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LLM (large language models): a deep dive backward in time!

Zellig Harris circa 1940s, early 1950s

view language as strings of texts (not as structures)

primarily seen through their distributional properties (texts
included as subtexts of other texts)

syntax is seen primarily in terms of such distributional
relations (no internal computational modeling)

relations between constituents in a syntactic structure are
probabilistic relations; no abstract structural relations

rules for modification of sentences are to be extracted
“mechanically” from distributional data through algorithms
(see below discussion of transformers and circuits:
“mechanistic interpretability”)

view of linguistics just prior to the main shift of scientific
paradigm to modern linguistics (mid 1950s)

intuitively simple model, but also known to be inaccurate

Zellig Harris, Distributional structure, 1954
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view influenced by behaviorism in psychology: can only
statistically observe behavior, no theoretical modeling of mind
(contrary to later development of cognitive science and
neuroscience)

change of paradigm in linguistics happened in 1955:

Noam Chomsky, The logical structure of linguistic theory. Ms.,
Harvard/MIT 1955. [Published in part, Plenum 1975]

among main criticisms of Harris’ distributional viewpoint:
different sentences with same syntactic structure but very
different probabilities; not capturing intrinsic computational
structure of syntax

scientific method: theoretical hypotheses and models tested
on data, different view of role of predictions; difference
between “taxonomic” linguistics and theoretical linguistics

current anti-science, anti-theory stance of part of the LLM and
ML community is just revamped old behaviorism on steroids
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Behaviorism’s new clothes: Trasformers

ok, not quite those transformers...
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Behaviorism’s new clothes: Trasformers
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Attention modules and transformer architectures (first look)

in self-attention modules one considers three linear
transformations: Q (queries), K (keys), and V (values),
Q,K ∈ Hom(S,S ′) and V ∈ Hom(S,S ′′), where S ′ and S ′′

are themselves vector spaces of semantic vectors (in general of
dimensions not necessarily equal to that of S)
these encode (statistically) other words that are structurally
related to (“called by” or “calling for”) the given word

fixed identifications S ≃ Rn, S ′ ≃ Rm, S ′′ ≃ Rd with
Euclidean vector spaces, with assigned bases, and one works
with the corresponding matrix representations of
Q,K ∈ Hom(Rn,Rm) and V ∈ Hom(Rn,Rd)

target Euclidean space S ′ is endowed with an inner product
⟨·, ·⟩, that can be used to estimate semantic similarity
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query vector Q(s(ℓ)), for ℓ ∈ SO0, can be thought of
performing a role analogous to the semantic probes discussed
before

think of queries as elements q ∈ S∨ dual vector space
S∨ = Hom(S,R), so query matrix in

S∨ ⊗ Rm ≃ S∨ ⊗ S ′ = Hom(S,S ′)

m-fold probe Q evaluated on the given semantic vector s(ℓ)
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similarly key vector K (s(ℓ)), for ℓ ∈ SO0, in K ∈ Hom(S,S ′),
creating an m-fold probe out of the given vector s(ℓ)

dual role of S ′: (m-fold) probes to be evaluated on input
semantic vector s(ℓ), or new probes generated by semantic
vector s(ℓ) (reflected in terminology “query” and “key”)

values vector V (s(ℓ)) representation of semantic vectors s(ℓ)
in a vector space S ′′ dimension lower than S (d = dimS ′′

embedding dimension)
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a set L ⊂ SO0: usually seen as an ordered set, but in fact it
should not be (can use bi-directional architectures like BERT)
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to an element ℓ ∈ L assign attention operator
Aℓ : L ⊂ S → S ′ given by

Aℓ(s(ℓ
′)) = σ(⟨Q(s(ℓ)),K (s(ℓ′))⟩)

where σ softmax

σ(x)i =
exp(xi )∑
j exp(xj)

, for x = (xi )

