
Lecture 12: Semantics and Compositionality
Ma 191c: Mathematical Models of Generative

Linguistics

Matilde Marcolli

Caltech, Spring 2024

M.Marcolli Mathematics & Linguistics



this part based on

Matilde Marcolli, Robert C. Berwick, Noam Chomsky,
Syntax-semantics interface: an algebraic model,
arXiv:2311.06189

also included in the book:
Matilde Marcolli, Noam Chomsky, Robert C. Berwick,
“Mathematical structure of syntactic Merge”, MIT Press.

M.Marcolli Mathematics & Linguistics



Pietroski’s semantics and Merge

independent existence within semantics of a Combine binary
operation that parallels the functioning of Merge in syntax

describing a “Merge for i-concepts”
(compositional structure in semantics)

in Pietroski’s formulation Combine = Label ◦ Conc two
operations

in original formulation compatible with Old Minimalism, so
Merge is not symmetric (planar trees)

Conc is concatenation of strings

but this is not compatible with a map from syntax if free
symmetric Merge
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Conc operation on strings

Σ∗(SO0) set of ordered sequences of elements in SO0 of
arbitrary (finite) length

associative non-commutative binary operation

Conc : Σ∗(SO0)× Σ∗(SO0) → Σ∗(SO0)

(α, β) 7→ Conc(α, β) = α∧β = αβ

combines ordered sets α and β so string β follows string α.

planar binary rooted tree T̃ ∈ Tpl
SO0

⇒ ordered set of leaves

L(T̃ ) ∈ Σ∗(SO0)
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strings and noncommutative Merge

free non-commutative non-associative magma

Tpl
SO0

= SOnc = Magmana,nc(SO0,M
nc)

Π the canonical projection (morphism of magmas)

Π : Tpl
SO0

→ TSO0

abstract tree T ∈ TSO0 and T̃ any choice of planar tree
T̃ ∈ Π−1(T ), in fiber Π−1(T ) of projection

map L : Tpl
SO0

→ Σ∗(SO0) with L : T̃ 7→ L(T̃ ) satisfies

L(Mnc(T̃1, T̃2)) = Conc(L(T̃1), L(T̃2))

Note: Mnc non-associative while Conc associative, so map L
kills the associators of Mnc .
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Conc and linearization algorithms

abstract trees that are produced by free symmetric Merge

SO = Magmana,c(SO0,M) = TSO0 ,

there is no possible morphism of magmas SO → SOnc

in general we have for any section σ : SO → SOnc with
Π ◦ σ = id

Mnc(σ(T1), σ(T2)) ̸= σ(M(T1,T2))

a choice of a section σ : SO → SOnc is a linearization
algorithm

obstruction to a consistent definition of Conc on the image of
a “linearization algorithm”

L(σ(M(T1,T2))) ̸= Conc(L(σ(T1)), L(σ(T2))) = L(Mnc(σ(T1), σ(T2)))
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no linearization with well defined Conc

show that, given any section σ : SO → SOnc , ∃ T1,T2

L(σ(M(T1,T2))) ̸= Conc(L(σ(T1)), L(σ(T2)))

σ cannot be a morphism of magmas so ∃ T1,T2

σ(M(T1,T2)) ̸= Mnc(σ(T1), σ(T2)).

planar trees σ(M(T1,T2)) and Mnc(σ(T1), σ(T2)) in same
fiber of Π over T = M(T1,T2)

how to characterize the sources of non-well-behaved
concatenations?

in terms of geometry of associahedra
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projection Π collapses the 2n−1 different planar structures,
with n = #L(T )

the planar trees σ(M(T1,T2)) and Mnc(σ(T1), σ(T2)) have
same ordered set of leaves (concatenation well behaved) iff
they differ by an associator (a change of bracketing on the
same ordered set)

a given ordered set of leaves realized by Cn−1 possible planar
structures, vertices of the associahedron Kn

Catalan numbers

Cn =
1

n + 1

(
2n

n

)
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combinatorial counting

combinatorial identity

n!Cn−1 = 2n−1 (2n − 3)!!

