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this part based on

@ Matilde Marcolli, Robert C. Berwick, Noam Chomsky,

Syntax-semantics interface: an algebraic model,
arXiv:2311.06189

also included in the book:
Matilde Marcolli, Noam Chomsky, Robert C. Berwick,
“Mathematical structure of syntactic Merge”, MIT Press.
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Pietroski's semantics and Merge

@ independent existence within semantics of a Combine binary
operation that parallels the functioning of Merge in syntax

@ describing a “Merge for i-concepts”
(compositional structure in semantics)

@ in Pietroski's formulation Combine = Label o Conc two
operations

@ in original formulation compatible with Old Minimalism, so
Merge is not symmetric (planar trees)

@ Conc is concatenation of strings

@ but this is not compatible with a map from syntax if free
symmetric Merge
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Conc operation on strings

@ Y*(S0y) set of ordered sequences of elements in SOy of
arbitrary (finite) length

@ associative non-commutative binary operation
Conc : X*(80g) x T*(SOp) — X*(SOy)

(o, B) — Conc(a, B) = o3 = af
combines ordered sets « and 3 so string 3 follows string «.

e planar binary rooted tree T € Tg’oo = ordered set of leaves

L( T) S Z*(SOO)
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strings and noncommutative Merge

@ free non-commutative non-associative magma
/
Tgoo =S80 = Magmana,nc(8007 mnC)
@ [1 the canonical projection (morphism of magmas)
. Pl
Mn: ‘IS(’)O — L850,

@ abstract tree T € T5p, and T any choice of planar tree
T € N7Y(T), in fiber N11(T) of projection

o map L: TR, — X*(SOo) with L: T > L(T) satisfies

LM (T1, T2)) = Conc(L(T1), L(T2))

@ Note: 971" non-associative while Conc associative, so map L
kills the associators of 901"¢.
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Conc and linearization algorithms

@ abstract trees that are produced by free symmetric Merge
SO = Magma,,, (SOo, M) = Ts0,,

@ there is no possible morphism of magmas SO — SO"¢

@ in general we have for any section o : SO — SO with
Moo =id

M (0(T1),0(T2)) # o(M(T1, T2))

@ a choice of a section o : SO — SO"° is a linearization
algorithm

@ obstruction to a consistent definition of Conc on the image of
a “linearization algorithm”

L(o(M(T1, T2))) # Conc(L(a(T1)), L(o(T2))) = L(M™(a(T1),0(T2)))
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no linearization with well defined Conc
@ show that, given any section o : SO — SO"¢, 3 T1, T

L(o(M(T1, T2))) # Cone(L(o(T1)), L(o(T2)))
@ o cannot be a morphism of magmas so 4 T1, T»
o(M(T1, T2)) # M™(o(T1),0(T2)).

@ planar trees o(M( Ty, T2)) and M (o(T1),0(T2)) in same
fiber of M over T = 9M(T1, T2)

@ how to characterize the sources of non-well-behaved
concatenations?

@ in terms of geometry of associahedra
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e projection I collapses the 2"~ different planar structures,
with n = #L(T)

e the planar trees o(9M(T1, T2)) and M"“(c(T1),0(T2)) have
same ordered set of leaves (concatenation well behaved) iff
they differ by an associator (a change of bracketing on the
same ordered set)

@ a given ordered set of leaves realized by C,,_1 possible planar
structures, vertices of the associahedron K,

1 (2n
C"_n+1<n>

e Catalan numbers
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combinatorial counting

@ combinatorial identity
n! C,_1 =2""1(2n - 3)!!

@ C,_1 possible bracketing on a fixed ordered set
@ number of planar trees T with the same ordered set L(T)

@ (2n — 3)!! counts number of different abstract (non-planar)
binary rooted trees on n labelled leaves

@ number of abstract trees T with same non-ordered set L(T)
@ 2"1 counts number of possible planar structures on each T

@ n! total number possible orderings of non-ordered set L(T) of
n-leaves
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@ planar binary rooted tree T symmetric group S, acts on the
leaves producing other planar trees 7: T — 7(T)

@ same tree structure but the labels of leaves permuted

o T at a vertex of one of the assiciahedra, orbit under S,
determines a vertex in each other associahedra (n! of them)

@ consider group G4 of transformations generated by the
involutions -y, that flip subtrees T, ; and T, g below v

° #Gy = 2"1 the number of possible planar structures on T

@ normal subgroup Aut(7~') transformations in G4 preserving T

@ orbit-stabilizer theorem

. -~ #Gy
#Orbite. (T) = Yo
@ this gives
2t _(2n—3)n
Z# #/Aut(T)) = ZT:W =G ="
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@ given a linearization algorithm o : SO — SO" and
T :=0(T)=0c(M(T1,T2)) and T :=M"(c(T1),0(T2))

