
Lecture 10: Comparison with Physics
Ma 191c: Mathematical Models of Generative

Linguistics

Matilde Marcolli

Caltech, Spring 2024

M.Marcolli Mathematics & Linguistics

Generative structures in physics:
perturbative Quantum Field Theory (QFT)

perturbative expansion of computation of Feynman integrals

contributions labelled by graphs (Feynman graphs of the QFT)

order of the expansion = loop order = first Betti number of
graphs

contribution of each graph an integral in momenta associated
to (internal) edges; external edges incoming/outgoing
momenta; momentum conservation at vertices

integral often divergent: renormalization to extract finite
meaningful physical values

consistency over substructures for renormalization

M.Marcolli Mathematics & Linguistics

Linguistic Merge versus Physical DS equations: a useful parallel

in quantum field theory we have a generative process involving
graphs (Feynman graphs)

can be described in terms of formal languages
(using graph grammars)

however not the best way to think of Feynman graphs

Hopf algebra structure: product ⊔, coproduct
∆(Γ) =

∑
γ ⊗ Γ/γ subgraphs and quotient graphs

(Connes-Kreimer)

better for factorization problems (extraction of meaningful
physical values = renormalization) with consistency across
subgraphs

better for recursive solutions of equations of motion
X = B(P(X)) Dyson–Schwinger equation

known in QFT that solutions of DS are the quantum
implementation of the “least action principle” for classical
solutions: optimization

M.Marcolli Mathematics & Linguistics

Formal languages formulation (graph grammars)

Example: formal languages approach – the generative grammar for the Feynman

graphs of the ϕ2A physical theory (graph grammars: usually context sensitive)

M.Marcolli Mathematics & Linguistics

Formal languages formulation

M. Marcolli, A. Port, Graph grammars, insertion Lie algebras, and
quantum field theory, Math. Comput. Sci. 9 (2015), no. 4,
391–408.

Hopf algebra formulation

D. Kreimer, On the Hopf algebra structure of perturbative quantum
field theories, Adv. Theor. Math. Phys. 2 (1998), no. 2, 303–334

A. Connes, D. Kreimer, Hopf algebras, renormalization and
noncommutative geometry, Comm. Math. Phys. 199 (1998), no. 1,
203–242.

Example: the generative structure of Feynman graphs encoded in
the coproduct and the antipode of a Hopf algebra

M.Marcolli Mathematics & Linguistics

Dyson-Schwinger equations also formulated in terms of the Hopf
algebra structure

Examples: recursive solutions of Dyson–Schwinger equations in
quantum electrodynamics

M.Marcolli Mathematics & Linguistics

From Renormalization to Syntax-Semantics Interface

the formalism of Hopf algebras and extraction of finite parts
was adapted to the theory of computation (Manin, 2009) as
extraction of computable parts from undecidable problems

“extraction of meaning” (finite values from divergent integrals
in physics; computable parts of non-computable functions in
theory of computation) via the formalism of renormalization
(factorization of maps from Hopf algebras to Rota–Baxter
algebras)

suggests a possible strategy to extend the computational
model of syntax to a computational model of the
syntactic-semantic interface

...this comparison is the base for our construction of a
syntax-semantics interface model

M.Marcolli Mathematics & Linguistics

Quick overview of the physics setting for comparison

Setting of Perturbative Quantum Field Theory
• Action functional in D dimensions

S(ϕ) =

∫
L(ϕ)dDx = S0(ϕ) + Sint(ϕ)

• Lagrangian density

L(ϕ) = 1

2
(∂ϕ)2 − m2

2
ϕ2 − Lint(ϕ)

• Perturbative expansion: Feynman rules and Feynman diagrams

Seff (ϕ) = S0(ϕ) +
∑
Γ

Γ(ϕ)

#Aut(Γ)
(1PI graphs)

M.Marcolli Mathematics & Linguistics

Algebraic renormalization in perturbative QFT

A. Connes, D. Kreimer, Renormalization in quantum field
theory and the Riemann-Hilbert problem, I and II,
hep-th/9912092, hep-th/0003188

