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Main Topic: Chomsky’s Merge and the Strong Minimalist Thesis

Key point: all aspects of this linguistic model have a mathematical
formulation and properties of the model fall into place by
structural necessity of the corresponding algebraic formalism
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Change of perspective: Strings versus Structures

what language appears to look like

0022010021112000121220000200211 . . .

what language actually looks like
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Main aspects of the Merge model of syntax (in its most recent
formulation: 2013 onward)

syntactic objects

workspaces

accessible terms

Merge action on workspaces

externalization

all these notions have a precise mathematical formulation that
shows many aspects of the linguistic model that have empirical
grounds in fact follow by constraints from the algebraic structure
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Core computational process of structure formation

simple core computational structure: Merge

This process generates structures

called hierarchical structures (or syntactic objects) in linguistics
called non-planar (or abstract) binary rooted trees by
mathematicians

lexical items (at leaves) combined into a hierarchical structure; the

tree is dangling from the root, not lying in the plane, so the lexical

items at leaves are not an ordered string of symbols
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a computational process of structure formation

similar computational structures are natural in the context of
fundamental physics (Feynman graphs)
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syntactic objects

(single) syntactic “structure building” operation

“binary set formation”

example: merging two lexical items like the and apple yields
the (unordered, binary) set, {the, apple}
recursive structure building: {α, β}, {γ, {α, β}}, {α, {γ, β}}
etc

syntactic objects: obtained by repeated applications of this
binary set formation operation

N. Chomsky, Some Puzzling Foundational Issues: The Reading Program, Catalan

Journal of Linguistics Special Issue (2019) 263–285 (and successive refs)
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magma of syntactic objects: free nonassociative commutative
magma

start with a set SO0 of lexical items and syntactic features

a binary operation M commutative, nonassociative:

M(α, β) = M(β, α) but M(γ,M(α, β)) ̸= M(M(γ, α), β)

set of syntactic objects SO is the free nonassociative
commutative magma generated by SO0

SO = Magmana,c(SO0,M)

all elements obtained by repeated application of M starting
from elements of SO0
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free magma and abstract binary rooted trees

the free nonassociative commutative magma on a set X is
canonically isomorphic to the set TX of abstract binary rooted
trees with leaves decorated by elements of the set X

Magmana,c(SO0,M) = TSO0

so syntactic objects T ∈ SO = TSO0 are abstract binary
rooted trees with leaves decorated by lexical items

abstract= no assigned planar embedding (also called
non-planar)

leaves do not form an ordered string of elements in SO0

Note: “binary trees” here means “full binary trees”
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tree-notation versus set-notation

“tree notation” versus “set notation” (linguists prefer “set
notation” while “tree notation” is common in mathematics)

examples

{α, β} = M(α, β) = α β = β α

{α, {β, γ}} =
α β γ

=
γ β α

=
α γ β

=
β γ α

of course choice of notation is irrelevant and does not change
anything, but notation can be suggestive of some rather than
other types of operations on trees or can be potentially
misleading (suggesting planarity when not assumed)
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Core computational structure of Merge

free non-associative commutative magma T

elements are balanced bracketed expressions in a single
variable x , with the binary operation (binary set formation)

(α, β) 7→M(α, β) = {α, β}

where α, β are two such balanced bracketed expressions

equivalent description: elements are finite binary rooted trees
(no assignment of planar structure)

{{x{xx}}x} ←→
x x x

x

operation on trees

M(T ,T ′) =
T T ′
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Generative process of T

same formal trick: take vector space V(T) (say over Q)
spanned by elements of T (convenient for writing a list of
possibilities as a sum)

mathematical note: the magma operation M on T identifies
V(T) with the free commutative non-associative algebra
generated by a single variable x (free algebra over the
quadratic operad freely generated by the single commutative
binary operation)

assign a grading (a weight, measuring size) to the binary
rooted trees by the number of leaves, ℓ = #L(T ), so the
vector space decomposes V(T) = ⊕ℓV(T)ℓ
in a formal infinite sum X =

∑
ℓ Xℓ of variables Xℓ in V(T)ℓ

X = M(X ,X )

fixed point equation
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the equation X = M(X ,X ) can be solved recursively by
degrees

Xn = M(X ,X )n =
n−1∑
j=1

M(Xj ,Xn−j)

solution X1 = x , X2 = {xx},
X3 = {x{xx}}+ {{xx}x} = 2{x{xx}},
X4 = 2{x{x{xx}}}+ {{xx}{xx}}, and so on

coefficients: {x{xx}} and {{xx}x} same abstract tree (while
two different planar embeddings)

recursive solution describes the generative process of T
through the Merge operation M
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Recursive fixed point equation: Dyson–Schwinger

case above X = M(X ,X ) is special fundamental case of
combinatorial Dyson–Schwinger equations

X = B(P(X ))

with X =
∑

ℓ Xℓ by degrees, P(X ) a polynomial function
(here a single quadratic term) and B a type of (possibly
n-ary) Merge operation

Dyson–Schwinger equations and recursive construction of
solutions of equations of motion in quantum field theory

(more on this later!)
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workspaces

sentences built by repeated applications of Merge (this
process is called a “derivation”)

starting from an initial set of lexical items, syntactic features

the operations take place in a kind of “computational
scratchpad,” called a workspace (WS)

workspace is the set of available computational resources
(a multiset of syntactic objects)

Merge transforms a workspace into a new workspace

(“Merge & SMT” §1)
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workspaces

binary forests: finite disjoint unions of abstract binary rooted
trees

F = T1 ⊔ · · · ⊔ Tn with Ti ∈ TSO0

set of workspaces = set of binary forests FSO0

Merge operations map the set FSO0 to itself (transform
workspaces into new workspaces)

This action should account for two types of operations: structure
formation (External Merge) and movement/transformation
(Internal Merge), this one requires accessing substructures
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accessible terms

accessible terms of a syntactic object T : subtrees Tv , with v
a non-root vertex of T and Tv the subtree below v

accessible terms of a workspace F = ⊔aTa: accessible terms
of each Ta and components Ta

examples of accessible terms:
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tree T ∈ TSO0 and v ∈ V (T ): subtree Tv rooted at v

V o(T ) non-root vertices of T

accessible terms of T

Acc(T ) = {Tv | v ∈ V o(T )} and Acc ′(T ) = {Tv | v ∈ V (T )}

workspace F ∈ FSO0 with F = ⊔a∈ITa

Acc ′(F ) =
⊔
a∈I

Acc ′(Ta)

What mathematical structure governs workspaces and
accessible terms?

answer: Workspaces form a Hopf algebra
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algebraic operations governing workspaces and accessible terms

assemblying of workspaces: product operation ⊔ that groups
together a collection of accessible terms into a workspace

extracting accessible terms (disassemble operation):
coproduct operation ∆ that extracts computational material
from the workspace for use by Merge operations

an algebraic structure that has compatible product/coproduct
operations that compose/decompose combinatorial objects is
the kind of structure modelled by Hopf algebras

important aspect of the coproduct extracting accessible terms
(as part of Merge operation): this makes Merge both a
structure builder and a parser (we’ll discuss this more in
modeling the syntax-semantics interface)
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What is a Hopf algebra?

