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Summary so far of the “Strong Minimalist Theorem”

syntactic objects are the free nonassociative commutative
magma on the set SO0 of lexical items and syntactic features

workspaces are the commutative Hopf algebra of binary forests

Merge is a Hopf algebra Markov chain

minimal search is a grading of the coproduct that selects
External/Internal Merge as leading order terms; the Sideward
Merge terms are needed for the Markov chain property but are
subdominant for structure formation

minimal yield can be derived from the Hopf algebra grading
(as a no-complexity-loss principle)

countercyclic movement and Late Merge are the insertion Lie
algebra of the dual Hopf algebra

head and complement, phases, labeling are additional
structures on a subdomain of syntactic objects defined in
terms of a combinatorial abstract head function
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Additional remaining topics (before discussing Externalization)

1 Theta Theory: thematic roles

related to the structure of head and complement
needed for semantic parsing, in addition to head and labeling
discussed earlier
mathematically related to operad and colored operad structures

2 obligatory control: restriction to diagonals mentioned earlier:
FormCopy
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Linguistic preliminaries: more on head, complement, modifiers,
specifiers

M.Marcolli Mathematics & Linguistics



complements are mandatory, modifiers are not

complements:

modifiers:
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additional notion: specifier

examples:

Note: language-dependent rules, for example on whether articles
are required or not (or even exist)
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More general: Spec position Spec–Head–Complement

using the older “X-bar theory” terminology and notation
(as in Government & Binding)
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thematic roles

predicate may be verb, adjective, preposition, noun

argument is (usually) required by a predicate to complete its
meaning

predicates can take one or more arguments (valence of
predicate)

adjuncts can accompany predicates but not required

theta-roles (thematic roles) are syntactic notions about
number, type, placement of obligatory arguments
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Examples

arguments:

adjuncts:

theta-roles: the verb to put assigns 3 thematic roles (valence 3):

someone puts something somewhere; the verb to give also: someone

gives something to someone, different thematic role

(reflected in cases in morphology of languages with noun declension)
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Mathematical preliminary: operads

operad (in category of Sets) is a collection O = {O(n)}n≥1 of
sets of n-ary operations (with n inputs and one output), with
composition laws

γ : O(n)×O(k1)× · · · × O(kn)→ O(k1 + · · ·+ kn)

plugging output of operations in O(ki ) into the i-th input of
operations in O(n)
associativity of operad composition

γ(γ(T ,T1, . . . ,Tm),T1,1, . . . ,T1,n1 , . . . ,Tm,1, . . . ,Tm,nm) =

γ(T , γ(T1,T1,1, . . . ,T1,n1), . . . , γ(Tm,Tm,1, . . . ,Tm,nm))

unit 1 ∈ O(1) for composition
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associativity of operad composition
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case of symmetric operad: two equivariance conditions with
respect to actions of symmetric groups
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algebras over operads

algebra A over an operad O (in Sets) is a set A on which the
operations of O act

can use elements of A as inputs for operations in O(n)

γA : O(n)×An → A

compositionality: for T ∈ O(m), Ti ∈ O(ni ), {ai ,j}nij=1 ⊂ A

γA(γO(T ,T1, . . . ,Tm), a1,1, . . . , a1,n1 , . . . , am,1, . . . , am,nm) =

γA(T , γA(T1, a1,1, . . . , a1,n1), . . . , γA(Tm, am,1, . . . , am,nm)) .

with γO composition in operad and γA operad action
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Merge operad and action on syntactic objects

operadM freely generated by a single commutative binary
operation M

haveM(1) = {id},M(2) = {M},
M(3) = {M ◦ (id×M),M ◦ (M× id)}, etc.
action γSO :M(n)× SOn → SO with γSO(T ,T1, . . . ,Tn)
with T ∈M(n) and Ti ∈ SO for i = 1, . . . , n abstract binary
rooted tree in TSO0 = SO obtained by grafting root of the
syntactic object Ti to the i-th leaf of T ∈M(n)

if syntactic objects Ti have ni leaves, then syntactic object
γ(T ,T1, . . . ,Tn) obtained in this way has n1 + · · ·+ nk leaves
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a subtlety about abstract trees

no choice of ordering of leaves, so better way of writing action

TSO0,k , Tk abtract binary trees with k leaves (with/without
leaves lexical items)

for T ∈ Tn and Tℓ ∈ TSO0,kℓ

γ(T , {Tℓ}ℓ∈L(T ))

root of the tree Tℓ is grafted to the leaf ℓ ∈ L(T )

associativity of compositions

γ(γ(T , {Tℓ}ℓ∈L(T )), {T ′
ℓ′}ℓ′∈L(γ(T ,{Tℓ}ℓ∈L(T ))))

