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Generative structures in physics:
perturbative Quantum Field Theory (QFT)

@ perturbative expansion of computation of Feynman integrals
@ contributions labelled by graphs (Feynman graphs of the QFT)

@ order of the expansion = loop order = first Betti number of
graphs

@ contribution of each graph an integral in momenta associated
to (internal) edges; external edges incoming/outgoing
momenta; momentum conservation at vertices

@ integral often divergent: renormalization to extract finite
meaningful physical values

@ consistency over substructures for renormalization
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Linguistic Merge versus Physical DS equations: a useful parallel

@ in quantum field theory we have a generative process involving
graphs (Feynman graphs)

@ can be described in terms of formal languages
(using graph grammars)

@ however not the best way to think of Feynman graphs

@ Hopf algebra structure: product LI, coproduct
A(T) = >~y ®T /v subgraphs and quotient graphs
(Connes-Kreimer)

@ better for factorization problems (extraction of meaningful
physical values = renormalization) with consistency across
subgraphs

@ better for recursive solutions of equations of motion
X = B(P(X)) Dyson-Schwinger equation

@ known in QFT that solutions of DS are the quantum
implementation of the “least action principle” for classical
solutions: optimization
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Formal languages formulation (graph grammars)

Example: formal languages approach — the generative grammar for the Feynman

graphs of the ¢2A physical theory (graph grammars: usually_context sensitive)
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Formal languages formulation

@ M. Marcolli, A. Port, Graph grammars, insertion Lie algebras, and
quantum field theory, Math. Comput. Sci. 9 (2015), no. 4,
391-408.

Hopf algebra formulation

@ D. Kreimer, On the Hopf algebra structure of perturbative quantum
field theories, Adv. Theor. Math. Phys. 2 (1998), no. 2, 303-334

@ A. Connes, D. Kreimer, Hopf algebras, renormalization and
noncommutative geometry, Comm. Math. Phys. 199 (1998), no. 1,
203-242.

A(w(Dw) = (D RI+I0 w(Dw +2 < ® O
5(357) == %57 + O ==

Example: the generative structure of Feynman graphs encoded in
the coproduct and the antipode of a Hopf algebra
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Dyson-Schwinger equations also formulated in terms of the Hopf
algebra structure

g 4

Examples: recursive solutions of Dyson—-Schwinger equations in
quantum electrodynamics
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From Renormalization to Syntax-Semantics Interface

@ the formalism of Hopf algebras and extraction of finite parts
was adapted to the theory of computation (Manin, 2009) as
extraction of computable parts from undecidable problems

e “extraction of meaning” (finite values from divergent integrals
in physics; computable parts of non-computable functions in
theory of computation) via the formalism of renormalization
(factorization of maps from Hopf algebras to Rota—Baxter
algebras)

@ suggests a possible strategy to extend the computational
model of syntax to a computational model of the
syntactic-semantic interface

...this comparison is the base for our construction of a
syntax-semantics interface model

M.Marcolli Mathematics & Linguistics



Quick overview of the physics setting for comparison

Setting of Perturbative Quantum Field Theory
e Action functional in D dimensions

5(6) = / £(6)dx = So(0) + Sne(6)

e Lagrangian density

m2
£(6) = 5(06V 28  Lin(9)

e Perturbative expansion: Feynman rules and Feynman diagrams

Serr(P) = So() + Z #/:Eji)(r) (1PI graphs)
r
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Algebraic renormalization in perturbative QFT

@ A. Connes, D. Kreimer, Renormalization in quantum field
theory and the Riemann-Hilbert problem, | and I,
hep-th /9912092, hep-th/0003188