A. Connes, M. Marcolli, Renormalization, the Riemann-Hilbert
correspondence, and motivic Galois theory, hep-th/0411114

K. Ebrahimi-Fard, L. Guo, D. Kreimer, Integrable
Renormalization II: the general case, hep-th/0403118

M.Marcolli Mathematics & Linguistics

Two step procedure:

• Regularization: replace divergent integral U(Γ) by
function with poles
• Renormalization: pole subtraction with consistency over
subgraphs (Hopf algebra structure)

• Kreimer, Connes–Kreimer, Connes–Marcolli: Hopf algebra of
Feynman graphs and BPHZ renormalization method in terms of
Birkhoff factorization and differential Galois theory

• Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms
of Rota–Baxter algebras

M.Marcolli Mathematics & Linguistics

Connes–Kreimer Hopf algebra H = H(T) (depends on theory)

• Free commutative algebra in generators Γ 1PI Feynman graphs

• Grading: loop number (or internal lines)

deg(Γ1 · · · Γn) =
∑
i

deg(Γi), deg(1) = 0

• Coproduct:

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ∈V(Γ)

γ ⊗ Γ/γ

• Antipode: inductively

S(X) = −X −
∑

S(X ′)X ′′

for ∆(X) = X ⊗ 1 + 1⊗ X +
∑

X ′ ⊗ X ′′

M.Marcolli Mathematics & Linguistics

Rota–Baxter algebra of weight λ = −1

R commutative unital algebra
T : R → R linear operator with

T (x)T (y) = T (xT (y)) + T (T (x)y) + λT (xy)

• typical case: R = C[[z]][z−1] Laurent series and T = projection
on the polar part

• T determines splitting R+ = (1− T)R, R− = unitization of
TR; both R± are algebras

M.Marcolli Mathematics & Linguistics

Feynman rule

• ϕ : H → R commutative algebra homomorphism

• assignment of regularized but not yet renormalized values to
Feynman graphs: regularized value is a Laurent series, original
divergent integral is the pole at z = 0

from CK Hopf algebra H to Rota–Baxter algebra R weight −1

ϕ ∈ HomAlg(H,R)

• Note: ϕ does not know that H Hopf and R Rota-Baxter, only
commutative algebras

M.Marcolli Mathematics & Linguistics

• Birkhoff factorization ∃ϕ± ∈ HomAlg(H,R±)

ϕ = (ϕ− ◦ S) ⋆ ϕ+

where ϕ1 ⋆ ϕ2(X) = ⟨ϕ1 ⊗ ϕ2,∆(X)⟩
• Connes-Kreimer inductive formula for Birkhoff factorization:

ϕ−(X) = −T (ϕ(X) +
∑

ϕ−(X
′)ϕ(X ′′))

ϕ+(X) = (1− T)(ϕ(X) +
∑

ϕ−(X
′)ϕ(X ′′))

where ∆(X) = 1⊗ X + X ⊗ 1 +
∑

X ′ ⊗ X ′′

• Recovers what known in physics as BPHZ renormalization
procedure in physics

• case of Laurent series Φ+(X)(z) is in C[[z]] so Φ+(0) exists and
is the renormalized value; Φ−(X)(z) is divergent at z = 0:
counterterms, subtraction of divergences...

M.Marcolli Mathematics & Linguistics

Connes–Kreimer Hopf algebra of rooted trees

polynomial algebra generated by the planar rooted trees T

coproduct: sum over all admissible cuts

∆(T) = T ⊗ 1 + 1⊗ T +
∑
C

πC (T)⊗ ρC (T)

grading by span of the planar rooted trees with k internal
vertices

antipode defined inductively on graded bialgebras

used as reformulation of the Connes–Kreimer Hopf algebra of
Feynman graphs in perturbative QFT

M.Marcolli Mathematics & Linguistics

Combinatorial Dyson–Schwinger equations

C. Bergbauer and D. Kreimer, Hopf algebras in
renormalization theory: locality and Dyson-Schwinger
equations from Hochschild cohomology, hep-th/0506190