Cn−1 possible bracketing on a fixed ordered set

number of planar trees T̃ with the same ordered set L(T̃ )

(2n − 3)!! counts number of different abstract (non-planar)
binary rooted trees on n labelled leaves

number of abstract trees T with same non-ordered set L(T )

2n−1 counts number of possible planar structures on each T

n! total number possible orderings of non-ordered set L(T ) of
n-leaves
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planar binary rooted tree T̃ : symmetric group Sn acts on the
leaves producing other planar trees τ : T̃ 7→ τ(T̃ )

same tree structure but the labels of leaves permuted

T̃ at a vertex of one of the assiciahedra, orbit under Sn
determines a vertex in each other associahedra (n! of them)

consider group GT̃ of transformations generated by the

involutions γv that flip subtrees T̃v ,L and T̃v ,R below v

#GT̃ = 2n−1 the number of possible planar structures on T

normal subgroup Aut(T̃ ) transformations in GT̃ preserving T̃

orbit-stabilizer theorem

#OrbitGT̃
(T̃ ) =

#GT̃

#Aut(T̃ )

this gives∑
T

#(GT̃/Aut(T̃ )) =
∑
T

2n−1

#Aut(T̃ )
= Cn−1 =

(2n − 3)!!

n!
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given a linearization algorithm σ : SO → SOnc and

T̃ σ := σ(T ) = σ(M(T1,T2)) and T̃ := Mnc(σ(T1), σ(T2))

in same fiber over T so ∃ γ ∈ GT̃ such that γ(T̃ ) = T̃ σ

incompatibility between the linearization algorithm and the
asymmetric Merge are pairs (T̃ σ, T̃ ) for which γ ∈ GT̃ with

γ(T̃ ) = T̃ σ is not in the subgroup Aut(T̃ )

these are the sources of the non-well-behaved concatenations

better: reformulate concatenation for free symmetric Merge
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Combine operation and free symmetric Merge

has to receive map from syntax, compatible with Merge
(magma homomorphism) so have to define Concatenate in
symmetric form
again Combine = Label ◦ Concatenate two operations

Concatenate(α, β) = {α, β} = α β

Combine(α, β) = Label ◦ Concatenate(α, β)
= Label(α β) = h(α, β)

α β

binary operation Combine is not symmetric because of the
head label

if compositional operation takes place in semantic space S,
then S needs to have own computational system (at least
partially defined): two systems each with “Merge” type
operation, one for syntax one for semantics

different from other conceptual spaces (perceptual manifolds
for vision)
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Main claim: Merge suffices
all computational structure is on the side of syntax

start with map s : SO0 → S extended to s : Dom(h) → S
(using some property like geodesic convexity on S)
the i-concept Combine(α, β) where α = s(T1) and β = s(T2)
is well defined if T = M(T1,T2) ∈ Dom(h) and given by

Combine(α, β) := s(M(T1,T2)) ∈ S

with s(T ) constructed using geodesic arcs and a semantic
proximity P as discussed before

Note: no need to separate Combine into Label and
Concatenate

check that this is OK with some potential issues
(idempotents, rule out improper inferences)
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idempotents

on the semantics side expect possible idempotent structures
Combine(α, α) = α

never have this on the syntax side: M(T ,T ) = T T ̸= T

is this a problem with Combine(α, β) := s(M(T1,T2))?

no: it just means s : Dom(h) → S not always an embedding

location of the point s(M(T ,T ′)) on geodesic arc between
s(T ) and s(T ′) depends on P(s(T ), s(T ′))

if P(s, s ′) = 0 or P(s, s ′) = 1 obtain cases where

Combine(α, β) = α or Combine(α, β) = β

even if M(T ,T ′) ̸= T and M(T ,T ′) ̸= T ′
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inference: Example (adjuncts to verb)

consider sentences: “John ate a sandwich in the basement”
and “John ate a sandwich at noon”,

these two sentences clearly do not imply that “John ate a
sandwich in the basement at noon”

one can see this in terms of the construction of s(M(T1,T2))
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Heim-Kratzer semantics (often considered in generative linguistics)

