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Main Topic: Chomsky's Merge and the Strong Minimalist Thesis
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Key point: all aspects of this linguistic model have a mathematical
formulation and properties of the model fall into place by
structural necessity of the corresponding algebraic formalism
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Change of perspective: Strings versus Structures
@ what language appears to look like

0022010021112000121220000200211 . ..

@ what language actually looks like

— \
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Main aspects of the Merge model of syntax (in its most recent
formulation: 2013 onward)

syntactic objects

°
@ workspaces
@ accessible terms
°

Merge action on workspaces

externalization

all these notions have a precise mathematical formulation that
shows many aspects of the linguistic model that have empirical
grounds in fact follow by constraints from the algebraic structure
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Core computational process of structure formation

@ simple core computational structure: Merge

/ Root

/\

A4S

This process generates structures

o called hierarchical structures (or syntactic objects) in linguistics
o called non-planar (or abstract) binary rooted trees by
mathematicians
lexical items (at leaves) combined into a hierarchical structure; the
tree is dangling from the root, not lying in the plane, so the lexical
items at leaves are not an ordered string of symbols
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@ a computational process of structure formation

@ similar computational structures are natural in the context of
fundamental physics (Feynman graphs)
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syntactic objects
e (single) syntactic “structure building” operation
@ “binary set formation”

@ example: merging two lexical items like the and apple yields
the (unordered, binary) set, {the, apple}

e recursive structure building: {«, 8}, {7, {a, 8}}, {a, {7, 0}}
etc

@ syntactic objects: obtained by repeated applications of this
binary set formation operation

N. Chomsky, Some Puzzling Foundational Issues: The Reading Program, Catalan
Journal of Linguistics Special Issue (2019) 263-285 (and successive refs)
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magma of syntactic objects: free nonassociative commutative
magma

@ start with a set SOq of lexical items and syntactic features

@ a binary operation 91 commutative, nonassociative:

M, B) = M(B, ) but  M(y, M(ev, B)) # MM(, @), B)

@ set of syntactic objects SO is the free nonassociative
commutative magma generated by SOq

SO = Magma,,, .(SOo, M)

@ all elements obtained by repeated application of 91 starting
from elements of SOy
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free magma and abstract binary rooted trees

@ the free nonassociative commutative magma on a set X is
canonically isomorphic to the set Tx of abstract binary rooted
trees with leaves decorated by elements of the set X

Magmana,c (SO0, M) = Ts0,

@ so syntactic objects T € SO = Tsp, are abstract binary
rooted trees with leaves decorated by lexical items

@ abstract= no assigned planar embedding (also called
non-planar)

@ leaves do not form an ordered string of elements in SOy

Note: “binary trees” here means “full binary trees”
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tree-notation versus set-notation

@ “tree notation” versus “set notation” (linguists prefer “set
notation” while “tree notation” is common in mathematics)

@ examples

(0. 8) =M0.8) = 7= 7%

{a, (B = "> = <> ="> = <
By oy By By
@ of course choice of notation is irrelevant and does not change
anything, but notation can be suggestive of some rather than
other types of operations on trees or can be potentially
misleading (suggesting planarity when not assumed)
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Core computational structure of Merge
@ free non-associative commutative magma ¥

@ elements are balanced bracketed expressions in a single
variable x, with the binary operation (binary set formation)

(@, B) = M(a, ) = {a, B}

where «, 8 are two such balanced bracketed expressions

@ equivalent description: elements are finite binary rooted trees
(no assignment of planar structure)

(Do e

@ operation on trees

M(T,T)= 7 3
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Generative process of T

@ same formal trick: take vector space V(T) (say over Q)
spanned by elements of ¥ (convenient for writing a list of
possibilities as a sum)

@ mathematical note: the magma operation 9t on ¥ identifies
V(T) with the free commutative non-associative algebra
generated by a single variable x (free algebra over the
quadratic operad freely generated by the single commutative
binary operation)

@ assign a grading (a weight, measuring size) to the binary
rooted trees by the number of leaves, ¢ = #L(T), so the
vector space decomposes V(%) = &,V(%),

@ in a formal infinite sum X =), X; of variables X, in V(%),
X = M(X, X)
fixed point equation
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@ the equation X = M(X, X) can be solved recursively by

degrees
n—1

Xp = M(X, X)p =D M(Xj, Xn_j)
j=1
@ solution X; = x, Xo = {xx},
X3 = {x{xx}} + {{oxpx} = 2{x{xx}},
Xy = 2{x{x{xx}}} + {{xx}{xx}}, and so on
o coefficients: {x{xx}} and {{xx}x} same abstract tree (while
two different planar embeddings)

@ recursive solution describes the generative process of T
through the Merge operation 91
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Recursive fixed point equation: Dyson—-Schwinger

@ case above X = M(X, X) is special fundamental case of
combinatorial Dyson—Schwinger equations

X = B(P(X))

with X = 3", X, by degrees, P(X) a polynomial function
(here a single quadratic term) and B a type of (possibly
n-ary) Merge operation

@ Dyson—Schwinger equations and recursive construction of
solutions of equations of motion in quantum field theory

(more on this later!)
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workspaces

LEXICON WORKSPACE

m,
m;
ms .. - Input to Merge
m,

Agy
nsey,

O foy; Dt

X

o g W igy® |2

@ sentences built by repeated applications of Merge (this
process is called a “derivation™)

@ starting from an initial set of lexical items, syntactic features

@ the operations take place in a kind of “computational
scratchpad,” called a workspace (WS)

@ workspace is the set of available computational resources
(a multiset of syntactic objects)

@ Merge transforms a workspace into a new workspace

(“Merge & SMT” §1)



workspaces

@ binary forests: finite disjoint unions of abstract binary rooted
trees
F=Tiu4.---uT, with T,'ESS(QO

@ set of workspaces = set of binary forests §s0,

e Merge operations map the set Fso, to itself (transform
workspaces into new workspaces)

This action should account for two types of operations: structure
formation (External Merge) and movement/transformation
(Internal Merge), this one requires accessing substructures
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accessible terms

@ accessible terms of a syntactic object T: subtrees T,, with v
a non-root vertex of T and T, the subtree below v

@ accessible terms of a workspace F = LI, T,: accessible terms
of each T, and components T,

@ examples of accessible terms:
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o tree T € Tsp, and v € V(T): subtree T, rooted at v
e V°(T) non-root vertices of T

@ accessible terms of T
Acc(T)={T,|v e V°(T)} and Acc/(T)={T,|ve V(T)}
@ workspace F € §s0, with F = U,z T,
Acc'(F) = |_| Acc'(T,)

@ What mathematical structure governs workspaces and
accessible terms?