K. Yeats, Rearranging Dyson-Schwinger Equations, AMS
2011.

L. Foissy, Classification of systems of Dyson-Schwinger
equations of the Hopf algebra of decorated rooted trees, Adv.
Math. 224 (2010), no. 5, 2094–2150

L. Foissy, Lie algebras associated to systems of
Dyson-Schwinger equations, Adv. Math. 226 (2011), no. 6,
4702–4730.

M.Marcolli Mathematics & Linguistics

Dyson–Schwinger equations and Hopf subalgebras
• If grafting operator satisfies cocycle condition, then solutions of
Dyson–Schwinger equations form a Hopf subalgebra

Insertion and Hochschild 1-cocycles

• T =forest: grafting operator B+
δ (T) = sum of planar trees with

new root vertex added with incoming flags equal number of trees
in T and a single output flag and decoration δ

• cocycle condition:

∆B+
δ = (id ⊗ B+

δ)∆ + B+
δ ⊗ 1

equivalent to ∆̃B+
δ = (id ⊗ B+

δ)∆̃ + id ⊗ B+
δ (1) with

∆̃(x) :=
∑

x ′ ⊗ x ′′ (non-primitive part) and B+
δ (1) = vδ (single

vertex, label δ): first term admissible cuts root vertex attached to
ρC (T), second term admissible cut separating root vertex.

M.Marcolli Mathematics & Linguistics

Dyson–Schwinger equations and Hopf subalgebras
(Bergbauer–Kreimer)

• Dyson–Schwinger equations in a Hopf algebra of the form

X = 1 +
∞∑
n=1

cn B
+
δ (X n+1)

• associative algebra A (subalgebra of H) generated by
components xn of unique solution of DS equation

• using cocycle condition for B+
δ get

∆(xn) =
n∑

k=0

Πn
k ⊗ xk , where Πn

k =
∑

j1+···+jk+1=n−k

xj1 · · · xjk+1

⇒ Hopf subalgebra

• generalized by Foissy for broader class of DS equations in Hopf
algebras, including systems

M.Marcolli Mathematics & Linguistics

Variant: Hopf ideals

• DS equation X = 1 +
∑∞

n=1 cn B
+
δ (X n+1)

• ideal I generated by the components xn (with n ≥ 1) of solution

• cocycle condition for B+
δ ⇒ I Hopf ideal

elements of I finite sums
∑M

m=1 hmxkm with hm ∈ H and xk
components of unique solution of DS equation

Hopf ideal condition: ∆(I) ⊂ I ⊗H⊕H⊗ I
coproduct ∆(xk): primitive part 1⊗ xk + xk ⊗ 1 in H⊗I ⊕ I ⊗H; other

terms in I ⊗ I, so coproducts ∆(hmxkm) in H⊗ I ⊕ I ⊗H.

⇒ quotient Hopf algebra HI = H/I

Note: commutative Hopf algebra; if noncommutative use two-sided ideals

M.Marcolli Mathematics & Linguistics

Hopf algebras and Lie algebras in QFT

Connes-Kreimer Hopf algebra HCK of Feynman graphs is
graded connected and commutative

dual to an affine group scheme GCK

Milnor–Moore theorem: dual Hopf algebra is the universal
enveloping algebra of the Lie algebra of primitive elements

H∨
CK = U(gCK)

The Lie bracket of the Lie algebra gCK is described by
insertions at vertices

M.Marcolli Mathematics & Linguistics

Lie algebras and pre-Lie structures

• Lie algebra: vector space V with bilinear bracket [·, ·] operation
with [x , y] = −[y , x] and Jacobi identity

[x , [y , z]] + [z , [x , y]] + [y , [z , x]] = 0.

