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this part based on

@ Matilde Marcolli, Robert C. Berwick, Noam Chomsky,

Syntax-semantics interface: an algebraic model,
arXiv:2311.06189

also included in the book:
Matilde Marcolli, Noam Chomsky, Robert C. Berwick,
“Mathematical structure of syntactic Merge”, MIT Press.
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semiring parsing
@ relation between grammars and semirings first developed by
Chomsky—Schiitzenberger (1963)
@ then commonly used framework of semiring parsing for
context free grammars (or mildly context sensitive like TAGs)
@ main setting: deduction rules of the form

Ar... Ak

5 G...¢

o terms A; (main conditions) are rules R of the grammar or
input nonterminals
e C; are (non-probabilistic) Boolean side conditions
e fraction notation means that if the numerator terms hold then
the denominator term also does
@ to main conditions one assigns semiring values, combine with
semiring operations, obtain value for deduced output
@ Question: what type of algebraic structure replaces this form
of semiring parsing in Minimalism based on free symmetric
Merge action on workspaces?
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Roadmap:

o first step (warmup): revisiting the idea of Minimal Search as
an example of Birkhoff factorization of a character of the
Hopf algebra of workspaces with target a ring of (Laurent
series of ) Merge derivations

@ second step: need to incorporate Merge derivations as source
of parsing, this requires passing from Hopf algebras to Hopf
algebroids (composition on matching source/target of Merge
action)

o third step: target of parsing correspondingly needs to adapt
from algebras/semirings to (a suitable notion of)
algebroids/semiringoids with a suitable notion of Rota—Baxter
structure

o fourth step: then “semiring parsing” becomes Birkhoff
factorization again, but in this “-iod" setting
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First warmup step: revisiting Minimal Search

Recall from earlier: different forms of Merge and action on
workspaces

e EM: F=TUT LUF—F =0T, T)UF
o IM: F=TUF— F =M(T,,T/T,)UF
e SM(i): A A
F=TUTUF—F =0T, T,))uT/T,UT/T, UF
o SM(ii): F=TUT' UF— F =0(T,T,)UT/T,UF
° C/SM(iii)A: A
F=TUF—F =T, T,)UT/(T,UT,)UF
F denotes part of the workspace that remains unaffected
All but EM and IM are eliminated by Minimal Search and effect on

size of workspaces (Resource Restriction and Minimal Yield): these
are not two different mechanisms but the same
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size counting again
@ bo(F) number of connected components, «(F) number of
accessible terms, o(F) = bo(F) + a(F) = #V/(F) and
6(F) = bo(F) + o(F)

@ chain of Merge derivations
® =Ms,s, 0 0Mg, g1
@ size change measured by
dbo := bo(F) = bo(®(F)), b= a(®(F)) — a(F),
60 = o(®(F)) —a(F),
@ so Minimal Yield conditions equivalent to
d0bp >0, da>0, do=1,

respectively “no divergence”, “no information loss”,
“minimality of yield"
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@ weaker condition of “positive yield” do > 0

@ also for ®q : mo(F) — mo(P(F)) (following in which
component the root of each component ends up)

ddeg, := (deg(Po(a)) — deg(a)) for a € mo(F)
@ “no complexity loss” principle: for all a € mo(F)

ddeg, >0
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algebra of Merge derivations

@ DM is the commutative associative Q-algebra with the
underlying vector space spanned by

oa=(F ™ F)
A C SO x SO set of pairs (S, S’) of syntactic objects

M, st Msy.sh
F—FKH—--Fy1 —"F

all possible chains of Merge operations with (S;,S/) € A
@ algebra multiplication, for o4 = (F Ta F’) and
s =(F 2 F)
(pAU(pB:(Fl_lF_imiEB Fll_lﬁ/)

@ meaning of product: perform in parallel different Merge
operations that affect different parts of a workspace

@ unit empty forest mapped to itself
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Laurent series and Rota-Baxter operator

@ commutative associative algebra A and the algebra of Laurent
series A[t1][[¢]]

e linear operator R : A[t7![[t]] — A[tY][[t]] that projects
onto the polar part

o0

1
R( Z a,-t") = Z a,-t"

i=—N i=—N

o makes (A[t7[[t]], R) a Rota—Baxter algebra of weight —1
@ Note: this is the way to “subtract divergences” in physics

e here consider DM[t~!][[t]] Laurent series with coefficients in
the algebra of Merge derivations DM
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Hopf algebra character: the generative process for F
e the map ¢ : H — DM,

