Lecture 3: Mathematics of Formal Languages

Ma 191c: Mathematical Models of Generative
Linguistics

Matilde Marcolli

Caltech, Spring 2024

M.Marcolli Mathematics & Linguistics

Some References for this lecture:

@ Noam Chomsky, Three models for the description of language,
IRE Transactions on Information Theory, (1956) N.2,
113-124.

@ Noam Chomsky, On certain formal properties of grammars,
Information and Control, Vol.2 (1959) N.2, 137-167

© lan Chiswell, A course in formal languages, automata and
groups, Springer, 2009

Q Gyorgy Révész, Introduction to formal languages,
McGraw-Hill, 1983

M.Marcolli Mathematics & Linguistics

A very general abstract setting to describe some generative aspects
of languages (natural or artificial: human languages, codes,
programming languages, ...)

Alphabet: a (finite) set A; elements are letters or symbols

Words (or strings): 2™ = set of all sequences aj ... an, of length m
of letters in 2

Empty word: A% = {¢} (an additional symbol)

AT = Umlel’", A* = Umzomm

concatenation: &« = aj...am € A™, B = by ... b, € AX
aﬂzal...ambl...bke%’”k

associative (af3)y = a(fv) with e« = ae = «
semigroup 2A"; monoid A*
Length ¢(or) = m for a € A™

M.Marcolli Mathematics & Linguistics

subword: v C « if & = 70 for some other words 3,6 € A*:
prefix 8 and suffix §

Language: a subset of 2A*
Question: how is the subset constructed?

Rewriting system on 2l: a subset R of 2* x A*
(o, B) € R means that for any u, v € 2* the word
uav rewrites to ufv

Notation: write a =% 3 for (o,) € R
R-derivation: for u, v € A* write u —x v if 3 sequence
u=u,...,u, =v of elements in A* such that u; -5 uj+1

M.Marcolli Mathematics & Linguistics

Grammar: a quadruple G = (W, V7, P, S)

e Vy and V7 disjoint finite sets: non-terminal and terminal
symbols

e S € V) start symbol
o P finite rewriting system on VU V71

P = production rules

Language produced by a grammar G:
Lo={we VS Spw}

language with alphabet VT

M.Marcolli Mathematics & Linguistics

The Chomsky hierarchy

Types:
e Type 0: just a grammar G as defined above (unrestricted
grammars)

@ Type 1: context-sensitive grammars
o Type 2: context-free grammars

o Type 3: regular grammars, where all productions A — aB or
A—awith A, Be Vyand ae Vr

(right/left-regular if aB or Ba in r.h.s. of production rules)
Language of type n if produced by a grammar of type n

We've seen in the previous lecture examples of regular, context
free, context sensitive

M.Marcolli Mathematics & Linguistics

e Examples of Type 0 but not Type 1 are more difficult to construct
@ assume non-terminals V7 = {V,,n > 0}
@ alphabet {a, b}

@ can represent any context-sensitive grammar on this alphabet
as a string
X1 =7 Y1, X2 —=>Yo,...i Xm — Ym

of symbols in {a, b,;,—, V,,}

@ encode all these possibilities as binary strings
a+ 010, b~ 0110, ;> 01110, —+ 011110, V, — 01750

e in set R = {w, = (01*0)*} with enumeration by word length
plus lexicographic (shortlex)

@ recursive (computable) but not context sensitive language:

L = {w, € R encoding context sensitive G, but w, ¢ L£(G,)}

M.Marcolli Mathematics & Linguistics

Why is it useful to organize formal languages in this way?
Types and Machine Recognition

Recognized by:
@ Type 0: Turing machine
@ Type 1: linear bounded automaton
@ Type 2: non-deterministic pushdown stack automaton
o Type 3: finite state automaton

What are these things?