@ answer: Workspaces form a Hopf algebra
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algebraic operations governing workspaces and accessible terms

@ assemblying of workspaces: product operation U that groups
together a collection of accessible terms into a workspace

@ extracting accessible terms (disassemble operation):
coproduct operation A that extracts computational material
from the workspace for use by Merge operations

@ an algebraic structure that has compatible product/coproduct
operations that compose/decompose combinatorial objects is
the kind of structure modelled by Hopf algebras

@ important aspect of the coproduct extracting accessible terms
(as part of Merge operation): this makes Merge both a
structure builder and a parser (we'll discuss this more in
modeling the syntax-semantics interface)
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What is a Hopf algebra?

@ mathematical method of describing
composition—decomposition

@ product: an “assemble operation” (two inputs one output) for
how to assemble different objects together

@ coproduct: a “decomposition operation” (one input two
outputs) listing all possible ways of decomposing an objects
into parts

@ compatibility between these two operations

(a relation when interchanging order of product/coproduct)
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A formal definition of Hopf algebra
@ Hopf algebra H is a vector space over a field K, endowed with

e multiplication m: H g H — H;

o unitu:K—H;

e comultiplication A : H — H ®k H;
e counit e : H = K;

e antipode S: H > H

multiplication is associative
comultiplication is coassociative

u is multiplicative unit and € is comultiplicative counit

comultiplication and counit are homomorphisms of algebras
and multiplication and unit are homomorphisms of coalgebras

S relates m and A and v and ¢

@ all this expressed by diagrams

@ the formal requirements above are what constitutes a
good pair of composition/decomposition operations
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multiplication: associativity and unit

H o Hox H I 4 ox H

Jiaom |

Hox H—— H

HRxH

Kok H m H g K

commutativity of these diagrams
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comultiplication: coassociativity and counit

H®KH®KH<@H®K7{

asa | s

Hex H H

A

H I H

K®r H A H Ik K

commutativity of these diagrams: coassociativity

(d®A)ocA=(A®id)o A
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compatibility of product and coproduct
compatibility between product and coproduct:

HoH—" H A L HoH
lA@A m®mT
HOIHOIHQIH———HIHIHRIH

idRTRid

where T: HROIHOHRQH - H®HKRH®H permutes the two
middle factors:

AolU=(U®U)oTo(A®A)

behavior of unit and counit with respect to coproduct and product:

H

HOH o H and HOH X
eRe €
/ u@u /
K K

using the identification K ® K = K.
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antipode: further compatibility, commutativity of diagram

HogxH—>H<—HexH

id®5T uoeT S®idT

H®KHE——%——§H®KH

@ usually the antipode is an additional constraint

@ withoug antipode only have bialgebra not Hopf algebra
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graded connected Hopf algebras
e Hopf algebra is graded H = @©y>oH/

@ and connected: Hop = K
@ m, A compatible with grading
m:He®@Hi = Horrk
A:He— P Hao My
a+b=¢(
then antipode comes for free (determined by the bialgebra)
@ S is determined by the rest of the structure: is not an

additional constraint
@ S constructed inductively using coproduct and product

S(x)=-x=>_ S(x)x"

o inductively for A(x) =x®1+1®@x+ > x' @ x” with x’, x”

terms of lower degree



Commutative Hopf Algebras and Affine Group Schemes
o Commutative algebra A over K: functor

X : CommAlgg — Sets

X(R)= H
(R) COmI?lTng(A, R)

@ X(R) set of R-points of the affine scheme X dual to A
o but if H € CommAlgy is also a Hopf algebra then functor

G : CommAlgyg — Groups

G(R) - COEI?ITIgK(A’ R)

with group operation
(61 % ¢2)(x) = (61 @ ¢2)A(x)
and inverse given by the antipode
¢~ (x) = #(5(x))

and unit from the counit of H
e G is an affine group scheme
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simple examples of affine group schemes

e additive group G, dual to Hopf algebra H = K[¢t] with
A(t)=t®1+1®t (primitive)

(¢1 % @2)(t) = (¢1 ® P2)A(t) = Pu(t) + H2(t)

e multiplicative group G, dual to Hopf algebra # = K[t, t~}]
with A(t) =t ® t (grouplike)

(91 % ¢2)(t) = (61 @ ¢2)A(t) = ¢1(t) - P2(t)
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Combinatorial Hopf Algebras

@ graded connected H = ©y>oH, with Ho =K

e linear basis By of Hy consists of combinatorial objects (e.g.
trees, graphs, matroids, etc)

e grading is a measure of “size” of the objects (e.g. number of
leaves in a binary tree; number of edges in a graph, etc)

@ coproduct describes decomposition operations: typically terms
x' ® x" in A(x) are pairs subobject—quotient object

@ usually asymmetric role of two sides (two channels) of the
coproduct (non-cocommutative)

o Ho = K: only one object of size zero

@ G.C. Rota, Hopf algebra methods in combinatorics, Collog. Internat. CNRS
260, CNRS, Paris 1978, pp. 363-365.

@ J.L. Loday, M. Ronco, Combinatorial Hopf algebras, in “Quanta of maths”, Clay
Math. Proc. 11, pp. 347-383, Amer. Math. Soc., 2010
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back to workspaces: composition and decomposition
e vector space V(Fso,) spanned by forests

e grading V(8s0,) = ®«V(Ts0,,k) With Tso, « binary rooted
trees with k leaves; §so, k forests with k leaves,

F=U,T, with T, € Tsok, and » ki=k

® V(Fs0,,0) = K formal “empty forest” 1

@ product: assemble workspaces (forests) by disjoint union of
syntactic objects (trees)

(T]_,T2)’—>F: TLU Ty and (Fl,FQ)HF:Fll_ng
@ product is compatible with grading

U V(Fs00,k) © V(8500,0) = V(S500,k+¢)
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@ coproduct: disassembles workspaces into constituent parts

@ need a disassembling (coproduct) operation A that is
compatible with LI by

Aoll=(U®U)oTo(A®A)

@ two different choices:
@ simplest one: decompose workspace into constituent syntactic

objects
@ more interesting decomposition: extract accessible terms
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simplest coproduct: partitions of the workspace

@ coproduct where all trees are primitive elements
A(T)=T,1+1® T, get for A(F) = U,A(T,)