MAL(F),F
) (L(F),F)

¢(F) = (L(F

assigning to a forest F the set A(L(F), F) of all Merge
derivations starting from the (multi)set L(F) of individual
lexical items and syntactic features to the forest F

F)

e this defines a character (morphism of commutative algebras)
from the Merge Hopf algebra H to algebra DM Merge
derivations
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Hopf algebra character: Laurent series version

@ as above but with

m
6e(F) = (L(F) 5" F) £Chun )

where 9§ is either by or da or do

@ morphism of commutative algebras

¢ - H — DM[t™H[[t]
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trivial factorization in this case of “full derivations”
@ this character always takes values in the subalgebra
DM[[t]] = (1 — R) DMt [[¢]

o if #£L = £ > 2 then #V(T) =20 —1 = o(T) and
a(T) =2¢—2, with by(T) =1, so that we have
dbp=0—1>0,6a=0—-2>0,00=(—-1>0
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Hopf algebra character: further refinement “partial derivations”

o for T € Ts0, let Fr C Fso, X Fso, be the set of pairs
(F, F") of forests F with L(F) = L(F") = L(T) that are
intermediate derivations for T: 3 chain of Merge derivations

Mg o Mg or Mg, o Mg 51 Mg ot Mg o
1) i 102041 J It 241 Sm,$,
L(T) = T F IS e

e this includes previous case with F = L(T) and F/ =T
o then form a character ¥, : H — DM[t~1][[t]] with

w(T) = 3 (F 25 Fry e )

(F.F)eFr
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Birkhoff factorization and Minimal Search

@ in the case of partial derivations the character in general has a
nontrivial projection to the polar part
R DMt~ Y[[t]] = DM[t71], not just to the convergent part

@ inductively constructed Birkhoff factorization of character 1;
implements a form of Minimal Search

@ Bogolyubov preparation

$e(T) +Z¢t7 v)Ue(T/Fy)

analyzes in parallel the Merge derivations of all accessible
terms of T, ensuring that the undesirable forms of Merge
violating the size contraints are progressively removed and
only derivations with § > 0 retained at each step
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Birkhoff factorization implementing Minimal Search
@ just projecting with (1 — R) on ¢(F) not sufficient to get rid
of unwanted forms of Merge with § < 0

@ but... Birkhoff factorization achieves that result

o ¢ (T)=(1— R):(T) alg homom v . : H — DM][t]]
Pe(T) = +Z¢t7 v)Ue(T/Fy)

@ more details: if there is a term in ¢;(T) of the form (F — F')t5 where the
derivation has 6 < 0 the forest F’ will occur as a collection of accessible terms
F'=F inT

@ so in ¢r(T) the term ¢ _ (F,):(T/F,) will contain a term
R(¢e(F')):(T/F,) which will contain a summand equal to —(F — F’)t?

@ has the effect of removing the unwanted derivation, while any term (F — F’)t®
in 1+(T) that only contains derivations with § > 0 is not cancelled by anything
coming from the terms ¢; _(F,)y:(T/Fv)
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case of “no complexity loss” principle

@ similar procedure for constructing Hopf algebra character, but
multivariables for connected components

a set of variables t) for A € SOy
trees T € Dom(h) (with a head function)

assign to each a € mo(F) a variable t; 1= tyu(T,))

then set

ddeg,(F 2 F') = deg(®Po(a)) — deg(a)

[0} ddeg. (P

¢e(F) = Z (F=F') H th(Tag)a( )
O:F—F/ acmo(F)

o character with values in DM[[t\]][t; ]

@ Birkhoff factorization retains terms with only “no complexity
loss” derivations d deg, > 0 in all the accessible terms
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Next step: Birkhoff factorization in algebroids

@ refine the previous construction: in DM commutative product
only accounts for “independent” derivations that affect
different parts of workspace (hence commute)

@ want to incorporate all derivations in the algebraic structure

@ something that generalizes “derivation forest semirings” of
context-free semiring parsing

