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this part based on

@ Matilde Marcolli, Robert C. Berwick, Noam Chomsky,

Syntax-semantics interface: an algebraic model,
arXiv:2311.06189

also included in the book:
Matilde Marcolli, Noam Chomsky, Robert C. Berwick,
“Mathematical structure of syntactic Merge”, MIT Press.
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LLM (large language models): a deep dive backward in time!

Zellig Harris circa 1940s, early 1950s

e view language as strings of texts (not as structures)

@ primarily seen through their distributional properties (texts
included as subtexts of other texts)

@ syntax is seen primarily in terms of such distributional
relations (no internal computational modeling)

@ relations between constituents in a syntactic structure are
probabilistic relations; no abstract structural relations

@ rules for modification of sentences are to be extracted
“mechanically” from distributional data through algorithms
(see below discussion of transformers and circuits:
“mechanistic interpretability”)

@ view of linguistics just prior to the main shift of scientific
paradigm to modern linguistics (mid 1950s)

@ intuitively simple model, but also known to be inaccurate

e Zellig Harris, Distributional structure, 1954
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o view influenced by behaviorism in psychology: can only
statistically observe behavior, no theoretical modeling of mind
(contrary to later development of cognitive science and
neuroscience)

@ change of paradigm in linguistics happened in 1955:

o Noam Chomsky, The logical structure of linguistic theory. Ms.,
Harvard/MIT 1955. [Published in part, Plenum 1975]

@ among main criticisms of Harris’ distributional viewpoint:
different sentences with same syntactic structure but very
different probabilities; not capturing intrinsic computational
structure of syntax

@ scientific method: theoretical hypotheses and models tested
on data, different view of role of predictions; difference
between “taxonomic” linguistics and theoretical linguistics

@ current anti-science, anti-theory stance of part of the LLM and
ML community is just revamped old behaviorism on steroids

M.Marcolli Mathematics & Linguistics



Behaviorism's new clothes: Trasformers

ok, not quite those transformers...
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Behaviorism’s new clothes: Trasformers
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Attention modules and transformer architectures (first look)

@ in self-attention modules one considers three linear
transformations: Q (queries), K (keys), and V (values),
Q,K € Hom(S,S8’) and V € Hom(S,S"), where §" and §”
are themselves vector spaces of semantic vectors (in general of
dimensions not necessarily equal to that of S)

@ these encode (statistically) other words that are structurally
related to (“called by" or “calling for") the given word

o fixed identifications S ~ R", &' ~ R™, §"” ~ RY with
Euclidean vector spaces, with assigned bases, and one works
with the corresponding matrix representations of
Q, K € Hom(R",R™) and V € Hom(R",R9)

e target Euclidean space S’ is endowed with an inner product
(-,-), that can be used to estimate semantic similarity
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e query vector Q(s(¢)), for £ € SOq, can be thought of
performing a role analogous to the semantic probes discussed
before

@ think of queries as elements g € SV dual vector space
SV = Hom(S, R), so query matrix in

SYOR"~8Y®S8 =Hom(S,S)

m-fold probe Q evaluated on the given semantic vector s(¥)
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e similarly key vector K(s(¢)), for £ € SOy, in K € Hom(S,S"),
creating an m-fold probe out of the given vector s(¢)

e dual role of §’: (m-fold) probes to be evaluated on input
semantic vector s(¢), or new probes generated by semantic
vector s(¢) (reflected in terminology “query” and “key")

@ values vector V(s(¢)) representation of semantic vectors s(¢)
in a vector space S” dimension lower than S (d = dimS”
embedding dimension)
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@ aset L C SOq: usually seen as an ordered set, but in fact it
should not be (can use bi-directional architectures like BERT)

bidirectional
Transformer

Word Piece
Embeddings
Position
Embeddings
Segment
Embeddings

Neural network architecture of BERT. The input word piece, position and segment embeddings are summed
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@ to an element ¢ € L assign attention operator
Ar:Lc S — S given by

A(s(£1) = a({Q(s(£)), K(s(£))))
where o softmax

o exp(x)
o(x)i = Zj exp(ixj'y

for x = (x;)

e Note: ignoring usual rescaling by v/d, no influence on
algebraic structure

o App = Ay(s(¢')) attention matrix

M.Marcolli Mathematics & Linguistics



@ Ay a probability measure on how attention from position £ is
distributed towards other positions ¢’ in the set L

@ assign an output (in 8”) to input s(L) C S, as vectors
ye=Y_ AueV(s(t')
[/

for each ¢ € L, have
ve=(yo)i, € 8" ~R?