A(F) = Z (Uaczr Ta) @ (Uaezr Ta) - for F =Uacz T,
I=7'uT"

@ behaves like the additive group (in variables T,)

e would get only partitions of the workspace, no access to
substructures (accessible terms)

e would get External Merge but no movement (Internal Merge)
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coproduct: admissible cuts

@ inatree T € T5p, consider forests F, C T
F,=T,U---UT,, of accessible terms

@ coproduct

AT)=Tel+10T+Y FR&T/F

@ such F, corresponds to an admissible cut C of T with forest
mc(T) = F, and remaining tree pc(T) = T/F,
@ admissible cut: at most one cut on any path from root to leaves

e Warning: some care in defining T /F, for coassociativity
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(D) + (D)
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OB Q) -
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admissible cuts
@ coproduct in terms of admissible cuts
AT)=Tel+10 T+ 7c(T)®pc(T)
C
mc(T)=F =T, U---UT,,
collection of accessible terms that are extracted by the cut

@ pc(T) tree that remains attached to the root of T after cut

@ note that pc(T) is not a (full) binary tree: it has
non-branching vertices
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admissible cuts: higher arity

o let %500 denote the set of all forests (not necessarily binary)
with leaves labels in the set SOy

° V(§§go) subspace of V(§s0,) spanned by “at most n-ary”
forests (i.e. components are possibly non-full n-ary trees)

° admissi~b|e cuts give coproductN
A V(Ss0,) = V(Sso,) @ V(§so,) which preserves these
subspaces

D :V(E55,) = V(F5E,) © V(ESS,)

@ in particular A : V(§§(290) — V(§§(290) ® V(§§(290) and if
applied to(full) binary trees

A V(Fs0,) = V(Sso,) ® V(§§c290)
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admissible cuts: Hopf algebra and comodule
@ Notation: write A” for coproduct with admissible cuts
° (V(@ééo),u, AP) is a graded connected Hopf algebra

@ all properties are simple to check: only point that requires
some discussion is coassociativity

(id ® AP) o A? = (AP ®id) o A”

o lef: admissible cut C’ on pc(T) of previous cut C
o right: admissible cut C on 7/ (T) of previous cut C’
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admissible cuts: comodule
° V(3so,) C V(§§(290) is subalgebra and right comodule

@ right comodule M over a coalgebra H is a K-vector space
with a linear map
EM—-MeH

(id®A)of=({®id)og
(id®e) ot =id
e here M =V (Fso,) with & = Ap’w&soo)
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Other possible forms of “remainder term” T/F,
@ case seen above T /PF, := pc(T) for admissible cut C with
mc(T)=F,

e different possibilities for what T /F,

@ contraction T/°F,
@ keep non-branch nodes (as trace) T/°F,
© deletion T/9F,

all these play different roles in the linguistic model
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—

contract

a B vy & €
delete delete

delete with trace

w
Y
contract
delete and
contract
v & ¢

different roles: “deeper copies are interpreted at Cl interface but
not expressed at SM interface”
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different roles (and different alg properties):

© Quotient T/T,: can go to the Cl (conceptual-intensional;
syntax-semantics) interface for interpretation

feft v & €

@ Quotient T/9T,: can go to SM (sensory-motor) interface for

externalization

v 6 ¢

© Quotient T/PT,: intermediate relating them algebraically and
useful in recursive parsing

A

Y 6 €
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Contraction coproduct

@ when using the contraction quotient T /T, get coproduct A°©

A(T)=Te1+10T+> FeT/F

@ in T/°F, contract every component T,, of
F,=T,U---UT,, to its root vertex v; with new label F-

o Note: because root vertex v remains in T /T, grading by
number of leaves not compatible

@ a (full) binary rooted tree with n leaves has 2n — 1 vertices
and 2n — 2 edges

@ can use number of edges as grading, then compatible with
contraction coproduct A€ (and with product LJ)

@ but now graded but not connected: single leaves are of degree
zero (isolated lexical items)
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Bialgebra vs Hopf algebra
e consider V(§so,) with contraction coproduct A€

@ coassociativity holds (argument like for admissible cuts)
(Id® A°) o A = (A ®id) o A€

@ compatibility of product and coproduct also, so get bialgebra

@ the fact that degree zero includes subspace dimension
#S80Og > 1 (not connected) affects existence of antipode:
A(a) = a ® a non-invertible grouplike elements

o (V(8so,), U, A°) bialgebra dual to an affine semigroup
scheme

@ have antipode (hence Hopf algebra) on quotient by ideal
generated by 1 — a for a € SOy
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Note on SOq-labels at the leaves
@ SOy is the set of lexical items and syntactic features

@ syntactic features carry information on role of lexical items in
sentence

@ example: in the “buffalos” sentence all same lexical items but
with different syntactic features

@ the set SOy is possibly large but finite

@ so how to interpret the label F+ at the new leaf v of the
contraction quotient T /<T,?

@ it seems now have a possible label F for every T € SO (an
infinite set!)

@ but... don't need to remember all of T in the label F only a
syntactic feature (already available in the finite set SOp) that
describes the role of the structure T in the larger structure in
which the quotient is taken

@ so T/°T, is still an object in SO = Ts0,
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Deletion quotient T/9T,

o first consider the “at most binary” tree pc(T) = T/PT, (here
C is an elementary cut of a single edge) and then take the
maximal binary rooted tree in Tsp, determined by T /?T, (by
contraction of some edges)

o same for T/9F, obtained from pc(T) = T/°F,

@ Note: this may be the empty tree:

T = 04/\5 with admissible cut C of both edges

single root with no label is not in Tsp, so in this case
T/4F, =1
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Brief discussion of coassociativity for deletion:

o for A9 list of terms on the two sides of
(id® A9 o A? £ (A9 ®id) o A?

generally match but wrong multiplicities

@ can describe as
(ide® A% oA90 A= Ao (A ®id)o A

for A an endomorphism (outer) that assign multiplicities to
edges and vertices
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¢! r}f A‘l C./
® Cy — 5 e A\
x ¥ N « Py d
« BT \l@A
{]
;$ﬁ®;
AN /'
. ® — .@|e]
N P ¥ « P Y
' /
¢ o4
o ® el -®-o/\
® P ~ A p ks

cutting first C leaves two cuts C’ in (A? ® 1)A9(T) producing
two identical terms but only one in (1 ® A9)AY(T)
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Digression: Drinfeld quasi-Hopf algebras
@ H unital associative algebra
@ coalgebra non-coassociative but lack of coassociativity
measured by an invertible element ® € H @ H @ H

