
Lecture 3: Mathematics of Formal Languages
Ma 191c: Mathematical Models of Generative

Linguistics

Matilde Marcolli

Caltech, Spring 2024

M.Marcolli Mathematics & Linguistics

Some References for this lecture:

1 Noam Chomsky, Three models for the description of language,
IRE Transactions on Information Theory, (1956) N.2,
113–124.

2 Noam Chomsky, On certain formal properties of grammars,
Information and Control, Vol.2 (1959) N.2, 137–167

3 Ian Chiswell, A course in formal languages, automata and
groups, Springer, 2009

4 György Révész, Introduction to formal languages,
McGraw-Hill, 1983

M.Marcolli Mathematics & Linguistics

A very general abstract setting to describe some generative aspects
of languages (natural or artificial: human languages, codes,
programming languages, . . .)

Alphabet: a (finite) set A; elements are letters or symbols

Words (or strings): Am = set of all sequences a1 . . . am of length m
of letters in A

Empty word: A0 = {ϵ} (an additional symbol)

A+ = ∪m≥1A
m, A⋆ = ∪m≥0A

m

concatenation: α = a1 . . . am ∈ Am, β = b1 . . . bk ∈ Ak

αβ = a1 . . . amb1 . . . bk ∈ Am+k

associative (αβ)γ = α(βγ) with ϵα = αϵ = α
semigroup A+; monoid A⋆

Length ℓ(α) = m for α ∈ Am

M.Marcolli Mathematics & Linguistics

subword: γ ⊂ α if α = βγδ for some other words β, δ ∈ A⋆:
prefix β and suffix δ

Language: a subset of A⋆

Question: how is the subset constructed?

Rewriting system on A: a subset R of A⋆ × A⋆

(α, β) ∈ R means that for any u, v ∈ A⋆ the word
uαv rewrites to uβv

Notation: write α →R β for (α, β) ∈ R
R-derivation: for u, v ∈ A⋆ write u

•→R v if ∃ sequence
u = u1, . . . , un = v of elements in A⋆ such that ui →R ui+1

M.Marcolli Mathematics & Linguistics

Grammar: a quadruple G = (VN ,VT ,P,S)

VN and VT disjoint finite sets: non-terminal and terminal
symbols

S ∈ VN start symbol

P finite rewriting system on VN ∪ VT

P = production rules

Language produced by a grammar G:

LG = {w ∈ V ⋆
T |S •→P w}

language with alphabet VT

M.Marcolli Mathematics & Linguistics

The Chomsky hierarchy

Types:

Type 0: just a grammar G as defined above (unrestricted
grammars)

Type 1: context-sensitive grammars

Type 2: context-free grammars

Type 3: regular grammars, where all productions A → aB or
A → a with A,B ∈ VN and a ∈ VT

(right/left-regular if aB or Ba in r.h.s. of production rules)

Language of type n if produced by a grammar of type n

We’ve seen in the previous lecture examples of regular, context
free, context sensitive

M.Marcolli Mathematics & Linguistics

• Examples of Type 0 but not Type 1 are more difficult to construct

assume non-terminals VT = {Vn, n ≥ 0}
alphabet {a, b}
can represent any context-sensitive grammar on this alphabet
as a string

x1 → y1; x2 → y2; . . . ; xm → ym

of symbols in {a, b, ; ,→,Vn}
encode all these possibilities as binary strings

a 7→ 010, b 7→ 0110, ; 7→ 01110, →7→ 011110, Vn 7→ 01n+50

in set R = {wn = (01⋆0)∗} with enumeration by word length
plus lexicographic (shortlex)

recursive (computable) but not context sensitive language:

L = {wn ∈ R encoding context sensitive Gn but wn /∈ L(Gn)}

M.Marcolli Mathematics & Linguistics

Why is it useful to organize formal languages in this way?

Types and Machine Recognition

Recognized by:

Type 0: Turing machine

Type 1: linear bounded automaton

Type 2: non-deterministic pushdown stack automaton

Type 3: finite state automaton

What are these things?