@ in same fiber over T so 3 v € Gy such that ~( TH=T°

@ incompatibility between the Iinearization algorithm and the
asymmetrlc Merge are pairs (77, T) for which ~ € G with
~(T) = T7 is not in the subgroup Aut(T)

@ these are the sources of the non-well-behaved concatenations

@ better: reformulate concatenation for free symmetric Merge
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Combine operation and free symmetric Merge
@ has to receive map from syntax, compatible with Merge
(magma homomorphism) so have to define Concatenate in

symmetric form
@ again Combine = Label o Concatenate two operations

Concatenate(w, 8) = {a, B} = a/\ﬁ

Combine(c, B) = Label o Concatenate(c, )
= Label( /\ﬂ) = h(a, B)

«
P
a p
@ binary operation Combine is not symmetric because of the

head label

@ if compositional operation takes place in semantic space S,
then S needs to have own computational system (at least
partially defined): two systems each with “Merge" type
operation, one for syntax one for semantics

o different from other conceptual spaces (perceptual manifolds
for vision)
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Main claim: Merge suffices
all computational structure is on the side of syntax

@ start with map s : SOy — S extended to s : Dom(h) — S
(using some property like geodesic convexity on S)

@ the i-concept Combine(c, 3) where a = s(T1) and 5 = s(T>)
is well defined if T = 9(Ty, T2) € Dom(h) and given by

Combine(a, B) := s(IM(T1, T2)) € S

with s(T) constructed using geodesic arcs and a semantic
proximity P as discussed before

@ Note: no need to separate Combine into Label and
Concatenate

@ check that this is OK with some potential issues
(idempotents, rule out improper inferences)
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idempotents

@ on the semantics side expect possible idempotent structures
Combine(a, ) = «

@ never have this on the syntax side: (7T, T) = T #T
@ is this a problem with Combine(a, 3) := s(I (Tl, T2))?

@ no: it just means s : Dom(h) — S not always an embedding

o location of the point s(M(T, T’)) on geodesic arc between
s(T) and s(T') depends on P(s(T),s(T"))

e if P(s,s') =0 or P(s,s’) = 1 obtain cases where
Combine(a, f) = or  Combine(a, ) = 3

even if M(T,T')# T and M(T, T') £ T’
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inference: Example (adjuncts to verb)

@ consider sentences: “John ate a sandwich in the basement”
and "John ate a sandwich at noon”,

@ these two sentences clearly do not imply that “John ate a
sandwich in the basement at noon”

@ one can see this in terms of the construction of s(M(T1, T2))
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Heim-Kratzer semantics (often considered in generative linguistics)

Semantic types inductive construction
@ type 7 and set D, of possible “denotations”
@ e type of individual D, set of individuals
@ tis type of truth values Dy = {0, 1} set of truth values
o (e, t) type of functions Die 4y = {f : De — D;}

@ inductively o and 7 types, then (o, T) type of functions
D(U’T> = {f : DU — DT}

semantic space in this setting is

S=Jb-
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interpretability
@ assume s : SOy — S, want to extend to
s:Dom(h) C SO - S
@ HK prescription:
Q for T=M(T1, T2) if s(T1) =[[T1]] in S (or s(T2)) is a
function s(T1) € D,y and the other s(T3) € D,

s(T) = [[T]:= s(T1)(s(T2)) = [[TI([[T=]]) € D-

@ if neither s(T1) nor s(T3) is a function that takes the type of
the other as input, then T ¢ Dom(s) and T is
non-interpretable

@ non-interpretability can be due to a mismatch of
function/input at some internal vertex while other
substructures interpretable: again use a Birkhoff factorization
to extract where problems occur
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@ Boolean semiring B = ({0, 1}, max, -), identity Rota-Baxter
R =id
@ character from Hopf algebra of workspaces

1 T is interpretable in HK semantics
0 otherwise.

om ={
@ Bogolyubov preparation
¢~’(T) = max{§(T), ¢(F11)¢(T/d’:11)» ) d’(FzN)QS(FzN,l/szN) T ¢(T/dF11)}

@ maximizers of ¢(T) are chains of accessible terms where all
the substructures and the respective quotients are themselves
interpretable (even when ¢(T) =0 and full T
non-interpretable)
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topological HK semantic types