(1®A)oA(x) =d(A®1)oA(x))d!
@ satisfying a pentagon identity
(1R1A)(P)(A®1®1)(P) =(10P) (1A®1)(P) (P1)

@ and unit and counit identities also modified by ¢
@ quasi-Hopf algebras in context of quantum groups

@ Question: case where instead of ® ¢ H ® H ® H have an
automorphism Aof H @ H @ H

1@ A)oA=Ac(A®1)oAocA?
or an endomorphism by taking
(1®A)oAcA=Aoc(A®1)o A



Workspaces and Hopf algebra: summary
@ Bialgebra of workspaces: H = (V(Fs0,), L, A°), Hopf algebra
modulo 1 — SOq
e Hopf algebra and comodule: H<? = (V(Sgéo), LI, AP) with
(M =V(3s00),€ = B[y (5s0,) comodule
o Deletion coproduct: H = (V(Fso,), U, A?) with correction to
co-associativity
loosely refer to “Hopf algebra of workspaces” to denote any of the
above as needed

Discussion of these differences for Hopf algebras of rooted trees:

@ D.Calaque, K.Ebrahimi-Fard, D.Manchon, Two interacting Hopf
algebras of trees: A Hopf-algebraic approach to composition and
substitution of B-series, Advances in Applied Mathematics 47
(2011) 282-308
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Projection maps

@ an “at most binary” tree to the unique maximal binary tree by
edge contraction

Mg, V(§55,) = V(Fso,)
@ delete edge to leaf with label

Moc : V(8s0,) = V(350,)
@ projection Mg c =Ty ,0MM,c

MNac: V(@so,) = V(Sso,)

@ these projections satisfy

A? = (id®Ny,) 0 AP = (id @ Myc) o A€
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action of Merge on workspaces

@ Merge acts as operators M5 s/ for pairs of syntactic objects
5,5 eSO

@ Given a workspace F = Ty U --- L T, the operator Ms s/
searches among the accessible terms of F for matching pairs
to 5,5’

@ when a matching pair is located S ~ T, and S’ ~ T,, these
two terms are merged into

f):n( Ty, TW) = Tv/\Tw

@ this new syntactic object is added to the new workspace

@ components T; T; of the old workspace that contained the
extracted terms T, and T, are replaced by cancellation of
(the deeper copies of) T, and T,

@ all other components I:_,-J = Uaxi j T, are left unchanged in the
new workspace
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action of Merge on workspaces
@ Merge operations Ms s/ pairs S, S’ of syntactic objects

Mss : Fes FF =T, T,)UT;/T,UT;/T,UF;,

where S~ T, C Tijand '~ T, C T,
(written as WS’ = Merge(S, S’, WS) in the notation of “Merge & SMT")

@ Note: this action contains various forms of Merge (external,
internal, sideward)

m.g’s/ = UO(B®1)0(5575/ oA

@ coproduct A extracts and displays all accessible terms
@ Js s/ locates matching pairs of accessible terms
© grafting operator

B:TiU--UTy= N

T1 T - T,

@ product LI recomposes the new workspace



o different forms of the coproduct
A? = (id®Ny,) 0 AP = (id ® Myc) o AC
@ correspondingly on Merge operation
Mss = Uo(Bwid)o (id®My,)odss o AP
= Uo(B®id)o(id®My.)ods s o AC.

@ quotient T/°T, with 7 at the contraction vertex is what
goes to the Cl (syntax-semantics) interface for parsing, while
T/9T, =Ng(T/°T,) goes to externalization

@ externalization after all algebraic structure-building operations
have been done (so A9 not as good as A€ not problematic)

M.Marcolli Mathematics & Linguistics



matching terms
@ two syntactic objects S, S’ € Tso,
e operator vs s/ : V(§s0,) = V(Ts0,)

F F=5u¢s
vs.5(F) = { 0 otherwise

operator ds s/
ds.sr =7s,5 ®id

matching of terms (in the left channel of the coproduct)

in particular keeps only terms where forest with two
components in left-channel (for a binary Merge)
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Cases of Merge (too many forms of Merge?) The new work space
looks like
F'=(T,, T,)UF/(T,UTy,)

different cases according to where T,, T,, located in F
@ External Merge: accessible terms used are full components

F/ = m( Taa Tb) U ﬁa,b
with F=U;T; = T,U T, U I:_a,b with /:_;,,7[, = UizapTi

@ Internal Merge: accessible terms used are an accessible term
T, of a component T, and the remainder T,/ T,

F'=(T,, T./T,) UF,

with F = U; T; = T, U Fy with F = Uiza T
@ Sideward Merge: accessible terms from different components

F'=9(T,, Ty)UT./T, UTy/Tw UF.p
Fl=9(T,, T) U To/ T, UFap
F'=(T,, T,)UT./(T,UT,) UF,



Selection of External and Internal Merge
e empirical linguistic reasons: only External/Internal Merge

@ Example: Sideward Merge would generate non-grammatical
constructions like
“Which sister of John wonders who likes a picture of”

@ so want the Sideward Merge cases to be eliminated by some
optimality principle (more costly, less efficient)

@ what is the cost function? that makes Sideward Merge more
costly than EM and IM?

@ Minimal Search, Minimal Yield (discussion below)
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Cases of Merge: External Merge
an example (from “Merge & SMT")

e workspace WS = [eaten, {the, apple}]

@ in our notation F =T U T
T, = 5/\7 with 3 =the ~ = apple

T1 the tree with a single vertex labeled by the lexical item
a =eat(en)
o perform Merge with Ms s/ with S=a ~ Ty and ' ~ T,

@ coproduct lists forests of accessible terms
AF)=FR14+1F+a@ Th+ Th e«

+alUB@y+aly@B+BUyRa+alfUy®1
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A(eatenl) — ™~ ) =eatenll — >~  ®@I1+1®eaten] ~ >~
the apple the apple the apple

t+eaten® ~ N+ 7 N ®eaten
the apple the apple

+ eaten LI the ® apple + eaten LI apple ® the 4 the LI apple ® eaten
eaten LI the Ll apple ®1