Semantic types inductive construction

type τ and set Dτ of possible “denotations”

e type of individual De set of individuals

t is type of truth values Dt = {0, 1} set of truth values

⟨e, t⟩ type of functions D⟨e,t⟩ = {f : De → Dt}
inductively σ and τ types, then ⟨σ, τ⟩ type of functions

D⟨σ,τ⟩ = {f : Dσ → Dτ}

semantic space in this setting is

S =
⋃
τ

Dτ
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interpretability

assume s : SO0 → S, want to extend to
s : Dom(h) ⊂ SO → S
HK prescription:

1 for T = M(T1,T2) if s(T1) = [[T1]] in S (or s(T2)) is a
function s(T1) ∈ D⟨σ,τ⟩ and the other s(T2) ∈ Dσ

s(T ) = [[T ]] := s(T1)(s(T2)) = [[T1]]([[T2]]) ∈ Dτ

2 if neither s(T1) nor s(T2) is a function that takes the type of
the other as input, then T /∈ Dom(s) and T is
non-interpretable

non-interpretability can be due to a mismatch of
function/input at some internal vertex while other
substructures interpretable: again use a Birkhoff factorization
to extract where problems occur
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Boolean semiring B = ({0, 1},max, ·), identity Rota-Baxter
R = id

character from Hopf algebra of workspaces

ϕ(T ) =

{
1 T is interpretable in HK semantics
0 otherwise.

Bogolyubov preparation

ϕ̃(T ) = max{ϕ(T ), ϕ(Fv1 )ϕ(T/dFv1 ), . . . , ϕ(FvN )ϕ(FvN−1
/dFvN ) · · ·ϕ(T/dFv1 )}

maximizers of ϕ̃(T ) are chains of accessible terms where all
the substructures and the respective quotients are themselves
interpretable (even when ϕ(T ) = 0 and full T
non-interpretable)
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topological HK semantic types

assume De is geodesically convex compact Riemannian
manifold as our previous semantic spaces
(proximity.interpolation)

Dt = {0, 1} is a discrete set

continuous functions f : Dτ → Dt = {0, 1} too small: only
detects connected components of Dτ

Note: all functions f : De → Dt = {0, 1} is 2De power set
(characteristic functions of subsets)

subset of 2De that topologized nicely: characteristic functions
of compact subsets

instead of all functions f : De → Dt = {0, 1} take set of
compact subsets K(De) (identified with their characteristic
functions)
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set K(De) of compact subsets with Hausdorff metric

dH(A,B) = max{sup
a

d(a,B), sup
b

d(A, b)}

(or Vietoris topology if De just topological space)
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Hausdorff metric and Vietoris topology

more general case where X just topological space

the set K(X ) of compact subsets topologized by Vietoris
topology

generated by “hit-and-miss” sets (sets that meet a given open
set and sets that miss its complement):

for U varying over the open sets of X

V+,U = {K ∈ K(X ) |K ∩ U ̸= ∅}
V−,U = {K ∈ K(X ) |K ⊂ U} .

when the Hausdorff metric exists, it induces the Vietoris
topology
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topologizing spaces of functions

compact open topology

generated by sets UK ,U , for K ⊂ X compact and U ⊂ Y open,

UK ,U = {f ∈ C(X ,Y ) | f (K ) ⊂ U}

if X is compact and Y is metric induced by

dC(X ,Y )(f , g) = sup
x∈X

{dY (f (x), g(x))}

Note: even if start with best possible properties for De

(metric, compact, connected, complete) these do not extend
inductively to function spaces (can be non-compact,
non-metrizable) to S has weaker topological properties
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topological space

Sc =
⋃
τ

Dc
τ

assuming that De is already a topological space, which is
metric, complete, and compact Dc

e = De

Dc
⟨e,t⟩ = K(De) ⊂ D⟨e,t⟩ characteristic functions of closed

(hence compact since De is compact) subsets of De

with Hausdorff metric (K(De), dH) is both complete and
compact since De is

De compact, Dc
⟨e,t⟩ metric ⇒ Dc

⟨e,t⟩ metrizable

next step space of continuous functions

Dc
⟨e,⟨e,t⟩⟩ = C(De ,D

c
⟨e,t⟩) = {f : De → Dc

⟨e,t⟩ | f continuous}

with compact-open topology

De is compact and Dc
⟨e,t⟩ is metric, Dc

⟨e,t⟩ is metrizable
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similarly also metrizable

