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Motivation

the computational generative model of syntax is deterministic

computational linguistics arising from NLP (natural language
processing) and more recently deep networks, transformers and
LLM (large language models) are fundamentally probabilistic

in view of studying direct comparisons between generative
syntax and language in LLMs need to discuss the role of
probabilities

more general questions on the role of probability in studying
deterministic systems (a different example: probabilistic
number theory)
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Bernoulli measures

• finite set A alphabet, strings of arbitrary (finite) length
A⋆ = ∪mA

m

• Alphabet: letters, phonemes, lexical list of words,...

• ΛA = infinite strings in alphabet A; cylinder sets
ΛA(w) = {α ∈ ΛA |αi = wi , i = 1, . . . ,m} with w ∈ Am

(also called the ω-language Aω)

• ΛA Cantor set with the topology generated by cylinder sets

• Bernoulli measure: P = (pa)a∈A probability measure pa ≥ 0 for
all a ∈ A and

∑
a∈A pa = 1

• Gives measure µP on ΛA with µP(ΛA(w)) = pw1 · · · pwm

• meaning: in a word w = w1 · · ·wm each letter wi ∈ A is an
independent random variable drawn with probabilities P = (pa)a∈A
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Markov measures

• same as above: A alphabet, A⋆ finite strings, ΛA infinite strings

• π = (πa)a∈A probability distribution πa ≥ 0 and
∑

a πa = 1

• P = (pab)a,b∈A stochastic matrix pab ≥ 0 and
∑

a pab = 1

• Perron–Frobenius eigenvector πP = π

• Markov measure µπ,P on ΛA with
µπ,P(ΛA(w)) = πw1pw1w2 · · · pwm−1wm

• meaning: in a word w1 · · ·wm letters follow one another
according to a Markov chain model, with probability pab of having
a and b as consecutive letters
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Example of Markov Chain
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• support of Markov measure µπ,P subset ΛA,A ⊂ ΛA with
A = (Aab) entries Aab = 0 if pab = 0 and Aab = 1 if pab ̸= 0

ΛA,A = {α ∈ ΛA |Aαiαi+1 = 1,∀i}

• both Bernoulli and Markov measures are shift invariant

σ : ΛA → ΛA, σ(a1a2 · · · am · · · ) = a2a3 · · · am+1 · · ·

• the shift map is a good model for many properties in the theory
of dynamical systems: widely studied examples

• Markov’s original aim was modeling natural languages
A. A. Markov (1913), Ein Beispiel statistischer Forschung am Text
“Eugen Onegin” zur Verbindung von Proben in Ketten
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Shannon Entropy

Claude E. Shannon, Warren Weaver, The Mathematical
Theory of Communication, University of Illinois Press, 1949.
(reprinted 1998)

Entropy measures the uncertainty associated to a prediction of the
result of the experiment (equivalently the amount of information
one gains from performing the experiment)

• Shannon entropy of a Bernoulli measure

S(µP) = −
∑
a∈A

pa log(pa)

• Entropy of a Markov measure

S(µπ,P) = −
∑
a,b∈A

πapab log(pab)

(Kolmogorov–Sinai entropy)
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Relative entropy and cross-entropy

• Relative entropy (Kullback–Leibler divergence) P = (pa),
Q = (qa)

KL(P||Q) =
∑
a∈A

pa log(
pa
qa

)

• cross entropy of probabilities P = (pa) and Q = (qa)

S(P,Q) = S(P) + KL(P||Q) = −
∑
a∈A

pa log(qa)

expected message-length per datum when a wrong distribution Q
is assumed while data follow distribution P
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Entropy and Cross-entropy

• for a message W (thought of as a random variable) with V(W )
set of possible values

S(W ) = −
∑

w∈V(W )

P(w) logP(w)

= Averagew∈V(W )(#Bits Required for(w))

• PM = probabilities estimated using a model

S(W ,PM) = −
∑

w∈V(W )

P(w) logPM(w)

cross-entropy

• Cross-entropy gives a model evaluator
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Entropy and Cross-entropy of languages

• asymptotic limit of per-word entropy as length grows

S(L,P) = − lim
n→∞

1

n

∑
w∈Wn(L)