(this presents the complete list of all the possible extractions of accessible terms each

accompanied by the corresponding residual term)
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@ Js s/ selects term with matching

bss(aUTa®l)=allT,®1l= eaten LI — >~ @1
’ the apple

e grafting
: _
(Beid)(aU T, ®1) =4 T2®1
@ 1 is unit of product

P T
« Tzul_a T2

@ so applying LI reassembles workspace to single syntactic object

a T a T />\
eaten

the apple
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Internal Merge: preliminary discussion
@ We have a formal empty tree 1 that satisfies

M(T,1) =M, T)=T
@ so can extend magma of syntactic object to unital magma

observation: algebraic structure “below groups”:

Magma
divisibility associativity
Quasigroup Unital Semigroup
magma
identity identity
Associative
Loop quasigroup Monoid
associativity invertibility
Group

M.Marcolli Mathematics & Linguistics



@ so can have an operator s 1 acting on workspace F = Ll Ty
Ms1=Uo(B®id)odsioA
@ but here 651 = ds taking term
T,@T,/T,UF=T,UleT,/T,UF,

of coproduct with T, ~ S
e and B(T,U1)=M(T,,1)=T,
@ so new workspace F' = Mg 1(F) is

T,UT,/T, UF,

Note: one of linguistic reasons for introducing workspaces, Internal
Merge deposits a copy T, of the extracted accessible term in the
workspace... this is done here by the operation 9is 1
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Cases of Merge: Internal Merge
@ once have workspace T, U T,/ T, U F,
o proceed with Ms sr where S~ T, and ' ~ T,/T,

@ obtain new workspace
Mr, 7,7, M7, 1(F) = M(T,, T,/ T) U F,

o Internal Merge is My, 7,/7, o M7, 1
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Comment on Internal Merge
o the operation M1 does not really “exist in isolation” only in

composition as Internal Merge (has wrong effect on WS's size
etc to exist on its own: see later!)

@ so IM not really a “composite operation”

@ Note: could eliminate 95 1 step entirely if make grafting B
act on terms T, ® T/ T, instead of terms T, U T /T, ® 1, but
this requires a “coindexing” problem, where need to keep
track of which component in a forest (on left or right of
coprod) will use for input.
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Internal Merge: an example (from “Merge & SMT")
@ check that Internal Merge described this way is same as usual
linguistics description
@ start with workspace WS = [{was, {eaten, {the, apple}}}]

@ in our notation

F=T= =& >

was I}

eaten
the apple

e perform Merge with Ms s» with S = T and
S — P

5 = /\

v the apple

@ according to our description first act with 9is/ 1 and then
with 9)?5/5/,5/
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@ use notation

Tl:a/\,ﬁ and TzZ,}//\(g

ds:1 finds a match in the coproduct A(T): term

=g 3=T/y 5=T/T

@ read this coproduct term as

P PN P
v 0%a pTy oH19a B

(]

then have B(TU1)=T
so Mg 1 produces an output

P T
0 sYa

M.Marcolli Mathematics & Linguistics



e then Ms/s/ s/ produces from this the new workspace

the apple was eaten

@ this is the new worspace

WS’ = [{{the, apple}, {was, {eaten, {the;apple}}}}]

@ so our description of Internal Merge matches what expected
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Internal Merge: an analogy with Peano arithmetic
@ von Neumann construction of the natural numbers:
X = {X, {X}}

° 0=0,1=A0} 2={0,{0}}, 3 ={0,{0},{0,{0}}}, etc

@ looks like the binary Internal Merge but with a copy of the
whole X as “accessible term”

e also difference at first step with unary () — {0}
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Reducing the cases of Merge
e want only External Merge 9%(T,, Tp) U I:_a,b and Internal
Merge 9(T,, T2/ T,) U E, to be the optimal cases

@ want the other cases with T, C T, and T,, C Tp (with T,
and T}, different or same) to be less likely (more costly, less
efficient)

@ what is the cost function? that makes these more costly than
EM and IM?

@ Minimal Search, Minimal Yield

@ idea of Minimal Search: it is less expensive to locate either
two components (External) or one component and a
subcomponent of the same (Internal) than other
configurations of subcomponents across different components

@ /s this true? (.... yes, even if it seems not)
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Minimal Search for Ms s with S = T; and S’ = 3 should assign
lower cost to the copy of 3 inside T; than the one inside T»
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Cost function for Minimal Search

@ Weight of extracted accessible terms: the cost increases with the
depth at which the accessible term is located so weight of €%, with
d, = dist(v, vy) for v the root of T

@ Weight of quotient terms: cost of performing the operation
T + T/T, has weight of ¢=% because for larger d, more similar T
and T/ T, smaller less costly change

© Weight of multiple extractions/quotients: if F, = T, U---UT,,
weight €% with d, = d,, +--- + d,,

@ Cost of grafting: cost c(9M(T,1)) =0 as no change and if T has
weight €@ and T’ has weight ¢?', then we set c(O(T, T')) =d +d’
and weight €9 - ¢ = (T T")

@ Cost/weight of derivations: ¢ = 2)315 510w 0 9’)151,51/ cost
clp) = X2 c(Ms, ;) weight e(®) =[] ¢ o
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Minimal Search

@ incorporate keeping track of cost/weight of a Merge operation
93?6575/(/’_) =Uo (B6 ® id) o (55,5/ oA

B (o ) = MR B L1 B)
@ The only zero-cost Merge operations are Internal and External
Merge. All other forms of Merge have higher cost.

@ For € < 1, Internal and External Merge are the leading order
terms in any derivation.

@ In the limit € — 0 only derivations in which all the Merge
operations are Internal and External Merge remain.
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Minimal Yield and Complexity

@ Measures of size of workspaces: number by of connected
components, number « of accessible terms Acc(F), number
0 = by + « of accessible terms Acc/(F)

@ Minimal Yield:

o(P(F)) =0o(F)+1 (minimality of yield)
bo(®(F)) < bo(F) (no divergence)
a(P(F)) > aF) (no information loss)
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Counting for different quotients

o = # acc terms, 0 = by + «

o a(M(T, T))=a(T)+(T)+2
o o(M(T, T"))=0(T)+0o(T')+1
o a(T)=0a(T,) +a(T/9T,) +2
o o(T)=0(T,) +0o(T/)9T,) +1

o a(T)=a(T))+(T/T,)+1
e o(T)=0(T,)+0o(T/°T,)
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External and Internal Merge

Type of Merge | Coproduct bg o} o
External Aand A || -1 [ +2 | +1
Internal A€ 0| +1]|+1
Internal A9 0 0 0

But... the Ms 1 does not exist on its own

Merge | Coproduct || by Q o
Ms 1 A€ +1] -1 0
Ms 1 A? +1 ] 2] -1
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Other forms of Merge