@ A. Connes, M. Marcolli, Renormalization, the Riemann-Hilbert
correspondence, and motivic Galois theory, hep-th/0411114

e K. Ebrahimi-Fard, L. Guo, D. Kreimer, Integrable
Renormalization Il: the general case, hep-th/0403118
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Two step procedure:

e Regularization: replace divergent integral U(I') by
function with poles

e Renormalization: pole subtraction with consistency over
subgraphs (Hopf algebra structure)

e Kreimer, Connes—Kreimer, Connes—Marcolli: Hopf algebra of
Feynman graphs and BPHZ renormalization method in terms of
Birkhoff factorization and differential Galois theory

e Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms
of Rota—Baxter algebras
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Connes—Kreimer Hopf algebra H = H(7T") (depends on theory)
e Free commutative algebra in generators [ 1Pl Feynman graphs

e Grading: loop number (or internal lines)

deg(l Zdeg , deg(l)=0

e Coproduct:

AN =T@l+1al+ > v&Tl/y
veV(I)

e Antipode: inductively
S(X)=-X->_ S(X)x"

for AX)=X®1+1X+> X' @ X"
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Rota—Baxter algebra of weight A = —1

R commutative unital algebra
T : R — R linear operator with

T(x)T(y) = T(xT(y)) + T(T(x)y) +AT(xy)

e typical case: R = C[[z]][z"}] Laurent series and T = projection
on the polar part

e T determines splitting R4 = (1 — T)R, R_ = unitization of
TR; both R are algebras
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Feynman rule

e ¢ : H — R commutative algebra homomorphism

e assignment of regularized but not yet renormalized values to
Feynman graphs: regularized value is a Laurent series, original
divergent integral is the pole at z =0

from CK Hopf algebra H to Rota—Baxter algebra R weight —1

¢ € HomAlg(H, R)

e Note: ¢ does not know that H Hopf and R Rota-Baxter, only
commutative algebras

M.Marcolli Mathematics & Linguistics



e Birkhoff factorization 3¢+ € Homais(H, R+)
=(¢p-05)x ¢4

where ¢1 x ¢2(X) = (¢1 ® ¢2, A(X))

e Connes-Kreimer inductive formula for Birkhoff factorization:

¢ (X) = =T(B(X)+ > _ o (X)p(X"))

¢+ (X) = (1= T)(B(X) + D _ o (X)p(X"))
where A(X):1®X+X®1+ZX’®X”

e Recovers what known in physics as BPHZ renormalization
procedure in physics

e case of Laurent series ®_(X)(z) is in C[[z]] so ¥ (0) exists and
is the renormalized value; ®_(X)(z) is divergent at z = 0:
counterterms, subtraction of divergences...

M.Marcolli Mathematics & Linguistics



Connes—Kreimer Hopf algebra of rooted trees

@ polynomial algebra generated by the planar rooted trees T

@ coproduct: sum over all admissible cuts

AMT)=T@1+10T+ > wc(T)@pc(T)
c

@ grading by span of the planar rooted trees with k internal
vertices
@ antipode defined inductively on graded bialgebras

o used as reformulation of the Connes—Kreimer Hopf algebra of
Feynman graphs in perturbative QFT

M.Marcolli Mathematics & Linguistics



Combinatorial Dyson—Schwinger equations

o C. Bergbauer and D. Kreimer, Hopf algebras in
renormalization theory: locality and Dyson-Schwinger
equations from Hochschild cohomology, hep-th/0506190

o K. Yeats, Rearranging Dyson-Schwinger Equations, AMS
2011.

o L. Foissy, Classification of systems of Dyson-Schwinger
equations of the Hopf algebra of decorated rooted trees, Adv.
Math. 224 (2010), no. 5, 2094-2150

e L. Foissy, Lie algebras associated to systems of
Dyson-Schwinger equations, Adv. Math. 226 (2011), no. 6,
4702-4730.