P(w) logP(w)

for language L ⊂ A⋆ with Wn(L) = L ∩ An

• cross-entropy same with respect to a model PM

S(L,P,PM) = − lim
n→∞

1

n

∑
w∈Wn(L)

P(w) logPM(w)
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Other notions of Entropy of languages

• language structure functions sL(m) = #Wm(L) (number of
strings of length m in the language)

• Generating function for the language structure functions

GC (t) =
∑
m

sL(m)tm

• ρ = radius of convergence of the series GC (t)

• Entropy: S(L) = − log ρ(GC (t))

• Example: for L = A⋆ with #A = N, and P uniform distribution
both S(L,P) = S(L) = logN
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Trigram model

• can consider further dependencies between letters beyond
consecutive ones

• Example trigram: how next letter in a word depends on the
previous two

P(w) = P(w0)P(w1|w0)P(w2|w0w1) · · ·P(wm|wm−2wm−1)

• build the model probabilities by counting frequencies of
sequences wj−2wj−1wj of specific choices of three words over
corpora of texts... problem: the model suppresses grammatical but
unlikely combinations of words, which occur infrequently
problem of sparse data

• possible solution: smoothing out the probabilities

P(wm|wm−1wm−2) = λ1Pf (wm)+λ2Pf (wm|wm−1)+λ3Pf (wm|wm−2wm−1)

respectively frequencies Pf of single word, pair, and triple
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Hidden Markov Models

• these more general types of dependencies (like trigram) extend
Markov Chains to Hidden Markov Models

• first step construct Markov Chain for

P(w) =
m∏
j=0

P(wj |wj−2wj−1)

by taking states consisting of pairs of consecutive letters A× A
and an edge for each a ∈ A with probability of transition P(c |ab)
from ab to bc
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Example:

M.Marcolli Mathematics & Linguistics



• second step: introduce the combination (with
∑

i λi = 1)

λ1P(wm) + λ2P(wm|wm−1) + λ3P(wm|wm−2wm−1)

in the diagram by replacing edges out of every node of the Markov
chain with a diagram with additional states marked by λi and
additional edges corresponding to all the probabilities contributing:
P(a), P(a|b) and P(c |ab) with edges into λi state marked by
empty ϵ output symbol ...

• the presence of ϵ-transitions with no output symbol implies this
is a Hidden Markov Model with hidden states and visible states
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Example: replacing the part of the diagram connecting node ab to
nodes ba and bb
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Shannon’s series approximations to English

Random texts composed according to probability distributions that
better approximate English texts

• Step 0: random text from English alphabet (plus blank symbol):
letters drawn with uniform Bernoulli distribution

• Step 1: random text with Bernoulli distribution based on
frequency of letters in English
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• Step 2: random text with Markov distribution over two
consecutive letters from English frequencies (diagram model)

• Step 3: trigram model
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Can also do the same on an alphabet of words instead of letters

• Step 1: random text with Bernoulli distribution based on
frequency of words in sample texts of English

• Step 2: Markov distribution for consecutive words (digram)
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Stone house poet Mr.Shih who ate ten lions

Text presented at the tenth Macy Conference on Cybernetics
(1953) by linguist Yuen Ren Chao

• Shannon information as a written text very different from
Shannon information as a spoken text
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• for an interesting example in English, consider the word buffalo

- buffalo! = bully! VP
- Buffalo buffalo = bison bully NP VP
- Buffalo buffalo buffalo = those bison that are from the city of
Buffalo bully
- Buffalo buffalo buffalo buffalo = those bison that are from the
city of Buffalo bully other bison

• in fact arbitrarily long sentences consisting solely of the word
buffalo are grammatical

(Example from Carl DeMarcken at MIT CSAIL ∼’90, also used by

Thomas Tymoczko, logician and philosopher of mathematics)
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Bison from Buffalo, that bison from Buffalo bully, themselves bully
bison from Buffalo

Where is the information content? as string (in an alphabet of
words) it has Shannon information zero... the information is in the
parse trees
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Probabilistic Context Free Grammars G = (VN ,VT ,P,S ,P)