mathematical method of describing
composition–decomposition

product: an “assemble operation” (two inputs one output) for
how to assemble different objects together

coproduct: a “decomposition operation” (one input two
outputs) listing all possible ways of decomposing an objects
into parts

compatibility between these two operations
(a relation when interchanging order of product/coproduct)

M.Marcolli Mathematics & Linguistics



M.Marcolli Mathematics & Linguistics



A formal definition of Hopf algebra

Hopf algebra H is a vector space over a field K, endowed with

multiplication m : H⊗K H → H;
unit u : K→ H;
comultiplication ∆ : H → H⊗K H;
counit ϵ : H → K;
antipode S : H → H

multiplication is associative

comultiplication is coassociative

u is multiplicative unit and ϵ is comultiplicative counit

comultiplication and counit are homomorphisms of algebras
and multiplication and unit are homomorphisms of coalgebras

S relates m and ∆ and u and ϵ

all this expressed by diagrams

the formal requirements above are what constitutes a
good pair of composition/decomposition operations
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multiplication: associativity and unit

H⊗K H⊗K H
m⊗id //

id⊗m
��

H⊗K H
m
��

H⊗K H m // H

H⊗K H

m

��

K⊗K H

u⊗id
88

≃

&&

H⊗K K

id⊗u
ff

≃

xxH
commutativity of these diagrams
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comultiplication: coassociativity and counit

H⊗K H⊗K H H⊗K H
∆⊗id
oo

H⊗K H

id⊗∆

OO

H
∆

oo

∆

OO

H⊗K H
ϵ⊗id

xx

id⊗ϵ

&&
K⊗K H H⊗K K

H

≃
ff ∆

OO

≃
88

commutativity of these diagrams: coassociativity

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆
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compatibility of product and coproduct
compatibility between product and coproduct:

H⊗H m //

∆⊗∆
��

H ∆ // H⊗H

H⊗H⊗H⊗H
id⊗τ⊗id

// H⊗H⊗H⊗H

m⊗m

OO

where τ : H⊗H⊗H⊗H → H⊗H⊗H⊗H permutes the two
middle factors:

∆ ◦ ⊔ = (⊔ ⊗ ⊔) ◦ τ ◦ (∆⊗∆)

behavior of unit and counit with respect to coproduct and product:

H⊗H m //

ϵ⊗ϵ

##

H
ϵ

��
K

and H⊗H H
∆

oo

K
u⊗u

cc

u

??

using the identification K⊗K = K.
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antipode: further compatibility, commutativity of diagram

H⊗K H m // H H⊗K Hm
oo

H⊗K H

id⊗S

OO

H
∆
oo

u◦ϵ

OO

∆ // H⊗K H

S⊗id

OO

usually the antipode is an additional constraint

withoug antipode only have bialgebra not Hopf algebra
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graded connected Hopf algebras

Hopf algebra is graded H = ⊕ℓ≥0Hℓ

and connected: H0 = K
m, ∆ compatible with grading

m : Hℓ ⊗Hk → Hℓ+k

∆ : Hℓ →
⊕

a+b=ℓ

Ha ⊗Hb

then antipode comes for free (determined by the bialgebra)

S is determined by the rest of the structure: is not an
additional constraint

S constructed inductively using coproduct and product

S(x) = −x −
∑

S(x ′)x ′′

inductively for ∆(x) = x ⊗ 1 + 1⊗ x +
∑

x ′ ⊗ x ′′ with x ′, x ′′

terms of lower degree
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Commutative Hopf Algebras and Affine Group Schemes

Commutative algebra A over K: functor

X : CommAlgK → Sets

X (R) = Hom
CommAlgK

(A,R)

X (R) set of R-points of the affine scheme X dual to A
but if H ∈ CommAlgK is also a Hopf algebra then functor

G : CommAlgK → Groups

G (R) = Hom
CommAlgK

(A,R)

with group operation

(ϕ1 ⋆ ϕ2)(x) := (ϕ1 ⊗ ϕ2)∆(x)

and inverse given by the antipode

ϕ−1(x) = ϕ(S(x))

and unit from the counit of H
G is an affine group scheme
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simple examples of affine group schemes

additive group Ga dual to Hopf algebra H = K[t] with
∆(t) = t ⊗ 1 + 1⊗ t (primitive)

(ϕ1 ⋆ ϕ2)(t) = (ϕ1 ⊗ ϕ2)∆(t) = ϕ1(t) + ϕ2(t)

multiplicative group Gm dual to Hopf algebra H = K[t, t−1]
with ∆(t) = t ⊗ t (grouplike)

(ϕ1 ⋆ ϕ2)(t) = (ϕ1 ⊗ ϕ2)∆(t) = ϕ1(t) · ϕ2(t)
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Combinatorial Hopf Algebras

graded connected H = ⊕ℓ≥0Hℓ with H0 = K
linear basis Bk of Hk consists of combinatorial objects (e.g.
trees, graphs, matroids, etc)

grading is a measure of “size” of the objects (e.g. number of
leaves in a binary tree; number of edges in a graph, etc)

coproduct describes decomposition operations: typically terms
x ′ ⊗ x ′′ in ∆(x) are pairs subobject–quotient object

usually asymmetric role of two sides (two channels) of the
coproduct (non-cocommutative)

H0 = K: only one object of size zero

G.C. Rota, Hopf algebra methods in combinatorics, Colloq. Internat. CNRS
260, CNRS, Paris 1978, pp. 363–365.

J.L. Loday, M. Ronco, Combinatorial Hopf algebras, in “Quanta of maths”, Clay
Math. Proc. 11, pp. 347–383, Amer. Math. Soc., 2010
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back to workspaces: composition and decomposition

vector space V(FSO0) spanned by forests

grading V(FSO0) = ⊕kV(FSO0,k) with TSO0,k binary rooted
trees with k leaves; FSO0,k forests with k leaves,

F = ⊔aTa with Ta ∈ TSO0,ka and
∑
a

ka = k

V(FSO0,0) = K formal “empty forest” 1

product: assemble workspaces (forests) by disjoint union of
syntactic objects (trees)

(T1,T2) 7→ F = T1 ⊔ T2 and (F1,F2) 7→ F = F1 ⊔ F2

product is compatible with grading

⊔ : V(FSO0,k)⊗ V(FSO0,ℓ)→ V(FSO0,k+ℓ)
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coproduct: disassembles workspaces into constituent parts

need a disassembling (coproduct) operation ∆ that is
compatible with ⊔ by

∆ ◦ ⊔ = (⊔ ⊗ ⊔) ◦ τ ◦ (∆⊗∆)

two different choices:
1 simplest one: decompose workspace into constituent syntactic

objects
2 more interesting decomposition: extract accessible terms
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simplest coproduct: partitions of the workspace

coproduct where all trees are primitive elements
∆(Ta) = Ta ⊗ 1 + 1⊗ Ta get for ∆(F ) = ⊔a∆(Ta)