Note: ignoring usual rescaling by
√
d , no influence on

algebraic structure

Aℓ,ℓ′ := Aℓ(s(ℓ
′)) attention matrix
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Aℓ,ℓ′ a probability measure on how attention from position ℓ is
distributed towards other positions ℓ′ in the set L

assign an output (in S ′′) to input s(L) ⊂ S, as vectors

yℓ =
∑
ℓ′

Aℓ,ℓ′V (s(ℓ′))

for each ℓ ∈ L, have

yℓ = (yℓ)
d
i=1 ∈ S ′′ ≃ Rd

matrix representation Aℓ,ℓ′ uses ordering of ℓ ∈ L but
underlying linear operator does not; resulting yℓ also
symmetric in ordering
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usually several such attention modules running in parallel:
multi-head attention
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vectors Q(s(ℓ)) = ⊕iQ(s(ℓ))i , K (s(ℓ)) = ⊕iK (s(ℓ))i , and
V (s(ℓ)) = ⊕jV (s(ℓ))j are split into blocks of decomposition
S ′ = ⊕N

i=1S ′
i

attention matrices, for i = 1, . . . ,N,

A
(i)
ℓ,ℓ′ = σ(⟨Q(s(ℓ))i ,K (s(ℓ))i ⟩S′

i
)

attention distribution with attention head i

not consider here multiple attention heads: enough to use a
single one to see the conceptual structure
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queries, keys, values from input semantic vectors, attention
matrices, probabilities, and weighted output
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What is actually happening?

conflicting results on handling of syntax by LLMs when
syntactic structures become complex

syntactic trees can be “seen” from the weights of attention
modules (Mannings et al.2020):

“poverty of the stimuls” for human learning versus
“overwhelming richness of the stimulus” for LLM training
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Some References: LLMs detection/handling of syntax

C.D.Manninga, K.Clarka, J.Hewitta, U.Khandelwala, O.Levy,
Emergent linguistic structure in artificial neural networks
trained by self-supervision, PNAS, 117 (2020) N.48,
30046–30054.

V.Dentella, F.Güntherb, E.Leivada, Systematic testing of
three Language Models reveals low language accuracy,
absence of response stability, and a yes-response bias, PNAS,
120 (2023) N.51

J.Sprousea, C.T. Schütze, D. Almeida, A comparison of
informal and formal acceptability judgments using a random
sample from Linguistic Inquiry 2001–2010, Lingua 134 (2013)
219—248

H. Vazquez, A. Heuser, C. Yang, J. Kodner. Evaluating neural
language models as cognitive models of language acquisition,
GenBench23 (2023)
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LLMs perform a (partial) solution of the inverse problem

the keys and queries are a statistical proxy for the Generative
Linguistics notion of syntactic relationship (c-command) and
the corresponding positions (in terms of structural relations)
in a syntactic tree

very large parallel computing searching through huge corpora
for an image of syntax projected upon semantics (a difficult
and imperfect inverse problem)

syntactic trees are imperfectly encoded in the weights of the
attention modules and can be read from them

encoding of syntactic trees in the attention structure can be seen
as another instance of mapping from syntax to a semantic space
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Attention modules and Hopf algebra characters

the attention modules of transformer architectures of LLMs fit
as another example of the Hopf algebra characters of our
syntax-semantics interface model

given map function s : SO0 → S of lexical items to a (vector
space) model of semantics

focus here on attention modules, in the case of self-attention
in transformer architectures
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attention as character

Hopf algebra character

ϕA(T ) = max
ℓ∈L(T )

Ah(T ),ℓ

if T ∈ Dom(h) and zero otherwise

syntactic relation: collection ρ = ρT of relations

ρT ⊂ L(T )× L(T )

equiv with ρT (ℓ, ℓ
′) = 1 is ℓ, ℓ′ ∈ L(T ) in the relation and

ρT (ℓ, ℓ
′) = 0 otherwise
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ρ exactly attention-detectable if ∃ query/key linear maps
Qρ,Kρ ∈ Hom(S,S ′) and head function hρ

