

Lecture 5: Probabilities in Computational Linguistics

Ma 191c: Mathematical Models of Generative Linguistics

Matilde Marcolli

Caltech, Spring 2024

Motivation

- the computational generative model of syntax is *deterministic*
- computational linguistics arising from NLP (natural language processing) and more recently deep networks, transformers and LLM (large language models) are fundamentally probabilistic
- in view of studying direct comparisons between generative syntax and language in LLMs need to discuss the role of probabilities
- more general questions on the role of probability in studying deterministic systems (a different example: *probabilistic number theory*)

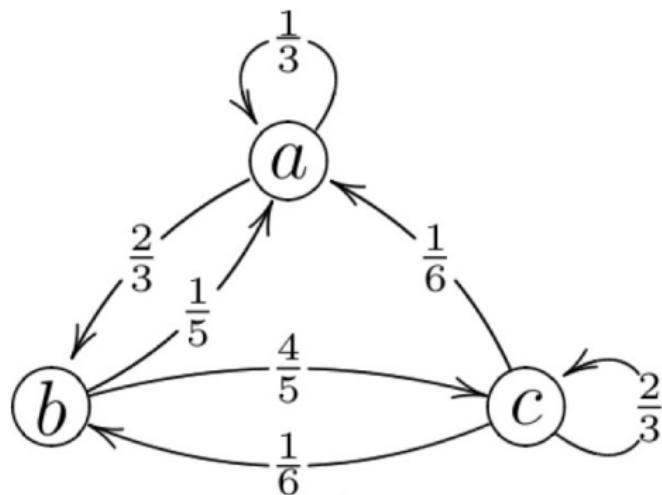
Bernoulli measures

- finite set \mathfrak{A} alphabet, strings of arbitrary (finite) length
 $\mathfrak{A}^* = \bigcup_m \mathfrak{A}^m$
- Alphabet: letters, phonemes, lexical list of words,...
- $\Lambda_{\mathfrak{A}}$ = infinite strings in alphabet \mathfrak{A} ; cylinder sets
 $\Lambda_{\mathfrak{A}}(w) = \{\alpha \in \Lambda_{\mathfrak{A}} \mid \alpha_i = w_i, i = 1, \dots, m\}$ with $w \in \mathfrak{A}^m$
(also called the ω -language \mathfrak{A}^ω)
- $\Lambda_{\mathfrak{A}}$ Cantor set with the topology generated by cylinder sets
- **Bernoulli measure:** $P = (p_a)_{a \in \mathfrak{A}}$ probability measure $p_a \geq 0$ for all $a \in \mathfrak{A}$ and $\sum_{a \in \mathfrak{A}} p_a = 1$
- Gives measure μ_P on $\Lambda_{\mathfrak{A}}$ with $\mu_P(\Lambda_{\mathfrak{A}}(w)) = p_{w_1} \cdots p_{w_m}$
- meaning: in a word $w = w_1 \cdots w_m$ each letter $w_i \in \mathfrak{A}$ is an **independent random variable** drawn with probabilities $P = (p_a)_{a \in \mathfrak{A}}$

Markov measures

- same as above: \mathfrak{A} alphabet, \mathfrak{A}^* finite strings, $\Lambda_{\mathfrak{A}}$ infinite strings
- $\pi = (\pi_a)_{a \in \mathfrak{A}}$ probability distribution $\pi_a \geq 0$ and $\sum_a \pi_a = 1$
- $P = (p_{ab})_{a,b \in \mathfrak{A}}$ stochastic matrix $p_{ab} \geq 0$ and $\sum_a p_{ab} = 1$
- Perron–Frobenius eigenvector $\pi P = \pi$
- Markov measure $\mu_{\pi, P}$ on $\Lambda_{\mathfrak{A}}$ with
$$\mu_{\pi, P}(\Lambda_{\mathfrak{A}}(w)) = \pi_{w_1} p_{w_1 w_2} \cdots p_{w_{m-1} w_m}$$
- meaning: in a word $w_1 \cdots w_m$ letters follow one another according to a Markov chain model, with probability p_{ab} of having a and b as consecutive letters

Example of Markov Chain



- **support** of Markov measure $\mu_{\pi, P}$ subset $\Lambda_{A, \mathfrak{A}} \subset \Lambda_{\mathfrak{A}}$ with $A = (A_{ab})$ entries $A_{ab} = 0$ if $p_{ab} = 0$ and $A_{ab} = 1$ if $p_{ab} \neq 0$

$$\Lambda_{A, \mathfrak{A}} = \{\alpha \in \Lambda_{\mathfrak{A}} \mid A_{\alpha_i \alpha_{i+1}} = 1, \forall i\}$$