∆(F ) =
∑

I=I′⊔I′′

(⊔a∈I′Ta)⊗ (⊔a∈I′′Ta) for F = ⊔a∈ITa

behaves like the additive group (in variables Ta)

would get only partitions of the workspace, no access to
substructures (accessible terms)

would get External Merge but no movement (Internal Merge)
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coproduct: admissible cuts

in a tree T ∈ TSO0 consider forests Fv ⊂ T
Fv = Tv1 ⊔ · · · ⊔ Tvn of accessible terms

coproduct

∆(T ) = T ⊗ 1 + 1⊗ T +
∑
v

Fv ⊗ T/Fv

such Fv corresponds to an admissible cut C of T with forest
πC (T ) = Fv and remaining tree ρC (T ) = T/Fv
admissible cut: at most one cut on any path from root to leaves

Warning: some care in defining T/Fv for coassociativity
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admissible cuts

coproduct in terms of admissible cuts

∆(T ) = T ⊗ 1 + 1⊗ T +
∑
C

πC (T )⊗ ρC (T )

πC (T ) = Fv = Tv1 ⊔ · · · ⊔ Tvn

collection of accessible terms that are extracted by the cut

ρC (T ) tree that remains attached to the root of T after cut

note that ρC (T ) is not a (full) binary tree: it has
non-branching vertices
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admissible cuts: higher arity

let F̃SO0 denote the set of all forests (not necessarily binary)
with leaves labels in the set SO0

V(F̃≤n
SO0

) subspace of V(F̃SO0) spanned by “at most n-ary”
forests (i.e. components are possibly non-full n-ary trees)

admissible cuts give coproduct
∆ : V(F̃SO0)→ V(F̃SO0)⊗ V(F̃SO0) which preserves these
subspaces

∆ : V(F̃≤n
SO0

)→ V(F̃≤n
SO0

)⊗ V(F̃≤n
SO0

)

in particular ∆ : V(F̃≤2
SO0

)→ V(F̃≤2
SO0

)⊗ V(F̃≤2
SO0

) and if
applied to(full) binary trees

∆ : V(FSO0)→ V(FSO0)⊗ V(F̃
≤2
SO0

)
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admissible cuts: Hopf algebra and comodule

Notation: write ∆ρ for coproduct with admissible cuts

(V(F̃≤2
SO0

),⊔,∆ρ) is a graded connected Hopf algebra

all properties are simple to check: only point that requires
some discussion is coassociativity

(id⊗∆ρ) ◦∆ρ = (∆ρ ⊗ id) ◦∆ρ

lef: admissible cut C ′ on ρC (T ) of previous cut C
right: admissible cut C on πC ′(T ) of previous cut C ′
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admissible cuts: comodule

V(FSO0) ⊂ V(F̃
≤2
SO0

) is subalgebra and right comodule

right comodule M over a coalgebra H is a K-vector space
with a linear map

ξ : M → M ⊗H

(id⊗∆) ◦ ξ = (ξ ⊗ id) ◦ ξ

(id⊗ ϵ) ◦ ξ = id

here M = V(FSO0) with ξ = ∆ρ|V(FSO0
)
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Other possible forms of “remainder term” T/Fv

case seen above T/ρFv := ρC (T ) for admissible cut C with
πC (T ) = Fv

different possibilities for what T/Fv
1 contraction T/cFv

2 keep non-branch nodes (as trace) T/ρFv

3 deletion T/dFv

all these play different roles in the linguistic model
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different roles: “deeper copies are interpreted at CI interface but
not expressed at SM interface”
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different roles (and different alg properties):

1 Quotient T/cTv : can go to the CI (conceptual-intensional;
syntax-semantics) interface for interpretation

2 Quotient T/dTv : can go to SM (sensory-motor) interface for
externalization

3 Quotient T/ρTv : intermediate relating them algebraically and
useful in recursive parsing
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Contraction coproduct

when using the contraction quotient T/cTv get coproduct ∆c

∆c(T ) = T ⊗ 1 + 1⊗ T +
∑
v

Fv ⊗ T/cFv

in T/cFv contract every component Tvi of
Fv = Tv1 ⊔ · · · ⊔ Tvn to its root vertex vi with new label Tvi

Note: because root vertex v remains in T/cTv grading by
number of leaves not compatible

a (full) binary rooted tree with n leaves has 2n − 1 vertices
and 2n − 2 edges

can use number of edges as grading, then compatible with
contraction coproduct ∆c (and with product ⊔)
but now graded but not connected: single leaves are of degree
zero (isolated lexical items)
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Bialgebra vs Hopf algebra

consider V(FSO0) with contraction coproduct ∆c

coassociativity holds (argument like for admissible cuts)

(id⊗∆c) ◦∆c = (∆c ⊗ id) ◦∆c

compatibility of product and coproduct also, so get bialgebra

the fact that degree zero includes subspace dimension
#SO0 > 1 (not connected) affects existence of antipode:
∆(α) = α⊗ α non-invertible grouplike elements

(V(FSO0),⊔,∆c) bialgebra dual to an affine semigroup
scheme

have antipode (hence Hopf algebra) on quotient by ideal
generated by 1− α for α ∈ SO0
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Note on SO0-labels at the leaves

SO0 is the set of lexical items and syntactic features

syntactic features carry information on role of lexical items in
sentence

example: in the “buffalos” sentence all same lexical items but
with different syntactic features

the set SO0 is possibly large but finite

so how to interpret the label Tv at the new leaf v of the
contraction quotient T/cTv?

it seems now have a possible label T for every T ∈ SO (an
infinite set!)

but... don’t need to remember all of T in the label T only a
syntactic feature (already available in the finite set SO0) that
describes the role of the structure T in the larger structure in
which the quotient is taken

so T/cTv is still an object in SO = TSO0

M.Marcolli Mathematics & Linguistics



Deletion quotient T/dTv

first consider the “at most binary” tree ρC (T ) = T/ρTv (here
C is an elementary cut of a single edge) and then take the
maximal binary rooted tree in TSO0 determined by T/ρTv (by
contraction of some edges)

same for T/dFv obtained from ρC (T ) = T/ρFv

Note: this may be the empty tree:

T = α β with admissible cut C of both edges

single root with no label is not in TSO0 so in this case
T/dFv = 1
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Brief discussion of coassociativity for deletion:

for ∆d list of terms on the two sides of

(id⊗∆d) ◦∆d ̸= (∆d ⊗ id) ◦∆d

generally match but wrong multiplicities

can describe as

(id⊗∆d) ◦∆d ◦ A = A ◦ (∆d ⊗ id) ◦∆d

for A an endomorphism (outer) that assign multiplicities to
edges and vertices
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cutting first C leaves two cuts C ′ in (∆d ⊗ 1)∆d(T ) producing
two identical terms but only one in (1⊗∆d)∆d(T )
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Digression: Drinfeld quasi-Hopf algebras

H unital associative algebra

coalgebra non-coassociative but lack of coassociativity
measured by an invertible element Φ ∈ H ⊗H⊗H

((1⊗∆) ◦∆(x)) = Φ((∆⊗ 1) ◦∆(x))Φ−1

satisfying a pentagon identity

(1⊗1⊗∆)(Φ) (∆⊗1⊗1)(Φ) = (1⊗Φ) (1⊗∆⊗1)(Φ) (Φ⊗1)

and unit and counit identities also modified by Φ

quasi-Hopf algebras in context of quantum groups

Question: case where instead of Φ ∈ H ⊗H⊗H have an
automorphism A of H⊗H⊗H

(1⊗∆) ◦∆ = A ◦ (∆⊗ 1) ◦∆ ◦ A−1

or an endomorphism by taking

(1⊗∆) ◦∆ ◦ A = A ◦ (∆⊗ 1) ◦∆
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Workspaces and Hopf algebra: summary

