

Lecture 4: From Formal Languages to Minimalism

Ma 191c: Mathematical Models of Generative Linguistics

Matilde Marcolli

Caltech, Spring 2024

consider again **Context-free grammars** $\mathcal{G} = (V_N, V_T, P, S)$

- V_N and V_T disjoint finite sets: *non-terminal* and *terminal* symbols
- $S \in V_N$ *start symbol*
- P finite rewriting system on $V_N \cup V_T$

P = *production rules*: $A \rightarrow \alpha$ with $A \in V_N$ and $\alpha \in (V_N \cup V_T)^*$

Language produced by a grammar \mathcal{G} :

$$\mathcal{L}_{\mathcal{G}} = \{w \in V_T^* \mid S \xrightarrow{P} w\}$$

language with alphabet V_T

Parse Trees of a context free language

- a finite, rooted, oriented (away from the root), planar tree (with a choice of a planar embedding)
- vertices decorated by elements of $V_N \cup V_T$ (terminal and non-terminal symbols)
- if an “internal vertex” (not a leaf) is decorated by A and if all the terminal vertices of oriented edges out of vertex A are labelled by w_1, \dots, w_n (with ordering specified by planar embedding) then

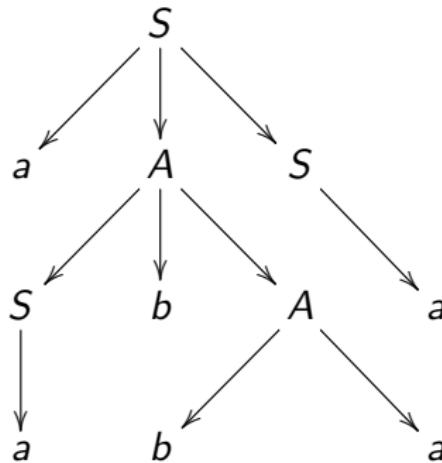
$$A \rightarrow w_1 \cdots w_n \quad \in P$$

Example

- Grammar: $\mathcal{G} = \{\{S, A\}, \{a, b\}, P, S\}$ with productions P

$$S \rightarrow aAS, \quad S \rightarrow a, \quad A \rightarrow SbA, \quad A \rightarrow SS, \quad A \rightarrow ba$$

- this is a possible parse tree for the string $aabbbaa$ in $\mathcal{L}_{\mathcal{G}}$



Fact: for context-free $\mathcal{G} = (V_N, V_T, P, S)$ have a chain of derivations in \mathcal{G}

$$A \xrightarrow{\bullet} w_1 \cdots w_n$$

if and only if there is a parse tree for \mathcal{G} with root decorated by A and with n leaves decorated by w_1, \dots, w_n

to see this: if have parse tree with input A and outputs w_1, \dots, w_n , show by induction on number of internal vertices that

$$A \xrightarrow{\bullet} w_1 \cdots w_n \text{ in } \mathcal{G}$$

- if only root and leaves (no other vertices) then $A \rightarrow w_1 \cdots w_n$ is a production rule in P
- otherwise, assume know for all trees with $\leq k$ vertices (induction hypothesis); if tree has $k + 1$ vertices, look at immediate successor vertices from root: get a production in P (from A to the list of successors) then for each successor that not leaf get a tree with $\leq k$ vertices

conversely if $A \xrightarrow{\bullet} w_1 \cdots w_n$ in \mathcal{G}

- then there is a chain of derivations in P ,

$$A \rightarrow u_1, \dots, u_i \rightarrow u_{i+1}, \dots, u_k \rightarrow w_1 \cdots w_n$$

where the next derivation giving u_{i+1} is applied to some non-terminal element in the string u_i

- the first production rule $A \rightarrow u_1$, produces a string $u_1 = u_{11} \dots u_{1k_1}$ and gives a root labelled A with valence k_1 and leaves labelled by u_{1j}
- the second $u_1 \rightarrow u_2$ consists of some production rules in P applied to some of the non-terminal symbols u_{1j} in the string u_1 : append trees to the vertices labelled u_{1j} with leaves the resulting strings in u_2
- continue with successive derivations until obtain a tree with root A and with leaves (ordered by planar embedding) labelled by w_1, \dots, w_n

Ambiguity of context-free languages (grammars)

- A context-free grammar \mathcal{G} is *ambiguous* if there are words $w \in \mathcal{L}_{\mathcal{G}}$ that admit different (non-equivalent) parse trees
- Trivial example: $S \rightarrow A, S \rightarrow B, A \rightarrow a, B \rightarrow a$
- A language \mathcal{L} is *inherently ambiguous* if every possible context-free grammar \mathcal{G} with $\mathcal{L} = \mathcal{L}_{\mathcal{G}}$ is ambiguous