M.Marcolli Mathematics & Linguistics

Finite state automaton (FSA)

M = (Q,F ,A, τ, q0)

Q finite set: set of possible states

F subset of Q: the final states

A finite set: alphabet

τ ⊂ Q × A× Q set of transitions

q0 ∈ Q initial state

M.Marcolli Mathematics & Linguistics

computation in M: sequence q0a1q1a2q2 . . . anqn where
qi−1aiqi ∈ τ for 1 ≤ 1 ≤ n

• label of the computation: a1 . . . an

• successful computation: qn ∈ F

• M accepts a string a1 . . . an if there is a successful computation
in M labeled by a1 . . . an

Language recognized by M:

LM = {w ∈ A⋆ |w accepted by M}

M.Marcolli Mathematics & Linguistics

Graphical description of FSA

Transition diagram: oriented finite labelled graph Γ with vertices
V (Γ) = Q set of states and E (Γ) = τ , with eq,a,q′ an edge from vq
to vq′ with label a ∈ A; label vertex q0 with − and all final states
vertices with +

• computations in M ⇔ paths in Γ starting at vq0

• an oriented labelled finite graph with at most one edge with a
given label between given vertices, and only one vertex labelled −
is the transition diagram of some FDA

M.Marcolli Mathematics & Linguistics

deterministic FSA

for all q ∈ Q and a ∈ A, there is a unique q′ ∈ Q with (q, a, q′) ∈ τ

⇒ function δ : Q × A → Q with δ(q, a) = q′, transition function

determines δ : Q × A⋆ → Q by δ(q, ϵ) = q and
δ(q,wa) = δ(δ(q,w), a) for all w ∈ A⋆ and a ∈ A

if q0a1q1 . . . anqn computation in M then qn = δ(q0, a1 . . . an)

non-deterministic: multivalued transition functions also allowed

M.Marcolli Mathematics & Linguistics

Languages recognized by (non-deterministic) FSA are Type 3

• for G = (VN ,VT ,P, S) type 3 grammar construct an FSA

M = (VN ∪ {X},F ,VT , τ, S)

with X a new letter, F = {S ,X} if S →P ϵ, F = {X} if not;

τ = {(B, a,C) |B →P aC} ∪ {(B, a,X) |B →P a, a ̸= ϵ}

then LG = LM

• if M is a FSA take G = (Q,A,P, q0) with P given by

P = {B → aC | (B, a,C) ∈ τ} ∪ {B → a | (B, a,C) ∈ τ,C ∈ F}

then LM = LG

M.Marcolli Mathematics & Linguistics

Non-deterministic pushdown stack automaton

Example: some type 2 languages such as {0n1n} would require
infinite available number of states (e.g. to memorize number of 0’s
read before the 1’s)

Identify a class of infinite automata, where this kind of memory
storage can be done

pushdown stack: a pile where new data can be stored on top; can
store infinite length, but only last input can be accessed (first in
last out)

M.Marcolli Mathematics & Linguistics

pushdown stack automaton (PDA)

M = (Q,F ,A, Γ, τ, q0, z0)

Q finite set of possible states

F subset of Q: the final states

A finite set: alphabet

Γ finite set: stack alphabet

τ ⊂ Q× (A∪{ϵ})×Γ×Q×Γ⋆ finite subset: set of transitions

q0 ∈ Q initial state

z0 ∈ Γ start symbol

M.Marcolli Mathematics & Linguistics

• it is a FSA (Q,F ,A, τ, q0) together with a stack Γ⋆

• the transitions are determined by the first symbol in the stack,
the current state, and a letter in A ∪ {ϵ}
• the transition adds a new (finite) sequence of symbols at the
beginning of the stack Γ⋆

• a configuration of M is an element of Q × A⋆ × Γ⋆

• given (q, a, z , q′, α) ∈ τ ⊂ Q × (A ∪ {ϵ})× Γ× Q × Γ⋆ the
corresponding transition is from a configuration (q, aw , zβ) to a
configuration (q′,w , αβ)