= γ(T , {γ(Tℓ, {T ′
ℓ′}ℓ′∈L(Tℓ))}ℓ∈L(T ))
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action of permutation groups

first equivariance condition

γ(T ◦ τ, {Tτ(ℓ)}) = γ(T , {Tℓ}) ◦ τ ′

τ ∈ Sym(L(T )) ≃ Sn, with n ∈ #L(T ), and Sn the symmetric
group, and with τ ′ ∈ Sym(L(γ(T , {Tℓ})) ≃ S∑

ℓ kℓ
that

permutes the n blocks of kℓ leaves, leaving each block
unchanged

second equivariance condition

γ(T , {Tℓ ◦ σℓ}ℓ∈L(T )) = γ(T , {Tℓ}ℓ∈L(T )) ◦ σ

σℓ ∈ Sym(L(Tℓ)) ≃ Skℓ with
σ ∈ Sym(L(γ(T , {Tℓ})) ≃ S∑

ℓ kℓ
that permutes the leaves

within each block of kℓ leaves, leaving the position of the
blocks unchanged

for simplicity of notation use γ(T ,T1, . . . ,Tn) instead of
γ(T , {Tℓ}ℓ∈L(T ))
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compatibility with head function

Mh(n) set of pairs (T , hT ) an abstract binary rooted tree
T ∈ Tn (with no labeling at the n leaves) and a head function
hT : V int(T )→ L(T )

composition inM induces operad structure on
Mh = {Mh(n)}
operad compositiom

γMh
:Mh(n)×Mh(k1)×· · ·×Mh(kn)→Mh(k1+ · · ·+ kn)

data hT , hT1 , . . . , hTn combine to define a head function on
T ′ = γM(T ,T1, . . . ,Tn):

all vertices of T ′ that are vertices of one of the trees Ti : set
hT ′(v) = hTi (v)
vertices of T ′ that are non-leaf vertices of T , we define hT ′(v)
by: head function on T determines a leaf hT (v) ∈ L(T ); Ti(ℓ)

denote the tree that is grafted to the leaf ℓ ∈ L(T ); take
hT ′(v) := hTi(hT (v))

M.Marcolli Mathematics & Linguistics



Theta theory and operads

so far only used head function: more refined information
theta-theory: identify and remove the ill-formed sentences by
structure of dependants (complements) of the head, in
particular assignment of θ-roles (thematic roles)

theta-theory models thematic relations between predicates
and their arguments

predicates assign θ-roles to their arguments

θ-roles of arguments of predicates: “theme”, “agent”,
“experiencer”, “locative”, “instrument”, “possessor”, etc

matching condition: there should be a one-to-one
correspondence between theta roles and arguments these are
assigned to
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Dichotomy in semantics:

1 External Merge (EM) sole responsible for assignment of
theta-roles: argument structure, propositional domain

2 Internal Merge (IM) does no theta-structure: clausal domain,
information-related, non-argument structure, displacement

this dichotomy is called “duality” in semantics in the
linguistics literature

in our setting theta-theory related to operad structure of
syntactic objects (which only uses EM)
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colored operads

notion of colored operads similar to passing from group to
groupoid etc: make operad compostions defined under some
matching conditions (matching “colors” in a set Θ)

collection O = {O(c , c1, . . . , cn)} of sets, with c, ci ∈ Θ for
i = 1, . . . , n, ci are color labels of inputs and c color label of
output

composition laws have to match colors

γ : O(c , c1, . . . , cn)×O(c1, c1,1, . . . , c1,k1)× · · · × O(cn, cn,1, . . . , cn,kn)
→ O(c , c1,1, . . . , c1,k1 , . . . , cn,1, . . . , cn,kn)

similar associativity, unity (one unit 1c per color), and
symmetric properties
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main idea: use colors for different θ-roles and matching rules of
colored operad composition ensure correct consistent assignment
of θ-roles

Example of compositions with mismatched and with matched color
assignments (assignment of θ-roles)

M.Marcolli Mathematics & Linguistics



Theta theory and colored operads

set Θ of θ-roles and θ relations: labels “predicate” or
“argument” and for arguments θ-roles labels “theme”,
“agent”, “experiencer”, “locative”, “instrument”,
“possessor”, etc.