Bialgebra of workspaces: H = (V(FSO0),⊔,∆c), Hopf algebra
modulo 1− SO0

Hopf algebra and comodule: H≤2 = (V(F≤2
SO0

),⊔,∆ρ) with
(M = V(FSO0), ξ = ∆ρ|V(FSO0

) comodule

Deletion coproduct: H = (V(FSO0),⊔,∆d) with correction to
co-associativity

loosely refer to “Hopf algebra of workspaces” to denote any of the
above as needed

Discussion of these differences for Hopf algebras of rooted trees:

D.Calaque, K.Ebrahimi-Fard, D.Manchon, Two interacting Hopf
algebras of trees: A Hopf-algebraic approach to composition and
substitution of B-series, Advances in Applied Mathematics 47
(2011) 282–308
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Projection maps

an “at most binary” tree to the unique maximal binary tree by
edge contraction

Πd ,ρ : V(F̃≤2
SO0

)→ V(FSO0)

delete edge to leaf with label T

Πρ,c : V(FSO0)→ V(F̃
≤2
SO0

)

projection Πd ,c = Πd ,ρ ◦ Πρ,c

Πd ,c : V(FSO0)→ V(FSO0)

these projections satisfy

∆d = (id⊗ Πd ,ρ) ◦∆ρ = (id⊗ Πd ,c) ◦∆c
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action of Merge on workspaces

Merge acts as operators MS ,S ′ for pairs of syntactic objects
S , S ′ ∈ SO
Given a workspace F = T1 ⊔ · · · ⊔ Tn the operator MS,S ′

searches among the accessible terms of F for matching pairs
to S ,S ′

when a matching pair is located S ≃ Tv and S ′ ≃ Tw these
two terms are merged into

M(Tv ,Tw ) = Tv Tw

this new syntactic object is added to the new workspace

components Ti Tj of the old workspace that contained the
extracted terms Tv and Tw are replaced by cancellation of
(the deeper copies of) Tv and Tw

all other components F̂i ,j = ⊔a ̸=i ,jTa are left unchanged in the
new workspace
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action of Merge on workspaces

Merge operations MS,S ′ pairs S , S ′ of syntactic objects

MS,S ′ : F 7→ F ′ = M(Tv ,Tw ) ⊔ Ti/Tv ⊔ Tj/Tw ⊔ F̂i ,j

where S ≃ Tv ⊂ Ti and S ′ ≃ Tw ⊂ Tj

(written as WS′ = Merge(S , S ′,WS) in the notation of “Merge & SMT”)

Note: this action contains various forms of Merge (external,

internal, sideward)

MS ,S ′ = ⊔ ◦ (B ⊗ 1) ◦ δS ,S ′ ◦∆
1 coproduct ∆ extracts and displays all accessible terms
2 δS ,S ′ locates matching pairs of accessible terms
3 grafting operator

B : T1 ⊔ · · · ⊔ Tn =
T1 T2 · · · Tn

4 product ⊔ recomposes the new workspace
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different forms of the coproduct

∆d = (id⊗ Πd ,ρ) ◦∆ρ = (id⊗ Πd ,c) ◦∆c

correspondingly on Merge operation

MS ,S ′ = ⊔ ◦ (B ⊗ id) ◦ (id⊗ Πd ,ρ) ◦ δS ,S ′ ◦∆ρ

= ⊔ ◦ (B ⊗ id) ◦ (id⊗ Πd ,c) ◦ δS ,S ′ ◦∆c .

quotient T/cTv with Tv at the contraction vertex is what
goes to the CI (syntax-semantics) interface for parsing, while
T/dTv = Πd ,c(T/cTv ) goes to externalization

externalization after all algebraic structure-building operations
have been done (so ∆d not as good as ∆c not problematic)
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matching terms

two syntactic objects S ,S ′ ∈ TSO0

operator γS ,S ′ : V(FSO0)→ V(FSO0)

γS ,S ′(F ) =

{
F F = S ⊔ S ′

0 otherwise

operator δS ,S ′

δS ,S ′ = γS ,S ′ ⊗ id

matching of terms (in the left channel of the coproduct)

in particular keeps only terms where forest with two
components in left-channel (for a binary Merge)
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Cases of Merge (too many forms of Merge?) The new work space
looks like

F ′ = M(Tv ,Tw ) ⊔ F/(Tv ⊔ Tw )

different cases according to where Tv ,Tw located in F

External Merge: accessible terms used are full components

F ′ = M(Ta,Tb) ⊔ F̂a,b

with F = ⊔iTi = Ta ⊔ Tb ⊔ F̂a,b with F̂a,b = ⊔i ̸=a,bTi

Internal Merge: accessible terms used are an accessible term
Tv of a component Ta and the remainder Ta/Tv

F ′ = M(Tv ,Ta/Tv ) ⊔ F̂a

with F = ⊔iTi = Ta ⊔ F̂a with F̂a = ⊔i ̸=aTi

Sideward Merge: accessible terms from different components

F ′ = M(Tv ,Tw ) ⊔ Ta/Tv ⊔ Tb/Tw ⊔ F̂a,b

F ′ = M(Tv ,Tb) ⊔ Ta/Tv ⊔ F̂a,b

F ′ = M(Tv ,Tw ) ⊔ Ta/(Tv ⊔ Tw ) ⊔ F̂a

M.Marcolli Mathematics & Linguistics



Selection of External and Internal Merge

empirical linguistic reasons: only External/Internal Merge

Example: Sideward Merge would generate non-grammatical
constructions like
“Which sister of John wonders who likes a picture of”

so want the Sideward Merge cases to be eliminated by some
optimality principle (more costly, less efficient)

what is the cost function? that makes Sideward Merge more
costly than EM and IM?

Minimal Search, Minimal Yield (discussion below)
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Cases of Merge: External Merge
an example (from “Merge & SMT”)

workspace WS = [eaten, {the, apple}]
in our notation F = T1 ⊔ T2

T2 = β γ with β = the γ = apple

T1 the tree with a single vertex labeled by the lexical item
α =eat(en)

perform Merge with MS ,S ′ with S = α ≃ T1 and S ′ ≃ T2

coproduct lists forests of accessible terms

∆(F ) = F ⊗ 1 + 1⊗ F + α⊗ T2 + T2 ⊗ α

+α ⊔ β ⊗ γ + α ⊔ γ ⊗ β + β ⊔ γ ⊗ α+ α ⊔ β ⊔ γ ⊗ 1
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∆(eaten⊔
the apple

) = eaten⊔
the apple

⊗1+1⊗eaten⊔
the apple

+eaten⊗
the apple

+
the apple

⊗ eaten

+ eaten ⊔ the ⊗ apple + eaten ⊔ apple ⊗ the + the ⊔ apple ⊗ eaten

eaten ⊔ the ⊔ apple ⊗ 1

(this presents the complete list of all the possible extractions of accessible terms each

accompanied by the corresponding residual term)
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δS ,S ′ selects term with matching