Dc
⟨en,t⟩ := Dc

⟨e, ⟨e, · · · , ⟨e, t⟩ · · · ⟩︸ ︷︷ ︸
n−times

= C(De ,D
c

⟨e, ⟨e, · · · , ⟨e, t⟩ · · · ⟩︸ ︷︷ ︸
(n−1)−times

)

several inductive types maintain metrizability (not
compactness)

but other inductive types can also lose metrizability

two arbitrary choices τ1, τ2 of types, τ2 ̸= t

form the type τ = ⟨τ1, τ2⟩, with

Dc
⟨τ1,τ2⟩ = C(Dc

τ1 ,D
c
τ2) = {f : Dc

τ1 → Dc
τ2 | f continuous} ⊂ D⟨τ1,τ2⟩ ,

with the compact-open topology

now Dc
τ1 in general non-compact, so even though Dc

τ2
metrizable, the metrizability property need not extend to
Dc
⟨τ1,τ2⟩
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probes and characters

probe Υ in topological Heim–Kratzer semantics

collection Υ = {Υτ}τ of compact subsets Υτ ⊂ Dc
τ

Boolean character from probe

ϕΥ,s(T ) =

{
χΥτ (s(T )) if s(T ) ∈ Dc

τ

0 otherwise,

χΥτ ∈ Dc
⟨τ,t⟩ characteristic function of compact set Υτ

s(T ) ∈ S is the HK interpretation of T when T is
interpretable

ϕΥ,s(F ) =
∏

a ϕΥ,s(Ta) for F = ⊔aTa

Bogolyubov preparation ϕ̃Υ,s identifies nested chains of
substructures where the probe evaluates True on all the terms

M.Marcolli Mathematics & Linguistics



fuzzy topological HK types

fuzzy set (X , f ) with f : X → [0, 1]

fuzzy truth values Df = [0, 1]

⟨e, f ⟩ type with D f
⟨e,f ⟩ = C(De , [0, 1]) continuous functions

with compact-open topology

semantic probes {υτ : D f
τ → [0, 1]} fuzzy set structures

υτ (s(T )) ∈ [0, 1] (Viterbi parsing) for s(T ) ∈ D f
τ ⊂ S zero

otherwise
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fuzzy interpretability
nterpretability is assignment s : SO0 → Sc,f that extends to
partially defined s : Dom(s) ⊂ SO → Sc,f following same rules as
original Heim–Kratzer interpretability, but with the sets Dτ

replaced by topological spaces Dc,f
τ .
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probes and Viterbi parsing

fuzzy semantic probes: collections υ = {υτ}τ of continuous
fuzzy set structures υτ : Dc,f

τ → [0, 1] on Dc,f
τ ,

υτ ∈ C(Dc,f
τ ,Dc,f

f ).

Viterbi semiring

P = ([0, 1],max, ·, 0, 1)

associated character ϕυ,s,f with values in P

ϕυ,s,f(T ) =

{
υτ (s(T )) if s(T ) ∈ Dc,f

τ

0 otherwise.

Rota-Baxter threshold operators cλ on P
Birkhoff factorization identifies as maximizers those accessible
terms Tv ⊂ T with values ϕυ,s,f(Tv ) above a threshold λ,
meaning with a sufficently large degree of confidence as their
assigned fuzzy truth values
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Some references

P.M. Pietroski, Conjoining Meanings. Semantics Without
Truth Values, Oxford University Press, 2018.