DomΘ(h) ⊂ Dom(h) set of syntactic objects T ∈ SO in
domain of head function h admitting assignment of labels in
Θ to edges of T compatible, on each substructure accessible
term Tv with head and complement determined by head
function h

set DomΘ(h) ⊂ SO determines a colored operad
Mh,Θ = {Mh,Θ(θ, θ1, . . . , θn)}
consequence: all n-ary theta-structures (elements
(T , hT , θT ) ∈Mh,Θ(θ, θ1, . . . , θn)) are composition of binary
theta-structures through repeated application of binary
External Merge building elements ofM
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Obligatory control: an example (“Merge and SMT” §5.3)
sentence “the man tried to read a book”

{{the,man}, {tried, {to, {{the,man}, {read, {a, book}}}}}} =

the man
tried

to

the man read
a book

M(
the man

,M( tried ,M( to ,M(
the man

,
read

a book

))))
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in terms of operad action: element T ∈M(6) of the form

T = · · · · · ·

inputs T1, . . . ,T6 in SO6, output syntactic object

T1
T2

T3
T4 T5 T6

here take

T1 = T4 =
the man

T2 = tried T3 = to

T5 = read T6 = a book
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Restriction to diagonals (FormCopy)

for subset I ⊂ {1, . . . , n} diagonal

DiagI = {(T1, . . . ,Tn) ∈ SOn |Ti = T̂ ∈ SO, ∀i ∈ I}

in this example Diag1,4 ⊂ SO6 (as inputs to operad action)

FormCopy in the linguistics literature is restriction to a
diagonal

distinction between case of repetitions and copies: repetitions
are isomorphic syntactic objects but not identical, copies are
the same syntactic object

effect: if repetitions, usual coproduct ∆ in action of Merge

if copies identified so can only extract all at once (or same
accessible term from all) or none
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accessible term extraction with FormCopy and obligatory
control:

∆I(T ) =
∑

Fv ⊗ T/Fv +
∑

(Fv ⊔ T̂v )⊗ (T/Fv )//T̂v

sums are over subforests Fv ⊂ T such that T̂ ∩ Fv = ∅, and
where we write T//T̂v to denote the quotient with respect to
all occurrences of T̂v in T as accessible terms of all the
identified copies in DiagI

still coassociative coproduct

M.Marcolli Mathematics & Linguistics



in the example considered start with a workspace forest

T̂ ⊔
T2

T3
T̂ T5 T6

=

the man
⊔
tried

to

the man read
a book
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a term in the coproduct ∆I

T̂ ⊔ T//T̂ ⊗ 1 , with T//T̂ =
T2

T3 T5 T6

T =
T2

T3
T̂ T5 T6

this means coproduct term of the form

the man
⊔
tried

to

[the man]
read

a book

⊗ 1
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coproduct term that is targeted by the External Merge
producing

M(
the man

,
tried

to
read

a book

) ⊔ 1

=

the man tried
to

read
a book

if repetitions instead of copies (example “many people like
many people”) then the two accessible terms would be
extracted independently by ∆ not simultaneously by ∆I
(so would not have cancellation of deeper copy)
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Externalization as a two-step procedure

Tpl
SO0

ΠL constraints

""Π projection
}}

TSO0

σL section ..

Tpl
SO0,L

language-dependent assignment of planar embedding
(consistent with word-order constraints of specific language)

language-dependent quotient that eliminates non-viable
constructions that are either non-parsable or violate other
language-specific constraints (syntactic parameters)
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planarity and morphism of magmas

free commutative non-associative magma of syntactic objects

SO = Magmana,c(SO0,M) = TSO0

free non-commutative non-associative magma (planar binary
rooted trees)

SOnc = Magmana,nc(SO0,M
nc) = Tpl

SO0

it generates the planar binary rooted trees with leaves labelled
by SO0

SOnc ≃ Tpl
SO0

write these as Tπ (with T for abstract tree, π for choice of
planar embedding)
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asymmetric Merge

Mnc(Tπ
1 ,T

π
2 ) = Tπ

1 Tπ
2
̸=

Tπ
2 Tπ

1
= Mnc(Tπ

2 ,T
π
1 )

∃ projection Π : Tπ 7→ T (forgetting planar structure):

Π : Tpl
SO0

= SOnc ↠ SO = TSO0

Π is a morphism of magmas and canonical (independent of
choices)
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Problem: the map Π : SOnc → SO runs in the opposite
direction to Externalization

and... there is no morphism of magmas going the other way
from SO to SOnc

because since (SO,M) is commutative it should map to a
commutative sub-magma of (SOnc ,Mnc)

but (SOnc ,Mnc) does not have nontrivial commutative
sub-magmas: if a nonempty planar tree Tπ is in a
commutative sub-magmas then Mnc(Tπ,Tπ) also is but this
contradicts commutativity since

Mnc(Tπ,Mnc(Tπ,Tπ)) ̸= Mnc(Mnc(Tπ,Tπ),Tπ)

so what is to be done?
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Externalization first step: section σL of the projection Π

can construct (non-canonically: dependent on choices) a
non-unique section Π ◦ σL = id