- both Bernoulli and Markov measures are **shift invariant**

$$\sigma : \Lambda_{\mathfrak{A}} \rightarrow \Lambda_{\mathfrak{A}}, \quad \sigma(a_1 a_2 \cdots a_m \cdots) = a_2 a_3 \cdots a_{m+1} \cdots$$

- the shift map is a good model for many properties in the theory of **dynamical systems**: widely studied examples
- Markov's original aim was modeling natural languages
A. A. Markov (1913), *Ein Beispiel statistischer Forschung am Text "Eugen Onegin" zur Verbindung von Proben in Ketten*

Shannon Entropy

- Claude E. Shannon, Warren Weaver, *The Mathematical Theory of Communication*, University of Illinois Press, 1949.
(reprinted 1998)

Entropy measures the uncertainty associated to a prediction of the result of the experiment (equivalently the amount of information one gains from performing the experiment)

- Shannon entropy of a Bernoulli measure

$$S(\mu_P) = - \sum_{a \in \mathfrak{A}} p_a \log(p_a)$$

- Entropy of a Markov measure

$$S(\mu_{\pi, P}) = - \sum_{a, b \in \mathfrak{A}} \pi_a p_{ab} \log(p_{ab})$$

(Kolmogorov–Sinai entropy)

Relative entropy and cross-entropy

- **Relative entropy** (Kullback–Leibler divergence) $P = (p_a)$, $Q = (q_a)$

$$KL(P||Q) = \sum_{a \in \mathfrak{A}} p_a \log\left(\frac{p_a}{q_a}\right)$$

- **cross entropy** of probabilities $P = (p_a)$ and $Q = (q_a)$

$$S(P, Q) = S(P) + KL(P||Q) = - \sum_{a \in \mathfrak{A}} p_a \log(q_a)$$

expected message-length per datum when a wrong distribution Q is assumed while data follow distribution P

Entropy and Cross-entropy

- for a message W (thought of as a random variable) with $\mathcal{V}(W)$ set of possible values

$$S(W) = - \sum_{w \in \mathcal{V}(W)} \mathbb{P}(w) \log \mathbb{P}(w)$$

$$= \text{Average}_{w \in \mathcal{V}(W)} (\# \text{Bits Required for}(w))$$

- \mathbb{P}_M = probabilities estimated using a **model**

$$S(W, \mathbb{P}_M) = - \sum_{w \in \mathcal{V}(W)} \mathbb{P}(w) \log \mathbb{P}_M(w)$$

cross-entropy

- Cross-entropy gives a **model evaluator**

Entropy and Cross-entropy of languages

- asymptotic limit of per-word entropy as length grows

$$S(\mathcal{L}, \mathbb{P}) = - \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{w \in \mathcal{W}^n(\mathcal{L})} \mathbb{P}(w) \log \mathbb{P}(w)$$

for language $\mathcal{L} \subset \mathfrak{A}^*$ with $\mathcal{W}^n(\mathcal{L}) = \mathcal{L} \cap \mathfrak{A}^n$

- cross-entropy same with respect to a model \mathbb{P}_M

$$S(\mathcal{L}, \mathbb{P}, \mathbb{P}_M) = - \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{w \in \mathcal{W}^n(\mathcal{L})} \mathbb{P}(w) \log \mathbb{P}_M(w)$$

Other notions of Entropy of languages

- language structure functions $s_{\mathcal{L}}(m) = \#\mathcal{W}^m(\mathcal{L})$ (number of strings of length m in the language)
- Generating function for the language structure functions

$$G_{\mathcal{L}}(t) = \sum_m s_{\mathcal{L}}(m) t^m$$

- ρ = radius of convergence of the series $G_{\mathcal{L}}(t)$
- Entropy: $\mathcal{S}(\mathcal{L}) = -\log \rho(G_{\mathcal{L}}(t))$
- Example: for $\mathcal{L} = \mathfrak{A}^*$ with $\#\mathfrak{A} = N$, and \mathbb{P} uniform distribution both $S(\mathcal{L}, \mathbb{P}) = \mathcal{S}(\mathcal{L}) = \log N$

Trigram model

- can consider **further dependencies** between letters beyond consecutive ones
- Example **trigram**: how next letter in a word depends on the previous two

$$\mathbb{P}(w) = \mathbb{P}(w_0)\mathbb{P}(w_1|w_0)\mathbb{P}(w_2|w_0w_1) \cdots \mathbb{P}(w_m|w_{m-2}w_{m-1})$$