• tangent space at the identity of a Lie group is a Lie algebra

• pre-Lie structure: a bilinear map ⋆ : V ⊗ V → V on a vector
space V

(x ⋆ y) ⋆ z − x ⋆ (y ⋆ z) = (x ⋆ z) ⋆ y − x ⋆ (z ⋆ y)

identity of associators under y ↔ z

• Given a pre-Lie structure

[x , y] = x ⋆ y − y ⋆ x

is a Lie bracket (pre-Lie identity ⇒ Jacobi identity)

M.Marcolli Mathematics & Linguistics

Lie Algebra of an Affine Group Scheme

• functor g : AlgK → Lie from category of commutative algebras
over K to category of Lie algebras

g(A) linear maps L : H → A such that

L(xy) = L(x)ϵ(y) + ϵ(x)L(y), ∀x , y ∈ H

Lie bracket

[L1, L2](x) = (L1 ⊗ L2 − L2 ⊗ L1)(∆(x))

• Milnor–Moore theorem: for a commutative graded connected
(H0 = K) Hopf algebra the affine group scheme G dual to H is
completely determined by its Lie algebra g

M.Marcolli Mathematics & Linguistics

Hopf algebra of Feynman graphs

• commutative algebra generated by all the 1PI graphs G of the
QFT (polynomial algebra in the G)

• comultiplication ∆ : H → H⊗H (coassociative,
non-cocommutative)

∆(G) = G ⊗ 1 + 1⊗ G +
∑
γ⊂G

γ ⊗ G/γ

• Example:

• antipode (related algebra and coalgebra structure) constructed
inductively on number of edges (or loops)

M.Marcolli Mathematics & Linguistics

Hopf algebra and Lie algebra

• H = ⊕n≥0Hn with H0 = C connected commutative graded Hopf
algebra

• A = commutative algebra, Hom(H,A) = G(A) is a group

• the Hopf algebra H is determined by the Lie algebra L of G(C)

• insertion of graphs is a pre-Lie operator ⇒ Lie algebra

• insertion Lie algebra of Feynman graphs

• given two graphs G1,G2: count in how many ways can insert one
into the other at a vertex (so that external edges glued to corolla
of edges at the vertex)

M.Marcolli Mathematics & Linguistics

• Examples of graph insertions:

gives pre-Lie structure

M.Marcolli Mathematics & Linguistics

Lie algebra of Feynman graphs

• Lie bracket

[G ,G ′] =
∑

v∈V (G)

G ◦v G ′ −
∑

v ′∈V (G ′)

G ′ ◦v ′ G ,

sum over vertices and counting all possible ways of inserting the
other graph at that vertex matching external edges

M.Marcolli Mathematics & Linguistics

Comparison between Hopf algebra and Formal Languages
viewpoint in Physics

Matilde Marcolli, Alexander Port, Graph grammars, insertion
Lie algebras, and quantum field theory, Math. Comput. Sci. 9
(2015), no. 4, 391–408.

Graph Grammars and Quantum Field Theory
• Example of a different setting where formal languages can be
applied, with a different class of formal grammars (graph
grammars)

Graph Grammars main results:

1 Any context free graph grammar determines an insertion Lie
algebra and a commutative Hopf algebra

2 Feynman graphs of a QFT are a graph language

M.Marcolli Mathematics & Linguistics

Graph Grammars

Formal languages adapted to parallelism in computation

• instead of linear languages: strings in an alphabet obtained by
production rules of a grammar

• grammars that produce a language consisting of
a family of graphs

• production rules that substitute parts of a graph with
other parts (gluing)

• an initial graph as starting point

• edge and vertex labels by terminal and non-terminal symbols

M.Marcolli Mathematics & Linguistics

Graphs

Two main ways of thinking about graphs:

First description:

• V (G) = set of vertices; E (G) = set of edges;
∂ : E (G) → V (G)× V (G)

• if G is oriented (directed) then source and target
s, t : E (G) → V (G)

• ΣV , ΣE sets of vertex and edge labels; LV ,G : V (G) → ΣV ,
LE ,G : E (G) → ΣE assignment of labels

M.Marcolli Mathematics & Linguistics

Second description:

• C (G) = set of corollas with assigned valences
(a vertex with n half-edges)

• F(G) = set of all half-edges

• involution: I : F(G) → F(G)

• edges: pairs (f , f ′) with f ̸= f ′ in F(G) with I(f) = f ′

(an edge is a gluing of two half edges)

• external edges: f ∈ F(G) fixed by the involution I
(half-edges not matched to anything else)