@ matrix representation Ay ¢ uses ordering of £ € L but
underlying linear operator does not; resulting y; also
symmetric in ordering
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@ usually several such attention modules running in parallel:
multi-head attention

Scaled Dot-Product Attention Multi-Head Attention

MatMul
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e vectors Q(s(¢)) = @i Q(s(¥))i, K(s(¥)) = @iK(s(¢));, and
V(s(€)) = ®;V(s(£)); are split into blocks of decomposition
S =al,s

@ attention matrices, for i =1,..., N,
A, = o ((Q(s(0)1, K(s(0)i)s)

attention distribution with attention head i

@ not consider here multiple attention heads: enough to use a
single one to see the conceptual structure
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queries, keys, values from input semantic vectors, attention
matrices, probabilities, and weighted output
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What is actually happening?
e conflicting results on handling of syntax by LLMs when
syntactic structures become complex
@ syntactic trees can be “seen” from the weights of attention
modules (Mannings et al.2020):

@ “poverty of the stimuls” for human learning versus
“overwhelming richness of the stimulus” for LLM training
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Some References: LLMs detection/handling of syntax

@ C.D.Manninga, K.Clarka, J.Hewitta, U.Khandelwala, O.Levy,
Emergent linguistic structure in artificial neural networks
trained by self-supervision, PNAS, 117 (2020) N.48,
30046-30054.

@ V.Dentella, F.Glintherb, E.Leivada, Systematic testing of
three Language Models reveals low language accuracy,
absence of response stability, and a yes-response bias, PNAS,
120 (2023) N.51

@ J.Sprousea, C.T. Schiitze, D. Almeida, A comparison of
informal and formal acceptability judgments using a random
sample from Linguistic Inquiry 2001-2010, Lingua 134 (2013)
219—248

@ H. Vazquez, A. Heuser, C. Yang, J. Kodner. Evaluating neural
language models as cognitive models of language acquisition,
GenBench23 (2023)
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LLMs perform a (partial) solution of the inverse problem

@ the keys and queries are a statistical proxy for the Generative
Linguistics notion of syntactic relationship (c-command) and
the corresponding positions (in terms of structural relations)
in a syntactic tree

@ very large parallel computing searching through huge corpora
for an image of syntax projected upon semantics (a difficult
and imperfect inverse problem)

@ syntactic trees are imperfectly encoded in the weights of the
attention modules and can be read from them

encoding of syntactic trees in the attention structure can be seen
as another instance of mapping from syntax to a semantic space
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Attention modules and Hopf algebra characters

@ the attention modules of transformer architectures of LLMs fit
as another example of the Hopf algebra characters of our
syntax-semantics interface model

@ given map function s : SOy — S of lexical items to a (vector
space) model of semantics

@ focus here on attention modules, in the case of self-attention
in transformer architectures
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attention as character

@ Hopf algebra character

T) = A
éa(T) 4212(1;() h(T),t

if T € Dom(h) and zero otherwise

@ syntactic relation: collection p = pt of relations
pr C L(T) x L(T)

equiv with p7(¢,¢') =1is £,¢' € L(T) in the relation and
p1(¢,¢") = 0 otherwise
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@ p exactly attention-detectable if 3 query/key linear maps
Qp, K, € Hom(S,S’) and head function h,,

PT(hp( T), Emax,hp) =1

for T € Dom(h,) with

Cmax,h, = argmaxyc; (1)An,(T),

A = attention matrix built from Q,, K,
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@ syntactic relation p is approximately attention-detectable if 3
query/key linear maps Q,, K, € Hom(S,S’) and head
function h,

# Z max hp) ~1
TeD

for some sufficiently large set D C Dom(h,) of trees

e existence of query/key linear maps Q,, K, is relative to
specified context (a corpus, a dataset, etc)
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@ threshold Rota-Baxter operator c)

¢a—(T) = cx(max{ga(T),cx(da(Fy)) - ¢a(T/Fy), ...,
ax(@a(Fu)) - ¢a(Fy, /Fu) - 0a(T/Fu)}).