• computation in M: a chain of transitions c → c ′ between
configurations c = c1, . . . , cn = c ′ where each ci → ci+1 a
transition as above

M.Marcolli Mathematics & Linguistics

Example

a transition labelled (a, b, c) between vertex qi and qj means read letter a

on string, read letter b on top of memory stack, remove b and place c at

the top of the stack: move from configuration (qi , aw , bα) to

configuration (qj ,w , cα)

M.Marcolli Mathematics & Linguistics

• computation stops when reach final state or empty stack

• PDA M accepts w ∈ A⋆ by final state if ∃γ ∈ Γ⋆ and q ∈ F such
that (q0,w , z0) → (q, ϵ, γ) is a computation in M

• Language recognized by M by final state

LM = {w ∈ A⋆ |w accepted by M by final state }

• w ∈ A⋆ accepted by M by empty stack: if (q0,w , z0) → (q, ϵ, ϵ)
is a computation on M with q ∈ Q

• Language recognized by M by empty stack

NM = {w ∈ A⋆ |w accepted by M by empty stack }

M.Marcolli Mathematics & Linguistics

deterministic PDA

1 at most one transition (q, a, z , q′, α) ∈ τ with given (q, a, z)
source

2 if there is a transition from (q, ϵ, z) then there is no transition
from (q, a, z) with a ̸= ϵ

first condition as before; second condition avoids choice between a
next move that does not read the tape and one that does

Fact: recognition by final state and by empty stack equivalent for
non-deterministic PDA

L = LM ⇔ L = NM′

not equivalent for deterministic: in deterministic case languages
L = NM have additional property:
prefix-free: if w ∈ L then no prefix of w is in L

M.Marcolli Mathematics & Linguistics

Languages recognized by (non-deterministic) PDA are Type 2
(context-free)

• If L is context free then L = NM for some PDA M

L = LG with G = (VN ,VT ,P,S) context-free, take
M = ({q}, ∅,VT ,VN , τ, q,S) with τ given by the (q, a,A, q, γ) for
productions A → aγ in P

then for α ∈ V ⋆
N and w ∈ V ⋆

T have

S
•→P wα ⇔ (q,w , S) →M (q, ϵ, α)

if also ϵ ∈ L add new state q′ and new transition (q, ϵ,Sq′, ϵ),
where S start symbol of a PDA that recognizes L∖ {ϵ}

M.Marcolli Mathematics & Linguistics

• if L = NM for PDA M then L = LG with G context-free

for M = (Q,F ,A, Γ, τ, q0, z0) define G = (VN ,A,P,S) where

VN = {(q, z , p) | q, p ∈ Q, z ∈ Γ} ∪ {S}

with production rules P given by

1 S → (q0, z0, q) for all q ∈ Q

2 (q, z , p) → a(q1, y1, q2)(q2, y2, q3) · · · (qm, ym, qm+1) with
q1 = q, qm+1 = p and (q, a, z , q1, y1 . . . ym) transition of M

(q,w , z) →M (p, ϵ, ϵ) ⇔ (q, z , p)
•→P w

Similar arguments show Type 0 = recognized by Turing machine;
Type 1 (context sensitive) = recognized by “linear bounded
automata” (Turing machines but only part of tape can be used)

M.Marcolli Mathematics & Linguistics

Turing machine T = (Q,F ,A, I , τ, q0)

Q finite set of possible states

F subset of Q: the final states

A finite set: alphabet (with a distinguished element B blank
symbol)

I ⊂ A∖ {B} input alphabet

τ ⊂ Q × A× Q × A× {L,R} transitions
with {L,R} a 2-element set

q0 ∈ Q initial state

qaq′a′L ∈ τ means T is in state q, reads a on next square in the
tape, changes to state q′, overwrites the square with new letter a′

and moves one square to the left

M.Marcolli Mathematics & Linguistics

• tape description for T : triple (a, α, β) with a ∈ A, α : N → A,
β : N → A such that α(n) = B and β(n) = B for all but finitely
many n ∈ N (sequences of letters on tape right and left of a)