ρT (hρ(T ), ℓmax,hρ) = 1

for T ∈ Dom(hρ) with

ℓmax,hρ = argmaxℓ∈L(T )Ahρ(T ),ℓ

A = attention matrix built from Qρ,Kρ
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syntactic relation ρ is approximately attention-detectable if ∃
query/key linear maps Qρ,Kρ ∈ Hom(S,S ′) and head
function hρ

1

#D
∑
T∈D

ρ(hρ(T ), ℓmax,hρ) ∼ 1

for some sufficiently large set D ⊂ Dom(hρ) of trees

existence of query/key linear maps Qρ,Kρ is relative to
specified context (a corpus, a dataset, etc)
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threshold Rota-Baxter operator cλ

ϕA,−(T ) = cλ(max{ϕA(T ), cλ(ϕA(Fv )) · ϕA(T/Fv ), . . . ,
cλ(ϕA(FvN )) · ϕA(FvN−1

/FvN ) · · ·ϕA(T/Fv1
)}) .

for simplicity focusing on the case of chains of subtrees
TvN ⊂ TvN−1

⊂ · · · ⊂ Tv1 ⊂ T

use quotient given by contraction h(T/Tv ) = h(T ) so that

max
ℓ∈L(T/Tv )

Ah(T ),ℓ ≤ max
ℓ∈L(T )

Ah(T ),ℓ
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attention along syntactic substructures

ϕ−(T ) identifies chains of accessible terms of T for which
1 all values

ϕA(Tvi ) = max
ℓ∈L(Tvi

)
Ah(Tvi

),ℓ

are above threshold λ
2 all the quotients Tvi−1/Tvi have

ϕA(Tvi−1/Tvi ) = max
ℓ∈L(Tvi−1

/Tvi
)
Ah(Tvi−1),ℓ

=

max
ℓ∈L(Tvi−1

)
Ah(Tvi−1

),ℓ = ϕA(Tvi−1)

tracking where attention concentrates over substructures:
first condition max attention from the head of each subtree

sufficiently large; second guarantees that when considering next

nested subtree trying to maximize its attention value, one does not

spoil optimizations achieved at previous steps for larger subtrees
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incorporating syntactic relations as character

syntactic relation ρ Boolean valued B = ({0, 1},max, ·)

ϕρ(T ) = max
ℓ∈L(T )

ρ(h(T ), ℓ)

detects whether ρ is realized in T or not

can combine characters, values in Viterbi P = ([0, 1],max, ·)
(commonly used in NLP for probabilistic values)

ϕA,ρ(T ) = max
ℓ∈L(T )

ρ(h(T ), ℓ) · Ah(T ),ℓ
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here one maximizes attention from syntactc head over set of
ℓ ∈ L(T ) that already satisfy syntactic relation with the head

Birkhoff factorization as before but subtrees with ϕρ(Tv ) = 0
do not contribute even if their maxℓ Ah(T ),ℓ is large

comparison between ϕA and ϕρ,A identifies
attention-detectability of ρ

if detectability fails, identifies where in substructures attention
matrix maximum happens outside of where the syntactic
relation holds
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To what extent do LLMs solve this inverse problem?
reconstruction of the computational mechanism of syntax from its
(probabilistically smeared) image inside semantics

Empirical tests of different kinds: some examples

1 systematic detectable differences between text generated by
AIs and by humans

2 limitations in the handling of nontrivial syntactic constructions

3 non-linguistic dependence on prompts (control theory)
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Detectable difference in dimensionality between human and AI
linguistic text

Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva,
Daniil Cherniavskii, Sergey Nikolenko, Evgeny Burnaev,
Serguei Barannikov, Irina Piontkovskaya, Intrinsic Dimension
Estimation for Robust Detection of AI-Generated Texts, 37th
Conference on Neural Information Processing Systems
(NeurIPS 2023)

testing the difference between AI and human generated
linguistic texts in terms of dimensionality, using

method based on persistent homology dimension theory

M.Marcolli Mathematics & Linguistics



Persistent Topology of Data Sets

how data cluster around topological shapes at different scales
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Vietoris–Rips complexes