@ key idea: composing Merge transformations on workspaces is
like composing arrows (morphisms of a category), composition
only defined when target of first arrow is source of second one

e difference between a group (composition always defined) and
a groupoid (composition defined with matching target/source)

e commutative Hopf algebras are “dual to groups” (group
schemes)... the notion dual to groupoids is Hopf algebroids
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commutative Hopf algebroid (dually groupoid scheme)
e pair of commutative algebras A© and #(1)

o for any other commutative algebra R, sets
GO(R) = Hom(A© R) and GM(R) = Hom(HD), R) are
the objects and morphisms of a groupoid G
@ unpack this:
o pair of commutative algebras (A©®, %) (functions on objects
and arrows)
o homomorphisms 7,7, : A© — H®) give () the structure of
a A©-bimodule (dual to source and target)
e coproduct given by morphism of A®©-bimodules

JAN: H(l) — 7'[(1) & 40 H(l)

(dual to composition of arrows in groupoid)
o conjugation S : H® — HM) (dual to inverse of morphisms in
groupoid)
@ bialgebroid: same without S, dual to a “semigroupoid” (small
category) instead of groupoid
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further properties

o counit € : HM) — A©) morphism of A(-bimodules (dual to
identity morphisms)

@ ens = eny = 1 (identity morphisms have same source and

target)

o (1®e)A = (e®1)A =1 (composition with the identity
morphism)

o (1®A)A = (A ®1)A (associativity of composition of
morphisms)

e S2 =1 and Sns = n; (inversion is an involution and
exchanges source and target of morphisms)

M.Marcolli Mathematics & Linguistics



@ composition of a morphism with its inverse is identity
morphism 7n:e = u(S ® 1)A and nse = u(1 @ S)A
p H ® 4(0) HD — 1) extending the algebra
multiplication z : H() @q HM) — H ()

e Ans =1®ns, An: =n: ® 1 (source of composition of arrows
is source of the first and target of composition is target of
second)

@ morphism f : (A&O),Hgl)) — (Ago),Hgl)): algebra
homomorphisms (0 : .Ago) — .Ago) and ) Hgl) — Hgl)
with f® o = €20 fW, FW oy =ns,0FO),
fMony =mne00f0, fM o8 =500,

NpofM = (F1) @ FM)o Ay

M.Marcolli Mathematics & Linguistics



bialgebroid of Merge derivations (replaces “derivation forests”)
o data A®) = (V(Fs0,), 1) and H) = (DM, L)), define a
bialgebroid
o left and right A(®-module structures (source and target)

_J pa slpa)=F _ | poa tlea)=F
nS(F)SDA - { 0 otherwise nt(F)SOA - { 0 otherwise

e coproduct

Apa) =pa@1+1@0a+ Y. ©a®pn

PA=PALOPA,

m m
where o4, = (F = F') and @4, = (F/ =" F") with

composition
m o
PAL CPA, = (F A_1>A2 F”)
Ma0n, = Ma, 0 My, set of all compositions of a chain of
Merge derivations in set A, followed by one in A;

e Note: coproduct of V(Fso,) (Hopf algebra of workspaces)
now built into the arrows ¢4 as part of Merge action
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Rota-Baxter algebroids

@ Merge bialgebroid as replacement of context-free derivation
forests

@ want then replacement of semiring parsing using again the
Birkhoff factorization idea

@ instead of ¢ : H — R from Hopf algebra to Rota-Baxter
algebra (or semiring) need analog from Hopf algebroids (or
bialgebroid) to a suitable generalization of a Rota-Baxter
algebra (or semiring) ... algebroid (semiringoid)

@ Warning: different notions of algebroid, semiringoid are used
in math, ours is motivated by compatibility with the notion of
Hopf algebroid and bialgebroid

@ so here algebroid like part of bialgebroid that does not involve
coproduct

e pair of commutative algebras (A, &)
e two morphisms ns,7n: : A — £ that make £ bimodule over A
e morphism of A-bimodules € : £ — A with ens = en; = 14
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o if Hopf algebroids are like functions on a groupoid,
bialgebroids on a small category (semigroupoid), what about
algebroids? ... functions on a directed graph

e (A, ) commutative algebroid: for any commutative algebra
R the sets V(R) = Hom(A,R) and E(R) = Hom(E,R) are
sets of vertices and edges of a directed graph G(R) with
source and target maps s,t: E(R) — V(R) determined by
the morphisms ns,n; : A — £ (directed graph scheme)

@ also each vertex v € V(R) has a looping edge e, € E(R)
with s(e,) = t(ey) = v

@ bialgebroid = case where the directed graph satisfies
reflexivity and transitivity (small category); Hopf algebroid =
case where reflexivity, transitivity, symmetry (groupoid)
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Rota-Baxter structure on algebroids

e commutative algebroid (A, £) with pair of maps R = (Ry, Re)
with Ry € End(.A) algebra hom and Rg : £ — £ linear