M.Marcolli Mathematics & Linguistics



Dyson—Schwinger equations and Hopf subalgebras

o If grafting operator satisfies cocycle condition, then solutions of
Dyson—Schwinger equations form a Hopf subalgebra

Insertion and Hochschild 1-cocycles

o T =forest: grafting operator Bg“(T) = sum of planar trees with
new root vertex added with incoming flags equal number of trees
in T and a single output flag and decoration ¢

e cocycle condition:
ABf =(id® B )A+ B @1

equivalent to AB;™ = (id ® B+)A + id @ B; (1) with

A(x) := Y x" @ x" (non-primitive part) and Bj (1) = v (single
vertex, label §): first term admissible cuts root vertex attached to
pc(T), second term admissible cut separating root vertex.
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Dyson—Schwinger equations and Hopf subalgebras
(Bergbauer—Kreimer)

e Dyson—Schwinger equations in a Hopf algebra of the form

X =1+ c\Bf (X"

n=1

e associative algebra A (subalgebra of H) generated by
components x, of unique solution of DS equation

e using cocycle condition for Bgr get

n
A(x,) = Z My ® xx, where T} = Z Xp o X
k=0 Jittpi=n—k
= Hopf subalgebra

e generalized by Foissy for broader class of DS equations in Hopf
algebras, including systems
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Variant: Hopf ideals

e DS equation X =1+ 3% ¢, B (X"*1)

e ideal T generated by the components x, (with n > 1) of solution
e cocycle condition for By = T Hopf ideal

elements of Z finite sums Zn’\le hmXk,, with hy, € H and xi
components of unique solution of DS equation

Hopf ideal condition: A(Z) CZQHOHKXT

coproduct A(xg): primitive part 1@ xx +xx ® 1 in H ® Z & Z ® H; other
terms in Z ® Z, so coproducts A(hp,xk, ) in HRQIZ L H.

= quotient Hopf algebra Hz = H/Z

Note: commutative Hopf algebra; if noncommutative use two-sided ideals
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Hopf algebras and Lie algebras in QFT

@ Connes-Kreimer Hopf algebra Hck of Feynman graphs is
graded connected and commutative

@ dual to an affine group scheme Geg

@ Milnor—Moore theorem: dual Hopf algebra is the universal
enveloping algebra of the Lie algebra of primitive elements

Héx = U(ack)

@ The Lie bracket of the Lie algebra gck is described by
insertions at vertices
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Lie algebras and pre-Lie structures

e Lie algebra: vector space V with bilinear bracket [-, -] operation
with [x,y] = —[y, x] and Jacobi identity

[x, Iy, 2]l + [z, [x, ¥]] + ly; [z, x]] = O.

e tangent space at the identity of a Lie group is a Lie algebra

e pre-Lie structure: a bilinear map x: V® V — V on a vector
space V

(xxy)*z—xx(y*xz)=(xxz2)*xy —xx(z*xy)
identity of associators under y < z
e Given a pre-Lie structure
oyl =xxy—y*x

is a Lie bracket (pre-Lie identity = Jacobi identity)
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Lie Algebra of an Affine Group Scheme

e functor g : Algg — Lie from category of commutative algebras
over K to category of Lie algebras

@ g(A) linear maps L : H — A such that

L(xy) = L(x)e(y) + e(x)L(y), Vx,y €
@ Lie bracket
[L1, La](x) = (L1 ® Ly — Loy ® L1)(A(x))
e Milnor—Moore theorem: for a commutative graded connected

(Ho = K) Hopf algebra the affine group scheme G dual to H is
completely determined by its Lie algebra g
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Hopf algebra of Feynman graphs

e commutative algebra generated by all the 1Pl graphs G of the
QFT (polynomial algebra in the G)

e comultiplication A : H — H ® H (coassociative,
non-cocommutative)

AG)=GR1+18G+ Y v®G/y
yCG

e Example:
a(<D-) 16 <D+ <D e1+2<J o <O

e antipode (related algebra and coalgebra structure) constructed
inductively on number of edges (or loops)
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Hopf algebra and Lie algebra

o H = ®p>0Hn with Hg = C connected commutative graded Hopf
algebra

e A = commutative algebra, Hom(H, A) = G(A) is a group

e the Hopf algebra H is determined by the Lie algebra £ of G(C)
e insertion of graphs is a pre-Lie operator = Lie algebra

e insertion Lie algebra of Feynman graphs

e given two graphs Gi, Gp: count in how many ways can insert one
into the other at a vertex (so that external edges glued to corolla
of edges at the vertex)
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e Examples of graph insertions:

O

gives pre-Lie structure

M.Marcolli
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Lie algebra of Feynman graphs
e Lie bracket

[G,Gl= Y Go, G- > (o6,

veV(G) VEV(G)

sum over vertices and counting all possible ways of inserting the
other graph at that vertex matching external edges
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Comparison between Hopf algebra and Formal Languages
viewpoint in Physics
o Matilde Marcolli, Alexander Port, Graph grammars, insertion
Lie algebras, and quantum field theory, Math. Comput. Sci. 9
(2015), no. 4, 391-408.