• configuration of T : (q, a, α, β) with q ∈ Q and (a, α, β) a tape
description

• configuration c ′ from c in a single move if either

c = (q, a, α, β), qaq′a′L ∈ τ and c ′ = (q′, β(0), α′, β′) with
α′(0) = a′ and α′(n) = α(n − 1), and β′(n) = β(n + 1)

c = (q, a, α, β), qaq′a′R ∈ τ and c ′ = (q′, α(0), α′, β′) with
α′(n) = α(n + 1), and β′(0) = a′, β′(n) = β(n − 1)

• computation c → c ′ in T starting at c and ending at c ′: finite
sequence c = c1, . . . , cn = c ′ with ci+1 from ci by a single move

• computation halts if c ′ terminal configuration, c ′ = (q, a, α, β)
with no element in τ starting with qa

M.Marcolli Mathematics & Linguistics

• word w = a1 · · · an ∈ A⋆ accepted by T if for cw = (q0, a1 · · · an)
there is a computation in T of the form cw → c ′ = (q, a, α, β)
with q ∈ F

• Language recognized by T

LT = {w ∈ A⋆ |w is accepted by T}

• Turing machine T deterministic if for given (q, a) ∈ Q × A there
is at most one element of τ starting with qa

M.Marcolli Mathematics & Linguistics

Languages of Type 0 are recognized by Turing Machines
• L = LG with G Type 0 ⇒ L = LT with T = Turing machine

uses a characterization of Type 0 languages as recursively
enumerable languages: code A⋆ by natural numbers f : A⋆ → N
bijection such that f (L) is a recursively enumerable set (Gödel
numbering)

recursively enumerable set: A in N range A = g(N) of a some
recursive function: ∃ algorithm such that set of inputs on which it
halts is A

enumerable set A in N: both A and N∖ A are recursively
enumerable

recursive function: total functions obtained from primitive
recursive (explicit generators and relations), general recursive
function also minimization µ

M.Marcolli Mathematics & Linguistics

primitive recursive functions

generators

Successor s : N → N, s(x) = x + 1;

Constant cn : Nn → N, cn(x) = 1 (for n ≥ 0);

Projection πn
i : Nn → N, πn

i (x) = xi (for n ≥ 1)

operations

Composition (substitution) c(m,m,p): for f : Nm → Nn, g : Nn → Np,

g ◦ f : Nm → Np, D(g ◦ f) = f −1(D(g))

Bracketing (juxtaposition) b(k,m,ni): for fi : Nm → Nni , i = 1, . . . , k,

f = (f1, . . . , fk) : Nm → Nn1+···+nk , D(f) = D(f1) ∩ · · · ∩ D(fk)

Recursion rn: for f : Nn → N and g : Nn+2 → N

h(x1, . . . , xn, 1) := f (x1, . . . , xn)

h(x1, . . . , xn, k + 1) := g(x1, . . . , xn, k , h(x1, . . . , xn, k)), k ≥ 1,

where recursively (x1, . . . , xn, 1) ∈ D(h) iff (x1, . . . , xn) ∈ D(f) and
(x1, . . . , xn, k + 1) ∈ D(h) iff (x1, . . . , xn, k , h(x1, . . . , xn, k) ∈ D(g)

M.Marcolli Mathematics & Linguistics

partial recursive functions

same three elementary operations c, b, r of composition,
bracketing and recursion

additional µ operation with input f : Nn+1 → N and output

h : Nn → N, h(x1, . . . , xn) = min{xn+1 | f (x1, . . . , xn+1) = 1}

with domain

D(h) = {(x1, . . . , xn) | ∃xn+1 ≥ 1 : f (x1, . . . , xn+1) = 1

with (x1, . . . , xn, k) ∈ D(f), ∀k ≤ xn+1}

Church’s thesis: partial recursive functions = semi-computable
functions, ∃ program that, for x ∈ D(f) computes f (x) but can
run for an infinite time for x /∈ D(f) (halting problem)