δS ,S ′(α ⊔ T2 ⊗ 1) = α ⊔ T2 ⊗ 1 = eaten ⊔
the apple

⊗ 1

grafting
(B ⊗ id) (α ⊔ T2 ⊗ 1) = α T2

⊗ 1

1 is unit of product

α T2
⊔ 1 = α T2

so applying ⊔ reassembles workspace to single syntactic object

α T2
⊔ 1 = α T2

=
eaten

the apple
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Internal Merge: preliminary discussion

We have a formal empty tree 1 that satisfies

M(T , 1) = M(1,T ) = T

so can extend magma of syntactic object to unital magma

observation: algebraic structure “below groups”:
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so can have an operator MS ,1 acting on workspace F = ⊔kTk

MS ,1 = ⊔ ◦ (B⊗ id) ◦ δS,1 ◦∆

but here δS,1 = δS taking term

Tv ⊗ Ta/Tv ⊔ F̂a = Tv ⊔ 1⊗ Ta/Tv ⊔ F̂a

of coproduct with Tv ≃ S

and B(Tv ⊔ 1) = M(Tv , 1) = Tv

so new workspace F ′ = MS,1(F ) is

Tv ⊔ Ta/Tv ⊔ F̂a

Note: one of linguistic reasons for introducing workspaces, Internal
Merge deposits a copy Tv of the extracted accessible term in the
workspace... this is done here by the operation MS,1
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Cases of Merge: Internal Merge

once have workspace Tv ⊔ Ta/Tv ⊔ F̂a

proceed with MS ,S ′ where S ≃ Tv and S ′ ≃ Ta/Tv

obtain new workspace

MTv ,Ta/Tv
◦MTv ,1(F ) = M(Tv ,Ta/Tv ) ⊔ F̂a

Internal Merge is MTv ,Ta/Tv
◦MTv ,1
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Comment on Internal Merge

the operation Mβ,1 does not really “exist in isolation” only in
composition as Internal Merge (has wrong effect on WS’s size
etc to exist on its own: see later!)

so IM not really a “composite operation”

Note: could eliminate Mβ,1 step entirely if make grafting B
act on terms Tv ⊗T/Tv instead of terms Tv ⊔T/Tv ⊗ 1, but
this requires a “coindexing” problem, where need to keep
track of which component in a forest (on left or right of
coprod) will use for input.
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Internal Merge: an example (from “Merge & SMT”)

check that Internal Merge described this way is same as usual
linguistics description

start with workspace WS = [{was, {eaten, {the, apple}}}]
in our notation

F = T =

was
eaten

the apple

=
α

β γ δ

perform Merge with MS ,S ′ with S = T and
S ′ = γ δ =

the apple

according to our description first act with MS ′,1 and then
with MS/S ′,S ′
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use notation

T1 = α β and T2 = γ δ

δS ′,1 finds a match in the coproduct ∆(T ): term

γ δ ⊗ α β

T1 = α β = T/γ δ = T/T2

read this coproduct term as

γ δ ⊗ α β = γ δ ⊔ 1⊗ α β

then have B(T ⊔ 1) = T

so MS ′,1 produces an output

γ δ ⊔ α β
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then MS/S ′,S ′ produces from this the new workspace

γ δ α β

=

the apple was eaten

this is the new worspace

WS ′ = [{{the, apple}, {was, {eaten, {the, apple}}}}]

so our description of Internal Merge matches what expected
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Internal Merge: an analogy with Peano arithmetic

von Neumann construction of the natural numbers:
X 7→ {X , {X}}
0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}}, etc
looks like the binary Internal Merge but with a copy of the
whole X as “accessible term”

also difference at first step with unary ∅ 7→ {∅}
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Reducing the cases of Merge

want only External Merge M(Ta,Tb) ⊔ F̂a,b and Internal

Merge M(Ta,Ta/Tv ) ⊔ F̂a to be the optimal cases

want the other cases with Tv ⊊ Ta and Tw ⊊ Tb (with Ta

and Tb different or same) to be less likely (more costly, less
efficient)

what is the cost function? that makes these more costly than
EM and IM?

Minimal Search, Minimal Yield

idea of Minimal Search: it is less expensive to locate either
two components (External) or one component and a
subcomponent of the same (Internal) than other
configurations of subcomponents across different components

is this true? (.... yes, even if it seems not)
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Minimal Search for MS ,S ′ with S = T1 and S ′ = β should assign
lower cost to the copy of β inside T1 than the one inside T2
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Cost function for Minimal Search

1 Weight of extracted accessible terms: the cost increases with the
depth at which the accessible term is located so weight of ϵdv , with
dv = dist(v , vT ) for vT the root of T

2 Weight of quotient terms: cost of performing the operation
T 7→ T/Tv has weight of ϵ−dv because for larger dv more similar T
and T/Tv smaller less costly change

3 Weight of multiple extractions/quotients: if Fv = Tv1 ⊔ · · · ⊔ Tvn

weight ϵdv with dv = dv1 + · · ·+ dvn

4 Cost of grafting: cost c(M(T , 1)) = 0 as no change and if T has
weight ϵd and T ′ has weight ϵd

′
, then we set c(M(T ,T ′)) = d + d ′

and weight ϵd · ϵd′
= ϵc(M(T ,T ′))

5 Cost/weight of derivations: φ = MSn,S′
n
◦ · · · ◦MS1,S′

1
cost

c(φ) =
∑

i c(MSi ,S′
i
) weight ϵc(ϕ) =

∏
i ϵ

c(MSi ,S
′
i
)
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Minimal Search

incorporate keeping track of cost/weight of a Merge operation

Mϵ
S ,S ′(F ) = ⊔ ◦ (Bϵ ⊗ id) ◦ δS ,S ′ ◦∆

Bϵ(α ⊔ β) = ϵc(M(α,β)) B(α ⊔ β)

The only zero-cost Merge operations are Internal and External
Merge. All other forms of Merge have higher cost.

For ϵ < 1, Internal and External Merge are the leading order
terms in any derivation.

In the limit ϵ→ 0 only derivations in which all the Merge
operations are Internal and External Merge remain.
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Minimal Yield and Complexity

Measures of size of workspaces: number b0 of connected
components, number α of accessible terms Acc(F ), number
σ = b0 + α of accessible terms Acc′(F )

Minimal Yield:

σ(Φ(F )) = σ(F ) + 1 (minimality of yield)
b0(Φ(F )) ≤ b0(F ) (no divergence)
α(Φ(F )) ≥ α(F ) (no information loss)
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Counting for different quotients

α = # acc terms, σ = b0 + α

α(M(T ,T ′)) = α(T ) + α(T ′) + 2

σ(M(T ,T ′)) = σ(T ) + σ(T ′) + 1

α(T ) = α(Tv ) + α(T/dTv ) + 2

σ(T ) = σ(Tv ) + σ(T/dTv ) + 1

α(T ) = α(Tv ) + α(T/cTv ) + 1

σ(T ) = σ(Tv ) + σ(T/cTv )
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External and Internal Merge