M.Marcolli Mathematics & Linguistics

Finite state automaton (FSA)

M= (Q,F,,,qo)
o Q finite set: set of possible states
@ F subset of Q: the final states
@ 2 finite set: alphabet
o 7 C Q xAx Q set of transitions
@ go € Q initial state

M.Marcolli Mathematics & Linguistics

computation in M: sequence qgpaigqi132qz . . . anqgn Where
gi—1ajgi et for1<1<n

e label of the computation: a; ... a,

e successful computation: g, € F

e M accepts a string a; ... a, if there is a successful computation
in M labeled by a; ... a,

Language recognized by M:

Ly = {w € A*| w accepted by M}

M.Marcolli Mathematics & Linguistics

Graphical description of FSA

Transition diagram: oriented finite labelled graph I' with vertices
V(') = Q set of states and E(I') = 7, with e; 5 o an edge from v,
to vy with label a € 2l; label vertex go with — and all final states
vertices with +

e computations in M < paths in ' starting at v,

e an oriented labelled finite graph with at most one edge with a
given label between given vertices, and only one vertex labelled —
is the transition diagram of some FDA

M.Marcolli Mathematics & Linguistics

deterministic FSA
for all g € Q and a € 2, there is a unique ¢’ € Q with (g,a,¢') € T
= function § : Q@ x A — Q with §(q, a) = ¢, transition function

determines § : Q@ x A* — Q by §(qg,€) = g and
d(q,wa) = (d(q,w),a) forall w e A* and a € A

if goaiqi - ..anq, computation in M then g, = 0(qo, a1 ... an)

non-deterministic: multivalued transition functions also allowed

M.Marcolli Mathematics & Linguistics

Languages recognized by (non-deterministic) FSA are Type 3
e for G = (Vn, V71, P,S) type 3 grammar construct an FSA

M= (VyU{X},F,Vr,1,5)
with X a new letter, F = {S, X} if S —p ¢, F = {X} if not;
T={(B,a,C)|B—paC}U{(B,a,X)|B —pa,a#cec}

then Lg =Ly
o if M is a FSA take G = (Q, 2, P, qo) with P given by

P={B—aC|(B,a,C)er}U{B—a|(B,a,C)erT,CecF}

then Ly = Lg

M.Marcolli Mathematics & Linguistics

Non-deterministic pushdown stack automaton

Example: some type 2 languages such as {0"1"} would require
infinite available number of states (e.g. to memorize number of 0's
read before the 1's)

Identify a class of infinite automata, where this kind of memory
storage can be done

pushdown stack: a pile where new data can be stored on top; can
store infinite length, but only last input can be accessed (first in
last out)

M.Marcolli Mathematics & Linguistics

pushdown stack automaton (PDA)
M= (Q,F,A,T,7, qo,2)
o Q finite set of possible states
@ F subset of Q: the final states
o 2 finite set: alphabet
I" finite set: stack alphabet
TC QX (AU{e}) xT x Q x '* finite subset: set of transitions
go € Q initial state

°
°
°
@ zy € I start symbol

M.Marcolli Mathematics & Linguistics

e itisa FSA (Q, F,2, 7, qo) together with a stack '™

e the transitions are determined by the first symbol in the stack,
the current state, and a letter in AU {¢}

e the transition adds a new (finite) sequence of symbols at the
beginning of the stack ™

e a configuration of M is an element of @ x A* x '*

e given (q,3,z,4,a) e 7 C Q x (AU{e}) x T x Q@ x ' the
corresponding transition is from a configuration (g, aw, zf3) to a
configuration (¢’, w, af3)

e computation in M: a chain of transitions ¢ — ¢’ between
configurations ¢ = ¢, ..., ¢, = ¢’ where each ¢; — ¢j11 a
transition as above

M.Marcolli Mathematics & Linguistics

Example

a transition labelled (a, b, c) between vertex g; and g; means read letter a
on string, read letter b on top of memory stack, remove b and place c at
the top of the stack: move from configuration (g;, aw, ba) to
configuration (gj, w, ca)

M.Marcolli Mathematics & Linguistics

e computation stops when reach final state or empty stack

e PDA M accepts w € 2A* by final state if 3y € " and g € F such
that (qo, w, z0) — (g, €,7) is a computation in M

e Language recognized by M by final state

Ly = {w € A*| w accepted by M by final state }

e w € 2A* accepted by M by empty stack: if (qo, w, z0) — (g, €, ¢€)
is a computation on M with g € @

e Language recognized by M by empty stack

Ny = {w € A* | w accepted by M by empty stack }

M.Marcolli Mathematics & Linguistics

deterministic PDA

@ at most one transition (q, a,z,q’, &) € T with given (q, a, z)
source

@ if there is a transition from (g, €, z) then there is no transition
from (g, a,z) with a # €
first condition as before; second condition avoids choice between a
next move that does not read the tape and one that does