M.Marcolli Mathematics & Linguistics

Part 2: Languages recognized by a Turing machine are Type 0

• L = LG of Type 0 ⇔ L recursively enumerable

• L recursively enumerable ⇒ recognized by Turing machine

(0) assume A = {2, 3, . . . , r − 1} and Gödel numbering
w = x1 . . . xk 7→ ϕ(w) = x1 + x2r + · · ·+ xk r

k

(1) tape alphabet {0, 1, 2, . . . , r − 1}, input I = A, final state
F = ∅, blank symbol 0

(2) Turing machine that, on tape description x1 . . . xk halts with
tape description 01x1 · · · 01xk0
(3) Turing machine that, on tape description 01x1 · · · 01xk0 halts
with tape description 01ϕ(x1...xk)

(4) partial recursive function f with Dom(f) = ϕ(L): Turing
machine that, on input 01x halts iff x ∈ Dom(f) with 01f (x)

(5) Composition of these three Turing machines recognizes L

M.Marcolli Mathematics & Linguistics

Linear bounded automaton is a Turing machine
T = (Q,F ,A, I , τ, q0) where only the part of the tape where the
input word is written can be used

1 input alphabet I has two symbols ⟩,⟨ right/left end marks

2 no transitions q⟨q′aL or q⟩q′aR allowed (cannot move past
end marks)

3 only transitions starting with q⟨ or q⟩ are q⟨q′⟨R and q⟩q′⟩L
(cannot overwrite ⟨ and ⟩)

Languages recognized by linear bounded automata are Type 1
context-sensitive languages are recursive

M.Marcolli Mathematics & Linguistics

• Group G , with presentation G = ⟨X |R⟩ (finitely presented)

X (finite) set of generators x1, . . . , xN

R (finite) set of relations: r ∈ R words in the generators and
their inverses

Word problem for G :

• Question: when does a word in the xj and x−1
j represent the

element 1 ∈ G?
• When do two words represent the same element?
• Comparing different presentations
• is there an algorithmic solution?

M.Marcolli Mathematics & Linguistics

Word problem and formal languages

• for G = ⟨X |R⟩ call X̂ = {x , x−1 | x ∈ X} symmetric set of
generators

• Language associated to a finitely presented group G = ⟨X |R⟩

LG = {w ∈ X̂ ⋆ |w = 1 ∈ G}

set of words in the generators representing trivial element of G

• What kind of formal language is it?

M.Marcolli Mathematics & Linguistics

• Algebraic properties of the group G correspond to properties of
the formal language LG :

1 LG is a regular language (Type 3) iff G is finite (Anisimov)

2 LG is context-free (Type 2) iff G has a free subgroup of finite
index (Muller–Schupp)

• Formal languages and solvability of the word problem:

Word problem solvable for G (finitely presented) iff LG is a
recursive language

M.Marcolli Mathematics & Linguistics

Recursive languages (alphabet X̂):

• LG recursive subset of X̂ ⋆

• equivalently the characteristic function χLG
is a total recursive

function

• Total recursive functions are computable by a Turing machine
that always halts

• For a recursive language there is a Turing machine that always
halts on an input w ∈ X̂ ⋆: accepts it if w ∈ LG , rejects it of
w /∈ LG : so word problem is (algorithmically) solvable

M.Marcolli Mathematics & Linguistics

Finitely presented groups with unsolvable word problem (Novikov)

• Group G with recursively enumerable presentation: G = ⟨X |R⟩
with X finite and R recursively enumerable

• Group is recursively presented iff it can be embedded in a finitely
presented group (X and R finite)

• Example of recursively presented G with unsolvable word problem

G = ⟨a, b, c , d | anban = cndcn, n ∈ A⟩

for A recursively enumerable subset A ⊂ N that has unsolvable
membership problem

• If recursively presented G has unsolvable word problem and
embeds into finitely presented H then H also has unsolvable word
problem.