@ assume D, is geodesically convex compact Riemannian
manifold as our previous semantic spaces
(proximity.interpolation)

e D; ={0,1} is a discrete set

e continuous functions f : D, — Dy = {0, 1} too small: only
detects connected components of D,

o Note: all functions f : Do — D; = {0,1} is 2P¢ power set
(characteristic functions of subsets)

@ subset of 2P¢ that topologized nicely: characteristic functions
of compact subsets

e instead of all functions f : Do — D; = {0, 1} take set of
compact subsets IC(D.) (identified with their characteristic
functions)
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e set K(De) of compact subsets with Hausdorff metric

du(A, B) = max{supd(a, B),sup d(A, b)}
a b

(or Vietoris topology if D, just topological space)

sup inf d(z,y)
reX YeY

Sup inf d(z,y)

yey zEX
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Hausdorff metric and Vietoris topology
@ more general case where X just topological space

@ the set K(X) of compact subsets topologized by Vietoris
topology

@ generated by “hit-and-miss” sets (sets that meet a given open
set and sets that miss its complement):

o for U varying over the open sets of X

Viuv= {KeKX)|KnU#0}
V_u= {Kek(X)|KcU}.

@ when the Hausdorff metric exists, it induces the Vietoris
topology
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topologizing spaces of functions

compact open topology
@ generated by sets Uy y, for K C X compact and U C Y open,

uK,U = {f EC(X, Y)|f(K) C U}

@ if X is compact and Y is metric induced by
dex,v)(f,8) = Sug{dY(f(X),g(X))}
xe

@ Note: even if start with best possible properties for D,
(metric, compact, connected, complete) these do not extend
inductively to function spaces (can be non-compact,
non-metrizable) to S has weaker topological properties
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@ topological space
c _ U D;f
-

@ assuming that D, is already a topological space, which is
metric, complete, and compact DS = D,

° Df, , = KC(De) C Dye sy characteristic functions of closed
(hence compact since D, is compact) subsets of D.

e with Hausdorff metric (K(De), dy) is both complete and
compact since D, is

@ D, compact, D< " metric = D< ) metrizable

@ next step space of continuous functions
Dfe ety = C(De, D( 1y) = {f : De = D, 4 | f continuous}

with compact-open topology

@ D, is compact and D<Ce ) is metric, D<Ce B is metrizable
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@ similarly also metrizable

D<Cen7t> = DZe

a<ea"'7<evt>"'>:C(De7DZea<ev"'v<e7t>"'>)

n—times (n—1)—times

@ several inductive types maintain metrizability (not
compactness)

@ but other inductive types can also lose metrizability
@ two arbitrary choices 1, 7> of types, 7 # t
e form the type 7 = (71, 72), with

D;

T1,m2)

c(Ds

71’

Dy,) = {f : Df, — D5, | f continuous} C Dy, ),

with the compact-open topology

@ now DS in general non-compact, so even though DS
T1 2

metrizable, the metrizability property need not extend to
C
(T1,72)
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probes and characters
@ probe T in topological Heim—Kratzer semantics
e collection T = {7}, of compact subsets T, C D¢
@ Boolean character from probe

_ L(s(T)) ifs(T)e Ds
ors(T) = { (>)<T otherwise,

@ xr, € D<CT7t> characteristic function of compact set T,

@ s(T) € S is the HK interpretation of T when T is
interpretable

o ¢vs(F)=11,0rs(Ts) for F=U,T,

@ Bogolyubov preparation q%gs identifies nested chains of
substructures where the probe evaluates True on all the terms
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fuzzy topological HK types

o fuzzy set (X, f) with f : X — [0,1]

@ fuzzy truth values Dy = [0, 1]

e (e, f) type with D{eﬂ = C(De, [0,1]) continuous functions
with compact-open topology

o semantic probes {v, : Df — [0,1]} fuzzy set structures

e v, (s(T)) € [0,1] (Viterbi parsing) for s(T) € Df c S zero
otherwise

M.Marcolli Mathematics & Linguistics



fuzzy interpretability

nterpretability is assignment s : SOy — ST that extends to
partially defined s : Dom(s) C SO — S/ following same rules as
original Heim—Kratzer interpretability, but with the sets D,
replaced by topological spaces DEF.
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probes and Viterbi parsing

e fuzzy semantic probes: collections v = {v,}, of continuous
fuzzy set structures v, : DS — [0,1] on DET,

vr € C(DET, DET).
o Viterbi semiring
P = ([0, 1], max,-,0,1)
@ associated character ¢, s; with values in P

_ [ uils(T)) if s(T) € DS
¢y,s,f(T) - { 0 otherwise.