Fact: recognition by final state and by empty stack equivalent for
non-deterministic PDA

L=Lys L=Ny
not equivalent for deterministic: in deterministic case languages

L = N have additional property:
prefix-free: if w € L then no prefix of w is in L

M.Marcolli Mathematics & Linguistics

Languages recognized by (non-deterministic) PDA are Type 2
(context-free)

o If L is context free then £ = N for some PDA M

L = Lg with G = (W, VT, P,S) context-free, take

M = ({q},0, V1, VN, T,q,S) with 7 given by the (g, a, A, q,~) for
productions A — avy in P

then for a € Vj; and w € VT have
SSpwa & (q,w,S)—m(g,6a)

if also € € £ add new state ¢’ and new transition (g, ¢, 5S¢, €),
where S start symbol of a PDA that recognizes £ \ {¢}

M.Marcolli Mathematics & Linguistics

o if L =Ny for PDA M then £ = Lg with G context-free
for M = (Q, F,2L,T,7,qo,z) define G = (Vn, 2, P,S) where

v ={(q,z,p)|q,p€ Qz€T}U{S}

with production rules P given by
QO S —(qo,20,q) forall ge Q

e (qa Z, p) — a(QlaYL q2)(Q27Y27 q3) Tt (Qm7)/m7 qm+1) with
g1=49, gm+1 = p and (q,a,2,q1,¥1 - ..ym) transition of M

(q7 sz) —M (pa €, 6) And (qa Z, P) AP w

Similar arguments show Type 0 = recognized by Turing machine;
Type 1 (context sensitive) = recognized by “linear bounded
automata” (Turing machines but only part of tape can be used)

M.Marcolli Mathematics & Linguistics

Turing machine T =(Q,F,2,1,7,qo)
@ @ finite set of possible states
o F subset of Q: the final states
e 2 finite set: alphabet (with a distinguished element B blank
symbol)
o | C A~ {B} input alphabet

0 7T C QxAx QxAx{L,R} transitions
with {L, R} a 2-element set

@ go € Q initial state

gaq’a’L € T means T is in state g, reads a on next square in the
tape, changes to state g’, overwrites the square with new letter &’
and moves one square to the left

M.Marcolli Mathematics & Linguistics

e tape description for T: triple (a,, 8) with a € A, a: N — 2,
B : N — 2 such that a(n) = B and §(n) = B for all but finitely
many n € N (sequences of letters on tape right and left of a)

e configuration of T: (q,a,a,) with g € Q and (a,«, 3) a tape
description
e configuration ¢’ from c in a single move if either
e c=(q,a,,0), qag’d'L € 7 and ¢’ = (¢', B(0), &/, B’) with
a/(0) = & and &/(n) = a(n—1), and f'(n) = B(n+ 1)
e c=(q,3,0,8), gagd’dR € 7 and ' = (¢, a(0), &, B') with
o’(n) = a(n+1), and §'(0) = &', f'(n) = B(n - 1)
e computation ¢ — ¢’ in T starting at ¢ and ending at ¢’: finite

sequence ¢ = ¢i,..., ¢, = ¢ with ¢iy1 from ¢; by a single move

e computation halts if ¢’ terminal configuration, ¢’ = (q, a, o, 3)
with no element in 7 starting with ga

M.Marcolli Mathematics & Linguistics

e word w = aj - --a, € A* accepted by T if for ¢,, = (qo, a1+ an)
there is a computation in T of the form ¢, — ¢’ = (q, a, o, 3)
with g € F

e Language recognized by T

L1 ={w € A*|wis accepted by T}

e Turing machine T deterministic if for given (q,a) € Q x 2 there
is at most one element of 7 starting with ga

