEI Genitive inversion

FGN  gramm. number "GN non-referential head marking
GCO  gramm. collective number structured cardinals

PLS plurality spreading “GPC gender polarity cardinals

FND  numberin D PMN  personal marking on numerals
FSN feature spread to N _('QU cardinal quantifiers

FNN  numberon N PCA  number spread through cardinal adjectives
SGE  semantic gender “PSC number spread from cardinal quantifiers
FGG  gramm. gender RHM  Head-marking on Rel

CGB  unbounded sg N FRC  verbal relative clauses

DGR gramm. amount NRC  nominalised relative clause
DGP  gramm. text anaphora NOR NP over verbal relative clauses/
CGR  strong amount adpositional genitives

NSD  strong person AER relative extrap.

FVP  varable person TARR  fiee reduced rel

DGD  gramm. distality DOR  def on relatives

DPQ  free null partitive Q "NOD  NPoverD

DCN article-checking N NOP NP over non-genitive arguments

M.Marcolli
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LanGelLin list of parameters

DNN  null-N-licensing art “PNP Pover complement

DIN D-controlled infl. on N NPP  N-raising with obl. pied-piping

FGC  gramm. classifier NGO N over GenO

DBC  strong classifier NOA N over As

XCN  conjugated nouns “NM2 N over M2 As

GSC  c-selection “NMI Nover M1 As

NOE N overext. arg. “EAF  fronted high As

HMP  NP-heading modifier “NON N over numerals

AST  structured APs “FPO  feature spread to genitive postpositions

FFS feature spread to struct. APs “ACM  class MOD

ADI D-controlled infl. on A DOA  defonall +N

DMP  def matching pron. poss. “NEX  gramm. expletive article

DMG  def matching genitives NCL  clitic poss.

GCN  Poss®-checking N “PDC article-checking poss.

GFN  Gen-feature spread to Poss® ACL  enclitic poss. on As

GAL  Dependent Case in NP “APO adjectival poss.

GUN  uniform Gen WAP  wackernagel adjectival poss.
generalized linker “AGE adjectival Gen
non-clausal linker “OPK obligatory possessive with kinship nouns
non-genitive linker TSP split deictic demonstratives
adpositional Gen “TSD split demonstratives

GFO  GenO “TAD  adjectival demonstratives

PGO  partial GenO “TDC article-checking demonstratives

GFS GenS “TLC Loc-checking demonstratives

GIT Genitive-licensing iterator “TNL NP over Loc
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Most extensive treatment of syntactic parameters:

@ lan Roberts, Parameter Hierarchies and Universal Grammar,
Oxford University Press, 2019

formulated within the Minimalism framework

extensive empirical evidence on syntactic variation
parameters organized into hierarchies

parameters as “emergent properties”

extensive description, but still not fully incorporated as a
theoretical /mathematical model of externalization
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Evidence for relations between parameters

@ some relations explicitly known for linguistic reasons
(Longobardi et al.)
@ some visible through data analysis:

o deviation from Markovian behavior (evolution as Markov
model on a tree — phylogenetic trees of languages): issues with
hypothesis of identically distributed independent random
variables

e coding theory perspective: collection of languages £
comparative view of their parameters (binary code): if random
code with independent variables would be around the
Gilbert-Varshamov curve in the space of code parameters but
many outliers high above

e dimensional analysis finds actual dimension much lower
(d ~ 30 among N = 116 for SSWL and d ~ 15 for N = 83 of
LanGeLin)

o higher recoverability of some parameters in sparse distributed
memory (Kanerva network) models
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some references

o Sitanshu Gakkhar, Matilde Marcolli, Syntactic Structures and
the General Markov Models. Math. Comput. Sci. 18 (2024),
no. 1, Paper No. 4.

@ Kevin Shu, Matilde Marcolli, Syntactic Structures and Code
Parameters, Math. Comput. Sci. 11 (2017) N.1, 79-90

@ Alexander Port, Taelin Karidi, Matilde Marcolli, Topological
Analysis of Syntactic Structures, Math. Comput. Sci. 16
(2022), no. 1, Paper No. 2, 68 pp.