- build the model probabilities by counting frequencies of sequences $w_{j-2}w_{j-1}w_j$ of specific choices of three words over corpora of texts... **problem**: the model suppresses grammatical but unlikely combinations of words, which occur infrequently
problem of sparse data
- possible solution: smoothing out the probabilities

$$\mathbb{P}(w_m|w_{m-1}w_{m-2}) = \lambda_1 \mathbb{P}_f(w_m) + \lambda_2 \mathbb{P}_f(w_m|w_{m-1}) + \lambda_3 \mathbb{P}_f(w_m|w_{m-2}w_{m-1})$$

respectively frequencies \mathbb{P}_f of single word, pair, *and* triple

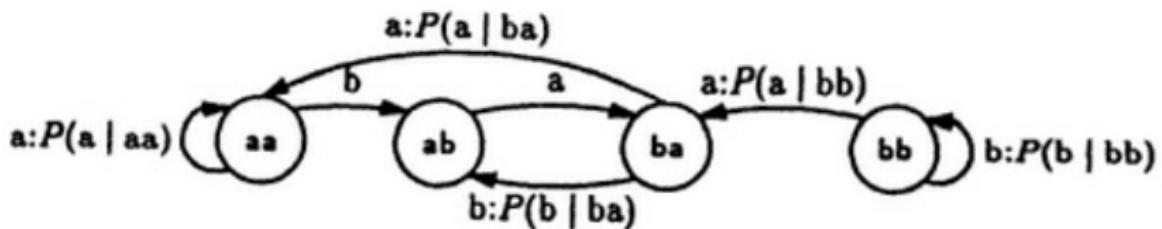
Hidden Markov Models

- these more general types of dependencies (like trigram) extend Markov Chains to Hidden Markov Models
- **first step** construct **Markov Chain** for

$$\mathbb{P}(w) = \prod_{j=0}^m \mathbb{P}(w_j | w_{j-2} w_{j-1})$$

by taking states consisting of pairs of consecutive letters $\mathfrak{A} \times \mathfrak{A}$ and an edge for each $a \in \mathfrak{A}$ with probability of transition $\mathbb{P}(c|ab)$ from ab to bc

Example:



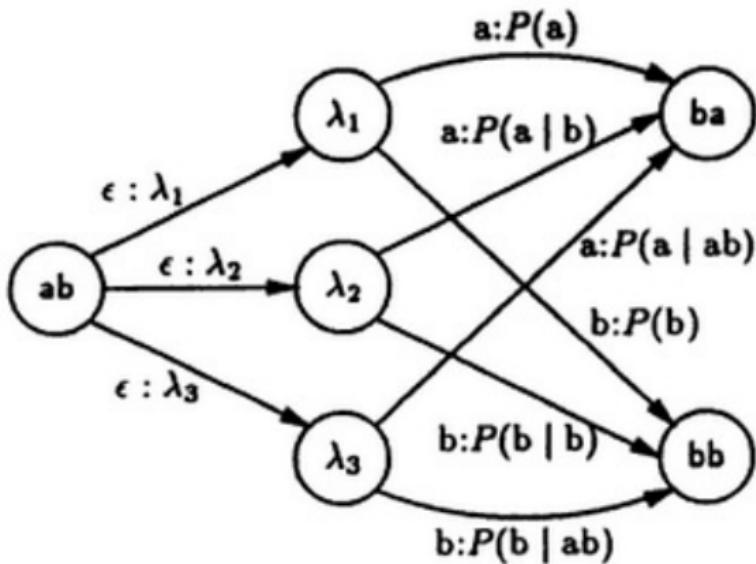
- **second step:** introduce the combination (with $\sum_i \lambda_i = 1$)

$$\lambda_1 \mathbb{P}(w_m) + \lambda_2 \mathbb{P}(w_m | w_{m-1}) + \lambda_3 \mathbb{P}(w_m | w_{m-2} w_{m-1})$$

in the diagram by replacing edges out of every node of the Markov chain with a diagram with additional states marked by λ_i and additional edges corresponding to all the probabilities contributing: $\mathbb{P}(a)$, $\mathbb{P}(a|b)$ and $\mathbb{P}(c|ab)$ with edges into λ_i state marked by empty ϵ output symbol ...