• set X = {xα} of points in Euclidean space EN , distance
d(x , y) = ∥x − y∥ = (

∑N
j=1(xj − yj)

2)1/2

• Vietoris-Rips complex R(X , ϵ) of scale ϵ over field K:

Rn(X , ϵ) is K-vector space spanned by all unordered (n + 1)-tuples
of points {xα0 , xα1 , . . . , xαn} in X where all pairs have distances
d(xαi , xαj ) ≤ ϵ
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• inclusion maps R(X , ϵ1) ↪→ R(X , ϵ2) for ϵ1 < ϵ2 induce maps in
homology by functoriality Hn(X , ϵ1) → Hn(X , ϵ2)

barcode diagrams: births and deaths of persistent generators
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other equivalent way of writing persistent homology diagrams
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persistent homology dimension estimator (PHD)

d-dimensional Riemannian manifold M, ball of radius r in M,
volume grows like rd

points uniformly sampled from M (volume form distribution):
number of points on ball also grows like rd

PHD combines local and global properties of dataset, also
stable under noise in data
set of points X = {x1, . . . , xN} ⊂ Rn, parameter α > 0:
weighted sum

E i
α(X ) =

∑
γ∈PHi (X )

|I(γ)|α

I(γ) = tdeath(γ)− tbirth(γ) lifespan of persistence of the
persistent homology generator γ
for i = 0 persistent connected components (minimal spanning
tree:|e| = length of edges of tree)

E 0
α(X ) =

∑
γ∈MST (X )

|e|α
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growth rate: for E 0
α(X ) ∼ N

d−α
d for N → ∞ (if xi indep

random var with distrib w/ comp support)

dimMST (M) = inf{d | ∃C > 0 : E 0
d (X ) ≤ C ,∀X ⊂ M}

log E 0
α(X ) ∼ (1− α

d
) log#X + C̃ for #X → ∞

on text of medium size ∼ 300 tokens; contextualized
embeddings for every token in a pretrained transformer
encoder; view resulting vectors as points of ambient Euclidean
space; persistent homology of resulting point cloud

significant and systemic gap in dimension between human text
and AI generated text

misclassified cases (either way) tend to happen on short texts

What does it capture? it is related to the positions of
embedding vectors: does it reflect hierarchical structures of
syntax relating them? (note: tree of persistent components
likely correlates to parse tree)
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comparative test of persistent homology dimension for human and
AI generated text, E.Tulchinskii, et al. Intrinsic Dimension
Estimation for Robust Detection of AI-Generated Texts, NeurIPS
2023
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effect of parameter α in persistent homology dimension estimation,
E.Tulchinskii, et al. Intrinsic Dimension Estimation for Robust
Detection of AI-Generated Texts, NeurIPS 2023
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comparative effect across languages: persistent homology
dimension gap, E.Tulchinskii, et al. Intrinsic Dimension Estimation
for Robust Detection of AI-Generated Texts, NeurIPS 2023
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Handling of nontrivial syntactic constructions

LI-Adger database of syntactic examples collected from the
theoretical linguistics journal Linguistic Inquiry 2001–2010

covering broad range of syntactic phenomena

two different tests: acceptability and grammaticality

J. Sprousea, C.T. Schütze, D. Almeida, A comparison of informal
and formal acceptability judgments using a random sample from
Linguistic Inquiry 2001–2010, Lingua, 134 (2013) 219-248

V.Dentella, F.Gunther, E.Leivada, ”Systematic testing of three
Language Models reveals low language accuracy, absence of
response stability, and a yes-response bias”, PNAS 2023