M.Marcolli Mathematics & Linguistics

Languages of Type 0 are recognized by Turing Machines

o L =Lg with G Type 0 = L = L1 with T = Turing machine
uses a characterization of Type 0 languages as recursively
enumerable languages: code 20* by natural numbers f : 2* — N

bijection such that f(L£) is a recursively enumerable set (Godel
numbering)

recursively enumerable set: A in N range A = g(N) of a some
recursive function: 3 algorithm such that set of inputs on which it
halts is A

enumerable set A in N: both A and N\ A are recursively
enumerable

recursive function: total functions obtained from primitive
recursive (explicit generators and relations), general recursive
function also minimization p

M.Marcolli Mathematics & Linguistics

primitive recursive functions
generators
@ Successor s : N — N, s(x) =x+1;
@ Constant ¢" : N" = N, ¢"(x) =1 (for n > 0);
@ Projection 77 : N" — N, n7(x) = x; (for n > 1)
operations
@ Composition (substitution) ¢(m m,p): for f : N” — N g N" — NP,
gof:N" NP, D(gof)=rf*D(g))
@ Bracketing (juxtaposition) b(j m) for fi : N™ — N, i=1,... k,
f=(f,...,f): N" - Nt D(f)=D(f)N---ND(f)
@ Recursion t,: for f :N” = Nand g : N2 5 N
h(x1,. .y Xn, 1) = F(x1, .0y Xn)
h(xt, .. xn, k+1) = g(xa, ..., Xn, k, h(x1, ..o xn, K)), k>1,

where recursively (xi, ..., X, 1) € D(h) iff (x1,...,xn) € D(f) and
(X1y .-y Xn, k +1) € D(h) iff (x1,...,Xn, k, h(x1,...,%n, k) € D(g)

M.Marcolli Mathematics & Linguistics

partial recursive functions

@ same three elementary operations ¢, b, t of composition,
bracketing and recursion

e additional 1 operation with input f : N1 — N and output
°

h:N"—= N, h(xq,...,xp) = min{xpy1|F(x1,..., Xp+1) =1}
with domain
D(h) = {(xt,- -, xn) | Ixnp1 > 1 fx1,.. ., Xnp1) =1
with (x1,...,xp, k) € D(f),Vk < Xp11}

Church’s thesis: partial recursive functions = semi-computable
functions, 3 program that, for x € D(f) computes f(x) but can
run for an infinite time for x ¢ D(f) (halting problem)

M.Marcolli Mathematics & Linguistics

Part 2: Languages recognized by a Turing machine are Type 0
o L = Lg of Type 0 & L recursively enumerable

e L recursively enumerable = recognized by Turing machine
(0) assume A = {2,3,...,r — 1} and Godel numbering
W=xi...X— (W) =x1+xar + - 4 x,r

(1) tape alphabet {0,1,2,...,r — 1}, input / = £, final state
F =0, blank symbol 0

(2) Turing machine that, on tape description xj ... xx halts with
tape description 01* - .- 01*Q

(3) Turing machine that, on tape description 01 - - - 010 halts
with tape description 01401k

(4) partial recursive function f with Dom(f) = ¢(L£): Turing
machine that, on input 01% halts iff x € Dom(f) with 017()

(5) Composition of these three Turing machines recognizes £

M.Marcolli Mathematics & Linguistics

Linear bounded automaton is a Turing machine
T =(Q,F,2,1,7,q0) where only the part of the tape where the
input word is written can be used
@ input alphabet / has two symbols),(right/left end marks
@ no transitions g(q’al or q)q’aR allowed (cannot move past
end marks)
© only transitions starting with g(or q) are q(¢’(R and q)q’)L
(cannot overwrite (and))

Languages recognized by linear bounded automata are Type 1
context-sensitive languages are recursive

M.Marcolli Mathematics & Linguistics

e Group G, with presentation G = (X | R) (finitely presented)
e X (finite) set of generators xi,...,xy
e R (finite) set of relations: r € R words in the generators and
their inverses
Word problem for G:

e Question: when does a word in the x; and xf1 represent the
element 1 € G?

e When do two words represent the same element?

e Comparing different presentations

e is there an algorithmic solution?

M.Marcolli Mathematics & Linguistics

Word problem and formal languages

e for G =(X|R) call X = {x,x71|x € X} symmetric set of
generators

e Language associated to a finitely presented group G = (X | R)
Lo={weX |lw=1cG}

set of words in the generators representing trivial element of G

e What kind of formal language is it?