Example

$$\mathcal{L} = \{a^n b^n c^m d^m \mid n \geq 1, m \geq 1\} \cup \{a^n b^m c^m d^n \mid n \geq 1, m \geq 1\}$$

is inherently ambiguous because there are infinitely many strings of the form $a^n b^n c^n d^n$ that have different parse trees

Sketch of argument for Example:

Suppose \exists unambiguous context-free \mathcal{G} for \mathcal{L} above: then can always arrange that for all $A \in V_N \setminus \{S\}$ have $A \xrightarrow{*} x_1 A x_2$ with both x_1, x_2 not the empty word

- because of the form of words in \mathcal{L} must have x_1 and x_2 consisting of only one type of symbol a, b, c, d (otherwise get a string not in \mathcal{L})
- also symbol for x_1 different from symbol for x_2 (because of form of words cannot increase occurrences of only one type of symbol and still get words in \mathcal{L}) and also length of x_1 and x_2 has to be same (same reason)

- check only cases are x_1 made of a 's and x_2 of b 's or d 's; x_1 made of b 's and x_2 of c 's; x_1 made of c 's and x_2 of d 's (divide variables other than S into C_{ab} , C_{ad} , C_{bc} , C_{cd})
- subdivide \mathcal{G} into two grammars

$$\mathcal{G}_1 = \{\{S\} \cup C_{ab} \cup C_{cd}, V_T, P_1, S\} \quad \mathcal{G}_2 = \{\{S\} \cup C_{ad} \cup C_{bc}, V_T, P_2, S\}$$

\mathcal{G}_1 generates all $a^n b^n c^m d^m$ with $n \neq m$ and some $a^n b^n c^n d^n$; \mathcal{G}_2 generates all $a^n b^m c^m d^n$ with $n \neq m$ and some $a^n b^n c^n d^n$

- then show (set theoretic argument) that both \mathcal{G}_1 and \mathcal{G}_2 must generate all but finitely many of the $a^n b^n c^n d^n$: all these have two different parse trees

Parse trees and natural languages

Example How to generate the English sentence:

The book is believed to have been written by the Aztecs

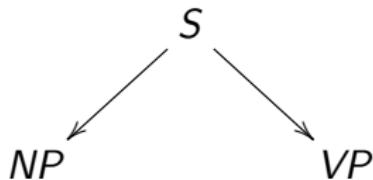
- Two step process:

- ① generate two separate sentences:

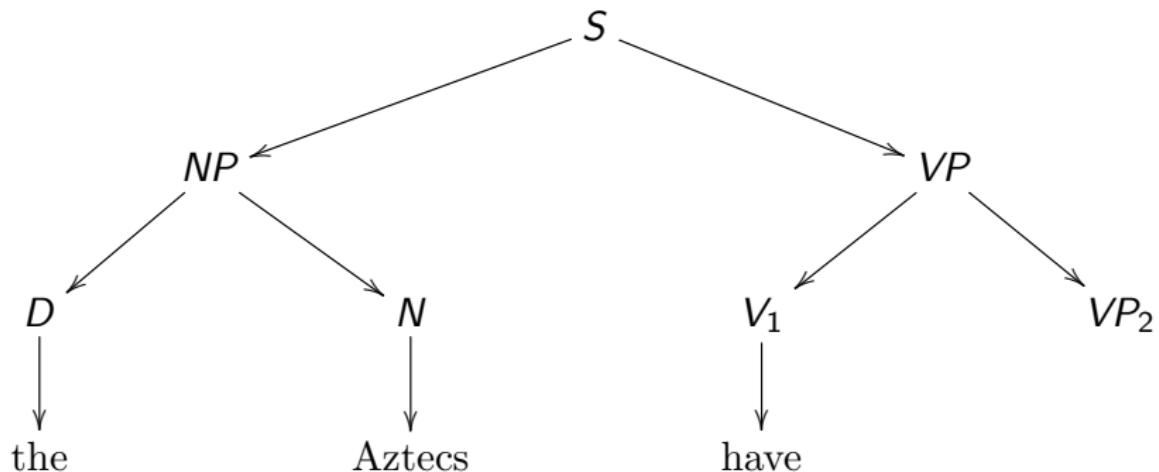
- (1) *The Aztecs have written the book;*
- (2) *We believe it*