H.J.Vazquez Martinez, ”The Acceptability Delta Criterion: Testing
Knowledge of Language using the Gradience of Sentence
Acceptability”, Fourth BlackboxNLP Workshop on Analyzing and
Interpreting Neural Networks for NLP, pages 479-495, 2021
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different types of acceptability judgments in the syntax literature

pairwise phenomena: two maximally similar sentence types
differing in a way that (1) is relevant for theories of grammar and
(2) lead to a significant difference in acceptability
judgment tasks: magnitude estimation (ME), 7-point Likert scale
(LS), and two-alternative forced-choice (FC)
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human acceptability judgments for grammaticality over the
Linguistic Inquiry database, consistency over testing methods
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LLMs on the LI-Adger dataset

three BERT models fine-tuned using Corpus of Linguistic
Acceptability (CoLA, 2019)

with ADC (acceptability delta criterion) both BERT and the
trigram model scored approximately 30% of minimal pairs
correctly

representative collection of 4177 sentences forming 2394
unique minimal pairs from LI-Adger

comparison with human judgement data

source:

H.J.Vazquez Martinez, ”The Acceptability Delta Criterion: Testing
Knowledge of Language using the Gradience of Sentence
Acceptability”, Fourth BlackboxNLP Workshop 2021.

H.J.Vazquez Martinez, Master thesis CS, MIT 2021
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major syntactic feature in the CoLA analysis set: Matthew’s
Correlation Coefficient (MCC) scores

confusion matrix: true positives (TP), false positives (FP),
true negatives (TN), false negatives (FN)
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H.J.Vazquez Martinez, ”The Acceptability Delta Criterion: Testing

Knowledge of Language using the Gradience of Sentence Acceptability”

2921

M.Marcolli Mathematics & Linguistics



H.J.Vazquez Martinez, ”The Acceptability Delta Criterion: Testing

Knowledge of Language using the Gradience of Sentence Acceptability”

2921
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Acceptability Delta Criterion (δ = 0.5): enforces that models’
predictions be within a set number of standard deviation units
δ from the human ME judgements

then BERT only correctly evaluates 726 out of 2365 (31%)
minimal pairs, whereas trigram model correctly evaluates 712
out of 2365 (30%)

when it comes to tracking acceptability of sentences across
minimal pairs, BERT does not go much farther than
Shannon’s N-gram models of the 1940s

M.Marcolli Mathematics & Linguistics



LLMs handling of syntactic phenomena (Dentella et al.)

8 linguistic phenomena: plural attraction; anaphora; center
embedding; comparative sentences; intrusive resumption;
negative polarity items; order of adjectives; and order of
adverbs

all evaluable without context

each phenomenon 10 sentences: 5 grammatical and 5
ungrammatical (ungrammatical involve violation of one
specific rule of English syntax)

prompt used: “Is the following sentence grammatically correct
in English?”

LLMs tested: GPT-3/text-davinci-002, Nov 2022 (davinci2);
GPT-3/text-davinci-003, Jan 2023 (davinci3); ChatGPT Feb
2023

comparative judgments from humans

M.Marcolli Mathematics & Linguistics



mean accuracy different LLM models

V.Dentella, et al. ”Systematic testing of three Language Models reveals

low language accuracy, absence of response stability, and a yes-response

bias”, PNAS 2023
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mean accuracy by syntactic phenomenon

V.Dentella, et al. ”Systematic testing of three Language Models reveals

low language accuracy, absence of response stability, and a yes-response

bias”, PNAS 2023
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response instability, different LLM models

V.Dentella, et al. ”Systematic testing of three Language Models reveals

low language accuracy, absence of response stability, and a yes-response

bias”, PNAS 2023
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effect of repetitions on mean accuracy, different LLM models and
different syntactic phenomena

V.Dentella, et al. ”Systematic testing of three Language Models reveals

low language accuracy, absence of response stability, and a yes-response

bias”, PNAS 2023
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mean accuracy, comparison with human judgment

V.Dentella, et al. ”Systematic testing of three Language Models reveals

low language accuracy, absence of response stability, and a yes-response

bias”, PNAS 2023
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likelihood of oscillations, comparison with human judgment

V.Dentella, et al. ”Systematic testing of three Language Models reveals

low language accuracy, absence of response stability, and a yes-response

bias”, PNAS 2023
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What does this say so far?

pessimist view: the most extensive and most expensive
experiment ever to show that Zellig Harris’ distributional
model of syntax is inaccurate (which was known since 1955)

optimist view: what additional information about the “inverse
problem of syntax” can be derived from this LLM
experimental apparatus?