I. Heim, A. Kratzer, Semantics in Generative Grammar,
Blackwell Publishing, 1998.

Noam Chomsky, Studies on Semantics in Generative
Grammar, Mouton, 1972.
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Semantics: from Topology to Logic

proposed basic structure of semantics to be topological:
proximity, relatedness, distance, interpolation

in general argued that semantics should also account for
logical operations

assuming only the basic model: where does the logic part
comes from?

idea: open sets in a topological space define a (Brower) logic

Boolean and Heyting algebras
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concrete Boolean algebra

non-empty set of subsets of a given set X that is closed under
the operations of union, intersection, and complement

e.g. power set P(X ): set of all subsets of X

intersection = logical AND, notations:

A ∧ B = A · B = A AND B := A ∩ B

union = logical OR, notations:

A ∨ B = A+ B = A OR B := A ∪ B

complement = negation:

Ā = ¬A = NOT A := Ac = X ∖ A

other logical gates, such as XOR, NAND, NOR, XNOR are
compositions of these
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other logical operations: implication

A → B = ¬A ∨ B := Ac ∪ B
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abstract Boolean algebra

partially ordered set (B,≤)

two associative and commutative operations:
join ∨ and meet ∧

if A1 ≤ A2 and B1 ≤ B2 then A1 ∨ B1 ≤ A2 ∨ B2 and
A1 ∧ B1 ≤ A2 ∧ B2

idempotent, A ∧ A = 1 and A ∨ A = A for all A ∈ B
absorption law, for all A,B ∈ B

A ∨ (A ∧ B) = A and A ∧ (A ∨ B) = A

distributive law, for all A,B,C ∈ B

A ∧ (B ∨ C ) = (A ∧ B) ∨ (A ∧ C )

A ∨ (B ∧ C ) = (A ∨ B) ∧ (A ∨ C )
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also B has complemented property: ∃ least element 0,
greatest element 1

A ∨ 0 = A and A ∨ 1 = 1

A ∧ 0 = 0 and A ∧ 1 = A

and every A in B has complement c(A) ∈ B with
A ∨ c(A) = 1 and A ∧ c(A) = 0

Boolean algebras satisfy De Morgan law

¬A ∧ ¬B = ¬(A ∨ B) and ¬A ∨ ¬B = ¬(A ∧ B)
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other properties of classical Boolean logic

cancellation of double negations

¬¬A = A

law of excluded middle

¬A ∨ A = 1

law of non-contradiction

A ∧ ¬A = 0

law of excluded middle is the complemented property:
(X ∖ A) ∪ A = X

M.Marcolli Mathematics & Linguistics



Constructive logic (Intuitionistic/Brouwer logic)

in classical logic propositions are assigned a truth value (law
of excluded middle: this is always possible)

in constructive logic propositions are only assigned a true
value if a constructive proof (an algorithm) is available:
proposition is “inhabited” by a proof

law of excluded middle and the cancellation of double
negation do not hold universally in constructive logic (but can
hold in specific cases)

Boolean algebras are replaced by Heyting algebras
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abstract Heyting algebra

partially ordered set (B,≤)

operations of join ∨ and meet ∧ as before, with minimal and
maximal elements 0 and 1

instead of the complemented property one only assumes the
existence of a “relative pseudo-complement”: for any
A,B ∈ B ∃ greatest element C = ψ(A,B) ∈ B such that

A ∧ C ≤ B

this replaces the Boolean definition of logical implication with

A → B := ψ(A,B)

pseudo-complement

ψc(A) := (A → 0)

so negation defined as

¬A := ψc(A) = (A → 0)
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other properties of constructive logic

law of non-contradiction A ∧ ¬A = 0 holds as in Boolean case

law of the excluded middle A ∨ ¬A = 1 no longer holds with
¬A the pseudo-complement

pseudo-complement and implication (relative
pseudo-complement) satisfy

(¬A ∨ B) ≤ (A → B)

(it is Boolean iff this ≤ is everywhere = )

only one De Morgan law holds:

¬(A ∨ B) = ¬A ∧ ¬B

the other is replaced by weaker form

¬(A ∧ B) = ¬¬(¬A ∨ ¬B)

where double negation in general does not cancel
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concrete Heyting algebras:

open sets in a topological space (X , TX )
implication (relative pseudo-complement) given by

A → B := Int(Ac ∪ B)

Int = interior, Ac = set-theoretic complement

pseudo-complement is ψc(A) = Int(Ac)

Note: other important parts of mathematical logic depend on
constructive logic:

Martin-Löf type theory

homotopy type theory

type theory closely related to inductive construction of types used
in Heim Kratzer semantics

punchline: having a topological space as the basis of semantics
guarantees to also have a logic (constructive) through the Heyting
algebra of its open sets
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