- ② combine them with appropriate *transformations*

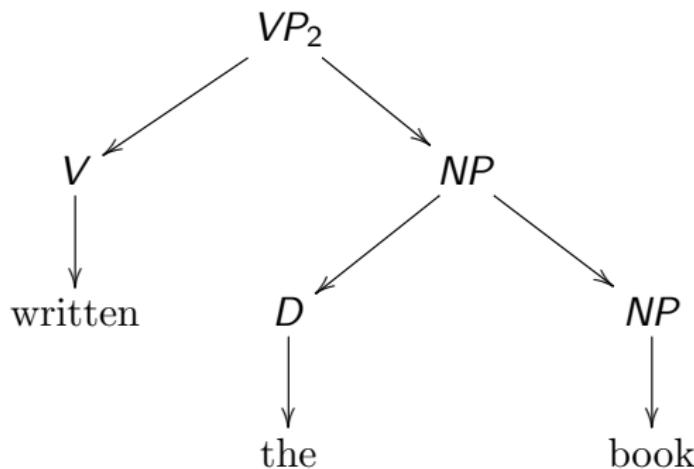
- first sentence (S): noun phrase (NP) + verb phrase (VP)



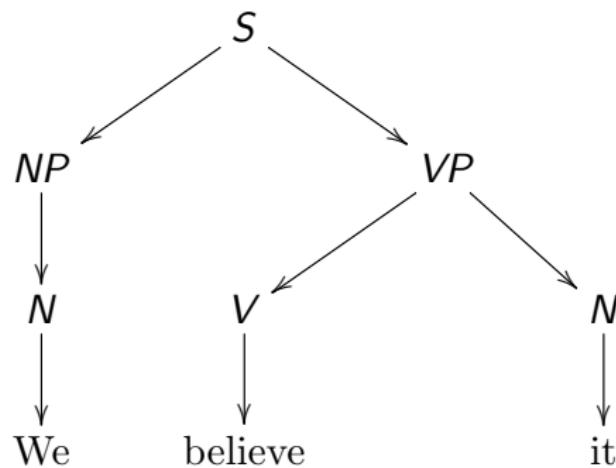
- The NP part is: determiner (D) + noun (N);
VP part has: auxiliary (V₁) + rest of phrase (VP₂)



- the VP_2 part consists of: verb (V) + noun phrase (NP)



- Similarly, the second sentence *We believe it* has a parse tree



- Operation 1: Passive Transformation

The Aztecs have written the book \Rightarrow *The book has been written by the Aztecs*

- Operation 2: Insertion

We believe IT \Rightarrow *We believe the book has been written by the Aztecs*

- Operation 3: Passive Transformation

We believe the book has been written by the Aztecs \Rightarrow *The book is believed by us to have been written by the Aztecs*

- Operation 4: Agent Deletion

The book is believed by us to have been written by the Aztecs \Rightarrow
The book is believed to have been written by the Aztecs

Main idea:

Generative process with sentence (S) as start symbol; non-terminal symbols given by syntactic identifiers (NP, VP, N, V, D, etc.); terminals given by words; production rules encode syntactic structure, together with transformations on parse trees

Early formulation of **Generative Grammar**

- ① Noam Chomsky, *The logical structure of linguistic theory* (1955), Plenum, 1975.
- ② Noam Chomsky, *Syntactic structures*, Mouton, 1957.

Later developments focused more on transformations and less on production rules

A closer look at Transformational Grammar

- A set of trees (for example: parse trees of a context-free or context-sensitive grammar): *Base trees*
- finite, rooted, oriented, planar trees with decorated vertices: if one vertex v has only one outgoing edge e the label at $t(e)$ different from the label at $v = s(e)$
- Base trees $\mathcal{B} = \{B, V, V_T\}$ with B a collection of trees as above, $V_T \subset V$ a finite set of terminal symbols used to label leaves of trees in B and internal vertices labelled by non-terminal symbols
 $V_N = V \setminus V_T$

- Additional data $\Delta = \{\Sigma, \Sigma_A, X, V''\}$ with
 - Σ finite set of abstract symbols with $V_T \subseteq \Sigma$ and $\Sigma \cap V_N = \emptyset$
 - X abstract symbol not in $V \cup \Sigma$ (dummy variable)
 - a subset $\Sigma_A \subseteq \Sigma$
 - V'' set containing $V \cup \Sigma \cup \{X\}$ and additional symbols $Y^{(k)}$ with $Y \in V \cup \Sigma \cup \{X\}$ and $k \in \mathbb{N}$