@ for simplicity focusing on the case of chains of subtrees
T CTy,C--CT,CT

@ use quotient given by contraction h(T/T,) = h(T) so that

A < A
ZeLr(n'I%;(T‘,) h(T)’e_ng(D;) h(T).¢
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attention along syntactic substructures
e ¢_(T) identifies chains of accessible terms of T for which

O all values

T,) = A
oa(Ty) eenZ(a%,.) h(Ty,),6

are above threshold A
@ all the quotients T,,_,/T,, have

¢>A( TV,'—1/ TVi) =

max Ah T. =
eel(T,_,/T,) (Tyi_p).e

A — da( T,
U

@ tracking where attention concentrates over substructures:
first condition max attention from the head of each subtree
sufficiently large; second guarantees that when considering next
nested subtree trying to maximize its attention value, one does not
spoil optimizations achieved at previous steps for larger subtrees
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incorporating syntactic relations as character

@ syntactic relation p Boolean valued B = ({0,1}, max, -)

¢p(T) = max p(h(T), 1)

detects whether p is realized in T or not

@ can combine characters, values in Viterbi P = ([0, 1], max, -)

(commonly used in NLP for probabilistic values)

bap(T) = RULES p(h(T), £) - An(T)e
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@ here one maximizes attention from syntactc head over set of
¢ € L(T) that already satisfy syntactic relation with the head

e Birkhoff factorization as before but subtrees with ¢,(T,) =0
do not contribute even if their maxy A1) is large

@ comparison between ¢4 and ¢, 4 identifies
attention-detectability of p

o if detectability fails, identifies where in substructures attention
matrix maximum happens outside of where the syntactic
relation holds
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To what extent do LLMs solve this inverse problem?
reconstruction of the computational mechanism of syntax from its
(probabilistically smeared) image inside semantics

Empirical tests of different kinds: some examples

@ systematic detectable differences between text generated by
Als and by humans

@ limitations in the handling of nontrivial syntactic constructions

@ non-linguistic dependence on prompts (control theory)
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Detectable difference in dimensionality between human and Al
linguistic text
@ Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva,

Daniil Cherniavskii, Sergey Nikolenko, Evgeny Burnaev,
Serguei Barannikov, Irina Piontkovskaya, Intrinsic Dimension
Estimation for Robust Detection of Al-Generated Texts, 37th
Conference on Neural Information Processing Systems
(NeurlPS 2023)

@ testing the difference between Al and human generated
linguistic texts in terms of dimensionality, using

@ method based on persistent homology dimension theory
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Persistent Topology of Data Sets
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how data cluster around topological shapes at different scales
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Vietoris—Rips complexes

e set X = {x,} of points in Euclidean space EV, distance

d(x,y) = Ix =yl = (CL106 — y)?)Y?

e Vietoris-Rips complex R(X,¢€) of scale € over field K:

R,(X, €) is K-vector space spanned by all unordered (n + 1)-tuples

of points {Xag, Xass - - - s Xa, } in X where all pairs have distances
d(Xa,-aXoaj) <e
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e inclusion maps R(X,e1) <= R(X,e€2) for €1 < €2 induce maps in
homology by functoriality H,(X, 1) = Hp(X, €2)

.f]\_
fagpn,

e i |

barcode diagrams: births and deaths of persistent generators
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persistent homology dimension estimator (PHD)

@ d-dimensional Riemannian manifold M, ball of radius r in M,
volume grows like r¢

@ points uniformly sampled from M (volume form distribution):
number of points on ball also grows like r¢

@ PHD combines local and global properties of dataset, also
stable under noise in data

e set of points X = {xq,...,xy} C R", parameter a > 0:
weighted sum

EXX)= > |z
~vEPH;(X)

Z(y) = tgeatn () — toirtn(7y) lifespan of persistence of the
persistent homology generator

e for i = 0 persistent connected components (minimal spanning
tree:|e| = length of edges of tree)

EXX)= > e

YEMST(X)
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o growth rate: for EQ(X) ~ N for N — 0o (if x; indep
random var with distrib w/ comp support)

dimpsT(M) = inf{d |3C >0 : EJ(X) < C,VX C M}

log £9(X) ~ (1 — %) log#X + € for #£X — oo

@ on text of medium size ~ 300 tokens; contextualized
embeddings for every token in a pretrained transformer
encoder; view resulting vectors as points of ambient Euclidean
space; persistent homology of resulting point cloud

@ significant and systemic gap in dimension between human text
and Al generated text

@ misclassified cases (either way) tend to happen on short texts

@ What does it capture? it is related to the positions of
embedding vectors: does it reflect hierarchical structures of
syntax relating them? (note: tree of persistent components
likely correlates to parse tree)
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Intrinsic dimension (PHD) of English texts generated by different models