M.Marcolli Mathematics & Linguistics

Example: finite presentation with unsolvable word problem

• Generators: X = {a, b, c, d , e, p, q, r , t, k}

• Relations:

p10a = ap, p10b = bp, p10c = cp, p10d = dp, p10e = ep

aq10 = qa, bq10 = qb, cq10 = qc , dq10 = qd , eq10 = qe

ra = ar , rb = br , rc = cr , rd = dr , re = er , pt = tp, qt = tq

pacqr = rpcaq, p2adq2r = rp2daq2, p3bcq3r = rp3cbq3

p4bdq4r = rp4dbq4, p5ceq5r = rp5ecaq5, p6deq6r = rp6edbq6

p7cdcq7r = rp7cdceq7, p8ca3q8r = rp8a3q8, p9da3q9r = rp9a3q9

a−3ta3k = ka−3ta3

M.Marcolli Mathematics & Linguistics

How are such examples constructed?

A technique to construct semigroup presentations with unsolvable
word problem:

• G.S. Cijtin, An associative calculus with an insoluble problem of
equivalence, Trudy Mat. Inst. Steklov, vol. 52 (1957) 172–189

A technique for passing from a semigroup with unsolvable word
problem to a group with unsolvable word problem

• V.V. Borisov, Simple examples of groups with unsolvable word
problems, Mat. Zametki 6 (1969) 521–532

Example above: method applied to simplest known semigroup
example

• D.J. Collins, A simple presentation of a group with unsolvable
word problem, Illinois Journal of Mathematics 30 (1986) N.2,
230–234

M.Marcolli Mathematics & Linguistics

Regular language ⇔ finite group

• If G finite, use standard presentation
G = ⟨xg , g ∈ G | xgxh = xgh⟩
Construct FSA M = (Q,F ,A, τ, q0) with Q = {xg | g ∈ G},
A = {x±1

g | g ∈ G}, q0 = x1, F = {q0} and transitions τ given by

(xg , xh, xgh), g , h ∈ G

(xg , x
−1
h , xgh−1), g , h ∈ G

The finite state automaton M recognizes LG

M.Marcolli Mathematics & Linguistics

• If G is infinite and X is a finite set of generators for G

For any n ≥ 1 there is a g ∈ G such that g not obtained from any
word of length ≤ n (only finitely many such words and G is infinite)

If M deterministic FSA with alphabet X̂ and n = #Q number of
states, take g ∈ G not represented by any word of length ≤ n

then there are prefixes w1 and w1w2 of w such that, after reading
w1 and w1w2 obtain same state

so M accepts (or rejects) both w1w
−1
1 and w1w2w

−1
1 but first is 1

and second is not (w2 ̸= 1)

so M cannot recognize LG

M.Marcolli Mathematics & Linguistics

Cayley graph

• Vertices V (GG) = G elements of the group

• Edges E (GG) = G × X with edge eg ,x oriented with s(eg ,x) = g
and t(eg ,x) = gx

• for x−1 ∈ X̂ edge with opposite orientation eg ,x−1 = ēg ,x with
s(eg ,x−1) = gx and t(eg ,x−1) = gx x−1 = g

• word w in the generators ⇒ oriented path in GG from g to gw

• word w = 1 ∈ G iff corresponding path in GG is closed

• G acts on GG : acting on V (GG) = G and on E (GG) = G × X by
left multiplication (translation)

• invariant metric: d(g , h) = minimal length of path from vertex g
to vertex h, with d(ag , ah) = d(g , h) for all a ∈ G

M.Marcolli Mathematics & Linguistics

Main idea for the context-free case

• X set of generators of G

• if for yi ∈ X̂ , a word w = y1 · · · yn = 1 get closed path in the
Cayley graph GG

• consider a polygon P with boundary this closed path

• obtain a characterization of the context-free property of LG in
terms of properties of triangulations of this polygon