Type of Merge Coproduct b0 α σ

External ∆c and ∆d −1 +2 +1

Internal ∆c 0 +1 +1

Internal ∆d 0 0 0

But... the MS ,1 does not exist on its own

Merge Coproduct b0 α σ

MS ,1 ∆c +1 −1 0

MS ,1 ∆d +1 −2 −1
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Other forms of Merge
(2b): M(Tv ,T

′) ⊔ T/Tv

(3b): M(Tv ,Tw ) ⊔ T/Tv ⊔ T ′/Tw

(3a): M(Tv ,Tw ) ⊔ T/(Tv ⊔ Tw )

Merge Coproduct b0 α σ

(3b) ∆c +1 0 +1

(3b) ∆d +1 −2 −1
(2b) ∆c 0 +1 +1

(2b) ∆d 0 0 0

(3a) ∆c +1 0 +1

(3a) ∆d +1 −2 −1

Minimal Yield eliminates all but (2b)
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No Complexity Loss

No complexity loss: Φ : FSO0 → FSO0 , for F = ⊔a∈ITa set of
components π0(F ) ≃ I with induced map
Φ0 : π0(F )→ π0(Φ(F )) (a ∈ π0(F ) to Φ0(a) component of
π0(Φ(F )) that contains the image of the root vertex of the
component Ta of F )

No Complexity Loss for Φ if for all a ∈ π0(F )

deg(Φ0(a)) ≥ deg(a)

deg(a) degree of component Ta in the Hopf algebra.

External Merge: deg(M(Ti ,Tj)) = deg(Ti ) + deg(Tj), OK
Internal Merge: deg(Tv ,T/Tv ) = deg(T ), OK
Other forms all have components mapping to lower degree: e.g. in
M(Tv ,Tw ) ⊔ T/Tv ⊔ T ′/Tw root vertices of T and T ′ map to
T/Tv and T ′/Tw lower degree
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Merge must be binary

Also an optimization: a Merge with any other n ≥ 3 arity
would both undergenerate and overgenerate with respect to
binary Merge (observed by Riny Huijbregts)

syntactic objects of a hypothetical n-ary Merge

SO(n) = Magma
(n)
na,c(SO0,Mn)

rooted n-ary trees (without planar structure)

SO(n) ≃ T
(n)
SO0

(T1, . . . ,Tn) 7→M(T1, . . . ,Tn) =
T1 T2 · · · Tn

by number of leaves

SO(n) =
⊔
k≥1

SO(n)
k(n−1)+1
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two forms of undergeneration

1 achievable lengths only ℓ = k(n − 1) + 1 for k ≥ 1 (excludes
examples like it rains)

2 ambiguities are not detected: example

δ
α β γ

δ
α β γ

(ambiguity of I saw someone with a telescope) become
undetectable:

δ α β γ

undergeneration depends on syntactic objects, overgeneration
depends on action on workspaces
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action on workspaces of n-ary Merge and overgeneration

workspaces are n-ary forests F ∈ F
(n)
SO0

, same form of product
and coproduct

but for n-ary trees need to take quotients as contraction (so
problem with labels reappears)

Merge operations depending on an n-tuple of n-ary syntactic
objects (with n-ary B)

MS1,...,Sn = ⊔ ◦ (B⊗ id) ◦ δS1,...,Sn ◦∆

overgeneration: example (by Riny Huijbregts) with n = 3 and
F = {α, β, γ} ⊔ δ ⊔ η S = (S1,S2, S3) given by S1 = α,
S2 = β, and S3 = {α, β, γ} gives new workspace
{α, β, {α, β, γ}} ⊔ δ ⊔ η and further application with S1 = δ,
S2 = η, and S3 = {α, β, γ} gives {δ, η, {α, β, γ}} (responsible
for examples like *peanuts monkeys children will throw)
(this excludes ternary Merge, unlike post-Externalization patterns like SVO)

can count explicit amount of undergeneration and of
overgeneration as a function of size of trees (number of leaves)
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Merge is Markovian

usually assumed “the operations of syntax are Markovian”

in the course of Merge derivations at each step the Merge
operations have access to only the current state of the
workspace

does this assumption follow from this formulation of Merge?

is there a stronger sense in which “Merge is Markovian”?
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Markov chains

V = ⊕ℓVℓ graded vector space, basis B = ∪ℓBℓ
K : H → H be a linear operator

preserves graded subspaces, Kℓ : Hℓ → Hℓ

matrix KBℓ
representing K in basis Bℓ

KBℓ
(x , y) ≥ 0 ∀x , y ∈ Bℓ

∀x ∈ Bℓ ∃y ∈ Bℓ such that KBℓ
(x , y) > 0

Then associated Markov chain:

set of states Bℓ
transition matrix: stochastic matrix

K̃Bℓ
(x , y) = c(x)−1KBℓ

(x , y)

with c(x) =
∑

y KBℓ
(x , y) > 0 so

K̃Bℓ
(x , y) ≥ 0 ∀x , y ∈ Bℓ and

∑
y

K̃Bℓ
(x , y) = 1 ∀x ∈ Bℓ

M.Marcolli Mathematics & Linguistics



stronger form: Markov chain from linear operator

Kℓ : Hℓ → Hℓ gives a stochastic matrix after a rescaling of
the base B
suppose there is a Perron-Frobenius eigenfunction∑

y

KBℓ
(x , y)η(y) = η(x)

with η(x) > 0 for all x ∈ Bℓ
then

K̂Bℓ
(x , y) =

η(y)

η(x)
KBℓ

(x , y)

is the transition matrix of a Markov chain (i.e. stochastic
matrix)

K̂Bℓ
(x , y) ≥ 0 ∀x , y ∈ Bℓ and

∑
y

K̂Bℓ
(x , y) = 1 ∀x ∈ Bℓ
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Perron–Frobenius theorem

A square matrix with Aij ≥ 0

irreducible: directed graph with n vertices and edge i → j if
Aij ̸= 0 is strongly connected (any two vertices connected by a
directed path)

then ∃ Perron–Frobenius eigenfunction η (left/right) with
eigenvalue λ = ρ(A) spectral radius and all ηi > 0∑

j

Aij ηj = λ ηi

Ã normalized by the spectral radius gives stochastic matrix

Âij = η−1
i ηj Ãij
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Hopf algebras Markov chains

H combinatorial Hopf algebra (graded, connected,
commutative) with linear basis B
linear operators K = ⊔ ◦ Q ◦∆ preserving grading

such that a global rescaling Kρ = ρ−1K has Perron–Frobenius
eigenfunction with η(x) > 0∑

y

KBℓ,ρ(x , y)η(y) = η(x)

then in rescaled basis B̂ℓ = {η(x)−1x |, x ∈ Bℓ} the matrix
KB̂ℓ,ρ

is stochastic (transition matrix of a Markov chain)

Examples: ⊔ ◦∆; ⊔a ◦∆a, ⊔ ◦ Πd ◦∆
introduced in

P. Diaconis, C.Y.A. Pang, A. Ram, Hopf algebras and Markov
chains: two examples and a theory. J. Algebraic Combin. 39
(2014), no. 3, 527–585.