Natural texts R -
GPT-3.5-175B | "+ .
(davinci-0003)
GPT2-1.5B -

OPT-13B1 s mwmiee}

comparative test of persistent homology dimension for human and
Al generated text, E. Tulchinskii, et al. Intrinsic Dimension
Estimation for Robust Detection of Al-Generated Texts, NeurlPS
2023
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Effect of parameter a on the dimension estimation
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effect of parameter « in persistent homology dimension estimation,

E.Tulchinskii, et al. Intrinsic Dimension Estimation for Robust
Detection of Al-Generated Texts, NeurlPS 2023
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Intrinsic dimension (PHD) of texts in different languages

Chinese| : J = enerates
Japanese +--
French ‘l et —’
Spanish ’ X [ I-‘
Russian ’ '————‘
Ukrainian{ T——‘
German | — e
Italian | '—'——ﬁ—|

comparative effect across languages: persistent homology
dimension gap, E.Tulchinskii, et al. Intrinsic Dimension Estimation
for Robust Detection of Al-Generated Texts, NeurlPS 2023
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Handling of nontrivial syntactic constructions
@ LI-Adger database of syntactic examples collected from the
theoretical linguistics journal Linguistic Inquiry 2001-2010
@ covering broad range of syntactic phenomena

@ two different tests: acceptability and grammaticality

@ J. Sprousea, C.T. Schiitze, D. Almeida, A comparison of informal
and formal acceptability judgments using a random sample from
Linguistic Inquiry 2001-2010, Lingua, 134 (2013) 219-248

@ V.Dentella, F.Gunther, E.Leivada, " Systematic testing of three
Language Models reveals low language accuracy, absence of
response stability, and a yes-response bias”, PNAS 2023

@ H.J.Vazquez Martinez, " The Acceptability Delta Criterion: Testing
Knowledge of Language using the Gradience of Sentence
Acceptability”, Fourth BlackboxNLP Workshop on Analyzing and
Interpreting Neural Networks for NLP, pages 479-495, 2021

M.Marcolli Mathematics & Linguistics



different types of acceptability judgments in the syntax literature

Standard acceptability judgments: These require only that the participant be presented with a sentence and asked to
judge its acceptability on an arbitrary scale or in reference to another sentence.

Coreference judgments: These are primarily used to probe binding relationships. Participants must be presented with a
sentence that includes two or more noun phrases that are identified in some way. They are then asked to indicate
whether the two noun phrases can or must refer to the same entity.

Interpretation judgments: These are judgments based on the meaning of sentences, such as whether a sentence is
ambiguous or unambiguous, or whether one quantifier has scope over another. These may require explicit training of
participants to identify multiple potential meanings, and/or explicitly constructed contexts to elicit one or more potential

meanings.

Judgments involving relatively few lexical items: These are acceptability judgments about phenomena that occur with
relatively few lexical items, such that the construction of 8 substantially distinct tokens, as was done for the phenomena
tested in this study, would likely be impossible. This is not to say that these phenomena cannot be tested in formal
experiments, but participants in such experiments may require special instruction to guard against potential repetition

confounds.
Judgments involving prosodic manipulations: These are acceptability judgments that are based on specific prosodic

properties of the sentence. They require either the presentation of auditory materials or the use of some notational
conventions for conveying the critical prosodic properties in writing (e.g., the use of capital letters to indicate emphasis).

pairwise phenomena: two maximally similar sentence types
differing in a way that (1) is relevant for theories of grammar and
(2) lead to a significant difference in acceptability

judgment tasks: magnitude estimation (ME), 7-point Likert scale
(LS), and two-alternative forced-choice (FC)
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LS task: sentence types in ascending order

human acceptability judgments for grammaticality over the
Linguistic Inquiry database, consistency over testing methods
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LLMs on the LI-Adger dataset

@ three BERT models fine-tuned using Corpus of Linguistic
Acceptability (CoLA, 2019)

e with ADC (acceptability delta criterion) both BERT and the
trigram model scored approximately 30% of minimal pairs
correctly

@ representative collection of 4177 sentences forming 2394
unique minimal pairs from LI-Adger

@ comparison with human judgement data
source:

@ H.J.Vazquez Martinez, " The Acceptability Delta Criterion: Testing
Knowledge of Language using the Gradience of Sentence
Acceptability”, Fourth BlackboxNLP Workshop 2021.