M.Marcolli Mathematics & Linguistics

Plane polygons and triangulations

• a plane polygon P: interior of a simple closed curve given by a
finite collections of (smooth) arcs in the plane joined at the
endpoints

• triangulation of P: decomposition into triangles (with sides that
are arcs): two triangles can meet in a vertex or an edge (or not
meet)

• allow 1-gons and 2-gons (as “triangulated”)

• triangle in a triangulation is critical if has two edges on the
boundary of the polygon

• triangulation is diagonal if no more vertices than original ones of
the polygon

• Combinatorial fact: a diagonal triangulation has at least two
critical triangles (for P with at least two triangles)

M.Marcolli Mathematics & Linguistics

K -triangulations

• diagonal triangulation of a polygon P with boundary a closed
path in the Cayley graph GG

• each edge of the triangulation is labelled by a word in X̂ ⋆

• going around the boundary of each triangle gives a word in LG

(a word w in X̂ ⋆ with w = 1 ∈ G)

• all words labeling edges of the triangulation have length ≤ K

M.Marcolli Mathematics & Linguistics

Context-free and K -triangulations

Language LG is context-free ⇔ ∃K such that all closed paths in
Cayley graph GG can be triangulated with a K -triangulation

Idea of argument:

If context-free grammar:
• use production rules for word w = 1 (boundary of polygon) to
produce a triangulation:

S → AB
•→ w1w2 = w with A

•→ w1 and B
•→ w2

⇒ a subdivision of polygon in to two arcs: draw an arc in the
middle, etc.

M.Marcolli Mathematics & Linguistics

If have K -triangulation for all loops in GG : get a context-free
grammar with terminals X̂

• for each word u ∈ X̂ ⋆ of length ≤ K variable Au and for u = vw
in G production Au → AvAw in P

• any word w = y1 · · · yn from boundary of triangles in the
triangulation also corresponds to A1

•→ Ay1 · · ·Ayn in the grammar
(inductive argument eliminating the critical triangles and reducing
size of polygon)

• and productions Ay → y (terminals); get that the grammar
recognizes LG

M.Marcolli Mathematics & Linguistics

accessibility

To link contex-free to the existence of a free subgroup, need a
decomposition of the group that preserves both the context-free
property and the existence of a free subgroup, so that can do an
inductive argument

• HNN-extensions: two subgroups B,C in a group A and an
isomorphism γ : B → C (not coming from A)

A ⋆C B = ⟨t,A | tBt−1 = C ⟩

means generators as A, additional generator t; relations of A and
additional relations tbt−1 = γ(b) for b ∈ B

• accessibility series: (accessibility length n)

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn

Gi subgroups with Gi = Gi+1 ⋆K H with K finite

M.Marcolli Mathematics & Linguistics

• finitely generated G is accessible if upper bound on length of any
accessibility series (least upper bound = accessibility length)

• assume G context-free and accessible

• inductive argument (induction on accessibility length) on
existence of a free finite-index subgroup:
if n = 0 have G finite group; if n > 0 G = G1 ⋆K H, context-free
property inherited; inductively: free finite-index subgroup for G1;
show implies free finite-index subgroup for G

• then need to eliminate auxiliary accessibility condition

M.Marcolli Mathematics & Linguistics

Context-free ⇔ free subgroup of finite index

• show that a finitely generated G with LG context-free is finitely
presented

• then show finitely presented groups are accessible

• Conclusion: equivalent properties for finitely generated G

1 LG is a context-free language

2 G has a free subgroup of finite index

3 G has deterministic word problem
(using the fact that free groups do)

M.Marcolli Mathematics & Linguistics

Word problem and geometry

• Groups given by explicit presentations arise in geometry/topology
as fundamental groups π1(X) of manifolds

Positive results
• Groups with solvable word problem include: negatively curved
groups (Gromov hyperbolic), Coxeter groups (reflection groups),
braid groups, geometrically finite groups
[all in a larger class of “automatic groups”]