@ Jeong Joon Park, Ronnel Boettcher, Andrew Zhao, Alex Mun,
Kevin Yuh, Vibhor Kumar, Matilde Marcolli, Prevalence and
recoverability of syntactic parameters in sparse distributed
memories, in “Geometric Structures of Information 2017",
Lecture Notes in Computer Science, Vol. 10589 (2017) 1-8
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Example: Parametric comparison as codes
e Kevin Shu, Matilde Marcolli, Syntactic Structures and Code
Parameters, Math. Comput. Sci. 11 (2017), no. 1, 79-90.

e Matilde Marcolli, Syntactic Parameters and a Coding Theory
Perspective on Entropy and Complexity of Language Families, Entropy
2016, 18(4), 110
@ select a group of languages £ = {/{1,...,{n}
@ with the binary strings of n syntactic parameters form a code
C(L) C F3
e compute code parameters (R(C),d(C)) code rate and relative
minimum distance
@ analyze position of (R, ) in space of code parameters

@ get information about “syntactic complexity” of £
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code parameters C C Fj

e transmission rate (encoding)

RIC)= %, k= logy(#0) = loga()

for g-ary codes in Iy take k = log,(N)

e relative minimum distance (decoding)

5(C) = E, d= Ezn;g dH(fl,fg)

Hamming distance of binary strings of /1 and /5

e error correcting codes: optimize for maximal R and § but
constraints that make them inversely correlated

e bounds in the space of code parameters (R, 0)
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Bounds on code parameters

e Gilbert-Varshamov curve (g-ary codes)
R =1-Hq(d), Hq(0) =dlog,(q—1)—3dlog,d—(1—0)log, (1)

g-ary Shannon entropy: asymptotic behavior of volumes of
Hamming balls for large n

e The Gilbert-Varshamov curve represents the typical behavior of
large random codes (Shannon Random Code Ensemble)

e Plotkin curve R =1 — §/q: asymptotically codes below Plotkin
curve R<1-4/q
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e more significant asymptotic bound (Manin '82) between
Gilbert-Varshamov and Plotkin curve

1~ Ho(6) < ag(8) < 1 6/q

separates a region with dense code points with infinite
multipliciites (below) and one with isolated code points with finite
multiplicity (good codes above): difficult to find examples

e asymptotic bound not explicitly computable (related to
Kolmogorov complexity of codes, Manin—Marcolli)

e difficult to construct codes above the asymptotic bound:
examples from algebro-geometric codes from curves (but only for
g > 49 otherwise entirely below the GV curve)
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e look at the distribution of code parameters for small sets of
languages (pairs or triples) and SSWL data

16 . T T T

144 1

12+ —

0.8 - —

0.6 - —

041 : 1

0.8 1.0
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e in lower region of code parameter space a superposition of two
Thomae functions (f(x) = 1/q for x = p/q coprime, zero on
irrationals)

0.8

Relative Rate
o
>

o
S

Mathematics & Linguistics
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Thomae function

o defined by
1 x=0
f(x)=4 ¢! x€Q,x=p/q,q>0
0 otherwise.

@ note that fixing absolute rate of code k = log,(#L)
d k
4.5

n'n
e for k = 1 looking at graph of d/n+ 1/n where n =
parameters mapped for entire set £

(0(C), R(C)) = (

@ so expect to see overlapping graphs of several Thomae
functions

@ the interesting part is where the points accumulate
(depending on d/n values)

@ lower regions of (4, R)-space: random codes at most at GV
bound
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e more interesting what happens in the upper regions of the code
parameter space

o take larger sets of randomly selected languages and syntactic
parameters in the SSWL database

10

— Gilbert-vVarshamov Bound
— Plotkin Bound
+ Code Parameters

0.8

0.6

o
=

Relative Rate

0.2

0.0 0.2 0.4 0.6 0.8 10
Relative Hamming Distance

codes better than algebro-geometric above GV, asymptotic, and Plotkin
very far from random identically distributed variables behavior
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Example: estimated dimension of syntactic parameters

* Alexander Port, Taelin Karidi, Matilde Marcolli, Topological
Analysis of Syntactic Structures, Math. Comput. Sci. 16 (2022),
no. 1, Paper No. 2, 68 pp.