Σ_A represents the set of symbols over which the language generated by the grammar is defined

- $\mathcal{R} =$ finite set of **transformation rules** (T-rules) (D, C) with respect to V'', Σ and X

T-rules

- symbols $X, X^{(k)}$ in V'' mark parts of the tree that cannot be moved by the transformation T
- $D = \text{domain statement}$: string $\alpha_1 \cdots \alpha_k$ of symbols in V''
- $C = \text{structural change statement}$ on D : string $\beta_1 \cdots \beta_k$ of symbols in $\{k\}_{k \in \mathbb{N}} \cup \Sigma$
 $\beta_j = j$ if symbol $D_j = \alpha_j$ of D is some $X^{(r)}$ (unmoved by T)
otherwise β_j is either some $i \neq j$ or some symbol in Σ

- **Example:** passivization in English

the cat ate the mouse \mapsto *the mouse was eaten by the cat*

$N^{(1)} TV N^{(2)} \mapsto N^{(2)} T \text{ be } E_n VN^{(1)}$

$N^{(1)} = \text{cat}, T = \text{tense, past}; V = \text{eat}, N^{(2)} = \text{mouse}$

$TV \mapsto T \text{ be } E_n V \text{ ate} \mapsto \text{was eaten}$

- T_{pass} rule (D, C) where

$D = \alpha_1 \alpha_2 \cdots \alpha_8 = X^{(1)} \$ N^{(1)} TV N^{(2)} \$ X^{(2)}$

$C = \beta_1 \beta_2 \cdots \beta_8 = 1264(\text{ be } E_n 5 \text{ by })378$

$\$ = \text{boundary marker}$

States

- additional structure of transformational grammar:

$$\Omega = \{K, \mathcal{N}, \delta, s_0\}$$

- K = finite set of states, s_0 = start state
- $\mathcal{N} = \{N(s), s \in K\}$ with $N(s)$ partially ordered set over $\mathcal{R} \cup \{\#\}$ (with $\#$ stop symbol occurring as maximal element)
- $\delta : K \times \mathcal{R} \rightarrow K$ (next state function)

Keeps into account order of application of the T -rules
(order matters)

Records the “past history” of the use of the rules (can reconstruct the path of rule applications)

Assume a rule T leaves a tree unchanged if it does not apply to it
(continue to next rule in the ordered list)

Language generated by a transformational grammar

- the set of base trees = *deep structure*
- all the tree produced by applying compositions of transformations to base trees = *surface structure*
- (τ, s) with τ a tree and $s \in K$

$$(\tau, s) \vdash (\tau', s')$$

if $\exists T = (D, C)$ T-rule with $\tau' = T(\tau)$, $T \in N(s)$, $s' = \delta(s, T)$,
there is no other τ'' and $T' \in N(s)$ with $T' < T$ and $\tau'' = T'(\tau)$

- string w generated by T -grammar if $w \in \Sigma_A^*$, there are τ , τ' and s' with $\tau \in \mathcal{B}$, $(\tau, s_0) \vdash^* (\tau', s') \vdash$ Stop and w is the terminal string of the tree τ'

Example of cross-serial dependencies

dat Jan Piet de kinderen zag helpen zwemmen
(Jan saw Piet help the children swim)

- core construction using CFG (context-free grammar)

$$S \rightarrow NP \ VP ; \quad VP \rightarrow S \ V ; \quad VP \rightarrow V$$

- these alone give ungrammatical strings

dat [s Jan [VP [s Piet [VP [s de kinderen [VP zwemmen]] helpen]] zag]]
that Jan Piet the children swim help saw

- then transformational rules (Verb Raising)

$$X - V_1 - V_2 - Y \rightarrow X - [V_2 - V_1] - Y$$

X - V_i - V_j - Y
| | | |
dat Jen Piet de kinderen - zwemmen - helpen - zag

X - V_i - V_j - Y
| | | |
dat Jan Piet de kinderen - helpen zwemmen - zag| - Ø

References

- Noam Chomsky, *Selected Readings on Transformational Theory*, Dover 2012.
- Seymour Ginsburg, Barbara Partee, *A mathematical model of Transformational Grammars*, Information and Control 15 (1969) 297–334
- P.S.Peters, R.W.Ritchie, *On the generative power of transformational grammars*, Information Sci. 6 (1973), 49–83.
- Barbara Partee, Alice ter Meulen, Robert Wall, *Mathematical Methods in Linguistics*, Kluwer, 1990.
- last example from
Knut Tarald Taraldsen, *Generative Grammar*, Oxford Research Encyclopedias, Linguistics, 2016