Graph Grammars and Quantum Field Theory
e Example of a different setting where formal languages can be
applied, with a different class of formal grammars (graph
grammars)
Graph Grammars main results:
© Any context free graph grammar determines an insertion Lie
algebra and a commutative Hopf algebra

@ Feynman graphs of a QFT are a graph language
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Graph Grammars

Formal languages adapted to parallelism in computation

e instead of linear languages: strings in an alphabet obtained by
production rules of a grammar

e grammars that produce a language consisting of

a family of graphs

e production rules that substitute parts of a graph with
other parts (gluing)

e an initial graph as starting point

e edge and vertex labels by terminal and non-terminal symbols
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Graphs
Two main ways of thinking about graphs:
First description:

e V(G) = set of vertices; E(G) = set of edges;
J0:E(G)— V(G) x V(G)

e if G is oriented (directed) then source and target
s,t: E(G) — V(G)

e Yy, X sets of vertex and edge labels; Ly g : V(G) = Lv,
Le : E(G) — X assignment of labels
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Second description:

e C(G) = set of corollas with assigned valences
(a vertex with n half-edges)

e F(G) = set of all half-edges
e involution: Z : F(G) — F(G)

e edges: pairs (f, f") with f # " in F(G) with Z(f) = f'
(an edge is a gluing of two half edges)

e external edges: f € F(G) fixed by the involution Z
(half-edges not matched to anything else)

e assignment of labels Lr ¢ : F(G) = Xr and Ly g : C(G) = Xy
Lrcol=L1Lrc

(the involution must match labels)
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Graph Grammar

(NE7 NVa TE7 TV7 P7 GS)

e edge labels: X g = Ng U Tg non-terminal and terminal
e vertex labels: Xy = Ny U Ty non-terminal and terminal
e Gg = start graph

e P = production rules: a finite set
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Production rules of a Graph Grammar

P = (G, Ggr,H)

e G; = labelled graph (l.h.s. of production)
e Gr = labelled graph (r.h.s. of production)
e H = labelled graph with label preserving isomorphisms

¢L - H E) ¢L(H) C GL, ¢R :H E} ¢R(H) C GR

(isomorphic subgraphs in G, and Gg)

Meaning: the production rule searches for a copy of G, inside a
given graph G and glues in a copy of Gg by identifying them along
the common subgraph H
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Context-free Graph Grammars

e when all production rules P = (G, Gg, H) have

Gy (hence H) a single vertex

e Chomsky hierarchy for Graph Grammar (different from the one
for linear languages) was identified in

e M. Nagl, Graph-Grammatiken: Theorie, Implementirung,
Anwendung, Vieweg, 1979
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References on Graph Grammars

e H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of
algebraic graph transformation. New York: Springer, 2010.

e H. Ehrig, H.J. Kreowski, G. Rozenberg, Graph-grammars and
their application to computer science, Lecture Notes in
Computer Science, Vol. 532, Springer, 1990.

@ G. Rozenberg, Handbook of Graph Grammars and Computing
by Graph Transformation. Volume 1: Foundations, World
Scientific, 1997.
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Comparing generative processes in QFT

o A. Connes, D. Kreimer, Insertion and elimination: the doubly
infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3
(2002), no. 3, 411-433.