C.Y.A. Pang, Markov chains from descent operators on
combinatorial Hopf algebras, arXiv:1609.04312.
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weaker form

linear operators K = ⊔ ◦ Q ◦∆ preserving grading

such that ∀x ∈ Bℓ ∃y ∈ Bℓ with Kℓ(x , y) > 0

then local rescaling (dependent on x)
K̃ℓ(x , y) = cℓ(x)

−1Kℓ(x , y) is stochastic (transition matrix of
a Markov chain)
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invariant subspaces

start with a (multi)set Ω of lexical items and syntactic
features in SO0 with ℓ = #Ω > 2

Ω = α1 ⊔ · · · ⊔ αℓ

take span WΩ of F ∈ FSO0 with same set of decorated leaves

L(F ) = Ω

subspace VΩ ⊂ WΩ spanned by F with non-empty set of edges

invariant under Merge operations

MS ,S ′ = ⊔ ◦ (B ⊗ id) ◦ δS,S ′ ◦∆
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Merge action

all possible Merge operations on a given F : take

K =
∑
S ,S ′

MS,S ′

(finite sum when applied to a given F ) agrees with operator

K = ⊔ ◦ (B⊗ id) ◦ Π(2) ◦∆

Π(2) projection of H⊗H onto span of S ⊔ S ′ ⊗ F ′′

(S ,S ′ ∈ TSO0)

also consider
Ξ := ⊔ ◦ Π(1) ◦∆

Π(1) projection onto span of T ⊗ F ′, T ∈ TSO0

for all possible Internal Merge also operator K ◦ Ξ
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irreducibility (strong connectedness)

KΩ,ℓ(F ,F
′) matrix elements of K and KΞΩ,ℓ(F ,F

′) matrix
elements of K ◦ Ξ on VΩ
graph GΩ,Kℓ

vertices F ∈ BΩ,ℓ basis of VΩ directed edge when
KΩ,ℓ(F ,F

′) > 0 (same for K ◦ Ξ)
take two vertices (for simplicity T and T ′ case of forests
same) want a path between them: disassemble T ′ and
reassemble T

locate αi , αj in L(T ′) that are joined to M(αi , αj) in T

use αi ⊔ αj ⊗ T ′/(αi ⊔ αj) term of coproduct to get an arrow
KΩ,ℓ(T

′,F1) > 0 to F1 = M(αi , αj) ⊔ T ′/(αi ⊔ αj)
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continue to all such pairs and to higher structures Tv ,Tw that
occur in T ′ that appear as M(Tv ,Tw ) in T

get chain of arrows T ′ → F1 → · · · → Fr

since L(T ) = L(T ′) all terms occur this way until no leaves of
T ′ left

then use another chain Fr → Fr+1 → · · · → Fk = T of
External Merges to assemble these together to T

strong connectedness: so get strong form of Hopf algebra
Markov chain

note use of Sideward/Countercyclic Merge (for disassembling)
here not just EM/IM

using only EM/IM get only the weaker form (and with only
EM not even that)
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Other proposed operations in generative inguistics can be
compared with this Merge model using the algebraic structure
Example: tree insertions that describe “countercyclic movement”
and “Late Merge”

the use of insertion operations at inner vertices of trees has
been suggested in the form of “Late Merge” (and also
criticized)

is this really an “extension” of Merge? is it incompatible? is it
already obtainable from the usual Merge operations?
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Lie algebras and Hopf algebras

Lie algebra: vector space L with bilinear operation
[·, ·] : L ⊗ L → L satisfying [L1, L2] = −[L2, L1] and Jacobi
identity

[L1, [L2, L3]] + [L2, [L3, L1]] + [L3, [L1, L2]] = 0

right pre-Lie structure (or left pre-Lie) � : L ⊗ L → L

(L1�L2)�L3−L1�(L2�L3) = (L1�L3)�L2−L1�(L3�L2)

from which get Lie bracket

[L1, L2] := L1 � L2 − L2 � L1

a graded connected Hopf algebra has an associated Lie
algebra (primitive elements of the dual Hopf algebra)
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Insertion Lie algebra dual to Hopf algebra of workspaces

T1 �e T2 denote binary rooted tree obtained by splitting edge
e with new vertex v and attaching to v a new edge e ′

connected to root of T2

pre-Lie structure

T1 � T2 =
∑

e∈E(T1)

T1 �e T2

satisfies identity because
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Milnor-Moore theorem

dual Hopf algebra H∨ of a graded connected commutative Hopf
algebra H is the universal enveloping algebra of the Lie algebra L
of the primitive elements of H∨

H = U(L)∨

H and dual H∨ with dual basis for trees generators of H

T 7→ ZT

indecomposable for product of H primitive for coproduct of
H∨

Lie algebra structure

(ZT ⋆ ZS − ZS ⋆ ZT )(F ) =∑
Fv

ZT (Fv )ZS(F/Fv )−
∑
Fw

ZS(Fw )ZT (F/Fw )

vanishes on forests with b0 > 0 and leaves just insertion Lie
algebra bracket
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what one sees formulated as “countercyclic movement” is the
insertion operations T �e T

′ and T �e′ T
′

these are not actually a new structure (an extension of Merge)
but are determined by the structure underlying the usual
Merge

Example of how “Late Merge” is used: sentence like

[ These pictures of Johni ]j seemed to himi [ –j to be very good ] .

apparent problem: condexing and violation of “condition C” of
Binding Theory, interpreted as of John is late-merged into its
position, but not needed as this sentence is a single phase (so no
violation of binding conditions), does not require a different form
of Merge
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Head

head function hT : V int(T )→ L(T ) from non-leaf vertices to
leaves

if Tv ⊆ Tw and hT (w) ∈ L(Tv ) ⊆ L(Tw ), then
hT (w) = hT (v)

write h(T ) for value of hT at root of T

for a pair (T , hT ) and (T ′, hT ′), there are two possible
hM(T ,T ′): marking one or the other of the two edges attached
to new root

i.e. choices of h(M(T ,T ′)) = h(T ) or h(M(T ,T ′)) = h(T ′)

so total of 2#V int(T ) possible head functions on a tree T

head of a subtree Tv ⊂ T is leaf hT (v) reached by following
path of only marked edges (that determine hT ) from v

Note: this notion of head function is equivalent to the properties
of head defined in Chomsky’s “Bare phrase structure”, 1995
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Inductive properties characterizing head in Chomsky’s “Bare
phrase structure”

1 For T = M(α, β), with α, β ∈ SO0, the head h(T ) should be
one or the other of the two items α, β. The item that
becomes the head h(T ) is said to project.

2 In further projections the head is obtained as the “head from
which they ultimately project, restricting the term head to
terminal elements”.