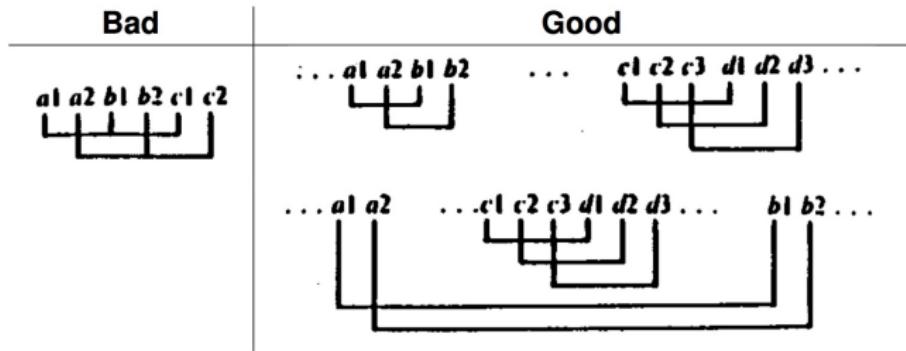
Computational Minimalism and Merge Grammars

Some References:

- E.P. Stabler, *Computational perspectives on minimalism*, in “Oxford Handbook of Linguistic Minimalism”, Oxford University Press, 2010, 616–641.
- K. Vijay-Shanker, D. Weir, *The equivalence of four extensions of context free grammar formalisms*, Mathematical Systems Theory, 27 (1994) 511–545.
- P. beim Graben, S. Gerth, *Geometric representations for minimalist grammars*, arXiv:1101.5076
- T. Hunter, C. Dyer, *Distributions on Minimalist Grammar Derivations*, Proc. 13th Meeting of the Mathematics of Language (MoL 13), Association for Computational Linguistics, 2013, pp.1–11.
- S. Indurkhya, *Incremental Acquisition of a Minimalist Grammar using an SMT-Solver*, 2022.

Extend the Context-Free Class to Mild Context Sensitivity

- limited cross-serial dependencies



- polynomial time parsing
- semilinearity

Semilinearity

- a subset $\mathcal{V} \subset \mathbb{Z}_+^k$ is semilinear if it is a finite union of sets of the form

$$\{c + \sum_{w \in \mathcal{P}} \lambda_w w \mid c \in \mathcal{C}\}$$

for some finite sets $\mathcal{C}, \mathcal{P} \subset \mathbb{N}^k$ and scalars λ_w

- a language $\mathcal{L} \subset \mathfrak{A}^*$ with alphabet $\#\mathfrak{A} = k$ is semilinear iff for any monoid homomorphism

$$\varphi : (\mathfrak{A}^*, \star) \rightarrow (\mathbb{Z}_+^k, +)$$

the image $\varphi(\mathcal{L}) \subset \mathbb{N}^k$ is a semilinear set

- context-free and tree-adjoining grammars have semilinear property (Joshi and Yokomori, 1983)

Multiple Context Free Grammars (MCFG)

- introduced by H.Seki, T.Matsumura, M.Fujii, T.Kasami, 1990
- **Example:** $\mathcal{L} = \{a_1^n a_2^n \cdots a_{2m}^n \mid n \geq 0\}$ is an m -MCFG

$$\mathcal{G} = (N = \{A, S\}, T = \{a_i\}_{i=1}^{2m}, O = \cup_{k=1}^m (T^*)^k, \{f, g\}, P, S)$$

with production rules P

$$f(x_1, x_2, \dots, x_m) = (a_1 x_1 a_2, a_3 x_2 a_4, \dots, a_{2m-1} x_m a_{2m})$$

$$g(x_1, x_2, \dots, x_m) = x_1 x_2 \cdots x_m$$

$$A \rightarrow (\epsilon, \epsilon, \dots, \epsilon), \quad A \rightarrow f[A], \quad S \rightarrow g[A]$$

MCFG: general definition $\mathcal{G} = (N, T, O, F, P, S)$

- $O = \bigcup_{k=1}^m (T^*)^k$
- finite set F of (partial) functions $f : O^{a(f)} \rightarrow O$ some $a(f) \in \mathbb{N}$
- $f \in F$ function of $a(f)$ variables: there are $0 \leq r(f), d_k(f) \leq m, k = 1, \dots, m,$

$$f : \prod_{k=1}^m (T^*)^{d_k(f)} \rightarrow (T^*)^{r(f)}$$

- functions $f(x_1, \dots, x_{a(f)})$ are concatenations of constant strings in T^* and variables in $X = \{x_{kj}, k = 1, \dots, a(f), j = 1, \dots, d_k(f)\}$ with each x_{ij} occurring at most once
- $d : N \rightarrow \mathbb{N}, d(S) = 1$, if $A \rightarrow f(A_1, \dots, A_{a(f)})$ in P then $r(f) = d(A)$ and $d_k(f) = d(A_k)$