(2b): M(T,, TYUT/T,

(3b): (T, T,)UT/T,LUT'/T,
(3a): M(T,, Tw)UT/(T,UTy)

Merge | Coproduct || bg Q o
(3b) Ac +1 0] +1
(3b) A9 +1| -2 -1
(2b) A° 0| +1]| +1
(2b) A7 ol o o©
(3a) A€ +1 0] +1
(3a) A +1] -2 -1

Minimal Yield eliminates all but (2b)
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No Complexity Loss
e No complexity loss: @ : Fsp, = Fs0,, for F = Uz T, set of
components 7o(F) ~ Z with induced map
b : mo(F) — mo(P(F)) (a € mo(F) to Pg(a) component of
mo(P(F)) that contains the image of the root vertex of the
component T, of F)

e No Complexity Loss for @ if for all a € mo(F)
deg(®o(a)) > deg(a)

deg(a) degree of component T in the Hopf algebra.

External Merge: deg((T;, T;)) = deg(T;) + deg(T;), OK
Internal Merge: deg(T,, T/T,) =deg(T), OK

Other forms all have components mapping to lower degree: e.g. in
M(T,, Tw)U T/T, U T'/T, root vertices of T and T’ map to
T/T, and T'/T,, lower degree
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Merge must be binary

@ Also an optimization: a Merge with any other n > 3 arity
would both undergenerate and overgenerate with respect to
binary Merge (observed by Riny Huijbregts)

@ syntactic objects of a hypothetical n-ary Merge

SO = Magma'l)(SOq, M)
@ rooted n-ary trees (without planar structure)

(Tl,...,T,,)r—)im(Tl,...,T,,): /\
@ by number of leaves

n) _ (n)
so = | |sog
k>1

)+1
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two forms of undergeneration

© achievable lengths only £ = k(n — 1) + 1 for k > 1 (excludes
examples like it rains)

@ ambiguities are not detected: example
5% 5/a>>\
a B 7 B v

(ambiguity of /| saw someone with a telescope) become
undetectable:

P
o a B v

@ undergeneration depends on syntactic objects, overgeneration
depends on action on workspaces
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action on workspaces of n-ary Merge and overgeneration
@ workspaces are n-ary forests F € SSS"()gO, same form of product
and coproduct
@ but for n-ary trees need to take quotients as contraction (so
problem with labels reappears)
@ Merge operations depending on an n-tuple of n-ary syntactic
objects (with n-ary B)

Ms, .5, =Uo(B®id)ods, s, 0A

@ overgeneration: example (by Riny Huijbregts) with n = 3 and
F={a,B,v}udUnS =(51,5,53) given by S; = «,
So =, and S3 = {«, 5,7} gives new workspace
{a, B8, {c, B,7}} U0 Un and further application with S; =,
S, =mn, and S3 = {«, 8,7} gives {6,n,{a,B,7}} (responsible
for examples like *peanuts monkeys children will throw)
(this excludes ternary Merge, unlike post-Externalization patterns like SVO)

@ can count explicit amount of undergeneration and of
overgeneration as a function of size of trees (number of leaves)
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Merge is Markovian
@ usually assumed “the operations of syntax are Markovian”

@ in the course of Merge derivations at each step the Merge
operations have access to only the current state of the
workspace

@ does this assumption follow from this formulation of Merge?

@ is there a stronger sense in which “Merge is Markovian”?
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Markov chains
e V = @,V graded vector space, basis B = U,By
o K :H — H be a linear operator
@ preserves graded subspaces, Ky : Hy — Hy
@ matrix Kp, representing K in basis B,

KB@(va) >0 VXy)/ € BZ

e Vx € B, Jy € By such that Kp,(x,y) >0
Then associated Markov chain:

@ set of states B,

@ transition matrix: stochastic matrix

K, (x,y) = c(x) 'Kz, (x,y)

with c(x) = >_ Kg,(x,y) >0 so

Ks,(x,y) > 0Vx,y € B, and ZRBE(X,)/):lVXEBg
y
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stronger form: Markov chain from linear operator

o ICp:Hy — Hy gives a stochastic matrix after a rescaling of
the base B

@ suppose there is a Perron-Frobenius eigenfunction

> Ks,(x, y)n(y) = n(x)

y

with n(x) > 0 for all x € B,

@ then )
% nwy
Ks (va): Ks (X,_)/)
‘ n(x)
is the transition matrix of a Markov chain (i.e. stochastic
matrix)

Rge(x,y)ZOVX,yEBg and Zkgé(x,y):1Vx€Bg
y
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Perron—Frobenius theorem
@ A square matrix with A; >0

@ irreducible: directed graph with n vertices and edge i — j if
Ajj # 0 is strongly connected (any two vertices connected by a
directed path)

@ then 3 Perron—Frobenius eigenfunction 7 (left/right) with
eigenvalue A\ = p(A) spectral radius and all n; > 0

D Ajni=An;
j

o A normalized by the spectral radius gives stochastic matrix

Aj =nitn; Ay
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Hopf algebras Markov chains
@ H combinatorial Hopf algebra (graded, connected,
commutative) with linear basis B
@ linear operators I = Llo Q o A preserving grading
@ such that a global rescaling K, = p~ 1K has Perron—Frobenius
eigenfunction with n(x) > 0

D Ko (3, y)n(y) = n(x)

o then in rescaled basis By = {1(x) x|, x € By} the matrix
KBM is stochastic (transition matrix of a Markov chain)
@ Examples: Lo A; LI o0 A?, LUollyo A
introduced in
@ P. Diaconis, C.Y.A. Pang, A. Ram, Hopf algebras and Markov

chains: two examples and a theory. J. Algebraic Combin. 39
(2014), no. 3, 527-585.