@ H.J.Vazquez Martinez, Master thesis CS, MIT 2021
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@ major syntactic feature in the CoLA analysis set: Matthew's
Correlation Coefficient (MCC) scores
o confusion matrix: true positives (TP), false positives (FP),
true negatives (TN), false negatives (FN)

_ TP-TN—FP-FN
MCC = /(TP+FP)(TP+FN)-(IN-+FP)-(TN+EN)

(worst and minimum value -1; best and maximum value +1)

BERT MCC scores on CoLA Analysis Set by major feature
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BERT MCC scores on CoLA Analysis Set by minor feature
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H.J.Vazquez Martinez, " The Acceptability Delta Criterion: Testing
Knowledge of Language using the Gradience of Sentence Acceptability”
2921
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BERT MCC scores on CoLA Analysis Set by minor feature
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H.J.Vazquez Martinez, " The Acceptability Delta Criterion: Testing
Knowledge of Language using the Gradience of Sentence Acceptability”
2921
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@ Acceptability Delta Criterion (0 = 0.5): enforces that models’
predictions be within a set number of standard deviation units
0 from the human ME judgements

e then BERT only correctly evaluates 726 out of 2365 (31%)
minimal pairs, whereas trigram model correctly evaluates 712
out of 2365 (30%)

@ when it comes to tracking acceptability of sentences across
minimal pairs, BERT does not go much farther than
Shannon’s N-gram models of the 1940s
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LLMs handling of syntactic phenomena (Dentella et al.)

@ 8 linguistic phenomena: plural attraction; anaphora; center
embedding; comparative sentences; intrusive resumption;
negative polarity items; order of adjectives; and order of
adverbs

@ all evaluable without context

@ each phenomenon 10 sentences: 5 grammatical and 5
ungrammatical (ungrammatical involve violation of one
specific rule of English syntax)

@ prompt used: “Is the following sentence grammatically correct
in English?”

@ LLMs tested: GPT-3/text-davinci-002, Nov 2022 (davinci2);
GPT-3/text-davinci-003, Jan 2023 (davinci3); ChatGPT Feb
2023

@ comparative judgments from humans
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What does this say so far?

@ pessimist view: the most extensive and most expensive
experiment ever to show that Zellig Harris’ distributional
model of syntax is inaccurate (which was known since 1955)

@ optimist view: what additional information about the “inverse
problem of syntax” can be derived from this LLM
experimental apparatus?

pessimism of the intellect, optimism of the will

...s0 let's keep going

M.Marcolli Mathematics & Linguistics



detecting the “inverse problem of syntax” in LLMs

beyond identifying an embedding of syntactic trees in a semantic
space determined by attention modules, want to understand to
what extent the actual computational mechanism of syntax
(Merge) is reconstructed in this inverse problem

@ mechanistic interpretability: reverse engineer computations
performed by transformers
e identify simple algorithmic patterns (motifs)

@ Note: again similar to Zellig Harris’ idea of “mechanical
procedures” for discovering basic elements of language and
transformation rules from probabilistic distributions

@ more likely to work on “small models” (e.g. studied for
transformers with at most two layers and only attention
blocks — by comparison GPT-3 has 96 layers)

@ a notion of induction head: in-context learning algorithms
(C.Olsson et al “In-context learning and induction heads")
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mechanistic interpretability: a closer look at transformers

N.Elhage et al. A Mathematical Framework for Transformer Circuits,
2021

@ type of model: (1) autoregressive, decoder-only (like GPT-3,
not encoder-decoder structure like translation); (2)
attention-only (rather than attention and MLP layers —
multi-layer-perceptron)

@ transformer operations:

© token embedding,

@ a series of “residual blocks” (attention layer with multiple
attention heads in parallel and MLP layer)
© token unembedding
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tz

The final logits are produced by applying the unembedding.
T(t) = WU:L',l

An MLP layer, m, is run and added to the residual stream. On(_e
residual
Tit2 = Tjy1 + m(a:i“) block

Each attention head, k, is run and added to the residual stream.

Tiy1 = T; + ZhEH h(.’l,‘i)

Token embedding.
oy = WEt

N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021
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residual stream and linearity
@ each layer adds result into the “residual stream” (residual
stream vectors also referred to as “embedding”)
@ residual stream is run by /inear operations

@ linear structure of residual stream means can encode how later
layers read information in previous layers though “virtual
weights” (matrix entries of a linear transformation)

o residual stream is a high-dimensional vector space (102 for
small models, 10* for large)

o different information stored in different subspaces sent to
different layers

@ in attention modules each attention head operates on a small
subspace (e.g. 64-dim); different attention heads can write to
different subspaces

@ subspaces of the residual stream are like memory storage, lots
of additional subspaces to store from other layers
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The residual stream is modified by a sequence
of MLP and attention layers “reading from” and
“writing to” it with linear operations.