pessimism of the intellect, optimism of the will

...so let’s keep going
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detecting the “inverse problem of syntax” in LLMs

beyond identifying an embedding of syntactic trees in a semantic
space determined by attention modules, want to understand to
what extent the actual computational mechanism of syntax
(Merge) is reconstructed in this inverse problem

mechanistic interpretability: reverse engineer computations
performed by transformers

identify simple algorithmic patterns (motifs)

Note: again similar to Zellig Harris’ idea of “mechanical
procedures” for discovering basic elements of language and
transformation rules from probabilistic distributions

more likely to work on “small models” (e.g. studied for
transformers with at most two layers and only attention
blocks – by comparison GPT-3 has 96 layers)

a notion of induction head: in-context learning algorithms
(C.Olsson et al “In-context learning and induction heads”)
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mechanistic interpretability: a closer look at transformers

N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021

type of model: (1) autoregressive, decoder-only (like GPT-3,
not encoder-decoder structure like translation); (2)
attention-only (rather than attention and MLP layers –
multi-layer-perceptron)

transformer operations:
1 token embedding,
2 a series of “residual blocks” (attention layer with multiple

attention heads in parallel and MLP layer)
3 token unembedding
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N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021
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residual stream and linearity

each layer adds result into the “residual stream” (residual
stream vectors also referred to as “embedding”)

residual stream is run by linear operations

linear structure of residual stream means can encode how later
layers read information in previous layers though “virtual
weights” (matrix entries of a linear transformation)

residual stream is a high-dimensional vector space (102 for
small models, 104 for large)

different information stored in different subspaces sent to
different layers

in attention modules each attention head operates on a small
subspace (e.g. 64-dim); different attention heads can write to
different subspaces

subspaces of the residual stream are like memory storage, lots
of additional subspaces to store from other layers
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N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021

M.Marcolli Mathematics & Linguistics



N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021
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closer look at attention heads

primary function is “moving information” between different
parts of the residual stream

multiple independent attention heads in an attention module:
operate completely in parallel, each adding its output back in
the residual stream ∑

i

W hi
O rhi

rhi = result vector of the i-th attention head, W hi
O = output

matrix i-th block
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operations of attention head

compute value vector for each token embedded in the residual
stream vector space

vi = WV xi

compute result vector from attention matrix and value vectors

ri =
∑
j

Aijvj

compute output vector

h(x)i = WOri

combined operation

h(x) = (id⊗WO) ◦ (A⊗ id) ◦ (id⊗WV ) x = (A⊗WOWV ) x

A mixes between tokens, WOWV acts on each independently
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for the attention matrix A part: σ = softmax

A = σ(x tW t
QWKx) = σ(qtk)

query vectors q = WQx

key vectors k = WKx
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two separate circuits: WOWV and W t
QWK (“vector-per-token

side” and “position side”): extremely sparse matrices

WOWV reading source token writing destination token

W t
QWK move information between different tokens (note: A

nonlinear in W t
QWK )

the WO ,WV ,WQ ,WK only occur through the compositions
WOWV and W t

QWK (so any other factorization with same
compositions would do the same)

multiple attention heads functionally equivalent to single

(Ahn⊗W hn
OV )◦· · ·◦(A

h1⊗W h1
OV ) = Ahn◦· · ·◦Ah1 ⊗W hn

OV ◦· · ·◦W
h1
OV

on two sides of tensor product: position variables (left) and
token vectors (right)
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residual stream as basic digram: zero-layer transformer

if no attention modules: just take token, embed it, unembed it

linear map T = WUWE

optimal behavior possible: WUWE digram log-likelihood

even when other parts of model (attention modules) are
present, this residual stream part will contribute digram model
log-likelihood and can be seen to detect such digram
correlations not related to grammatical rules and syntax
structures