Tpl
SO0 Π proj

// TSO0

σLuu

a choice of a point in each fiber Π−1(T ) of the projection

taking the one-way street Π in the opposite direction comes at
a cost (loss of some good properties of the map):

1 σL : TSO0 → Tpl
SO0

is not a morphism of magmas

2 σL : TSO0 → Tpl
SO0

is not unique and depends on choices

linguistic consequences:
1 Merge can act either before Externalization (New Minimalism

SMT) or after (on planar trees as in Old Minimalism) but not
both ways consistently

2 Externalization is necessarily language-dependent and not
uniquely defined
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first step σL : TSO0 → Tpl
SO0

planarization σL via a language-dependent non-unique section
of the projection

only requirement on σL is compatibility with word-order
parameters of given language L

obtain in this way a planar tree TπL = σL(T ) for every
syntactic object T ∈ SO no further restriction

Externalization second step: other constraints

need further elimination of those objects TπL ∈ SOnc that
violate linguistic constraints (more syntactic parameters) of a
particular language L (not word order related)

other language dependent conditions: theta-theory, obligatory
control, etc (eliminate trees that fail these)

quotient map ΠL : Tpl
SO0
→ Tpl ,L

SO0
projection that eliminates what

does not satisfy these further constraints
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Externalization as correspondence

two-step externalization: section of a projection followed by
another projection ... correspondence

the simplest way of describing transformation is through
functions f : X → Y (single valued x 7→ f (x))

but sometimes functions are not the best way of going from X
to Y and a better notion is correspondences

Z

�� ��
X Y

climbing one arrow “the wrong way” then going down the
other one (includes the case of multivalued functions)

M.Marcolli Mathematics & Linguistics



correspondences

a correspondence Z transfers structures (e.g. vector bundles,
spaces of functions, etc.) from X to Y , pulling back to Z and
pushing forward to Y
in a category C that has pullbacks correspondences as
1-morphisms in a 2-category of spans in C.
2-category Spans(C) with

objects given by the objects of C;
1-morphisms given by correspondences C-diagrams
composition given by the pullback

Z ×Y Z ′

{{ $$
Z

�� ##

Z ′

zz !!
X Y X ′ ;

2-morphisms between spans X ← Z1 → Y and X ← Z2 → Y
are morphisms Z1 → Z2 in C with commutative

Z1

��

~~   
X Y

Z2

`` >>
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cospans vs spans (co-correspondences)

diagrams for algebras (if correspondences for spaces)

E

A

??

A′

__

typically for algebras morphisms are given by bimodules

but can also consider co-correspondences as spans

E

�� ��
A A′

composition

(A′ g← E ′ → A′) ◦ (A ← E f→ A′′)

pullback: restricted direct sum

E ⊕A′ E ′ = {(e, e ′) | f (e) = g(e ′)}
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What happens to action on workspaces in Externalization?

since all Merge operations happen with symmetric Merge
before externalization it seems one cannot see at all this
action after externalization (because magma structure not
preserved by planarization σL)

but one can still see part of it

Ana,c = (V(TSO0),M) non-associative commutative algebra

representations for a non-associative algebras A are just linear
maps (not algebra homomorphisms) ρ : A → End(V),
endomorphisms of vector space V
fix an argument of Merge: MT (T ′) := M(T ,T ′)
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then representation (in the above sense) from action on
workspaces F = ⊔aTa

ρ(T )(F ) = ⊔◦ (MT ⊗1)◦∆(F ) = ⊔a(M(T ,Ta,v )⊔Ta/Ta,v )

suffices to determine full action if known for all T

image of the ρ(T ) recovers image of the MS ,S ′⋃
T

ρ(T )(V(FSO0)) =
⋃
S,S ′

MS ,S ′(V(FSO0)) ,

here union as the common span as vector spaces

M.Marcolli Mathematics & Linguistics



the projection part is compatible with action of asymmetric
Merge

but section σL is not a magma morphism so only projection in
the other direction is compatible with Merge action

Ana,nc,L ⊗ V(Fpl ,L
SO0

)
ρpl,L // V(Fpl ,L

SO0
)

Ana,nc ⊗ V(Fpl
SO0

)
ρpl //

Π⊗Π

��

ΠL⊗ΠL
55

V(Fpl
SO0

)

Π

��

ΠL

77

Ana,c ⊗ V(FSO0)
ρ // V(FSO0) .