Average estimated dimension Average
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Dimension Dimension

@ Dimension of SSWL syntactic variables peak d ~ 30
(116 dim ambient space)

@ Dimension of LanGeLin syntactic variables peak d ~ 15
(83 dim ambient space)
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Family specific relations: dimension drop from d ~ 30 of SSWL

Average estimated dimension Average estimated dimension

01 “H‘ 0.00 |
‘ h
0.09 \‘\‘\‘ | 0.08 U‘
|
[ M1
% it % HMH‘
8 o007 \ 800 il
2 / | = | | 1l
£ 00s ( | L0 I
s | | g N
& 005 | \ S o004
5 \ o I
<o | o0 | |
1 |
wl | al |
\
\ \
0.02 | \ 0.0t |
\ ) \
001 . L.__ . . L N . o MO S . R . "
5 10 15 20 2 3 33 40 45 50 55 10 20 3 4 0 6 70 8 90
Dimension

Dimension

e Niger-Congo languages (SSWL data) d ~ 20
@ Indo-European languages (SSWL data) d ~ 23

also see more data analysis in

* Sitanshu Gakkhar, Matilde Marcolli, Syntactic Structures and the
General Markov Models. Math. Comput. Sci. 18 (2024), no. 1,
Paper No. 4.
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Heat Kernel Method

@ Andrew Ortegaray, Robert C. Berwick, Matilde Marcolli, Heat
Kernel analysis of Syntactic Structures, Math. Comput. Sci.
15 (2021), no. 4, 643-660.

General questions:

@ What is the structure of relations between syntactic
parameters?

@ Which parameters cluster together?
@ Do syntactic parameters span a manifold?
e What is the geometry/topology of this manifold?

@ Are some parameters more dependent/independent from
others?
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Geometric methods of dimensional reduction:

e M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality
reduction and data representation, Neural Comput. 15 (6)
(2003) 1373-1396

e Problem: low dimensional representations of data sampled from a
probability distribution on a manifold

e Main Idea: build a graph with neighborhood information, use Laplacian
of graph, want low dimensional representation that maintains local
neighborhood information

e Key Result: graph Laplacian for a set of data point sampled from a
uniform distribution on a manifold converges to Laplace—Beltrami
operator on the manifold for large sets (using heat kernel and relation to
Laplacian)

e Use to construct optimal (preserving information on manifold
geometry) mapping of data sets to low dimensional spaces via
eigenfunctions of Laplacian

M.Marcolli Mathematics & Linguistics



Laplace—Beltrami operator and heat kernel
e on RV
0? p
Af(x) = —
(=3 5,270

i

heat kernel equation

0
au(x, t) = Au(x, t)

solutions with initial heat distribution f(x)

HEG) = [ FH! (c )y
RN
convolution with heat kernel

o
HE () = ()2 exp(— 2 1T
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Heat kernel and approximating the Laplacian

e Laplacian and heat kernel:

~AF(x) = 5 H ()

—k/2 X_y —k/2 vy
~im (47t) /RN oL 4tn (y)dy—(47rt f(x)/ _lx=yli? dy

t—0 t

e approximation: (uniform sampling of y)

4rrt)K/2 ly=xI2 o~ lly=xII?
L (f(x) Ze YT—Ze_ “a f(yi))

i=1

47Tt)7(k+2)/2

— C ( Lt,nf

n

e how to extend this idea from flat RV to curved manifolds?
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Laplacian approximation on manifolds
@ geodesic distance and ambient Euclidean distance
distre(x, y) = [Ix =yl
@ exponential map exp, : T, M — M takes lines through origin
to geodesics
@ on compact manifolds chord distance approximates geodesic

distance

distm(x,y) = [Ix = Il + O(lx = yl[)

/ ox I /
/
dist,,(x,y) / /
lIx—yll

[

| , |

\
\\ \\/ \\
¥

M.Marcolli Mathematics & Linguistics




Step 1: replace integral on M with integral on small open set U
around a point x € M

e can do this because for i/ C M open and d? = inf ¢, [|x — y|?