Re(ns(a)-€) = ns(Rv(a))-Re(§)  Re(n:(a)-£) = ne(Rv(a))-Re(€)

and € o R = Rg o € with Rota—Baxter identity (weight —1)

Re(€) - Re(¢) = Re(Re(€) - ¢) + Re(§ - Re(€)) — Re(€ - C)

normalization Rg(1lg) = 0 or Re(1g) = 1g, for 1¢ the unit of
the algebra £

@ Main example: functions on edges of a directed graph, with
values in a Rota-Baxter algebra with Rota-Baxter operator
acting only on coefficients of functions

G directed graph, (R, R) Rota—Baxter algebra

A=Q[Vs] and £ =Q[Eg] ®g R

morphisms 75, 7; : A — £ precomposition with s, t: Eg — Vg

Ry=idand Re=1®R
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semiringoids
o (A, &) two commutative semirings

@ semiring homomorphisms 75,7 : A — £ that make £
bi-semimodule over A

@ bi-semimodule homomorphism € : £ — A with ens = eny = 14
Rota-Baxter semiringoid (weight +1)

e semiringoid (A, £) with semiring endomorphism Ry : A — A
and an Rg : & = £ morphism of Z>g-semimodules with

Re(ns(a) © §) = ns(Rv(a)) © Re(€)

Re(n:(a) © §) = ne(Rv(a)) © Re(§)

and e o Re = Rg o ¢, with Rota—Baxter relation of weight +1

Re(§) © Re(¢) = Re(Re(§) © ¢) D Re(§ © Re(())
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Birkhoff factorization in algebroids/semiringoids
o (A9, HM) Hopf algebroid and (A, £) algebroid with
Rota—Baxter structure (Ry, Rg) weight —1

o morphism ® : (A HM)) — (A, ) of algebroids
@ have inductive construction of factorization
@4 e(F) = (P— £ Pe)(f) = (P ® Pe)(AS)
—e(f) = _RE(J)E(f))
de(f) )+ > o (")
for A(f) = f®1+1®f—i—2f’®f”, and with

¢4 e(F) = (1 — Re)(Pe(f))
Similar for case of semiringoids
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what does this mean?
@ algebroid (A, £) < directed graph G
o & : (A® 1M)) - (A, E) map of graphs o : G — G (where G
also a category)
o take f =, for v an arrow in G
e if R =1id (trivial RB structure weight —1)

de(d,) = Z Set- -t Z Sy Oe,
ecEg:a(e)=y e1,....en€Eg : y=a(e1)o--oa(en)

lists all the possible ways of obtaining « as compositions of
images of arrows in G

o for a weighted combination ), Aje; in diagram G (eg
probability) with Re RB

CDE’_((S’Y)(Z )\,‘e,‘) = —( Z RE(/\e)+ Z RE(RE()‘el))‘ez)+' o
i a(e)=y

a(er)oa(e)=y
FY ReC(Rebe) )
a(er)o--oa(e,)=y
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@ case of Merge derivations: target functions on a graph values
in semiring (R U {—o00}, max, +) with R ReLU or in Viterbi
([0, 1], max, -) with R = ¢, threshold

@ map P assigns a possible diagram of Merge derivations

@ checking all possible ways of realizing some given chain of
Merge derivations ~ through compositions coming from the
chosen diagram, weighted by elements in the given semiring
and filtered by R

o R =(RU{—00}, max,+) with R =ReLU: all possibilities with
weights of each step above the ReLU threshold

o R = ([0, 1], max,-) with the threshold R = c, all possibilities
with probabilities of each step above threshold

o Boolean semiring B = ({0, 1}, max, -) with R = id: derivations
~ realized through diagram G with truth values on each edge
and composition of arrows = AND operation on truth values,
different paths of derivations = OR operation on truth values
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Example

@ consider the chain of Merge derivations for the sentence
“many people praise many people” (example from “Merge &
SMT" §3.4) and choice of model diagram G for parsing

mav Peﬂ:l( praie nay Fec)b/e

N
< } many  People praic maé\ka/v/e
b

mahy People protse many Feﬁblc

L.

_—

A, ¢ .
many  people piaice miny pecple many  people praie many pecple

A le
Many  peop pm:;e iy Rcf/c

—<¢ oo &
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