but climbing up the projection Π with the section σL leads to
only a partially defined Merge action on the image

indeed in old Minimalism, where Merge is after planarization,
Merge is partially defined with specific conditions on domains
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role of syntactic parameters

syntactic parameters account for syntactic variation across
languages

part of externalization (determine choice of σL and ΠL

assume all syntactic parameters are binary (sometimes ternary
as undefined value due to relations)

set of syntactic parameters of possible languages as a subset
P ⊂ FN

2 with some large (N ≥ 200) configuration space

large number of relations expected

rough picture: q : FN
2 → FM

2 projection to word-order
parameters ⇒ responsible for constraints on choice of σL
remaining parameters affect ΠL

can think of setting parameters as a collection of maps to
Grassmannians for π = (πi ) ∈ P

Ei ,ℓ : P → Gr(dπi ,ℓ, dℓ)

that selects subspaces of V(Tpl
SO0

) compatible with value of a
given parameter
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Data on syntactic parameters

1 Syntactic Structures of World Languages (SSWL) now
TerraLing

2 World Atlas of Language Structures (WALS)

3 another set of data from Longobardi–Guardiano, 2009

4 more complete set of data by Giuseppe Longobardi’s
LanGeLin Collaboration, 2016

• Data Analysis of syntax of world languages with various
mathematical tools (dimensional reduction, persistent topology,
phylogenetic algebraic geometry, etc.)
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SSWL list of parameters (253 languages)
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SSWL list of parameters
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LanGeLin list of parameters
(64 languages including microvariations)
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LanGeLin list of parameters
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Most extensive treatment of syntactic parameters:

Ian Roberts, Parameter Hierarchies and Universal Grammar,
Oxford University Press, 2019

formulated within the Minimalism framework
extensive empirical evidence on syntactic variation
parameters organized into hierarchies
parameters as “emergent properties”
extensive description, but still not fully incorporated as a
theoretical/mathematical model of externalization
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Evidence for relations between parameters

some relations explicitly known for linguistic reasons
(Longobardi et al.)

some visible through data analysis:

deviation from Markovian behavior (evolution as Markov
model on a tree – phylogenetic trees of languages): issues with
hypothesis of identically distributed independent random
variables
coding theory perspective: collection of languages L
comparative view of their parameters (binary code): if random
code with independent variables would be around the
Gilbert-Varshamov curve in the space of code parameters but
many outliers high above
dimensional analysis finds actual dimension much lower
(d ∼ 30 among N = 116 for SSWL and d ∼ 15 for N = 83 of
LanGeLin)
higher recoverability of some parameters in sparse distributed
memory (Kanerva network) models
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some references

Sitanshu Gakkhar, Matilde Marcolli, Syntactic Structures and
the General Markov Models. Math. Comput. Sci. 18 (2024),
no. 1, Paper No. 4.

Kevin Shu, Matilde Marcolli, Syntactic Structures and Code
Parameters, Math. Comput. Sci. 11 (2017) N.1, 79-90

Alexander Port, Taelin Karidi, Matilde Marcolli, Topological
Analysis of Syntactic Structures, Math. Comput. Sci. 16
(2022), no. 1, Paper No. 2, 68 pp.

Jeong Joon Park, Ronnel Boettcher, Andrew Zhao, Alex Mun,
Kevin Yuh, Vibhor Kumar, Matilde Marcolli, Prevalence and
recoverability of syntactic parameters in sparse distributed
memories, in “Geometric Structures of Information 2017”,
Lecture Notes in Computer Science, Vol. 10589 (2017) 1–8
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Example: Parametric comparison as codes
• Kevin Shu, Matilde Marcolli, Syntactic Structures and Code
Parameters, Math. Comput. Sci. 11 (2017), no. 1, 79–90.

• Matilde Marcolli, Syntactic Parameters and a Coding Theory

Perspective on Entropy and Complexity of Language Families, Entropy

2016, 18(4), 110

select a group of languages L = {ℓ1, . . . , ℓN}
with the binary strings of n syntactic parameters form a code
C(L) ⊂ Fn

2

compute code parameters (R(C), δ(C)) code rate and relative
minimum distance

analyze position of (R, δ) in space of code parameters

get information about “syntactic complexity” of L
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code parameters C ⊂ Fn
2

• transmission rate (encoding)

R(C) = k

n
, k = log2(#C) = log2(N)

for q-ary codes in Fn
q take k = logq(N)

• relative minimum distance (decoding)

δ(C) = d

n
, d = min

ℓ1 ̸=ℓ2
dH(ℓ1, ℓ2)

Hamming distance of binary strings of ℓ1 and ℓ2

• error correcting codes: optimize for maximal R and δ but
constraints that make them inversely correlated

• bounds in the space of code parameters (R, δ)

M.Marcolli Mathematics & Linguistics



Bounds on code parameters

• Gilbert-Varshamov curve (q-ary codes)

R = 1−Hq(δ), Hq(δ) = δ logq(q−1)−δ logq δ−(1−δ) logq(1−δ)

q-ary Shannon entropy: asymptotic behavior of volumes of
Hamming balls for large n