- the presence of ϵ -transitions with **no output symbol** implies this is a **Hidden Markov Model** with hidden states and visible states

Example: replacing the part of the diagram connecting node ab to nodes ba and bb



Shannon's series approximations to English

Random texts composed according to probability distributions that better approximate English texts

- Step 0: random text from English alphabet (plus blank symbol): letters drawn with uniform Bernoulli distribution

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

- Step 1: random text with Bernoulli distribution based on frequency of letters in English

OCRO HLI RGWR NMIELWIS EU LL NBNSEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

- Step 2: random text with Markov distribution over two consecutive letters from English frequencies (diagram model)

ON IE ANTSOUTINY ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUOOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

- Step 3: trigram model

IN NO IST LAT WIEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
RECOACTIONA OF CRE

Can also do the same on an alphabet of words instead of letters

- Step 1: random text with Bernoulli distribution based on frequency of words in sample texts of English

REPRESENTING AND SPEEDILY IS AN GOOD APT OR
COME CAN DIFFERENT NATURAL. HERE HE THE A IN
CAME THE TO OF TO EXPERT GRAY COME TO FUR-
NISHES THE LINE MESSAGE HAD BE THESE.

- Step 2: Markov distribution for consecutive words (digram)

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER OF THIS POINT IS
THEREFORE ANOTHER METHOD FOR THE LETTERS
THAT THE TIME OF WHO EVER TOLD THE PROBLEM
FOR AN UNEXPECTED

Stone house poet Mr. Shih who ate ten lions

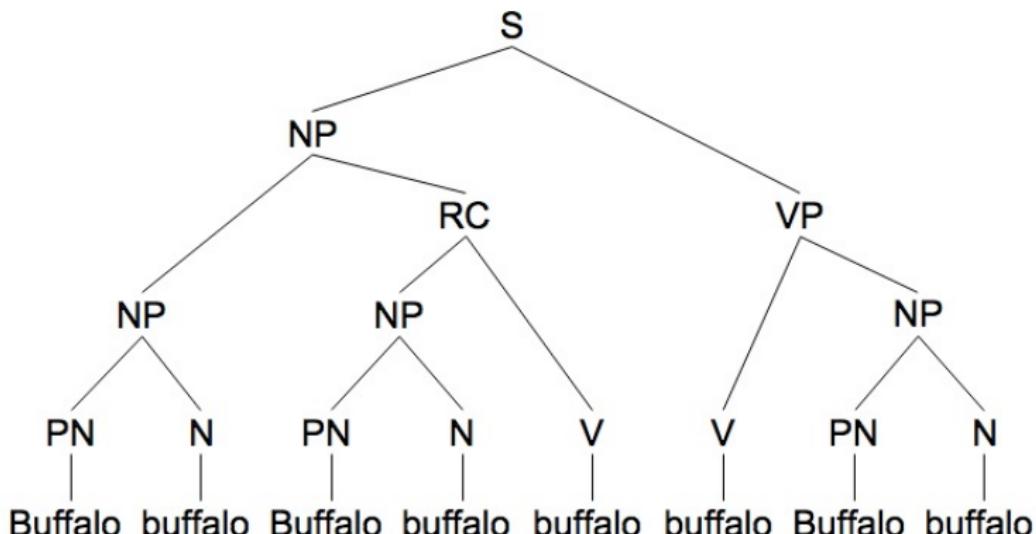
石室詩士施氏嗜獅誓食十獅氏時時適市視獅十時氏
適市適十碩獅適市是時氏視是十獅恃十石矢勢使是
十獅逝世氏拾是十獅屍適石室石室濕氏使侍試拭石
室石室拭氏始試食是十獅屍食時始識是十碩獅屍實
十碩石獅屍是時氏始識是實事實試釋是事

Text presented at the tenth Macy Conference on Cybernetics (1953) by linguist Yuen Ren Chao

- Shannon information as a written text very different from Shannon information as a spoken text

- for an interesting example in English, consider the word *buffalo*
 - *buffalo!* = bully! VP
 - *Buffalo buffalo* = bison bully NP VP
 - *Buffalo buffalo buffalo* = those bison that are from the city of Buffalo bully
 - *Buffalo buffalo buffalo buffalo* = those bison that are from the city of Buffalo bully other bison
- in fact arbitrarily long sentences consisting solely of the word *buffalo* are grammatical

(Example from Carl DeMarcken at MIT CSAIL ~'90, also used by Thomas Tymoczko, logician and philosopher of mathematics)



Bison from Buffalo, that bison from Buffalo bully, themselves bully bison from Buffalo