_ lx—y|? [lx— yu r
[ e ), [ e F )| < Ml e
u M

e then can use exponential map v — exp,(v) to parameterize
neighborhood U of x € M

e at point x where exp map centered
Amf(x) = Dgef(0),  F(v) = f(expy(v))

@ S. Rosenberg, The Laplacian on a Riemannian manifold,
Cambridge University Press, 1997.
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The role of scalar curvature

@ exp map locally invertible: B C U with inverse, change coords

X— 2 Dz
/ e F(y)dpy = / e % F(v) det(d exp, (1)) v
B expy (B)

with ¢(v) = |lv||?> + O(||v||*) (chord and geodesic dist)

@ asymptotics of exp map

A det(dexp, (V)] = "0 1 o(]v])

K scalar curvature

Agi (F det(d exp, (v))(0) = AgeF(0) + k2 (X) f(x)

M.Marcolli Mathematics & Linguistics



Cancellation of curvature terms

e then obtain

gt((w)k/z /B e (1) dpy )imo = A Mf(x)—l—g/i(x)f(x)—i—Cf(x)

using previous and relation of Af(x) and Ag«f(0)

e then obtain

im(are) ([ S G [ o ) = At
M M

t—0
Belkin—Niyogi method main idea:
e then show that using a sampling approximation for R¥ this gives

) B Apf(x)
(k+2)/2 tn,n _ M
nllm (4mt,) L*"f(x) = Vol(M)

where L'™" is a graph-Laplacian approximation of the heat kernel
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Main idea of Belkin—Niyogi heat kernel method

@ k-dimensional compact smooth manifold M isometrically
embedded in some RV

e data S = {xy,...,x,} sampled from a uniform distribution in
the induced measure on M

@ associated graph Laplacian L = L%" = Db — Wtn
Ltnf Zexp( XJH Zf )exp XJH )

. _ t,n __ t,n
o diagonal Dj; = D;7" =3, W,
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Main Result: for sampled data & = {x1,...,x,} from uniform
distribution on M take t, = n~(k*2+)™ with o > 0: for some
C>0

k+2

art,) 5

lim cAmtn) 2
n

n—oo

for f € C°°(M) with A = Laplace-Beltrami operator on M

L™"f(x) = Apf(x)

e this shows the graph Laplacian of a point cloud data set
converges to the Laplace—Beltrami operator on the underlying
manifold
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Why useful for low dimensional embeddings?

@ given map f : M — R, points near x will map to points near
f(x) if gradient Vf is sufficiently small

@ minimizing square gradient reduces to finding eigenfunctions
of the Laplace—Beltrami operator: Stokes theorem

/HWH2_/ fAMF
M M

normalized local extrema are eigenfunctions

VF||?
)\n — |nf f,/\/l || 2||
Xo i f
X, complement of span of previous eigenfunctions

e Use to construct optimal mapping of data sets to low
dimensional spaces via eigenfunctions of Laplacian
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Low dimensional embeddings algorithm

e setting: data points x1,...,xx € M C R’ on a manifold; find
points yi, ..., Yk in a low dimensional R™ (m << ) that represent
the data points x;

e Step 1 (a): adjacency graph (e-neighborhood): an edge ej;
between x; and x; if ||x; — Xj||ge < €

e Step 1 (b): adjacency graph (n nearest neighborhood): egde e;
between x; and x; if x; is among the n nearest neighbors of x; or
viceversa

e Step 2: weights on edges: heat kernel

L w12
RS EEE

if edge e;j and Wj; = 0 otherwise; heat kernel parameter t > 0
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e Step 3: Eigenfunctions for connected graph (or on each
component)
Lip = ADy

diagonal matrix of weights D;; = ZJ- Wi;; Laplacian L =D — W
with W = (Wj;); eigenvalues 0 = Ao < Ay < -+ < Ag_1 and ¢;
eigenfuctions

viA{l,...,k} - R

defined on set of vertices of graph
e Step 4: Mapping by Laplace eigenfunctions

R D M 3 x; = (P1(i), ..., ¥m(i)) € R

map by first m eigenfunctions

e Belkin—Niyogi: optimality of embedding by Laplace
eigenfunctions
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Heat Kernel analysis of Syntactic Parameters

e Connectivity-clustering properties in e-neighborhood and
nearest-neighbor (SSWL data and LanGelLin data)