• The Gilbert-Varshamov curve represents the typical behavior of
large random codes (Shannon Random Code Ensemble)

• Plotkin curve R = 1− δ/q: asymptotically codes below Plotkin
curve R ≤ 1− δ/q
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• more significant asymptotic bound (Manin ’82) between
Gilbert-Varshamov and Plotkin curve

1− Hq(δ) ≤ αq(δ) ≤ 1− δ/q

separates a region with dense code points with infinite
multipliciites (below) and one with isolated code points with finite
multiplicity (good codes above): difficult to find examples

• asymptotic bound not explicitly computable (related to
Kolmogorov complexity of codes, Manin–Marcolli)

• difficult to construct codes above the asymptotic bound:
examples from algebro-geometric codes from curves (but only for
q ≥ 49 otherwise entirely below the GV curve)
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• look at the distribution of code parameters for small sets of
languages (pairs or triples) and SSWL data
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• in lower region of code parameter space a superposition of two
Thomae functions (f (x) = 1/q for x = p/q coprime, zero on
irrationals)

and behaves like the case of random codes with fixed k = log2(N)
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Thomae function

defined by

f (x) =


1 x = 0
q−1 x ∈ Q, x = p/q, q > 0
0 otherwise.

note that fixing absolute rate of code k = log2(#L)

(δ(C ),R(C )) = (
d

n
,
k

n
)

for k = 1 looking at graph of d/n 7→ 1/n where n =
parameters mapped for entire set L
so expect to see overlapping graphs of several Thomae
functions

the interesting part is where the points accumulate
(depending on d/n values)

lower regions of (δ,R)-space: random codes at most at GV
bound
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• more interesting what happens in the upper regions of the code
parameter space

• take larger sets of randomly selected languages and syntactic
parameters in the SSWL database

codes better than algebro-geometric above GV, asymptotic, and Plotkin

very far from random identically distributed variables behavior
M.Marcolli Mathematics & Linguistics



Example: estimated dimension of syntactic parameters

* Alexander Port, Taelin Karidi, Matilde Marcolli, Topological
Analysis of Syntactic Structures, Math. Comput. Sci. 16 (2022),
no. 1, Paper No. 2, 68 pp.

Dimension of SSWL syntactic variables peak d ∼ 30
(116 dim ambient space)

Dimension of LanGeLin syntactic variables peak d ∼ 15
(83 dim ambient space)
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Family specific relations: dimension drop from d ∼ 30 of SSWL

Niger-Congo languages (SSWL data) d ∼ 20

Indo-European languages (SSWL data) d ∼ 23

also see more data analysis in

* Sitanshu Gakkhar, Matilde Marcolli, Syntactic Structures and the
General Markov Models. Math. Comput. Sci. 18 (2024), no. 1,
Paper No. 4.
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Heat Kernel Method

Andrew Ortegaray, Robert C. Berwick, Matilde Marcolli, Heat
Kernel analysis of Syntactic Structures, Math. Comput. Sci.
15 (2021), no. 4, 643–660.

General questions:

What is the structure of relations between syntactic
parameters?

Which parameters cluster together?

Do syntactic parameters span a manifold?

What is the geometry/topology of this manifold?

Are some parameters more dependent/independent from
others?
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Geometric methods of dimensional reduction:

M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality
reduction and data representation, Neural Comput. 15 (6)
(2003) 1373–1396

• Problem: low dimensional representations of data sampled from a
probability distribution on a manifold

• Main Idea: build a graph with neighborhood information, use Laplacian
of graph, want low dimensional representation that maintains local
neighborhood information

• Key Result: graph Laplacian for a set of data point sampled from a
uniform distribution on a manifold converges to Laplace–Beltrami
operator on the manifold for large sets (using heat kernel and relation to
Laplacian)

• Use to construct optimal (preserving information on manifold
geometry) mapping of data sets to low dimensional spaces via
eigenfunctions of Laplacian
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Laplace–Beltrami operator and heat kernel

• on RN

∆f (x) =
∑
i

∂2

∂x2i
f (x)

heat kernel equation

∂

∂t
u(x , t) = ∆u(x , t)

solutions with initial heat distribution f (x)

Ht f (x) =

∫
RN

f (y)Ht(x , y)dy

convolution with heat kernel

Ht(x , y) = (4πt)−k/2 exp(−∥x − y∥2

4t
)
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Heat kernel and approximating the Laplacian

• Laplacian and heat kernel:

−∆f (x) =
∂

∂t
Ht f (x)|t=0

= lim
t→0

(4πt)−k/2

t

∫
RN

e−
∥x−y∥2

4t f (y)dy−(4πt)−k/2

t
f (x)

∫
RN

e−
∥x−y∥2

4t dy

• approximation: (uniform sampling of y)

(4πt)−k/2

t n
(f (x)

n∑
i=1

e−
∥yi−x∥2

4t −
n∑

i=1

e−
∥yi−x∥2

4t f (yi ))

= C
(4πt)−(k+2)/2

n
Lt,nf

• how to extend this idea from flat RN to curved manifolds?