Where is the information content? as string (in an alphabet of words) it has Shannon information zero... the information is in the parse trees

Probabilistic Context Free Grammars $\mathcal{G} = (V_N, V_T, P, S, \mathbb{P})$

- V_N and V_T disjoint finite sets: *non-terminal* and *terminal* symbols
- $S \in V_N$ *start symbol*
- P finite rewriting system on $V_N \cup V_T$

P = *production rules* $A \rightarrow \alpha$ with $A \in V_N$ and $\alpha \in (V_N \cup V_T)^*$

- **Probabilities** $\mathbb{P}(A \rightarrow \alpha)$

$$\sum_{\alpha} \mathbb{P}(A \rightarrow \alpha) = 1$$

ways to expand same non-terminal A add up to probability one

Probabilities of parse trees

- $\mathcal{T}_{\mathcal{G}} = \{T\}$ family of parse trees T for a context-free grammar \mathcal{G}
- if \mathcal{G} probabilistic, can assign probabilities to all the possible parse trees $T(w)$ for a given string w in $\mathcal{L}_{\mathcal{G}}$

$$\mathbb{P}(w) = \sum_{T=T(w)} \mathbb{P}(w, T) = \sum_T \mathbb{P}(T) \mathbb{P}(w|T) = \sum_{T=T(w)} \mathbb{P}(T)$$

last because tree includes the terminals (labels of leaves) so
 $\mathbb{P}(w|T(w)) = 1$

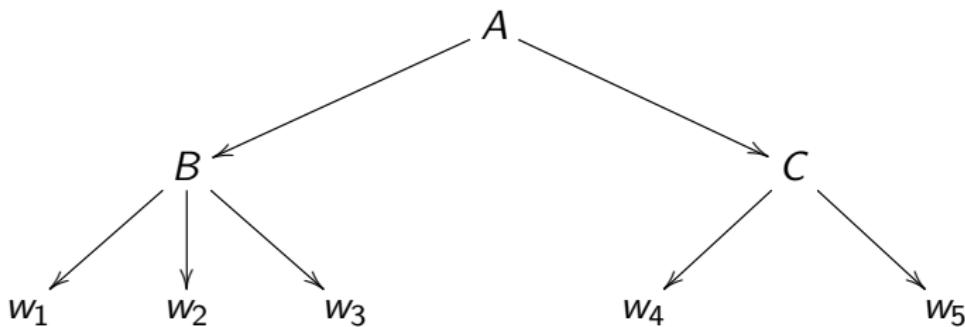
- Probabilities account for **syntactic ambiguities** of parse trees in context-free languages

Subtree independence assumption

- a vertex v in an oriented rooted planar tree T spans a subset $\Omega(v)$ of the set of leaves of T if $\Omega(v)$ is the set of leaves reached by an oriented path in T starting at v
- denote by A_{kl} a non-terminal labeling a vertex in a parse tree T that spans the subset $w_k \dots w_l$ of the string $w = w_1 \dots w_n$ parsed by $T = T(w)$

- ➊ $\mathbb{P}(A_{kl} \rightarrow w_k \dots w_l \mid \text{anything outside of } k \leq j \leq l) = \mathbb{P}(A_{kl} \rightarrow w_k \dots w_l)$
- ➋ $\mathbb{P}(A_{kl} \rightarrow w_k \dots w_l \mid \text{anything above } A_{kl} \text{ in the tree}) = \mathbb{P}(A_{kl} \rightarrow w_k \dots w_l)$

Example



$$\begin{aligned}\mathbb{P}(T) &= \mathbb{P}(A, B, C, w_1, w_2, w_3, w_4, w_5 \mid A) \\ &= \mathbb{P}(B, C \mid A) \mathbb{P}(w_1, w_2, w_3 \mid A, B, C) \mathbb{P}(w_4 w_5 \mid A, B, C, w_1, w_2, w_3) \\ &= \mathbb{P}(B, C \mid A) \mathbb{P}(w_1, w_2, w_3 \mid B) \mathbb{P}(w_4 w_5 \mid C) \\ &= \mathbb{P}(A \rightarrow BC) \mathbb{P}(B \rightarrow w_1, w_2, w_3) \mathbb{P}(C \rightarrow w_4 w_5)\end{aligned}$$