Each layer “writes” to the residual
stream by adding a linear
projection of its results.

Each layer “reads”
from the residual stream
with a linear projection.

Because all these operations are linear, we
can “multiply through” the residual stream.

(B “"'-\ Multiplying out the weights

~, Treveals “virtual weights”
*. implicitly connecting
s, each pair of layers.

+ Byusing different
,+ subspaces of the residual
./ stream, a layer can send
.+ different information to
L different layers, or even not
,.r"  interact with other layers.

N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021
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The residual
stream is high
dimensional,
and can be
divided into
different
subspaces.

Layers can interact by
writing to and reading
from the same or
overlapping
subspaces. If they
write to and read from
disjoint subspaces,
they won't interact.
Typically the spaces
only partially overlap.

Layers can delete
information from
the residual
stream by reading
in a subspace and
then writing the
negative verison.

N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021
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closer look at attention heads
@ primary function is “moving information” between different
parts of the residual stream

@ multiple independent attention heads in an attention module:
operate completely in parallel, each adding its output back in

the residual stream
h; _h;
> Wor

1

rhi = result vector of the i-th attention head, W/ = output
matrix i-th block

Attention heads copy information from the residual stream of
one token to the residual stream of another. They typically write
to a different subspace than they read from.
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operations of attention head

@ compute value vector for each token embedded in the residual
stream vector space
vi = Wyx;

@ compute result vector from attention matrix and value vectors
=y Ay
J

@ compute output vector
h(x)i = Wor;
@ combined operation
h(x) = (id® Wp) o (A®id) o (id ® Wy ) x = (A® WoWy/) x

A mixes between tokens, Wp W), acts on each independently
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@ for the attention matrix A part: ¢ = softmax
A = o(x"WHWkx) = o(q"k)

@ query vectors g = Wpx
@ key vectors k = Wix
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hj(zi, X) = AW 2z, WX, W) X)

(Wyw, Wit a
> exp [%] VV]Vscl
Z={z}=MX)={W°aq,
J (W2, Wka)
> exp 7\/—
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@ two separate circuits: Wo Wy and Wé Wi (“vector-per-token
side” and “position side”): extremely sparse matrices

o WopWy reading source token writing destination token

o W§ Wi move information between different tokens (note: A
nonlinear in W§ Wk)

o the Wp, Wy, Wq, Wk only occur through the compositions
Wo W, and Wé Wi (so any other factorization with same
compositions would do the same)

@ multiple attention heads functionally equivalent to single
(AW Jo- - o(Am@Wg),) = AMo- - 0A™ & Wi o-- oW,

@ on two sides of tensor product: position variables (left) and
token vectors (right)
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residual stream as basic digram: zero-layer transformer
@ if no attention modules: just take token, embed it, unembed it
@ linear map T = WyWg
@ optimal behavior possible: Wy WEg digram log-likelihood

@ even when other parts of model (attention modules) are
present, this residual stream part will contribute digram model
log-likelihood and can be seen to detect such digram
correlations not related to grammatical rules and syntax
structures

N.Elhage et al. A Mathematical Framework for Transformer Circuits,
2021
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Attention head circuits: one-layer attention-only transformer

@ embedding, attention module, unembedding

The final logits are produced by applying the unembedding.
Tt) = Wom,

Each attention head, h, is run and added to the residual stream

Ty = Iy + Zh(ilg)
heH

o

@ Token embedding.
xg = Wgt

N.Elhage et al. A Mathematical Framework for Transformer Circuits,
2021
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T = IdeWy - (Id + Z Ah® W3V> . Id® Wg

heH,;

mm The token The attention layer The token
unembedding has multiple heads. embedding
maps residual The result of each is maps tokens to
stream vectors added into the residual stream
to logits. residual stream. vectors.

where A" = softmax”* < th WEWS W - t >

Softmax with Attention pattern logits
autoregressive are produced by
masking multiplying pairs of

tokens through
different sides of W,

N.Elhage et al. A Mathematical Framework for Transformer Circuits,
2021
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T = Id® WU Wg

“Direct path”

term
contributes
to bigram
statistics

+ Z A" ® (WuWgyWe)