Properties:

- m -MCFG $\subsetneq (m+1)$ -MCFG
- MCFGs are semilinear (Vijay-Shanker, Weir, Joshi, 1987)
- tree adjoining grammars sit between CFG and 2-MCFG

$$\text{CFG} = 1\text{-MCFG} \subsetneq \text{TAG} \subsetneq 2\text{-MCFG}$$

- recognition $w \in \mathcal{L}_G$ is polynomially decidable
(but inclusion $\mathcal{L}_{G_1} \subseteq \mathcal{L}_{G_2}$ is undecidable)
- MCFGs can be made stochastic as CFGs

Merge Grammars or Minimalist Grammars (MG)

- introduced in
 - Edward P. Stabler and Edward L. Keenan, *Structural similarity within and among languages*, Theoretical Computer Science, 293 (2003) 345–363.
- formalizing the derivations within Chomsky's Minimalist Model in the setting of formal languages
- proved to be equivalent in terms of generative capacity to mCFG
 - but not equivalent in terms of computational complexity: Merge description is exponentially more succinct than mCFGs
- R.C.Berwick, *Mind the Gap*, 2015.

- Minimalist Grammar $\mathcal{G} = (\mathfrak{A}, Sel, Lic, Lex, c)$
 - \mathfrak{A} finite alphabet
 - Lic (licensing types) and Sel (selecting types) disjoint finite sets
 - Syn set of syntactic features:

$$selectors = \{=f \mid f \in Sel\}$$

$$selectees = \{ f \mid f \in Sel\}$$

$$licensors = \{+f \mid f \in Lic\}$$

$$licensees = \{-f \mid f \in Lic\}$$

- lexicon finite subset

$$Lex \subset \mathfrak{A}^* \times (selectors \cup licensors)^* \times selectees \times licensees^*$$

- $c \in Sel$ type for completed expression

Examples of minimalist lexicon items in *Lex*

pierre : d

who : d -wh

marie : d

will : =v =d t

praise : =d v

ϵ : =t c

often : =v v

ϵ : =t +wh c

- lexical categories: adjective A, adjective phrase AP, adverb Adv, adverb phrase AdvP, noun N, noun phrase NP, verb V, verb phrase VP, etc.
- functional categories: coordinate conjunction C, determiner D, negation Neg, particle Par, preposition P, prepositional phrase PP, subordinate conjunction Sub, tense T, tense phrase TP, etc.
- selection: =X selection of an X phrase
- licensees: -X requirements forcing movement
- licensors: features that satisfy licensees requirements like +wh +case etc.

Operations instead of production rules only two fixed kinds of operations in Minimalist Grammars

- 1 MERGE
- 2 MOVE

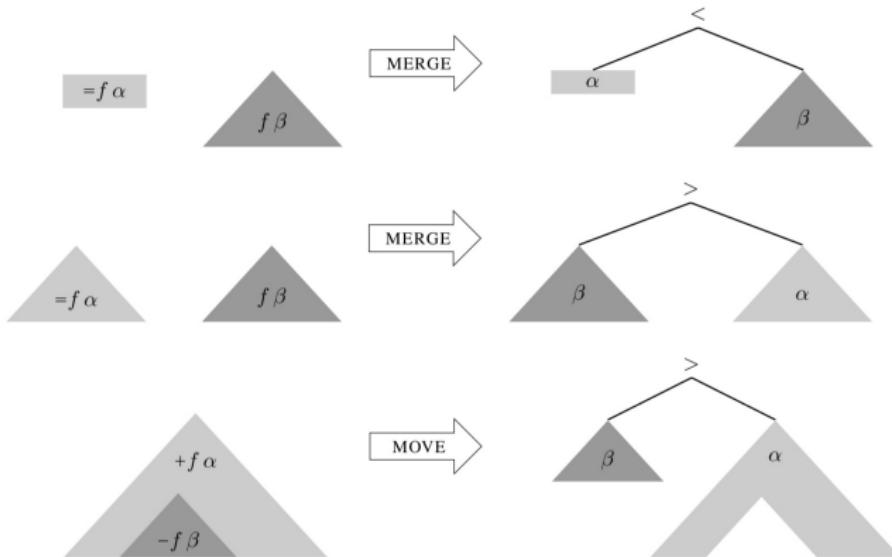


Figure 2: Graphical illustrations of definitions of MERGE and MOVE. Rectangles represent single-node trees. Triangles represent either single-node trees or complex trees, but the second case of MERGE applies only when the first case does not (i.e. when the $=f \alpha$ tree is complex).