N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021
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Attention head circuits: one-layer attention-only transformer

embedding, attention module, unembedding

N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021
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N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021
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N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021

separate out the digram effect WUWE

the attention module effect is in the Ah ⊗WUW
h
OVWE

consists of two separate circuits Ah and WUW
h
OVWE acting

on different sets of variables
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A moves information between different tokens: contextual
word embedding (vector in the residual stream) of a token has
components in subspaces with information copied from other
tokens
query-key circuit: W t

EWQKWE which tokes head preferably
attends to
output value circuit: WUWOVWE how a given token will
affect the output if attended to
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one-layer transformer as skip-trigram

QK-circuit: which source token a present destination token
attends back to and copies information from; OV-circuit:
resulting effect on the out-predictions for the next token

k-skip N-gram: subset of an unordered N-gram using
non-contiguous substrings with skips of length k

skip-trigram with 3 tokens: source, destination, output (last
one is modified)

matrices themselves are enormous but very sparse (50k x 50k
but rank 64)
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searching for large entries shows behavior:

most attention heads in one-layer perform copying
tokens are copied to places where digram-statistics make them
plausible
other skip-trigram behavior: identifies classical trigrams (“back
and forth”, “eat and drink”, “day and night”, “keep in mind”,
“keep at bay”, etc)
but because of factored QK and OV, not quite 3-way
interactions: eg high probability for “keep in mind” and “keep
at bay” also causes high probability for “keep at mind”, “keep
in bay”
most heads heads attend to previous token, but essentially
none that attend two tokens back or more

this last fact: would totally miss syntactic structures (unless
trivial enough to correlate strongly with immediately adjacent
words in linear order), but most syntactic phenomena depend
on structural relations (in the tree structure) between tokens
distant in linear ordering
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when attention layers compose two-layer transformer

direct path term and individual head terms same way as in
one-layer case; but new effect from composition of attention
matrices Ah2Ah1 and its own OV-circuit

N.Elhage et al. A Mathematical Framework for Transformer Circuits,

2021
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main observation here

Ah2◦h1 := Ah2Ah1 and W h2◦h1
OV := W h2

OVW
h1
OV

virtual attention heads h2 ◦ h1
see at this level virtual attention heads that attend two tokens
back or to other positions (beginning of sentence, subject, etc)

there starts to be signs of syntactic rules being detected

“induction heads” visible from weights: compositions
attending to previous copies of token (even on completely
random repeated patterns)

Note: main advantage with respect to the old Behaviorism
approach: now we know what we are looking for!

natural questions
1 can see where the syntactic trees detected in attention

weights are located? virtual attention heads at what level in
number of layers?

2 does depth of syntactic trees relate to layers?
3 can identify a circuit performing Merge?
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cautionary tale N.1: prediction versus explanation

one can train an LLM on all the 772 existing texts of the
Linear A language (SigLA database)

Linear A is the undeciphered language of the Minoan
civilization of Crete

automated generation of next word prediction in Linear A will
add nothing to our understanding of the language
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compare with the story of the decipherment of Linear B

Alice Kober’s three papers (1945–1948): use of distributional
model for testing of scientific hypotheses

1 proved that Linear B is an inflected language: roots modified
by suffixes (name declension, verb conjugation)

2 identification of phonetic relations between sets of Linear B
syllabic signs

3 final step (completed by Ventris and Chadwick, 1952)
comparison with a well known language: Ancient Greek

conclusion: Linear B is Greek (Mycenaean Greek)

conclusion: can successfully use distributional/statistical
models to test scientific hypotheses; they do not in themselves
constitute a viable “theory of language”

M.Marcolli Mathematics & Linguistics



cautionary tale N.2: control theory

developed in the context of alignment of LLMs and adversarial
techniques

how to add a control sequence (of shortest number of token)
to prompt to ensure a desired next output of LLM

extensive search over all single-token substitutions, minimizing
a loss function (of distance to desired output), greedy
gradient-based search

unlike human language: optimal control sequences are not
semantically/syntactically related to output but gibberish
combinations of tokens

source

Aman Bhargava, Cameron Witkowski, Manav Shah, Matt Thomson,
What’s the Magic Word? A Control Theory of LLM Prompting,
arXiv:2310.04444
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Aman Bhargava, Cameron Witkowski, Manav Shah, Matt Thomson,