M.Marcolli Mathematics & Linguistics



Laplacian approximation on manifolds

geodesic distance and ambient Euclidean distance
distM(x , y) ≥ ∥x − y∥
exponential map expx : TxM→M takes lines through origin
to geodesics

on compact manifolds chord distance approximates geodesic
distance

distM(x , y) = ∥x − y∥+ O(∥x − y∥)
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Step 1: replace integral onM with integral on small open set U
around a point x ∈M

• can do this because for U ⊂M open and d2 = infy /∈U ∥x − y∥2∣∣∣∣∫
U
e−

∥x−y∥2
4t f (y)dµy −

∫
M

e−
∥x−y∥2

4t f (y)dµy

∣∣∣∣ ≤ M ∥f ∥∞ e−d2/4t

• then can use exponential map v 7→ expx(v) to parameterize
neighborhood U of x ∈M

• at point x where exp map centered

∆Mf (x) = ∆Rk f̃ (0), f̃ (v) = f (expx(v))

S. Rosenberg, The Laplacian on a Riemannian manifold,
Cambridge University Press, 1997.
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The role of scalar curvature

exp map locally invertible: B ⊂ U with inverse, change coords∫
B
e−

∥x−y∥2
4t f (y)dµy =

∫
exp−1

x (B)
e−

ϕ(v)
4t f̃ (v) det(d expx(v))dv

with ϕ(v) = ∥v∥2 + O(∥v∥4) (chord and geodesic dist)

asymptotics of exp map

|∆Rk det(d expx(v))| =
κ(x)

3
+ O(∥v∥)

κ scalar curvature

∆Rk (f̃ det(d expx(v))(0) = ∆Rk f̃ (0) + k
κ(x)

3
f (x)
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Cancellation of curvature terms

• then obtain

∂

∂t
((4πt)−k/2

∫
B
e−

∥x−y∥2
4t f (y)dµy )|t=0 = ∆Mf (x)+

k

3
κ(x)f (x)+Cf (x)

using previous and relation of ∆Mf (x) and ∆Rk f̃ (0)

• then obtain

lim
t→0

(4πt)−k/2(

∫
M

e−
∥x−y∥2

4t f (x)dµy−
∫
M

e−
∥x−y∥2

4t f (y)dµy ) = ∆Mf (x)

Belkin–Niyogi method main idea:
• then show that using a sampling approximation for Rk this gives

lim
n→∞

(4πtn)
−(k+2)/2Ltn,nf (x) =

∆Mf (x)

Vol(M)

where Ltn,n is a graph-Laplacian approximation of the heat kernel
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Main idea of Belkin–Niyogi heat kernel method

k-dimensional compact smooth manifoldM isometrically
embedded in some RN

data S = {x1, . . . , xn} sampled from a uniform distribution in
the induced measure onM
associated graph Laplacian L = Lt,n = Dt,n −W t,n

Lt,nf (x) = f (x)
∑
j

exp(−
∥x − xj∥2

4t
)−

∑
j

f (xj) exp(−
∥x − xj∥2

4t
)

diagonal Di ,i = Dt,n
i ,i =

∑
j W

t,n
i ,j
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Main Result: for sampled data S = {x1, . . . , xn} from uniform
distribution onM take tn = n−(k+2+α)−1

with α > 0: for some
C > 0

lim
n→∞

C
(4πtn)

− k+2
2

n
Ltn,nf (x) = ∆Mf (x)

for f ∈ C∞(M) with ∆M = Laplace-Beltrami operator onM

• this shows the graph Laplacian of a point cloud data set
converges to the Laplace–Beltrami operator on the underlying
manifold
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Why useful for low dimensional embeddings?

given map f :M→ R, points near x will map to points near
f (x) if gradient ∇f is sufficiently small

minimizing square gradient reduces to finding eigenfunctions
of the Laplace–Beltrami operator: Stokes theorem∫

M
∥∇f ∥2 =

∫
M

f∆Mf

normalized local extrema are eigenfunctions

λn = inf
Xn

∫
M ∥∇f ∥

2∫
M f 2

Xn complement of span of previous eigenfunctions

• Use to construct optimal mapping of data sets to low
dimensional spaces via eigenfunctions of Laplacian
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Low dimensional embeddings algorithm
• setting: data points x1, . . . , xk ∈M ⊂ Rℓ on a manifold; find
points y1, . . . , yk in a low dimensional Rm (m << ℓ) that represent
the data points xi