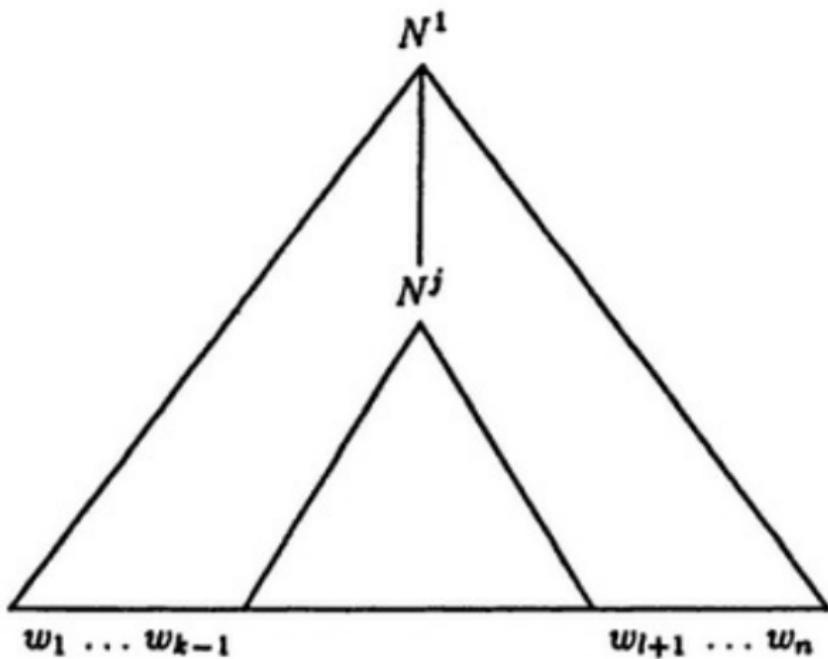
Sentence probabilities in PCFGs

- **Fact:** context-free grammars can always be put in **Chomsky normal form** where all the production rules are of the form

$$N \rightarrow w, \quad N \rightarrow N_1 N_2$$

where N, N_1, N_2 are non-terminal, w terminal

- Parse trees for a CFG in Chomsky normal form have either an internal node marked with non-terminal N and one output to a leaf with terminal w or a node with nonterminal N and two outputs with non-terminals N_1 and N_2



- assume CFG in Chomsky normal form
- inside probabilities

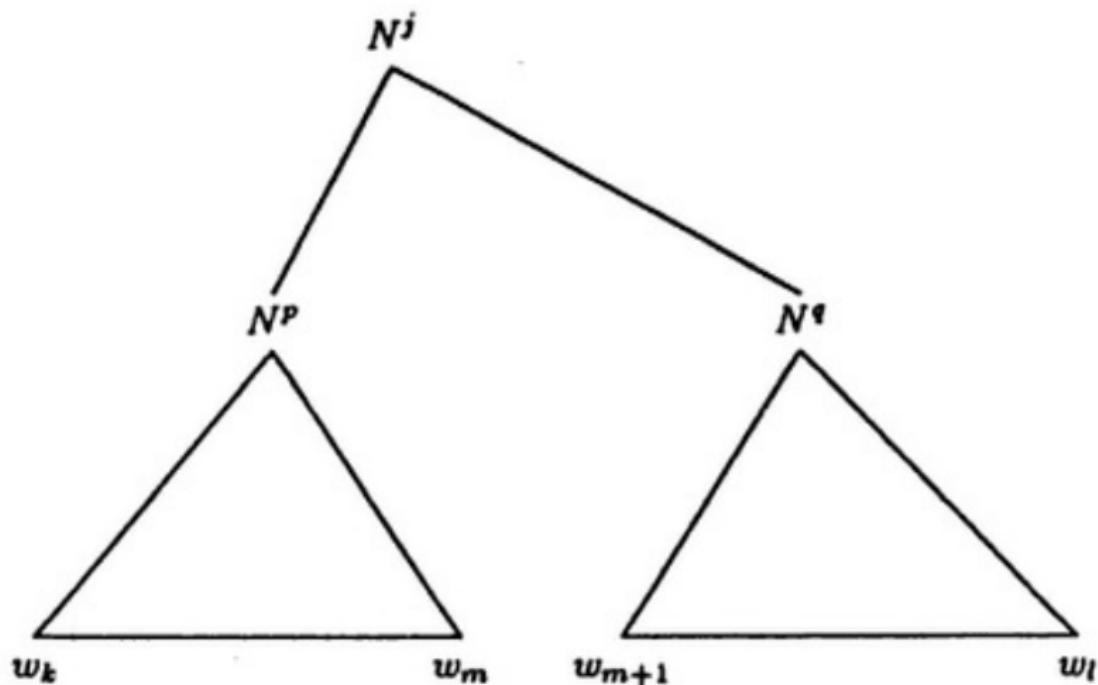
$$\beta_j(k, \ell) := \mathbb{P}(w_{k, \ell} | N_{k, \ell}^j)$$

probability of the string of terminals “inside” (outputs of) the oriented tree with vertex (root) $N_{k, \ell}^j$