Negative results
• Any finitely presenting group occurs as the fundamental group of
a smooth 4-dimensional manifold

• The homeomorphism problem is unsolvable

A. Markov, The insolubility of the problem of homeomorphy,
Dokl. Akad. Nauk SSSR 121 (1958) 218–220

M.Marcolli Mathematics & Linguistics

Additional References:

1 S.P. Novikov, On the algorithmic unsolvability of the word
problem in group theory, Proceedings of the Steklov Institute
of Mathematics 44 (1955) 1–143

2 V.V. Borisov, Simple examples of groups with unsolvable word
problems, Mat. Zametki 6 (1969) 521–532

3 A.V. Anisimov, The group languages, Kibernetika (Kiev)
1971, no. 4, 18–24

4 D.E. Muller, P.E. Schupp, Groups, the theory of ends, and
context-free languages, J. Comput. System Sci. 26 (1983),
no. 3, 295–310

M.Marcolli Mathematics & Linguistics

Tree Adjoining Grammar (Aravind Joshi, 1969)

• developed as formal languages (as a generalization of
context-free grammars)

• rooted trees with a marked foot leaf node (a word); basic trees
and auxiliary trees (these have same symbol labeling root and foot)

• two operations: substitution (leaf/root grafting) and adjunction
(insertion of an auxiliary tree at an internal node labelled by
auxiliary root/foot label)

• main idea: these two operations should suffice to describe all
syntactic dependencies

• LTAG: lexicalized tree-adjoining grammar: each elementary tree
associated with an item in a lexical database (XTAG project, LTAG
parser)

M.Marcolli Mathematics & Linguistics

Tree Adjoining Grammars (Joshi, Levy, Takahashi)

Mathematical model for structural composition of parse trees:
instead of production rules that rewrite strings as in the formal
languages grammars, use a system of trees with tree rewriting rules

• a (finite) set of Elementary Trees

• Substitution rule: graft a terminal leaf of a tree T to the root of
another tree

• Adjoining rule: at an internal vertex of the tree labelled by X
attach a tree with root labelled by X and with one of the leaves
also labelled by X with anything outgoing from original tree at X
then attached to the X -labelled leaf of the inserted tree.

Note: mathematically the first is an operad structure the second is
a Lie algebra structure, we’ll discuss these later

M.Marcolli Mathematics & Linguistics

Note: no additional transformations used other than substitution
and adjoining

Fundamental assumptions of TAG:

• all syntactic dependencies are encoded (locally) in the
elementary trees

• non-local dependencies must be reducible to local ones (after
contracting a certain number of adjoined trees)

TAG derivation: a combination of elementary trees via a sequence
of substitutions and adjoining

Derivation structure: a tree whose vertices are labelled by
elementary trees and daughter vertices of a given node T are the
elementary trees that are substituted or adjoined into the tree T
(requires “independence” of the operations performed)

M.Marcolli Mathematics & Linguistics

Generative power of TAG:

• All context-free languages can be generated by a TAG
• L = {anbncn | n ∈ N} not generated by a context-free grammar,
but can be generated by a TAG

S

�� ��
a S

�� ����
b S c

repeatedly adjoin copies of this elementary tree into itself at the S
vertex with the first b daughter

M.Marcolli Mathematics & Linguistics

a2b2c2 from first adjoining, etc.

S

�� ��
a S

�� ��
a S

�� �� ��
b S

�� �� ��

c

b S c

But... simple examples of context-sensitive languages that cannot
be generated by TAG’s: (Vijay–Shanker)

L = {anbncndnen | n ∈ N}

M.Marcolli Mathematics & Linguistics

Additional References

J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison–Wesley, 1979

A.K. Joshi, L. Levy, M. Takahashi, The tree adjunct
grammars, Journal of the Computer and System Sciences, 10
(1975) 136–163

Coming up next

from formal languages to transformational grammars

more details on transformational grammar

more details on earlier versions of Minimalism

M.Marcolli Mathematics & Linguistics