@ Rota-Baxter threshold operators ¢y on P

@ Birkhoff factorization identifies as maximizers those accessible
terms T, C T with values ¢, ¢ ;(T,) above a threshold A,
meaning with a sufficently large degree of confidence as their
assigned fuzzy truth values
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Some references

@ P.M. Pietroski, Conjoining Meanings. Semantics Without
Truth Values, Oxford University Press, 2018.

@ |. Heim, A. Kratzer, Semantics in Generative Grammar,
Blackwell Publishing, 1998.

@ Noam Chomsky, Studies on Semantics in Generative
Grammar, Mouton, 1972.
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Semantics: from Topology to Logic

@ proposed basic structure of semantics to be topological:
proximity, relatedness, distance, interpolation

@ in general argued that semantics should also account for
logical operations

@ assuming only the basic model: where does the logic part
comes from?

@ idea: open sets in a topological space define a (Brower) logic

@ Boolean and Heyting algebras
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concrete Boolean algebra

@ non-empty set of subsets of a given set X that is closed under
the operations of union, intersection, and complement

e e.g. power set P(X): set of all subsets of X

@ intersection = logical AND, notations:
AANB=A-B=AAND B:=ANB
@ union = logical OR, notations:
AvB=A4+B=A0ORB:=AUB
@ complement = negation:

A=-A=NOT A=A =X\A

@ other logical gates, such as XOR, NAND, NOR, XNOR are
compositions of these
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Expression
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other logical operations: implication

A—B=-AVvB:=A°“UB

-
X
Xy o[
: X l " 1o
X—=y
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abstract Boolean algebra

o partially ordered set (B, <)

@ two associative and commutative operations:
Jjoin V and meet A

e if Ay <Ay and B; < B, then A; VB <AV B, and
AANBI <A AB;
o idempotent, ANA=1and AVA=Aforall Ac B
e absorption law, for all A, B € B
AV(AANB)=A and AAN(AVB)=A
o distributive law, for all A, B, C € B
AN(BVC)=(AANB)V(AACQ)

AV(BANC)=(AVB)A(AV ()
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@ also B has complemented property: 3 least element O,
greatest element 1

AVO=A and Avli=1

AADO=0 and AAN1=A

and every A in B has complement ¢(A) € B with
AV c(A)=1and AANc(A)=0

Boolean algebras satisfy De Morgan law

“AAN-B=—-(AVB) and -AV-B=-(AAB)
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other properties of classical Boolean logic

@ cancellation of double negations

—A=A
@ law of excluded middle
—“AVA=1
@ law of non-contradiction
AN-A=0

law of excluded middle is the complemented property:
(XNAUA=X
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Constructive logic (Intuitionistic/Brouwer logic)

@ in classical logic propositions are assigned a truth value (law
of excluded middle: this is always possible)

@ in constructive logic propositions are only assigned a true
value if a constructive proof (an algorithm) is available:
proposition is “inhabited” by a proof

@ law of excluded middle and the cancellation of double
negation do not hold universally in constructive logic (but can
hold in specific cases)

@ Boolean algebras are replaced by Heyting algebras
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abstract Heyting algebra
e partially ordered set (B, <)
@ operations of join V and meet A as before, with minimal and
maximal elements 0 and 1
@ instead of the complemented property one only assumes the

existence of a “relative pseudo-complement”: for any
A, B € B 3 greatest element C = ¢(A, B) € B such that

ANC<B
@ this replaces the Boolean definition of logical implication with
A— B:=1y(A,B)
@ pseudo-complement
c(A) = (A—0)
so negation defined as
—A = ¢c(A) = (A—0)



other properties of constructive logic

@ law of non-contradiction A A=A = 0 holds as in Boolean case

@ law of the excluded middle AV —A =1 no longer holds with
= A the pseudo-complement

@ pseudo-complement and implication (relative
pseudo-complement) satisfy

(~AV B) < (A— B)

(it is Boolean iff this < is everywhere =)

@ only one De Morgan law holds:
-(AVvB)=-AA-B
@ the other is replaced by weaker form
—(AAB) =—-=(-AV -B)

where double negation in general does not cancel
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concrete Heyting algebras:

@ open sets in a topological space (X, Tx)
@ implication (relative pseudo-complement) given by

A — B :=Int(A° U B)

Int = interior, A¢ = set-theoretic complement
@ pseudo-complement is 1c(A) = Int(A°)

Note: other important parts of mathematical logic depend on
constructive logic:

@ Martin-Lof type theory

@ homotopy type theory

type theory closely related to inductive construction of types used
in Heim Kratzer semantics

punchline: having a topological space as the basis of semantics
guarantees to also have a logic (constructive) through the Heyting
algebra of its open sets
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