• Step 1 (a): adjacency graph (ϵ-neighborhood): an edge eij
between xi and xj if ∥xi − xj∥Rℓ < ϵ

• Step 1 (b): adjacency graph (n nearest neighborhood): egde eij
between xi and xj if xi is among the n nearest neighbors of xj or
viceversa

• Step 2: weights on edges: heat kernel

Wij = exp

(
−
∥xi − xj∥2

t

)
if edge eij and Wij = 0 otherwise; heat kernel parameter t > 0
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• Step 3: Eigenfunctions for connected graph (or on each
component)

Lψ = λDψ

diagonal matrix of weights Dii =
∑

j Wji ; Laplacian L = D −W
with W = (Wij); eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λk−1 and ψj

eigenfuctions
ψi : {1, . . . , k} → R

defined on set of vertices of graph

• Step 4: Mapping by Laplace eigenfunctions

Rℓ ⊃M ∋ xi 7→ (ψ1(i), . . . , ψm(i)) ∈ Rm

map by first m eigenfunctions

• Belkin–Niyogi: optimality of embedding by Laplace
eigenfunctions
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Heat Kernel analysis of Syntactic Parameters

• Connectivity-clustering properties in ϵ-neighborhood and
nearest-neighbor (SSWL data and LanGeLin data)

M.Marcolli Mathematics & Linguistics



Graphs with ϵ-neighborhood Longobardi data
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Graphs with ϵ-neighborhood Longobardi data
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Graphs with ϵ-neighborhood Longobardi data
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Structures of parameters relations in the LanGeLin parameters
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Graphs with ϵ-neighborhood SSWL data

The ϵ-neighborhood construction is better suited to gain
connectivity information in the Longobardi data: the SSWL data
remain highly disconnected (only small local structures)

compatible with SSWL being composed of different blocks of
parameters describing different aspects of syntaxM.Marcolli Mathematics & Linguistics



Structures of parameters in SSWL data

Explanation: properties of Standard Negation, connections Neg
06-10 emerge earlier (some are negation through tone as in some
Niger-Congo languages and some Oto-Manguean, some other
forms like reduplicated verb, infix); then cluster with other
negation forms like Neg 01-05 (position of negation particle with
respect to verb); expressed in different language families, relations
are not family-specific
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Graphs with n-neighborhood Longobardi data
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Graphs with n-neighborhood Longobardi data
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Graphs with n-neighborhood SSWL data
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Graphs with n-neighborhood SSWL data

M.Marcolli Mathematics & Linguistics



Variance

graphs depend on ϵ-neighborhood and on t-heat kernel variable

how embeddings depend on parameters: where the obtained
coordinates by Laplace eigenfunctions are a set of independent
coordinates that captures as much as possible of the data structure

as in the case of other dimensional reduction methods (like PCA)
high variance indicates independent resulting variables capture
directions of highest variance in original data
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Parameters evolve as dynamical variables (historical linguistics)

can model evolution as a spin glass system with a set of spins
(parameters) for each node (language) and interaction
between languages proportional to biligualism; interaction also
between parameters (Lagrange multipliers from relations alter
the dynamics)

phylogenetic trees of language families (usually based on
morphology) and correlation to syntactic parameters:
significant discrepancies with respect to identically distributed
independent random variables of phylogenetic Markov models
on trees

topological structures in parameters distributions within given
language families (persistent topology structures, sometimes
describable in terms of historical linguistics)
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general question of the Geometry of Syntax

region of “possible languages” (A. Moro) among all
configurations of syntactic parameters (I.Roberts,
G.Longobardi, L.Rizzi,...)

estimations of dimension and geometric structure of locus of
possible languages (topology/geometry)

comparison of sections σL and projection ΠL of externalization
(determined by syntactic parameters) for different languages L

distinguishing parameters that affect word order from
parameters detecting other syntactic properties

Question of the geometry of syntactic parameters is a main open
problem suitable for mathematical treatment:
parameter setting dynamics
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Parameter setting and learnability problem

What is needed:

large ambient space of parameters, with actual smaller
dimensional submanifold (not directly known)

language L determines parameters πL = (πL,i )
N
i=1

the πL,i are instructions for selecting syntactic objects
(constraints)

Note: don’t need to learn a generative grammar (as in earlier
models): need to learn a set of constraints that filter already
formed structures

significant improvement as there are non-learnability results in
formal languages settings and learning grammars
(Berwick–Niyogi)

small set of examples (from specific language) should suffice
to determine parameters (relations between parameters help),
which in turn then suffice to select larger structures
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