M.Marcolli Mathematics & Linguistics

e Algebraic properties of the group G correspond to properties of
the formal language L¢:

Q Lg is a regular language (Type 3) iff G is finite (Anisimov)
@ L is context-free (Type 2) iff G has a free subgroup of finite
index (Muller-Schupp)

e Formal languages and solvability of the word problem:

@ Word problem solvable for G (finitely presented) iff Lg is a
recursive language

M.Marcolli Mathematics & Linguistics

Recursive languages (alphabet)A()

e L recursive subset of X*
e equivalently the characteristic function .. is a total recursive
function

e Total recursive functions are computable by a Turing machine
that always halts

e For a recursive language there is a Turing machine that always
halts on an input w € X*: accepts it if w € Lg, rejects it of
w ¢ Lg: so word problem is (algorithmically) solvable

M.Marcolli Mathematics & Linguistics

Finitely presented groups with unsolvable word problem (Novikov)

e Group G with recursively enumerable presentation: G = (X | R)
with X finite and R recursively enumerable

e Group is recursively presented iff it can be embedded in a finitely
presented group (X and R finite)

e Example of recursively presented G with unsolvable word problem
G =(a,b,c,d|a"bha" = c"dc", ne€ A)

for A recursively enumerable subset A C N that has unsolvable
membership problem

e If recursively presented G has unsolvable word problem and
embeds into finitely presented H then H also has unsolvable word
problem.

M.Marcolli Mathematics & Linguistics

Example: finite presentation with unsolvable word problem
e Generators: X = {a, b,c,d,e,p,q,r,t, k}

e Relations:

pla=ap, pb=0bp, pPc=cp, pd=dp, pPe=ep

aq'®=gqa, bg'"=qb, cq'®=gqc, dq'®=qd, eq'®=gqe

ra=ar, rb=br, rc=cr, rd=dr, re=er, pt=tp, qt=tq
pacqr = rpcaq, p2adqg’r = rp’dag®, p3bcgr = rp3cbg®

p*bdg*r = rp*dbg*, p°ceq®r = rp’ecaq®, pPdeq®r = rp®edbq®

p'cdeq’r = rp’cdceq”, p¥ca®qPr = rplacq®, p°daq’r = rp’acq’

a3tk = ka3tad

M.Marcolli Mathematics & Linguistics

How are such examples constructed?

A technique to construct semigroup presentations with unsolvable
word problem:

e G.S. Cijtin, An associative calculus with an insoluble problem of
equivalence, Trudy Mat. Inst. Steklov, vol. 52 (1957) 172-189

A technique for passing from a semigroup with unsolvable word
problem to a group with unsolvable word problem

e VV.V. Borisov, Simple examples of groups with unsolvable word
problems, Mat. Zametki 6 (1969) 521-532

Example above: method applied to simplest known semigroup
example

e D.J. Collins, A simple presentation of a group with unsolvable
word problem, lllinois Journal of Mathematics 30 (1986) N.2,
230-234

M.Marcolli Mathematics & Linguistics

Regular language < finite group

e If G finite, use standard presentation

G= (Xg, g < G|Xth = Xgh>

Construct FSA M = (Q, F, A, 7,qo) with Q = {xz | g € G},

A= {xgE1 lg € G}, go = x1, F = {qo} and transitions 7 given by

(Xgaxhaxgh)v g7h€ G

(Xg,Xh_l,Xghfl), g, heG

The finite state automaton M recognizes L¢

M.Marcolli Mathematics & Linguistics

e If G is infinite and X is a finite set of generators for G

For any n > 1 there is a g € G such that g not obtained from any
word of length < n (only finitely many such words and G is infinite)

If M deterministic FSA with alphabet X and n = #Q number of
states, take g € G not represented by any word of length < n

then there are prefixes wy and wiws of w such that, after reading
wi and wiw, obtain same state

so M accepts (or rejects) both wy Wl_l and wy W2W1_1 but first is 1
and second is not (wz # 1)

so M cannot recognize L¢

M.Marcolli Mathematics & Linguistics

Cayley graph
e Vertices V(Gg) = G elements of the group

e Edges £(Gg) = G x X with edge e; « oriented with s(egzx) = g
and t(eg x) = gx

oforxleX edge with opposite orientation e, ,—1 = & x with
s(egx-1) =gx and t(eg 1) =gxx =g
e word w in the generators = oriented path in G from g to gw

e word w =1 € G iff corresponding path in G is closed

e G acts on Gg: acting on V(Gg) = G and on E(Gg) = G x X by
left multiplication (translation)

e invariant metric: d(g, h) = minimal length of path from vertex g
to vertex h, with d(ag,ah) = d(g,h) forallae G