Merge and Move

- more formal description of MERGE and MOVE

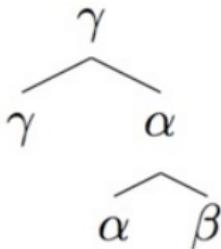
$$\text{MERGE}(e_1[=f \alpha], e_2[f \beta]) = \begin{cases} [< e_1[\alpha] e_2[\beta]] & \text{if } e_1[=f \alpha] \in \text{Lex} \\ [> e_2[\beta] e_1[\alpha]] & \text{otherwise} \end{cases}$$

$$\text{MOVE}(e_1[+f \alpha]) = [> e_2[\beta] e'_1[\alpha]]$$

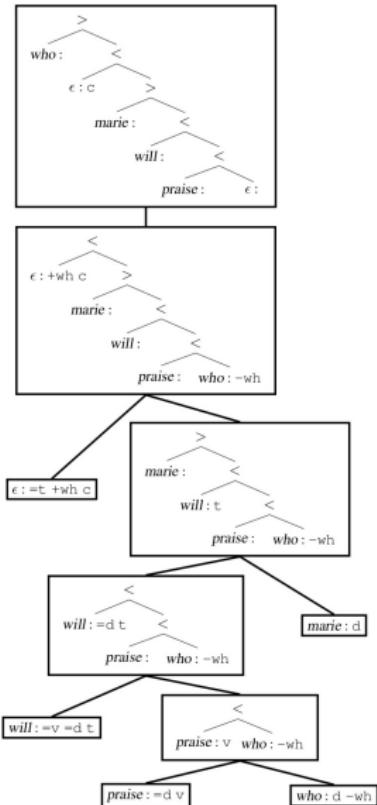
where $e_2[-f \beta]$ is a unique subtree of $e_1[+f \alpha]$

and e'_1 is like e_1 but with $e_2[-f \beta]$ replaced by an empty leaf node $\epsilon : \epsilon$

- Merge**: $(\alpha, \beta) \mapsto \{\alpha, \{\alpha, \beta\}\} \text{ or } \{\beta, \{\alpha, \beta\}\}$
- iterations: $(\gamma, \{\alpha, \{\alpha, \beta\}\}) \mapsto \{\gamma, \{\gamma, \{\alpha, \{\alpha, \beta\}\}\}\}$

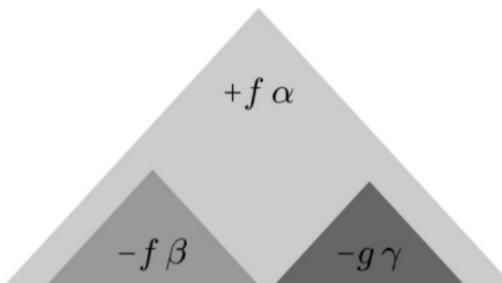


Example of derivation in Minimalist Grammars (embedded question)



MG = MCFG (Theorem 1 of Stabler 2010)

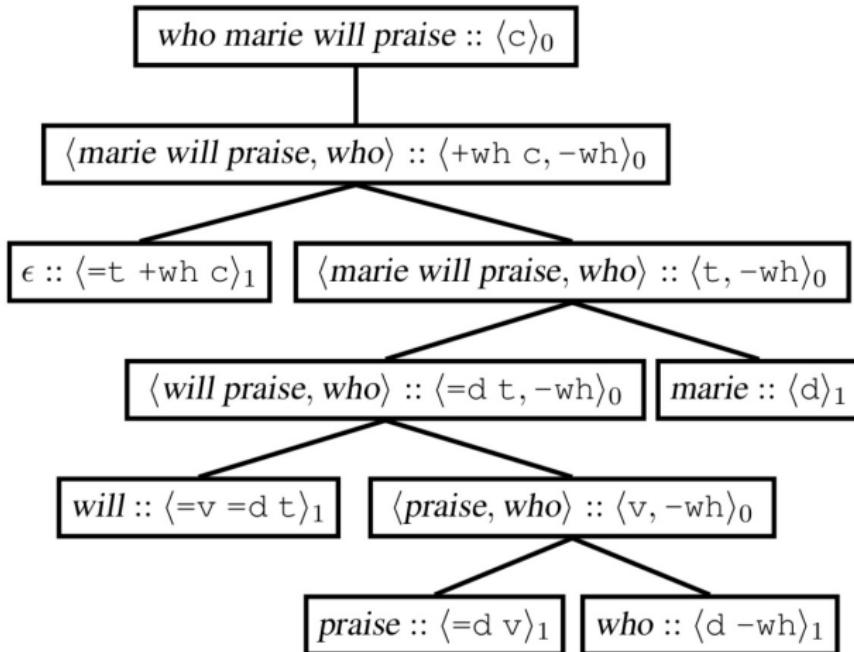
Main Idea of how to transform a MG grammar into a MCFG