- outside probabilities

$$\alpha_j(k, \ell) := \mathbb{P}(w_{1, k-1}, N_{k, \ell}^j, w_{\ell+1, n})$$

probability of everything that's outside the tree with root $N_{k, \ell}^j$



Recursive formula for inside probabilities

$$\begin{aligned}\beta_j(k, \ell) &= \mathbb{P}(w_{k, \ell} \mid N_{k, \ell}^j) = \sum_{p, q, m} \mathbb{P}(w_{k, m}, N_{k, m}^p w_{m+1, \ell} N_{m+1, \ell}^q \mid N_{k, \ell}^j) \\ &= \sum_{p, q, m} \mathbb{P}(N_{k, m}^p, N_{m+1, \ell}^q \mid N_{k, \ell}^j) \cdot \mathbb{P}(w_{k, m} \mid N_{k, \ell}^j, N_{k, m}^p, N_{m+1, \ell}^q) \\ &\quad \cdot \mathbb{P}(w_{m+1, \ell} \mid w_{k, m}, N_{k, \ell}^j N_{k, m}^p, N_{m+1, \ell}^q) \\ &= \sum_{p, q, m} \mathbb{P}(N_{k, m}^p, N_{m+1, \ell}^q \mid N_{k, \ell}^j) \cdot \mathbb{P}(w_{k, m} \mid N_{k, m}^p) \cdot \mathbb{P}(w_{m+1, \ell} \mid N_{m+1, \ell}^q) \\ &= \sum_{p, q, m} \mathbb{P}(N^j \rightarrow N^p N^q) \cdot \beta_p(k, m) \beta_q(m+1, \ell)\end{aligned}$$

Training Probabilistic Context-Free Grammars

- simpler case of a **Markov chain**: consider a transition $s^i \xrightarrow{w^k} s^j$ from state s^i to state s^j labeled by w^k
- given a large **training corpus**: count number of times the given transition occurs: **counting function** $C(s^i \xrightarrow{w^k} s^j)$
- model probabilities on the frequencies obtained from these counting functions:

$$\mathbb{P}_M(s^i \xrightarrow{w^k} s^j) = \frac{C(s^i \xrightarrow{w^k} s^j)}{\sum_{\ell, m} C(s^i \xrightarrow{w^m} s^\ell)}$$

- a similar procedure exists for **Hidden Markov Models**

- in the case of **Probabilistic Context Free Grammars**: use training corpus to estimate probabilities of production rules

$$\mathbb{P}_M(N^i \rightarrow w^j) = \frac{C(N^i \rightarrow w^j)}{\sum_k C(N^i \rightarrow w^k)}$$

- At the internal (hidden) nodes counting function related to probabilities by

$$C(N^j \rightarrow N^p N^q) := \sum_{k,\ell,m} \mathbb{P}(N_{k,\ell}^j, N_{k,m}^p, N_{m+1,\ell}^q \mid w_{1,n})$$

$$= \frac{1}{\mathbb{P}(w_{1,n})} \sum_{k,\ell,m} \mathbb{P}(N_{k,\ell}^j, N_{k,m}^p, N_{m+1,\ell}^q, w_{1,n})$$

$$= \frac{1}{\mathbb{P}(w_{1,n})} \sum_{k,\ell,m} \alpha_j(k, \ell) \mathbb{P}(N^j \rightarrow N^p N^q) \beta_p(k, m) \beta_q(m + 1, \ell)$$

Training corpora and the syntactic-semantic interface

- the existence of **different parse trees** for the same sentence is a sign of **semantic ambiguity**
- training a Probabilistic Context Free Grammar over a large corpus can (sometime) resolve ambiguities by assigning different probabilities
- Example: two parsings of sentence: *They are flying planes* *They (are flying) planes* or *They are (flying planes)*. This type of ambiguity might not be resolved by training over a corpus **beyond context-free?**