@ C.Y.A. Pang, Markov chains from descent operators on
combinatorial Hopf algebras, arXiv:1609.04312.
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weaker form
@ linear operators K = Lo Q o A preserving grading
@ such that Vx € By 3y € B, with Ky(x,y) >0

@ then local rescaling (dependent on x)
Ki(x,y) = co(x)"1K(x, y) is stochastic (transition matrix of
a Markov chain)
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invariant subspaces

@ start with a (multi)set Q of lexical items and syntactic
features in SOy with £ = #Q > 2

Q=01 U---Uay
@ take span Wq of F € §so, with same set of decorated leaves
L(F)=Q

@ subspace Vo C Wq spanned by F with non-empty set of edges

@ invariant under Merge operations

Ms s =Uo(B®id)odss oA
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Merge action

@ all possible Merge operations on a given F: take
£= Y mss
5,5/
(finite sum when applied to a given F) agrees with operator
K:UO(%(@id)On(Q)OA

M(2) projection of H © H onto span of SUS' ® F”
(5, S'e Tgoo)
@ also consider
=:=UolgoA
M(1) projection onto span of T ® F', T € Ts0,
o for all possible Internal Merge also operator K o =
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irreducibility (strong connectedness)

o Kq.(F,F') matrix elements of K and K=q ¢(F, F') matrix
elements of L o = on Vq

e graph Gq i, vertices F € Bq basis of Vg directed edge when
Ka(F,F") > 0 (same for K o =)

e take two vertices (for simplicity T and T’ case of forests
same) want a path between them: disassemble T’ and
reassemble T

o locate avj, vj in L(T') that are joined to M(cvj, i) in T

e use oy Uaj ® T'/(avi U cj) term of coproduct to get an arrow
KQ}@(TC Fl) >0to F = E)ﬁ(a,-,aj) LJ T’/(Oz,' U aj)
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@ continue to all such pairs and to higher structures T,, T,, that
occur in T’ that appear as M(T,, Ty) in T

@ get chain of arrows T/ — F; — --- = F,

@ since L(T) = L(T’) all terms occur this way until no leaves of
T’ left

@ then use another chain F, - F41 — - — F, =T of
External Merges to assemble these together to T

@ strong connectedness: so get strong form of Hopf algebra
Markov chain

@ note use of Sideward/Countercyclic Merge (for disassembling)
here not just EM/IM

@ using only EM/IM get only the weaker form (and with only
EM not even that)
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Other proposed operations in generative inguistics can be
compared with this Merge model using the algebraic structure
Example: tree insertions that describe “countercyclic movement”
and “Late Merge"

@ the use of insertion operations at inner vertices of trees has
been suggested in the form of “Late Merge" (and also
criticized)

@ is this really an “extension” of Merge? is it incompatible? is it
already obtainable from the usual Merge operations?

%@w%ﬁ
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Lie algebras and Hopf algebras

@ Lie algebra: vector space £ with bilinear operation
[,-]: £L® L — L satisfying [L1, L2] = —[L2, L1] and Jacobi
identity

[L1, [L2, La]] + [L2, [L3, La]] + [L3, [L1, L2]] = O
e right pre-Lie structure (or left pre-Lie) <: L& L — L
(Li<l)<ls—Li<(Lla<ls) = (Li<l3)<ly—Li<(L3<ly)
from which get Lie bracket
[L1,Lo] ==Ly <Ly — Ly <1 Ly

@ a graded connected Hopf algebra has an associated Lie
algebra (primitive elements of the dual Hopf algebra)
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Insertion Lie algebra dual to Hopf algebra of workspaces

@ T1 < T» denote binary rooted tree obtained by splitting edge
e with new vertex v and attaching to v a new edge ¢’
connected to root of Ty

@ pre-Lie structure

Ti<iTo= > Ti<eT
EGE(Tl)

satisfies identity because
.

T ,4".. 1 ”,."
v VA
v w
T T
e T / v/l""" T T / v/l""”
l ' & K il 4 K
N KN o A — SN
+ \ 75 5 \ T
3 7
T T e
FoLIN Yass T,h

3 oL
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Milnor-Moore theorem

dual Hopf algebra H" of a graded connected commutative Hopf
algebra H is the universal enveloping algebra of the Lie algebra £
of the primitive elements of H"

H = U(L)Y
e # and dual H" with dual basis for trees generators of H
T—Zr
@ indecomposable for product of H primitive for coproduct of

7_[\/
@ Lie algebra structure

(ZT * Zs — Zs * ZT)(F) =
ZZT VZs(F/F) =Y Zs(Fu)Zr(F/Fu)
Fﬂ

@ vanishes on forests with by > 0 and leaves just insertion Lie
algebra bracket
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@ what one sees formulated as “countercyclic movement” is the
insertion operations T <¢ T and T > T’

@ these are not actually a new structure (an extension of Merge)
but are determined by the structure underlying the usual
Merge

Example of how “Late Merge" is used: sentence like

[ These pictures of John; |; seemed to him; [ —; to be very good |.

apparent problem: condexing and violation of “condition C" of
Binding Theory, interpreted as of John is late-merged into its
position, but not needed as this sentence is a single phase (so no
violation of binding conditions), does not require a different form
of Merge
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Head

e head function ht : V"(T) — L(T) from non-leaf vertices to
leaves

o if T, C T, and hr(w) € L(T,) € L(Tw), then
hT(W) = hT(V)

e write h(T) for value of ht at root of T

e for a pair (T, hr) and (T’, h7/), there are two possible
hon(T,77): marking one or the other of the two edges attached
to new root

e i.e. choices of h(MM(T, T')) = h(T) or H(OMM(T, T')) = h(T")
o so total of 2#V™(T) possible head functions on a tree T

o head of a subtree T, C T is leaf hy(v) reached by following
path of only marked edges (that determine hr) from v

Note: this notion of head function is equivalent to the properties
of head defined in Chomsky's "“Bare phrase structure”, 1995
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Inductive properties characterizing head in Chomsky's “Bare
phrase structure”

Q For T = M(a, B), with a, B € SOp, the head h(T) should be
one or the other of the two items «, 5. The item that
becomes the head h(T) is said to project.

@ In further projections the head is obtained as the “head from
which they ultimately project, restricting the term head to
terminal elements”.