What’s the Magic Word? A Control Theory of LLM Prompting,

arXiv:2310.04444
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reachable set of outputs of an LLM: set Ry (x0) of output
sequences y for which ∃ control input sequence u that stirs
LLM from initial state x0 to output y

bounds on reachable output set for a self-attention head as
function of singular values of its parameter matrices

tested on Falcon-7b, Llama-7b, Falcon-40b (dataset of 5k
state-ouput sequences with states of length 8–32)

sample initial states x0 from Wikitext dataset and probe
reachable output tokens y under length-constrained control
input sequences |u| ≤ k

top 75 most likely output tokens y are reachable at least 85%
of the time with k ≤ 10 control sequence
interesting facts:

some least likely output tokens controllable: most likely output
with controls k ≤ 4
control sequences maximizing P(y |x0 + u) are gibberish

if LLMs are “a theory of language” (as some people claim) then
there’s some very serious problem there!
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as scientists, let’s try doing some science

non-behaviorist mechanistic interpretability: circuit
investigation looking for more precise information on the
embedded image of syntax (syntactic objects and Merge
operation)

direct comparison of mathematical models: the Harris
distributional model LLMs are based on can be given a
modern mathematical formulation in category theory language
(Gaubert-Vlassopoulos, Bradley–Terilla–Vlassopoulos), this
can be compared directly to the mathematical model of Merge

stay tuned for more to come...
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mathematical model of Z.Harris’ distributional theory in LLMs

Mathematical models of LLMs

S. Gaubert, Y. Vlassopoulos, Directed metric structures
arising in large language models, preprint 2024.

Tai-Danae Bradley, John Terilla, Yiannis Vlassopoulos, An
enriched category theory of language: from syntax to
semantics, arXiv:2106.07890

empirical evidence of this model in LLMs:

Tian Yu Liu, Matthew Trager, Alessandro Achille, Pramuditha
Perera, Luca Zancato, Stefano Soatto, Meaning
Representations from Trajectories in Autoregressive Models,
arXiv:2310.18348
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Concluding remarks: physics as metaphor

Quantum Field Theory: generative process of Feynman
diagrams, assignment of meaningful physical values
(renormalization) ⇒ perturbative computation of Higgs boson
production cross sections
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Particle accelerators and detectors: solving an inverse problem
that identifies inside enormous set of data traces of the
correct diagrams/processes involving creation/decay of a
Higgs particle through interactions of other particles

sees “an image” of the QFT objects embedded into the set of
data collected by detectors, against a noise background of a
huge number of other simultaneous events
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the generative process of syntax is embedded in LLMs in a
conceptually similar way: its image is scattered in a
probabilistic smear across large number of weights and
vectors, trained over large data sets

signals of linguistic structures detectable against a background
of probabilistic noise

LLMs do not “invalidate” generative syntax any more than
particle detectors would “invalidate” Quantum Field Theory:
quite the opposite
consequently:

LLMs are not a language theory, generative syntax is

LLMs are an experimental apparatus for the study of the
inverse problem of the syntax-semantic interface

data and technology without theory do not constitute science

Where is the explanatory power? Where is the understanding?
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The purpose of science is to obtain a coincise conceptual
explanation of natural phenomena, that should be testable,
predictive, and essential (entia non sunt multiplicanda praeter necessitatem)

Predictions are needed for falsifiability of scientific theory, but are
not the goal in themselves, the goal of science is conceptual
explanation

Generative linguistics aims at producing such explanations for the
structure and functioning of language

what is actually happening in LLMs should be understood by a
careful mathematical modeling of what they compute and
comparing it with mathematical models of generative syntax as
produced by human brains

mathematics is a powerful explanatory tool, because it is both
highly constrained and highly flexible

this is why it is the language of science (or as Galileo said, the
language in which the universe is written)
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Thank You!
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