$$\langle \quad s : +f \alpha \quad , \quad t : -f \beta \quad , \quad u : -g \gamma \quad \rangle_0$$

transform trees into tuples of strings (subscript 0: non-lexical expressions; subscript 1 lexical; also :: and : for lexical and derived)

- these tuples of strings give the production rules of a MCFG
- start symbol of MCFG is $\langle c \rangle_0$

Example: previous derivation in terms of tuples of strings



External and Internal Merge Operations

- MG operations of MERGE and MOVE unified as two aspects of the same *merge* operation

① *external merge*

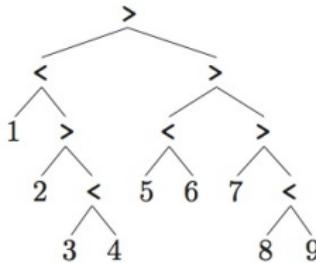
$$\text{em}(t_1[=x], t_2[x]) = \begin{cases} \begin{array}{c} \swarrow \\ t_1 \quad t_2 \end{array} & \text{if } |t_1| = 1 \\ \begin{array}{c} \searrow \\ t_2 \quad t_1 \end{array} & \text{otherwise} \end{cases}$$

② *internal merge*

$$\text{im}(t_1[+x]) = \begin{array}{c} > \\ t_2^M \quad t_1 \{ t_2[-x]^M \mapsto \epsilon \} \end{array}$$

under *shortest move constraint* (SMC): exactly one head in the tree has $-x$ as first feature; t^M maximal projection

Head and Projection



- labels $>$ and $<$ of merge identify where *head* of the tree is: here leaf vertex number 8
- *maximal projection* in T is a subtree of T that is not a proper subtree of any larger subtree with the same head
- leaves $\{2, 3, 4\}$ determine a subtree with head vertex the leaf numbered 3
- any larger subtree in T would have a different head: this is a maximal projection
- also subtree determined by leaves $\{5, 6\}$

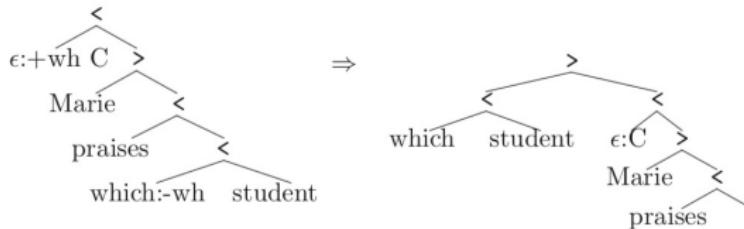
Notation about features

- in addition to labels $\{>, <\}$ of merge operations, finite set of syntactic features labels $X \in \{N, V, A, P, C, T, D, \dots\}$
- *selector* features denoted by the symbol σX for a head selecting a phrase XP
(Note: usually notation $= X$ rather than σX for selector)
- $T[\alpha]$ tree where head is labelled by an ordered set of syntactic features starting with α
- operation $T[\alpha] \mapsto T$ removes the α -feature from the head vertex

Examples

- external merge

- internal merge



Merge and the Origin of Language

- Robert C. Berwick, Noam Chomsky, *Why only us?* MIT Press, 2015.
- proposal of a single significant evolutionary change leading to the structure of human languages in a single computational operation capable of generating recursive structures: *merge operation*
- is there a way to characterize merge as a fundamental structure of recursion in a mathematical sense?

Note: we will return to this fundamental question in presenting the current theory of Merge

Coming up next: a digression on probability

- use of probabilities in formal languages
- more general aspects of probability and information in (computational) linguistics
- probability in the study of deterministic systems