@ K. Ebrahimi-Fard, J.M. Gracia-Bondia, F. Patras. A Lie
theoretic approach to renormalization. Commun. Math. Phys
276, no. 2 (2007): 519-549.

e M. Bachmann, H. Kleinert, A. Pelster, Recursive graphical
construction for Feynman diagrams of quantum
electrodynamics, Phys.Rev. D61 (2000) 085017.

o H. Kleinert, A. Pelster, B. Kastening, M. Bachmann,
Recursive graphical construction of Feynman diagrams and
their multiplicities in ¢* and in $?A theory, Phys.Rev. E62
(2000) 1537-1559.
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From context free Graph Grammars to Insertion Lie Algebras

e Insertion Graph Grammar consists of data
(NE> NVa TE7 TV7 P7 GS)

edge labels g = Ng U Tg, nonterminal and tarminal, vertex labels
is given Xy = Ny, U Ty, start graph is Gs and production rules

P = (G, H, Gg), with G, and Gg labelled graphs and H a labelled
graph with isomorphisms

oL HS ¢ (H)C G, ¢r:HS ¢r(H) C Gg.

¢y label preserving

e production P = (Gy, H, Gg) searches for a copy of G| inside a
graph G and glues in a copy of Gg identifying them along common
subgraph H, new labels matching those of ¢r(H)

e context free if G, = {v} (hence H = {v} also)
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e formulation in terms of graphs as corollas and matched half-edges
e production rules P = (G, H, Gg) as before with additional
requirement that ¢; (Eext(H, Gr)) C Eext(Gr, G) and
OR(Eext(H, GL)) C Eext(GR), for any G the production rule is
applied to, G, C G
e here gluing two graphs G; Uy G; along common subgraph H by
corollas

Ce,uy6. = Cg, Uey, Cop,
identifying corollas around each vertex of H in G; and Gg and
matching half-edges by involution
e here context-free: G; = H = C(v) corolla of a vertex v, and all
vertices of graphs in the graph language have same valence
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Insertion Operator and Lie Algebra
e given a context-free insertion graph grammar G

e )V vector space spanned by set Wy of all the graphs obtained by
repeated application of production rules starting with Gs (not
same as graph language Lg because also nonterminal labels)

e insertion operator <: V®V — V

G1 N G2 = Z P(V, V2, GQ)(Gl) = Z G1 <y G2
veV(Gr) veV(Gr)

defines a pre-Lie structure on V

e Lie algebra Lieg vector space V spanned graphs of Wy with Lie
bracket [Gl, Gg] =G1<4G — G <Gy

e there is also a version using corollas, and there are versions for
context-sensitive cases
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The Graph Language of a Quantum Field Theory

e Note: this is not the same construction as the Lie algebra of the
Connes—Kreimer Hopf algebra (because that would require an
infinite number of production rules: generated by all primitive
elements of the Hopf algebra

e This method based on just finitely many production rules that
realize all Feynman graphs of a given QFT as the graph language
of a graph grammar
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Example: Feynman graph language of ¢*-theory

e quantum field theory with Lagrangian
Lol oo 1y
£(8) = 500 + 5m 6% + 10

Feynman graphs have all vertices of valence four
e graph language Lg generated by a graph grammar G with Gs a
4-valent corolla and two production rules:

Q@ P(Gs,{f,f'} C Fg,, Ge) glues two external edges of Gs

Q P(Gs,{f} C Fgy, Gs U Ge) glues two copies of Gs
along an edge
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Example: Feynman graph language of ¢*-theory

+ 5 X > Q0

A
>Q<\

S




Example: other scalar field theory examples ¢ and ¢*

e scalar field theory with Lagrangian
_ 1 20, 1 o0 1, 3 1. 4
£(6) = 5001 + 3m2 6 + a6 + 5 M6

e start graph Gs given by a k-valent corolla, for smallest k in
interaction Lagrangian (here k = 3) and production rules
Q@ P(Gs,{f,f'} C Fg,, Ge) gluing two external edges of Gs
@ P(Gs, Ge, Gs ) gluing a copy of G (edge propagator) to
start graph Gs one half-edge of G, with one half-edge of Gg
other half edge f as new external edge
© P(Gsfi,...io {fi} C Fos, Gsifi.....f, Us=r Gs y,....17) gluing
along an edge two corollas Gs ¢ . ¢ and Gs,fl/’._’ /