Probabilistic Tree Adjoining Grammars

- \mathcal{I} = set of initial trees of the TAG; \mathcal{A} = set of the auxiliary trees of the TAG
- each tree has subset of leaf nodes marked as nodes where **substitution** can occur
- **adjunction** can occur at any node marked by nonterminal (other than those marked for substitution)
- $s(\tau)$ set of substitution nodes of tree τ ; $\alpha(\tau)$ set of adjunction nodes of τ
- $S(\tau, \tau', \eta) =$ substitution of tree τ' into τ at node η ;
 $\mathcal{A}(\tau, \tau', \eta) =$ adjunction of tree τ' into tree τ at node η ;
 $\mathcal{A}(\tau, \emptyset, \eta) =$ no adjunction performed at node η
- Ω set of all substitutions and adjunction events

Probabilistic TAG (PTAG) $(\mathcal{I}, \mathcal{A}, \mathbb{P}_{\mathcal{I}}, \mathbb{P}_{\mathcal{S}}, \mathbb{P}_{\mathcal{A}})$

$$\mathbb{P}_{\mathcal{I}} : \mathcal{I} \rightarrow \mathbb{R}, \quad \mathbb{P}_{\mathcal{S}} : \Omega \rightarrow \mathbb{R}, \quad \mathbb{P}_{\mathcal{A}} : \Omega \rightarrow \mathbb{R}$$

$$\sum_{\tau \in \mathcal{I}} \mathbb{P}_{\mathcal{I}}(\tau) = 1$$

$$\sum_{\tau' \in \mathcal{I}} \mathbb{P}_{\mathcal{S}}(\mathcal{S}(\tau, \tau', \eta)) = 1, \quad \forall \eta \in s(\tau), \forall \tau \in \mathcal{I} \cup \mathcal{A}$$

$$\sum_{\tau' \in \mathcal{A} \cup \emptyset} \mathbb{P}_{\mathcal{A}}(\mathcal{A}(\tau, \tau', \eta)) = 1, \quad \forall \eta \in \alpha(\tau), \forall \tau \in \mathcal{I} \cup \mathcal{A}$$

- $\mathbb{P}_{\mathcal{I}}(\tau)$ = probability that a derivation begins with the tree τ
- $\mathbb{P}_{\mathcal{S}}(\mathcal{S}(\tau, \tau', \eta))$ = probability of substituting τ' into τ at η
- $\mathbb{P}_{\mathcal{A}}(\mathcal{A}(\tau, \tau', \eta))$ = probability of adjoining τ' to τ at η

- Probability of a derivation in a PTAG:

$$\mathbb{P}(\tau) = \mathbb{P}_{\mathcal{I}}(\tau_0) \cdot \prod_{i=1}^N \mathbb{P}_{op_i}(op_i(\tau_{i-1}, \tau_i, \eta_i))$$

if τ obtained from initial tree τ_0 through a sequence of N substitutions and adjunctions op_i ;

- similar to probabilistic context-free grammars

Difficulties for other models

- beyond context-free: can work with probabilistic TAGs, more difficult to make MGs probabilistic (but we'll discuss later "Markovian property" of Merge); more general question of how and why probabilistic models?

Some References

- ① Eugene Charniak, *Statistical Language Learning*, MIT Press, 1996.
- ② Rens Bod, Jennifer Hay, Stefanie Jannedy (Eds.), *Probabilistic Linguistics*, MIT Press, 2003.
- ③ Philip Resnik, *Probabilistic tree-adjoining grammar as a framework for statistical natural language processing*, Proc. of COLING-92 (1992) 418–424.

Probability and its discontents

- syntax is a deterministic computational process, so why probabilities?
- “*the notion of ‘probability of a sentence’ is an entirely useless one, under any known interpretation of this term*”
N.Chomsky, *Quine's empirical assumptions*, 1969
- of course if extracted from a corpus probabilities of sentences (rather than frequencies of words) would be astronomically small and completely useless
- but... there are meaningful ways in which a measure can be assigned to sentence construction (we'll discuss this later)

a mathematical metaphor: prime numbers

- prime numbers also describe a **generative process**: multiplicative generators of $(\mathbb{Z}_{>0}, \star)$ monoid
- prime numbers are a **completely deterministic** concept: either $n|m$ or $n \nmid m$, nothing probabilistic about divisibility
- **however** it is well known that in many respects primes behave like “independent random variables”
- there is a whole field of **probabilistic number theory** that uses probabilistic proofs of completely deterministic number theoretic properties

We will return later in the class to discuss probabilities, especially in comparison between large language models and generative grammar

Coming up next

- New Minimalism: Merge and the Strong Minimalist Thesis
- Mathematical formulation of free symmetric Merge