VN and VT disjoint finite sets: non-terminal and terminal
symbols

S ∈ VN start symbol

P finite rewriting system on VN ∪ VT

P = production rules A → α with A ∈ VN and α ∈ (VN ∪ VT )
⋆

• Probabilities P(A → α)∑
α

P(A → α) = 1

ways to expand same non-terminal A add up to probability one
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Probabilities of parse trees

• TG = {T} family of parse trees T for a context-free grammar G

• if G probabilistic, can assign probabilities to all the possible parse
trees T (w) for a given string w in LG

P(w) =
∑

T=T (w)

P(w ,T ) =
∑
T

P(T )P(w |T ) =
∑

T=T (w)

P(T )

last because tree includes the terminals (labels of leaves) so
P(w |T (w)) = 1

• Probabilities account for syntactic ambiguities of parse trees in
context-free languages
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Subtree independence assumption

• a vertex v in an oriented rooted planar tree T spans a subset
Ω(v) of the set of leaves of T if Ω(v) is the set of leaves reached
by an oriented path in T starting at v

• denote by Akl a non-terminal labeling a vertex in a parse tree T
that spans the subset wk . . .wl of the string w = w1 . . .wn parsed
by T = T (w)

1 P(Akl → wk . . .wl | anything outside of k ≤ j ≤ l} =
P(Akl → wk . . .wl)

2 P(Akl → wk . . .wl | anything above Akl in the tree} =
P(Akl → wk . . .wl)
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Example

A

vv ''
B

}} !!��

C

~~   
w1 w2 w3 w4 w5

P(T ) = P(A,B,C ,w1,w2,w3,w4,w4 |A)

= P(B,C |A)P(w1,w2,w3 |A,B,C )P(w4w5 |A,B,C ,w1,w2,w3)

= P(B,C |A)P(w1,w2,w3 |B)P(w4w5 |C )

= P(A → BC )P(B → w1,w2,w3)P(C → w4w5)
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Sentence probabilities in PCFGs

• Fact: context-free grammars can always be put in Chomsky
normal form where all the production rules are of the form

N → w , N → N1N2

where N, N1, N2 are non-terminal, w terminal

• Parse trees for a CFG in Chomsky normal form have either an
internal node marked with non-terminal N and one output to a leaf
with terminal w or a node with nonterminal N and two outputs
with non-terminals N1 and N2
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• assume CFG in Chomsky normal form

• inside probabilities

βj(k , ℓ) := P(wk,ℓ |N j
k,ℓ)

probability of the string of terminals “inside” (outputs of) the
oriented tree with vertex (root) N j

k,ℓ

• outside probabilities

αj(k , ℓ) := P(w1,k−1,N
j
k,ℓ,wℓ+1,n)

probability of everything that’s outside the tree with root N j
k,ℓ
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Recursive formula for inside probabilities

βj(k, ℓ) = P(wk,ℓ |N j
k,ℓ) =

∑
p,q,m

P(wk,m,N
p
k,mwm+1,ℓN

q
m+1,ℓ |N

j
k,ℓ)

=
∑
p,q,m

P(Np
k,m,N

q
m+1,ℓ |N

j
k,ℓ) · P(wk,m |N j

k,ℓ,N
p
k,m,N

q
m+1,ℓ)

·P(wm+1,ℓ |wk,m,N
j
k,ℓN

p
k,m,N

q
m+1,ℓ)

=
∑
p,q,m

P(Np
k,m,N

q
m+1,ℓ |N

j
k,ℓ) · P(wk,m |Np

k,m) · P(wm+1,ℓ |Nq
m+1,ℓ)

=
∑
p,q,m

P(N j → NpNq) · βp(k ,m)βq(m + 1, ℓ)
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Training Probabilistic Context-Free Grammars

• simpler case of a Markov chain: consider a transition s i
wk

→ s j

from state s i to state s j labeled by wk

• given a large training corpus: count number of times the given

transition occurs: counting function C (s i
wk

→ s j)

• model probabilities on the frequencies obtained from these
counting functions:

PM(s i
wk

→ s j) =
C (s i

wk

→ s j)∑
ℓ,m C (s i

wm

→ sℓ)