© Under Merge operations T = 9( Ty, T») one of the two
syntactic objects T1, To € SO projects and its head becomes
the head h(T). The label of the structure T formed by Merge
is the head of the constituent that projects.

these three properties are equivalent to our definition of head
function
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Example of a head function on a tree

@ abstract head function h defined on a subdomain
Dom(h) C Tse,, that assigns to a T € Dom(h) a
h: T hr with hy : V°(T) — L(T) a head function as
above

@ such Dom(h) C Tsp, is in general not a submagma: can have
T1, T2 € Dom(h) but 9(T1, T2) ¢ Dom(h)

o this happens with syntactic head: exocentric constructions
when M( Ty, T2) ¢ Dom(h)
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head functions and planar embeddings
e a head function ht : V"'(T) — L(T) determines a planar

embedding T of T: put the marked edge below each
vertex to the left of the other

@ Kayne's “linear correspondence axiom”: question of a special
(canonical) choice of planarization oA becomes a canonical
choice of a head function

HLCA
‘3:3(90 5T +— hrt

o this mapping ht“4 should be determined by the labels
A0) € SO

@ note that in Tsp, leaf-labels are arbitrary (only later, in the
quotient map I, step of externalization some are ruled out)

@ so to have oL defined on all SO should be able to choose
one of the two hyy(7 7+) based on A(h7(T)) and A(h7/(T"))

e Problem: if A(h7(T)) = A(h7+(T")) cannot distinguish two
possible hgy(7 77y even if SOq were totally ordered
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Phase Theory
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head and complement
@ complement of head. elements head must combine with

@ modifiers: structures the head does not necessarily have to
combine with

@ complemented abstract head function
ht.z:V(T) = L(T) x (Ace(T) U {1})
from non-leaf vertices (with 1 = ()
hr,z(v) = (hr(v),Z)

v — h7(v) abstract head function and complement Z,
(possibly empty) Z, C TshT(v), with s, (,) the sister vertex of
hT(V) in T

@ rest of TshT(v): modifiers
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Phase algorithm

o head function ht partitions vertices of T into path {y¢}sc;(T)
(following the head: highest vertex v; of each path “maximal
projection”)

@ set of phases of T

Lo(T) ={t € L(T)|#V(v) > 1}
@ &, phase associated to £ € Lo(T)
&, ={T, € Ac(T)| T, C T,}

@ phase interior: £ € Ly(T) and v mother vertex above ¢ on
path ~, and s; sister vertex of £ under v; if Z, = () then
O =0 if Z, # 0

¢p :={T, € Ace(T)| T, C Ts,}
@ phase edge: if Z, = (), take 0P, = ®, and if Z, # ()
0%y :={T, € Acc/(T)|Tw C Ty, and Ty, € Ts,}

all accessible terms of T,, not in interior of phase.



@ partial ordering on set Lo (T) of phases induced by inclusion:
(<0 if &) C &y, so O, lower phase and &y higher phase

@ inaccessible terms at phase ®,: interiors of lower phases

T, = {TV € Ace(T)| Ty € | <b;f,}
<0
@ complement &, \ T, available for computation at phase ®,

@ counting head at edge of phase, if excluding head movement
also count as not accessible

@ action of Internal Merge takes an accessible term T, , C T,
that is in the interior of the (current) phase ®; and move it to
the edge of the (current) phase of the resulting object

@ when next phase is formed (by External Merge of some
additional structure) what has remained in interior of previous
phase becomes unaccessible
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e subspace V"(Fs0) C V(Sso) spanned by forests F = LI, T,
with all the components T, € Dom(h) C Tso

@ Phase coproduct:

AY(T)= Y. FR&T/F

vEP N\Thy

only extracting compatibly with the phase structure: significant
reduction in size
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labeling algorithm

@ designed to make these objects interpretable at the
syntax-semantics interface (assignment of labels at non-leaf
vertices)

@ head function h is raising (Moro's dynamical asymmetry) if

o for T € Dom(h) and accessible term T, C T with
h(T) = h(T/9T,) Internal Merge

M(T,, T/T,) € Dom(h) with h(M(T,, T/T,)) = h(T/T,)

o for T € Tsep, and accessible term T, C T with Internal Merge
IM(T,, T/°T,) € Dom(h) and T /9T, € Dom(h)

h(OM(T,, T/°T,)) = h(T/9T,)
e soif T =9(Ty, T2) and either Ty or T raises through IM
then T € Dom(h) and can label via hr

@ can also extend labeling when h(Ty) and h(T;) share feature

@ some objects still remain unlabelled, rejected as non-parsable
at semantic interface
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Phases as “block-spin renormalization”

@ blocking the interior of previous phases in further steps of
derivation is similar idea to “block-spin” renormalization in
physics

@ aggregate components at shorter distances (lower level in
structure construction)

@ key point here: this is not just fixing a size of substructures
but building a hierarchy of substructures following data of a
head function and its complement structure

some work already tried comparing Merge to MERA-type
renormalization based on tensor networks... but critically missing
the structure of Phases

o A.J. Gallego, R. Oras, Language design as information
renormalization, arXiv:1708.01525v5

@ V. Pestun, Y. Vlassopoulos, Tensor network language model,
arXiv:1710.10248
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FormSet

@ “primitive coproduct” on workspaces Ap(T)=T®1+1 T
and AP(F) = uaAp(Ta)

@ BB grafting operations
Uo(B®id)o Ap

@ it is not an n-ary Merge (very different algebraic properties
from n-ary Merge)

@ responsible for unbounded unstructured sequences (see
Fong-Oishi)

B(John U Bill LI my friends LI the actor who won the Oscar)

B(ran Ll danced LI took a vacation)

@ selects “diagonals” for FormCopy operation
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selects “diagonals” for FormCopy operation:

L L
long hallway narrow hallway dark hallway

N2
hallway ® B( P R T G N = N )
Iong ha#way narrow ha—H—WQy dark hanay

Y

long, narrow, dark hallway

M.Marcolli Mathematics & Linguistics



coming up next: Externalization
@ in preparation for that: a look back at cross serial
dependencies
@ how does one build with EM and IM a tree that accounts for
the cross serial case

Wy vv Wy Vg ov Up
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Example

...omdat ik Cecilia Henk de nijlpaarden zag helpen voeren
...because I Cecilia Henk the hippos saw help feed
'...because I saw Cecilia help Henk feed the hippos'

...omdat ik Cecilia Henk de nijlpaarden zag-0 help-en voer-en
C S S22 Ss O3 ViTi Vo2 T2 V3 T3

T= tense (morphology), V=verb, S=subject, O=object,
C=complementizer
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/N

(S 0,
EM/3
™M
s
6
3
CER WA e

the crossed dependence V3 — O3 may be ascribed to more flexible
word order in the presence of more morphology
issue with Phases (movement from interior of lower phase)
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but if look at cross-serial dependence S; — V;
@ start with non-planar tree

T = =
S

V2 \/1
Vi O3 3

S1

Vo

S
3 O3 V3
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@ verb raising movement (edge of phase) followed by choice of
planar embedding

T =

Vo

S1
%1

Vo

S
0 W

@ Merge generates all these structures: both T and T’

@ in externalization process some are selected and some rejected
depending on language specific constraints and planar
structure is assigned

@ planar embedding + quotient selection
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