s
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terms

Example: ¢3 and ¢*




Example: Feynman graph language of ¢?A-theory

e similar to a 3 theory but with two fields A and ¢ (similar to
electrodynamics) with a cubic interaction term ¢?A

e all graphs have trivalent vertices: corolla with one A-labelled
half-edge and two ¢-labelled half-edges

e graph grammar with initial graph that is more complicated than
a corolla: two vertices connected by one A-edge and each with two
¢ half-edges and two production rules (gluing two ¢ half-edges;
gluing two copies of initial graph along a ¢-edge)
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Example: Feynman graph language of ¢2A-theory
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Intermediate step Manin’s Renormalization and Computation

@ Yu.l. Manin, Renormalization and computation |: motivation
and background. OPERADS 2009, 181-222, Sémin. Congr.,
26, Soc. Math. France, Paris, 2013

@ Yu.l. Manin, Infinities in quantum field theory and in classical
computing: renormalization program, Programs, proofs,
processes, 307-316, Lecture Notes in Comput. Sci., 6158,
Springer, 2010.

@ Yu.l. Manin, Renormalization and computation Il: time cut-off
and the halting problem, Math. Struct. in Comp. Science,
vol. 22, pp. 729-751, Cambridge University Press, 2012

o C. Delaney, M. Marcolli, Dyson-Schwinger equations in the
theory of computation, Feynman amplitudes, periods and
motives, pp. 79-107, Contemp. Math., 648, Amer. Math.
Soc., 2015.
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Manin's “renormalization and computation”
e Idea: treat noncomputable functions like infinities in QFT

e Renormalization = extraction of finite part from divergent
Feynman integrals; extraction of “computable part” from
noncomputables

e First step: build a Hopf algebra (flow charts) and a Feynman rule
that detects the presence of noncomputability (infinities)

e Second step: BPHZ type Birkhoff factorization procedure to
identify where undecidable part of computation is located in
substructures and which quotient structures remain computable
after “removal of infinities”
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Primitive recursive functions
e generated by basic functions
@ Successor s : N — N, s(x) = x+1;
e Constant ¢" : N" = N, ¢"(x) =1 (for n > 0);
@ Projection 77 : N” — N, 77(x) = x; (for n > 1);
e with elementary operations
o Composition
@ Bracketing

@ Recursion
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Elementary operations:
e Composition ¢(m m p): for f: N — N", g : N — NP,

gof:N" NP, D(gof)=Ff1D(g))
@ Bracketing bk m.n): for fi : N™ — N% /=1,... k,
f=(h,...,f) : NT = N F0 D(F) = D(R)N- - -ND(f);
@ Recursion t,: for f : N” — N and g : N™*2 & N,
h(x1,. .., %Xn, 1) = F(X1,.. ., Xn),

h(x1,...,%n k+1) ;== g(x1, ..., X0, k, h(x1, ..., Xn, k), k>1,

where recursively (xi,...,xn, 1) € D(h) iff (x1,...,xn) € D(f)
and (xi,...,xn, k+ 1) € D(h) iff
(Xl7 <oy Xny k7 h(X17 <oy Xny k) € D(g)
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Manin's Hopf algebra of flow charts

e planar labelled rooted trees (bracketing and recursion are
ordered: need planar)

e label set of vertices Dy = {¢(m np) O(k,m,n;)> tn} (composition,
bracketing, recursion)

e label set of flags D primitive recursive functions

e admissible labelings:

@ dv(V) = ¢(m,np): v valence 3; labels hy = ¢r(f1), ho = ¢dr(f2)
incoming flags with domains and ranges h; : N™ — N” and
hy : N" — NP; outgoing flag composition hy 0 hy = ¢(m,n p)(h1, h2).

@ ¢v(v) =rt, v valence 3; labels hy = ¢r(f1), hy = ¢£(f2) incoming
flags with domains and ranges h; : N” — N and h, : N"*2 — N,
outgoing flag recursion h = t,(hy, hy).