M.Marcolli Mathematics & Linguistics

Main idea for the context-free case

e X set of generators of G

o if for y; € X, aword w = y1---yn = 1 get closed path in the
Cayley graph G¢

e consider a polygon P with boundary this closed path

e obtain a characterization of the context-free property of L¢ in
terms of properties of triangulations of this polygon

M.Marcolli Mathematics & Linguistics

Plane polygons and triangulations

e a plane polygon P: interior of a simple closed curve given by a
finite collections of (smooth) arcs in the plane joined at the
endpoints

e triangulation of P: decomposition into triangles (with sides that
are arcs): two triangles can meet in a vertex or an edge (or not
meet)

e allow 1-gons and 2-gons (as “triangulated”)

e triangle in a triangulation is critical if has two edges on the
boundary of the polygon

e triangulation is diagonal if no more vertices than original ones of
the polygon

e Combinatorial fact: a diagonal triangulation has at least two
critical triangles (for P with at least two triangles)

M.Marcolli Mathematics & Linguistics

K-triangulations

e diagonal triangulation of a polygon P with boundary a closed
path in the Cayley graph G¢

e cach edge of the triangulation is labelled by a word in X*

e going around the boundary of each triangle gives a word in Lg
(a word w in X* with w =1 € G)

e all words labeling edges of the triangulation have length < K

M.Marcolli Mathematics & Linguistics

Context-free and K-triangulations

Language L is context-free < 3K such that all closed paths in
Cayley graph G can be triangulated with a K-triangulation

Idea of argument:

If context-free grammar:
e use production rules for word w = 1 (boundary of polygon) to
produce a triangulation:

S ABSwiwo=w with A w; and B> ws

= a subdivision of polygon in to two arcs: draw an arc in the
middle, etc.

M.Marcolli Mathematics & Linguistics

If have K-triangulation for all loops in Gg: get a context-free
grammar with terminals X

e for each word u € X* of length < K variable A, and for u = vw
in G production A, — A A, in P

e any word w = y; - - - y,, from boundary of triangles in the
triangulation also corresponds to A; — Ay, -+ Ay, in the grammar
(inductive argument eliminating the critical triangles and reducing
size of polygon)

e and productions A, — y (terminals); get that the grammar
recognizes Lg

M.Marcolli Mathematics & Linguistics

accessibility

To link contex-free to the existence of a free subgroup, need a
decomposition of the group that preserves both the context-free
property and the existence of a free subgroup, so that can do an
inductive argument

e HNN-extensions: two subgroups B, C in a group A and an
isomorphism v : B — C (not coming from A)

Axc B=(t,A|tBt™! = C)

means generators as A, additional generator t; relations of A and
additional relations tht~1 = ~y(b) for b€ B

e accessibility series: (accessibility length n)
G=GyD>G DO---D G,
G; subgroups with G; = Gj;1 xkx H with K finite

M.Marcolli Mathematics & Linguistics

o finitely generated G is accessible if upper bound on length of any
accessibility series (least upper bound = accessibility length)

e assume G context-free and accessible

e inductive argument (induction on accessibility length) on
existence of a free finite-index subgroup:

if n =0 have G finite group; if n > 0 G = Gy xx H, context-free
property inherited; inductively: free finite-index subgroup for G;
show implies free finite-index subgroup for G

e then need to eliminate auxiliary accessibility condition

M.Marcolli Mathematics & Linguistics

Context-free < free subgroup of finite index

e show that a finitely generated G with L context-free is finitely
presented

e then show finitely presented groups are accessible

e Conclusion: equivalent properties for finitely generated G
@ L is a context-free language
@ G has a free subgroup of finite index

© G has deterministic word problem
(using the fact that free groups do)