Epsilon Clustering and Connectivity

Neighbor Clustering and Connectivity

1.0 o
5 |
206 ‘
3 r
g 0.4
° I
3 i
£ 02 —— SSWL clustering

0.0 — L

0.0
0 20 40 60 80 100 120 140 160 0 0 - - " 5
e-variable

n-variable
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Graphs with e-neighborhood Longobardi data

Epsilon-Neighbourhood,epsilon =1.000000
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Graphs with e-neighborhood Longobardi data

Epsilon-Neighbourhood,epsilon =15.000000
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Graphs with e-neighborhood Longobardi data

Epsilon-Neighbourhood,epsilon =22.000000
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Structures of parameters relations in the LanGeLin parameters
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Graphs with e-neighborhood SSWL data

Epsilon-Neighbourhood,epsilon =22.000000

SO —————
W g

M gt g B

The e-neighborhood construction is better suited to gain
connectivity information in the Longobardi data: the SSWL data
remain highly disconnected (only small local structures)

compatible with SSWL being composed of different blocks of



Structures of parameters in SSWL data

Neg 08_Standard Negatw plus Other Modification
Neg 09_Standard N‘\S *L_S*egamon is Infix
Neg O7_Stand&pf-ﬁ*mn is Higher verb

Explanation: properties of Standard Negation, connections Neg
06-10 emerge earlier (some are negation through tone as in some
Niger-Congo languages and some Oto-Manguean, some other
forms like reduplicated verb, infix); then cluster with other
negation forms like Neg 01-05 (position of negation particle with
respect to verb); expressed in different language families, relations
are not family-specific
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Graphs with n-neighborhood Longobardi data

Nearest 1 Connections
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Graphs with n-neighborhood Longobardi data

Nearest 2 Connections
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Graphs with n-neighborhood SSWL data

Nearest 1 Connections
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neighborhood SSWL data

Graphs with n

Nearest 2 Connections

»
=
=1
iz
=
o
£
]
»
=
=)
=
£
2
=
©
2

M.Marcolli




Variance
@ graphs depend on e-neighborhood and on t-heat kernel variable

@ how embeddings depend on parameters: where the obtained
coordinates by Laplace eigenfunctions are a set of independent
coordinates that captures as much as possible of the data structure

@ as in the case of other dimensional reduction methods (like PCA)
high variance indicates independent resulting variables capture
directions of highest variance in original data

SSWL Syntactic Parameter Mean Variance

55 1.20
1.05
0.90
0.75
‘ 0.60
0.45
0.30
0.15

t-variable

e-variable
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Parameters evolve as dynamical variables (historical linguistics)

@ can model evolution as a spin glass system with a set of spins
(parameters) for each node (language) and interaction
between languages proportional to biligualism; interaction also
between parameters (Lagrange multipliers from relations alter
the dynamics)

@ phylogenetic trees of language families (usually based on
morphology) and correlation to syntactic parameters:
significant discrepancies with respect to identically distributed
independent random variables of phylogenetic Markov models
on trees

@ topological structures in parameters distributions within given
language families (persistent topology structures, sometimes
describable in terms of historical linguistics)
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general question of the Geometry of Syntax

@ region of “possible languages” (A. Moro) among all
configurations of syntactic parameters (I.Roberts,
G.Longobardi, L.Rizzi,...)

@ estimations of dimension and geometric structure of locus of
possible languages (topology/geometry)

@ comparison of sections o; and projection 1, of externalization
(determined by syntactic parameters) for different languages L

o distinguishing parameters that affect word order from
parameters detecting other syntactic properties

Question of the geometry of syntactic parameters is a main open
problem suitable for mathematical treatment:
parameter setting dynamics
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Parameter setting and learnability problem

What is needed:

@ large ambient space of parameters, with actual smaller
dimensional submanifold (not directly known)

o language L determines parameters m; = (7 ;)Y ;

@ the m ; are instructions for selecting syntactic objects
(constraints)

e Note: don't need to learn a generative grammar (as in earlier

models): need to learn a set of constraints that filter already
formed structures

@ significant improvement as there are non-learnability results in
formal languages settings and learning grammars
(Berwick—Niyogi)

@ small set of examples (from specific language) should suffice
to determine parameters (relations between parameters help),
which in turn then suffice to select larger structures
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