• a similar procedure exists for Hidden Markov Models
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• in the case of Probabilistic Context Free Grammars: use training
corpus to estimate probabilities of production rules

PM(N i → w j) =
C (N i → w j)∑
k C (N i → wk)

• At the internal (hidden) nodes counting function related to
probabilites by

C (N j → NpNq) :=
∑
k,ℓ,m

P(N j
k,ℓ,N

p
k,m,N

q
m+1,ℓ |w1,n)

=
1

P(w1,n)

∑
k,ℓ,m

P(N j
k,ℓ,N

p
k,m,N

q
m+1,ℓ,w1,n)

=
1

P(w1,n)

∑
k,ℓ,m

αj(k , ℓ)P(N j → NpNq)βp(k ,m)βq(m + 1, ℓ)
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Training corpora and the syntactic-semantic interface

• the existence of different parse trees for the same sentence is a
sign of semantic ambiguity

• training a Probabilistic Context Free Grammar over a large
corpus can (sometime) resolve ambiguities by assigning different
probabilities

• Example: two parsings of sentence: They are flying planes
They (are flying) planes or They are (flying planes). This type of
ambiguity might not be resolved by training over a corpus

beyond context-free?
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Probabilistic Tree Adjoining Grammars

• I = set of initial trees of the TAG; A = set of the auxiliary trees
of the TAG

• each tree has subset of leaf nodes marked as nodes where
substitution can occur

• adjunction can occur at any node marked by nonterminal (other
than those marked for substitution)

• s(τ) set of substitution nodes of tree τ ; α(τ) set of adjunction
nodes of τ

• S(τ, τ ′, η) = substitution of tree τ ′ into τ at node η;
A(τ, τ ′, η) = adjunction of tree τ ′ into tree τ at node η;
A(τ, ∅, η) = no adjunction performed at node η

• Ω set of all substitutions and adjunction events

M.Marcolli Mathematics & Linguistics



Probabilistic TAG (PTAG) (I,A,PI ,PS ,PA)

PI : I → R, PS : Ω → R, PA : Ω → R∑
τ∈I

PI(τ) = 1

∑
τ ′∈I

PS(S(τ, τ ′, η)) = 1, ∀η ∈ s(τ), ∀τ ∈ I ∪ A

∑
τ ′∈A∪∅

PA(A(τ, τ ′, η)) = 1, ∀η ∈ α(τ), ∀τ ∈ I ∪ A

• PI(τ) = probability that a derivation begins with the tree τ
• PS(S(τ, τ ′, η) = probability of substituting τ ′ into τ at η
• PA(A(τ, τ ′, η)) = probability of adjoining τ ′ to τ at η
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• Probability of a derivation in a PTAG:

P(τ) = PI(τ0) ·
N∏
i=1

Popi (opi (τi−1, τi , ηi ))

if τ obtained from initial tree τ0 through a sequence of N
substitutions and adjunctions opi

• similar to probabilistic context-free grammars

Difficulties for other models
• beyond context-free: can work with probabilistic TAGs, more
difficult to make MGs probabilistic (but we’ll discuss later
“Markovian property” of Merge); more general question of how
and why probabilistic models?
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Probability and its discontents

syntax is a deterministic computational process, so why
probabilities?

“the notion of ‘probability of a sentence’ is an entirely useless
one, under any known interpretation of this term”
N.Chomsky, Quine’s empirical assumptions, 1969

of course if extracted from a corpus probabilities of sentences
(rather than frequencies of words) would be astronomically
small and completely useless

but... there are meaningful ways in which a measure can be
assigned to sentence construction (we’ll discuss this later)
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a mathematical metaphor: prime numbers

prime numbers also describe a generative process:
multiplicative generators of (Z>0, ⋆) monoid

prime numbers are a completely deterministic concept:
either n|m or n ̸ |m, nothing probabilistic about divisibility

however it is well known that in many respects primes behave
like “independent random variables”

there is a whole field of probabilistic number theory that uses
probabilistic proofs of completely deterministic number
theoretic properties
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We will return later in the class to discuss probabilities, especially
in comparison between large language models and generative
grammar

Coming up next

New Minimalism: Merge and the Strong Minimalist Thesis

Mathematical formulation of free symmetric Merge
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