M.Marcolli Mathematics & Linguistics

Word problem and geometry

e Groups given by explicit presentations arise in geometry/topology
as fundamental groups 71(X) of manifolds

Positive results

e Groups with solvable word problem include: negatively curved
groups (Gromov hyperbolic), Coxeter groups (reflection groups),
braid groups, geometrically finite groups

[all in a larger class of “automatic groups”]

Negative results
e Any finitely presenting group occurs as the fundamental group of
a smooth 4-dimensional manifold

e The homeomorphism problem is unsolvable

@ A. Markov, The insolubility of the problem of homeomorphy,
Dokl. Akad. Nauk SSSR 121 (1958) 218-220

M.Marcolli Mathematics & Linguistics

Additional References:

@ S.P. Novikov, On the algorithmic unsolvability of the word
problem in group theory, Proceedings of the Steklov Institute
of Mathematics 44 (1955) 1-143

@ V.V. Borisov, Simple examples of groups with unsolvable word
problems, Mat. Zametki 6 (1969) 521-532

© A.V. Anisimov, The group languages, Kibernetika (Kiev)
1971, no. 4, 18-24

@ D.E. Muller, P.E. Schupp, Groups, the theory of ends, and
context-free languages, J. Comput. System Sci. 26 (1983),
no. 3, 295-310

M.Marcolli Mathematics & Linguistics

Tree Adjoining Grammar (Aravind Joshi, 1969)

e developed as formal languages (as a generalization of
context-free grammars)

e rooted trees with a marked foot leaf node (a word); basic trees
and auxiliary trees (these have same symbol labeling root and foot)

e two operations: substitution (leaf/root grafting) and adjunction
(insertion of an auxiliary tree at an internal node labelled by
auxiliary root/foot label)

e main idea: these two operations should suffice to describe all
syntactic dependencies

e L TAG: lexicalized tree-adjoining grammar: each elementary tree
associated with an item in a lexical database (XTAG project, LTAG
parser)

M.Marcolli Mathematics & Linguistics

Tree Adjoining Grammars (Joshi, Levy, Takahashi)

Mathematical model for structural composition of parse trees:
instead of production rules that rewrite strings as in the formal
languages grammars, use a system of trees with tree rewriting rules

e a (finite) set of Elementary Trees

e Substitution rule: graft a terminal leaf of a tree T to the root of
another tree

e Adjoining rule: at an internal vertex of the tree labelled by X
attach a tree with root labelled by X and with one of the leaves
also labelled by X with anything outgoing from original tree at X
then attached to the X-labelled leaf of the inserted tree.

Note: mathematically the first is an operad structure the second is
a Lie algebra structure, we'll discuss these later

M.Marcolli Mathematics & Linguistics

Note: no additional transformations used other than substitution
and adjoining

Fundamental assumptions of TAG:

e all syntactic dependencies are encoded (locally) in the
elementary trees

e non-local dependencies must be reducible to local ones (after
contracting a certain number of adjoined trees)

TAG derivation: a combination of elementary trees via a sequence
of substitutions and adjoining

Derivation structure: a tree whose vertices are labelled by
elementary trees and daughter vertices of a given node T are the
elementary trees that are substituted or adjoined into the tree T
(requires “independence” of the operations performed)

M.Marcolli Mathematics & Linguistics

Generative power of TAG:

e All context-free languages can be generated by a TAG
e L =1{a"b"c"|n € N} not generated by a context-free grammar,
but can be generated by a TAG

PN
I\

b S c

repeatedly adjoin copies of this elementary tree into itself at the S
vertex with the first b daughter

M.Marcolli Mathematics & Linguistics

a’b?c? from first adjoining, etc.

But... simple examples of context-sensitive languages that cannot
be generated by TAG's: (Vijay—Shanker)

L={a"b"c"d"e" | n € N}

M.Marcolli Mathematics & Linguistics

Additional References

e J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison—Wesley, 1979

o A.K. Joshi, L. Levy, M. Takahashi, The tree adjunct
grammars, Journal of the Computer and System Sciences, 10
(1975) 136-163

Coming up next
o from formal languages to transformational grammars
@ more details on transformational grammar

@ more details on earlier versions of Minimalism

M.Marcolli Mathematics & Linguistics