The attention head terms describe the
S n linking input

ribes which

i ile Wy u',“,\ m
) ach token changes

logits \f attended to

N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021

@ separate out the digram effect Wy We
o the attention module effect is in the A" @ Wy WS, We
@ consists of two separate circuits A" and Wy ng WE acting

on different sets of variables

M.Marcolli Mathematics & Linguistics



@ A moves information between different tokens: contextual
word embedding (vector in the residual stream) of a token has
components in subspaces with information copied from other
tokens

o query-key circuit: WEWgok WE which tokes head preferably
attends to

@ output value circuit: WyWoy WEe how a given token will
affect the output if attended to

Wy ‘
%! !
W W
The QK (“query-key”)
circuit controls which
tokens the head prefers
@ Wi to attend to.
STirT1rr ;
WgWoWxWg

src dst
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one-layer transformer as skip-trigram

@ QK-circuit: which source token a present destination token
attends back to and copies information from; OV-circuit:
resulting effect on the out-predictions for the next token

@ k-skip N-gram: subset of an unordered N-gram using
non-contiguous substrings with skips of length k

@ skip-trigram with 3 tokens: source, destination, output (last
one is modified)

@ matrices themselves are enormous but very sparse (50k x 50k
but rank 64)
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@ searching for large entries shows behavior:

e most attention heads in one-layer perform copying

o tokens are copied to places where digram-statistics make them
plausible

o other skip-trigram behavior: identifies classical trigrams (“back
and forth”, “eat and drink”, “day and night", “keep in mind",
“keep at bay”, etc)

o but because of factored QK and OV, not quite 3-way
interactions: eg high probability for “keep in mind” and "keep
at bay” also causes high probability for “keep at mind”, “keep
in bay"

e most heads heads attend to previous token, but essentially
none that attend two tokens back or more

e this last fact: would totally miss syntactic structures (unless
trivial enough to correlate strongly with immediately adjacent
words in linear order), but most syntactic phenomena depend
on structural relations (in the tree structure) between tokens
distant in linear ordering
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when attention layers compose two-layer transformer

T = doWy - <1d+ZA”®WgV> . (Id+ZA"®WC’;V) S 1deWs

heH: heHy
The second attention The first attention
layer has multiple layer has multiple

1 heads

= IdeWyWe + Y A e (WyWhWe) YD) (A A © (Wy Wi, W, W)

h e HiUH, hy € Hy hy € Hy

“Direct path” The individual attention head terms \ ne vlrtual attentlon head term
terrr € ndiv 0S of attention h
contributes

to bigram
statistics

we

direct path term and individual head terms same way as in
one-layer case; but new effect from composition of attention
matrices A" AM and its own OV-circuit

N.Elhage et al. A Mathematical Framework for Transformer Circuits,
2021



main observation here
hoohy . Aho Ah1 hyohy | __ h2 h
e A = ARAM and Wi, ™ = Wi, Woy,
@ virtual attention heads hy o hy

@ see at this level virtual attention heads that attend two tokens
back or to other positions (beginning of sentence, subject, etc)

@ there starts to be signs of syntactic rules being detected

@ ‘“induction heads" visible from weights: compositions
attending to previous copies of token (even on completely
random repeated patterns)

Note: main advantage with respect to the old Behaviorism
approach: now we know what we are looking for!

natural questions
@ can see where the syntactic trees detected in attention
weights are located? virtual attention heads at what level in
number of layers?
@ does depth of syntactic trees relate to layers?
© can identify a circuit performing Merge?
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cautionary tale N.1: prediction versus explanation

@ one can train an LLM on all the 772 existing texts of the
Linear A language (SigLA database)

@ Linear A is the undeciphered language of the Minoan
civilization of Crete

@ automated generation of next word prediction in Linear A will
add nothing to our understanding of the language
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@ compare with the story of the decipherment of Linear B
@ Alice Kober's three papers (1945-1948): use of distributional
model for testing of scientific hypotheses

© proved that Linear B is an inflected language: roots modified
by suffixes (name declension, verb conjugation)
@ identification of phonetic relations between sets of Linear B
syllabic signs
© final step (completed by Ventris and Chadwick, 1952)
comparison with a well known language: Ancient Greek
e conclusion: Linear B is Greek (Mycenaean Greek)

@ conclusion: can successfully use distributional/statistical
models to test scientific hypotheses, they do not in themselves
constitute a viable “theory of language”
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cautionary tale N.2: control theory

@ developed in the context of alignment of LLMs and adversarial
techniques

@ how to add a control sequence (of shortest number of token)
to prompt to ensure a desired next output of LLM