3 Under Merge operations T = M(T1,T2) one of the two
syntactic objects T1,T2 ∈ SO projects and its head becomes
the head h(T ). The label of the structure T formed by Merge
is the head of the constituent that projects.

these three properties are equivalent to our definition of head
function
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Example of a head function on a tree

abstract head function h defined on a subdomain
Dom(h) ⊂ TSO0 , that assigns to a T ∈ Dom(h) a
h : T 7→ hT with hT : V o(T )→ L(T ) a head function as
above

such Dom(h) ⊂ TSO0 is in general not a submagma: can have
T1,T2 ∈ Dom(h) but M(T1,T2) /∈ Dom(h)

this happens with syntactic head: exocentric constructions
when M(T1,T2) /∈ Dom(h)
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head functions and planar embeddings

a head function hT : V int(T )→ L(T ) determines a planar

embedding TπhT of T : put the marked edge below each
vertex to the left of the other

Kayne’s “linear correspondence axiom”: question of a special
(canonical) choice of planarization σLCA becomes a canonical
choice of a head function

TSO0 ∋ T
hLCA7→ hT

this mapping hLCA should be determined by the labels
λ(ℓ) ∈ SO0

note that in TSO0 leaf-labels are arbitrary (only later, in the
quotient map ΠL step of externalization some are ruled out)

so to have σLCA defined on all SO should be able to choose
one of the two hM(T ,T ′) based on λ(hT (T )) and λ(hT ′(T ′))

Problem: if λ(hT (T )) = λ(hT ′(T ′)) cannot distinguish two
possible hM(T ,T ′) even if SO0 were totally ordered
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Phase Theory

M.Marcolli Mathematics & Linguistics



head and complement

complement of head: elements head must combine with

modifiers: structures the head does not necessarily have to
combine with

complemented abstract head function

hT ,Z : V o(T )→ L(T )× (Acc(T ) ∪ {1})

from non-leaf vertices (with 1 = ∅)

hT ,Z (v) = (hT (v),Zv )

v 7→ hT (v) abstract head function and complement Zv

(possibly empty) Zv ⊂ TshT (v)
, with shT (v) the sister vertex of

hT (v) in T

rest of TshT (v)
: modifiers
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Phase algorithm

head function hT partitions vertices of T into path {γℓ}ℓ∈L(T )

(following the head: highest vertex vℓ of each path “maximal
projection”)

set of phases of T

LΦ(T ) = {ℓ ∈ L(T ) |#V (γℓ) > 1}

Φℓ phase associated to ℓ ∈ LΦ(T )

Φℓ = {Tv ∈ Acc′(T ) |Tv ⊆ Tvℓ}

phase interior: ℓ ∈ LΦ(T ) and v mother vertex above ℓ on
path γℓ and sℓ sister vertex of ℓ under v ; if Zℓ = ∅ then
Φ◦
ℓ = ∅; if Zℓ ̸= ∅

Φ◦
ℓ := {Tv ∈ Acc(T ) |Tv ⊆ Tsℓ}

phase edge: if Zℓ = ∅, take ∂Φℓ = Φℓ and if Zℓ ̸= ∅

∂Φℓ := {Tv ∈ Acc′(T ) |Tw ⊆ Tvℓ and Tw ̸⊆ Tsℓ}

all accessible terms of Tvℓ not in interior of phase.
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partial ordering on set LΦ(T ) of phases induced by inclusion:
ℓ ≺ ℓ′ if Φℓ ⊂ Φℓ′ , so Φℓ lower phase and Φℓ′ higher phase

inaccessible terms at phase Φℓ: interiors of lower phases

Υℓ :=

{
Tv ∈ Acc(T ) |Tv ∈

⋃
ℓ′≺ℓ

Φ◦
ℓ′

}

complement Φℓ ∖Υℓ available for computation at phase Φℓ

counting head at edge of phase, if excluding head movement
also count as not accessible

action of Internal Merge takes an accessible term Tu,a ⊂ Tu

that is in the interior of the (current) phase Φ◦
ℓ and move it to

the edge of the (current) phase of the resulting object

when next phase is formed (by External Merge of some
additional structure) what has remained in interior of previous
phase becomes unaccessible
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subspace Vh(FSO) ⊂ V(FSO) spanned by forests F = ⊔aTa

with all the components Ta ∈ Dom(h) ⊂ TSO

Phase coproduct:

∆c
Φ(T ) =

∑
v∈ΦhT

∖ΥhT

Fv ⊗ T/ωFv

only extracting compatibly with the phase structure: significant
reduction in size
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labeling algorithm

designed to make these objects interpretable at the
syntax-semantics interface (assignment of labels at non-leaf
vertices)

head function h is raising (Moro’s dynamical asymmetry) if
for T ∈ Dom(h) and accessible term Tv ⊂ T with
h(T ) = h(T/dTv ) Internal Merge

M(Tv ,T/cTv ) ∈ Dom(h) with h(M(Tv ,T/cTv )) = h(T/dTv )

for T ∈ TSO0 and accessible term Tv ⊂ T with Internal Merge
M(Tv ,T/cTv ) ∈ Dom(h) and T/dTv ∈ Dom(h)

h(M(Tv ,T/cTv )) = h(T/dTv )

so if T = M(T1,T2) and either T1 or T2 raises through IM
then T ∈ Dom(h) and can label via hT

can also extend labeling when h(T1) and h(T2) share feature

some objects still remain unlabelled, rejected as non-parsable
at semantic interface
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Phases as “block-spin renormalization”

blocking the interior of previous phases in further steps of
derivation is similar idea to “block-spin” renormalization in
physics

aggregate components at shorter distances (lower level in
structure construction)

key point here: this is not just fixing a size of substructures
but building a hierarchy of substructures following data of a
head function and its complement structure

some work already tried comparing Merge to MERA-type
renormalization based on tensor networks... but critically missing
the structure of Phases

A.J. Gallego, R. Orús, Language design as information
renormalization, arXiv:1708.01525v5

V. Pestun, Y. Vlassopoulos, Tensor network language model,
arXiv:1710.10248
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FormSet

“primitive coproduct” on workspaces ∆P(T ) = T ⊗ 1+ 1⊗T
and ∆P(F ) = ⊔a∆P(Ta)

B grafting operations

⊔ ◦ (B ⊗ id) ◦∆P

it is not an n-ary Merge (very different algebraic properties
from n-ary Merge)

responsible for unbounded unstructured sequences (see
Fong-Oishi)

B(John ⊔ Bill ⊔my friends ⊔ the actor who won the Oscar)

B(ran ⊔ danced ⊔ took a vacation)

selects “diagonals” for FormCopy operation
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selects “diagonals” for FormCopy operation:

B(
long hallway

⊔
narrow hallway

⊔
dark hallway

)

⇓
hallway ⊗ B(

long hallway
⊔
narrow hallway

⊔
dark hallway

)

⇓
long, narrow, dark hallway
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coming up next: Externalization

in preparation for that: a look back at cross serial
dependencies

how does one build with EM and IM a tree that accounts for
the cross serial case

M.Marcolli Mathematics & Linguistics



Example

T= tense (morphology), V=verb, S=subject, O=object,
C=complementizer
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the crossed dependence V3 − O3 may be ascribed to more flexible
word order in the presence of more morphology
issue with Phases (movement from interior of lower phase)
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but if look at cross-serial dependence Si − Vi

start with non-planar tree

T =

S1
V1

S2
V2

S3
V3 O3

=

V1

V2

V3 O3
S3

S2

S1

=

S1

S2

S3
O3 V3

V2

V1
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verb raising movement (edge of phase) followed by choice of
planar embedding

T ′ =

S1

S2

S3
O3 V3

V2

V1

V2

V3

Merge generates all these structures: both T and T ′

in externalization process some are selected and some rejected
depending on language specific constraints and planar
structure is assigned

planar embedding + quotient selection
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