@ ¢v(v) = by mn): v must have valence k + 1; labels h; = ¢¢(f;)

incoming flags with domain N"; outgoing flag bracketing
F=(fr . ) = Opemmy(fs . o).

e Coproduct, grading, antipode from Hopf algebra of rooted trees
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Variants on the Hopf algebra of flow charts

e noncommutative Hopf algebra Hﬂowp

e Hopf algebra with only vertex labels Hgc ,

e Use only binary operations (valence 3 vertlces): express
bracketing as a composition of binary operations

b(kvmvni) = b(27m7n17”2+"'+nk) 00 b(27m7nk—17”k)
e Extend composition and recursion to k-ary operations

@ k-ary compositions ¢(x,m,n,)(hi) = hx o --- o hy of functions
hi : N"i-t — N" fori=1,...,k, with np =m

@ (k + 1)-ary recursions with k initial conditions:
h(x1y ..oy Xny 1) = (X1, ey Xn)s - -
h(xt, .y Xn, k) = he(x1, -+ s Xn),
h(xt, ..., xn, k+0) =

hk+1(X1,. .. ,X,,,hl(Xl,. .. ,X,,),. . .,hk(Xh. .. ,X,,)7 k+¢— 1),
for¢>1
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Partial recursive functions and the Hopf algebra

e enlarge from primitive recursive to partial recursive: same
elementary operations ¢, b, t of composition, bracketing and
recursion but additional p operation

e /i operation: input function f : N1 — N, output
h:N" =N, h(xi,...,xn) = min{xp1|f(x1,...,Xn+1) = 1},
with domain D(h) those (x1,...,xp) such that Ix,41 > 1

f(x1y. . xng1) =1, with (x1,...,xn, k) € D(f),Vk < Xpt1

e Church’s thesis: get all semi-computable functions, for which 3
program computing f(x) for x € D(f) and never stops for

x ¢ D(f)

e Hopf algebra: additional vertex decoration by . operations,
extended to arbitrary valence by combining with bracketing; edge
decorations by partial recursive functions
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Manin's proposal of possible types of Feynman rules for
computation

e B algebra of functions ® : N& — M(D) from N¥, for some k, to
algebra M(D) of analytic functions in unit disk

D={zeC: |z| <1}

e Rota—Baxter operator T on 3 componentwise projection onto
polar partat z=1

e For any tree 7 that computes f set

n

z
O, (k,2) = O(k, f,2) =Y o
2 [T o0
f:N™ — Zso computes f(x) at x € D(f) and 0 at x ¢ D(f).
e & (k,z) pole at z =1 iff k ¢ D(f)
e this ® is algebraic Feynman rule: commutative algebra

homomorphism from enlarged Hopf algebra of flow charts to
Rota—Baxter algebra B
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Birkhoff factorization
e negative part of Birkhoff factorization becomes

CD—(K? fT’Z) = + Z b_(k, 7rC(T)7Z)¢( pc(r) Z ))
e Note: f = f label of outgoing flag of 7: then f, ;) = f;
¢_(k,a,z)=—T<¢(k .21+ (kY fro(r) 2 )

C

e What is happening here? Like in QFT, looking not only at
“divergences” of program 7 but also of all subprograms m¢(7) and
pc(7) determined by admissible cuts (the problem of
subdivergences in renormalization)
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Why subdivergences in computation?

e ®_(k,f:, z) detects not only if 7 has infinities but if any
subroutine does

e Note: ®(k, -, z) only depends on f = f; not on 7, but
&_(k, f;, z) really depends on T

e Unlike QFT there are programs without divergences that do have
subdivergences

Note: Useful viewpoint: every partial recursive function can be
computed by a Hopf-primitive program: Kleene normal form as u
of a total function

e this general idea on Renormalization and Computation remains
to be developed... but it serves as a useful conceptual intermediate
step between the physics of QFT and the syntax-semantics
interface model for generative linguistics
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