@ extensive search over all single-token substitutions, minimizing
a loss function (of distance to desired output), greedy
gradient-based search

e unlike human language: optimal control sequences are not
semantically/syntactically related to output but gibberish
combinations of tokens

source

@ Aman Bhargava, Cameron Witkowski, Manav Shah, Matt Thomson,
What's the Magic Word? A Control Theory of LLM Prompting,
arXiv:2310.04444
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Control input
u

X — LLM —Y

Initial state System output

Aman Bhargava, Cameron Witkowski, Manav Shah, Matt Thomson,
What's the Magic Word? A Control Theory of LLM Prompting,
arXiv:2310.04444
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e reachable set of outputs of an LLM: set R, (xo) of output
sequences y for which 3 control input sequence u that stirs
LLM from initial state xp to output y

@ bounds on reachable output set for a self-attention head as
function of singular values of its parameter matrices

@ tested on Falcon-7b, Llama-7b, Falcon-40b (dataset of 5k
state-ouput sequences with states of length 8-32)

@ sample initial states xg from Wikitext dataset and probe
reachable output tokens y under length-constrained control
input sequences |u| < k

@ top 75 most likely output tokens y are reachable at least 85%
of the time with k < 10 control sequence

@ interesting facts:

e some least likely output tokens controllable: most likely output

with controls kK < 4
e control sequences maximizing P(y|xo + u) are gibberish

if LLMs are “a theory of language’ (as some people claim) then
there's some very serious problem there!
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Y710 penats?

as scientists, let's try doing some science

@ non-behaviorist mechanistic interpretability: circuit
investigation looking for more precise information on the
embedded image of syntax (syntactic objects and Merge
operation)

@ direct comparison of mathematical models: the Harris
distributional model LLMs are based on can be given a
modern mathematical formulation in category theory language
(Gaubert-Vlassopoulos, Bradley—Terilla—Vlassopoulos), this
can be compared directly to the mathematical model of Merge

stay tuned for more to come...
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mathematical model of Z.Harris' distributional theory in LLMs

Mathematical models of LLMs
@ S. Gaubert, Y. Vlassopoulos, Directed metric structures
arising in large language models, preprint 2024.

@ Tai-Danae Bradley, John Terilla, Yiannis Vlassopoulos, An
enriched category theory of language: from syntax to
semantics, arXiv:2106.07890

empirical evidence of this model in LLMs:

@ Tian Yu Liu, Matthew Trager, Alessandro Achille, Pramuditha
Perera, Luca Zancato, Stefano Soatto, Meaning

Representations from Trajectories in Autoregressive Models,
arXiv:2310.18348
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Concluding remarks: physics as metaphor

@ Quantum Field Theory: generative process of Feynman
diagrams, assignment of meaningful physical values
(renormalization) = perturbative computation of Higgs boson
production cross sections

ky

u
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@ Particle accelerators and detectors: solving an inverse problem
that identifies inside enormous set of data traces of the
correct diagrams/processes involving creation/decay of a
Higgs particle through interactions of other particles

sees “an image” of the QFT objects embedded into the set of
data collected by detectors, against a noise background of a
huge number of other simultaneous events
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@ the generative process of syntax is embedded in LLMs in a
conceptually similar way: its image is scattered in a
probabilistic smear across large number of weights and
vectors, trained over large data sets

@ signals of linguistic structures detectable against a background
of probabilistic noise

@ LLMs do not “invalidate” generative syntax any more than
particle detectors would “invalidate” Quantum Field Theory:
quite the opposite
consequently:

@ LLMs are not a language theory, generative syntax is

@ LLMs are an experimental apparatus for the study of the
inverse problem of the syntax-semantic interface

@ data and technology without theory do not constitute science

@ Where is the explanatory power? Where is the understanding?
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The purpose of science is to obtain a coincise conceptual
explanation of natural phenomena, that should be testable,
predictive, and essential (entia non sunt multiplicanda praeter necessitatem)

Predictions are needed for falsifiability of scientific theory, but are
not the goal in themselves, the goal of science is conceptual
explanation

Generative linguistics aims at producing such explanations for the
structure and functioning of language

what is actually happening in LLMs should be understood by a
careful mathematical modeling of what they compute and
comparing it with mathematical models of generative syntax as
produced by human brains

@ mathematics is a powerful explanatory tool, because it is both
highly constrained and highly flexible

@ this is why it is the language of science (or as Galileo said, the
language in which the universe is written)
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Thank You!
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