• assignment of labels LF ,G : F(G) → ΣF and LV ,G : C (G) → ΣV

LF ,G ◦ I = LF ,G

(the involution must match labels)

M.Marcolli Mathematics & Linguistics

Graph Grammar

(NE ,NV ,TE ,TV ,P,GS)

• edge labels: ΣE = NE ∪ TE non-terminal and terminal

• vertex labels: ΣV = NV ∪ TV non-terminal and terminal

• GS = start graph

• P = production rules: a finite set

M.Marcolli Mathematics & Linguistics

Production rules of a Graph Grammar

P = (GL,GR ,H)

• GL = labelled graph (l.h.s. of production)

• GR = labelled graph (r.h.s. of production)

• H = labelled graph with label preserving isomorphisms

ϕL : H
≃→ ϕL(H) ⊂ GL, ϕR : H

≃→ ϕR(H) ⊂ GR

(isomorphic subgraphs in GL and GR)

Meaning: the production rule searches for a copy of GL inside a
given graph G and glues in a copy of GR by identifying them along
the common subgraph H

M.Marcolli Mathematics & Linguistics

Context-free Graph Grammars

• when all production rules P = (GL,GR ,H) have
GL (hence H) a single vertex

• Chomsky hierarchy for Graph Grammar (different from the one
for linear languages) was identified in

M. Nagl, Graph-Grammatiken: Theorie, Implementirung,
Anwendung, Vieweg, 1979

M.Marcolli Mathematics & Linguistics

References on Graph Grammars

H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of
algebraic graph transformation. New York: Springer, 2010.

H. Ehrig, H.J. Kreowski, G. Rozenberg, Graph-grammars and
their application to computer science, Lecture Notes in
Computer Science, Vol. 532, Springer, 1990.

G. Rozenberg, Handbook of Graph Grammars and Computing
by Graph Transformation. Volume 1: Foundations, World
Scientific, 1997.

M.Marcolli Mathematics & Linguistics

Comparing generative processes in QFT

A. Connes, D. Kreimer, Insertion and elimination: the doubly
infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3
(2002), no. 3, 411–433.

K. Ebrahimi-Fard, J.M. Gracia-Bondia, F. Patras. A Lie
theoretic approach to renormalization. Commun. Math. Phys
276, no. 2 (2007): 519-549.

M. Bachmann, H. Kleinert, A. Pelster, Recursive graphical
construction for Feynman diagrams of quantum
electrodynamics, Phys.Rev. D61 (2000) 085017.

H. Kleinert, A. Pelster, B. Kastening, M. Bachmann,
Recursive graphical construction of Feynman diagrams and
their multiplicities in ϕ4 and in ϕ2A theory, Phys.Rev. E62
(2000) 1537–1559.

M.Marcolli Mathematics & Linguistics

From context free Graph Grammars to Insertion Lie Algebras

• Insertion Graph Grammar consists of data

(NE ,NV ,TE ,TV ,P,GS)

edge labels ΣE = NE ∪TE , nonterminal and tarminal, vertex labels
is given ΣV = NV ∪ TV , start graph is GS and production rules
P = (GL,H,GR), with GL and GR labelled graphs and H a labelled
graph with isomorphisms

ϕL : H
≃→ ϕL(H) ⊂ GL, ϕR : H

≃→ ϕR(H) ⊂ GR .

ϕL label preserving

• production P = (GL,H,GR) searches for a copy of GL inside a
graph G and glues in a copy of GR identifying them along common
subgraph H, new labels matching those of ϕR(H)

• context free if GL = {v} (hence H = {v} also)

M.Marcolli Mathematics & Linguistics

• formulation in terms of graphs as corollas and matched half-edges

• production rules P = (GL,H,GR) as before with additional
requirement that ϕL(Eext(H,GR)) ⊂ Eext(GL,G) and
ϕR(Eext(H,GL)) ⊂ Eext(GR), for any G the production rule is
applied to, GL ⊂ G

• here gluing two graphs GL ∪H GL along common subgraph H by
corollas

CGL∪HGL
= CGL

∪CH
CGR

,

identifying corollas around each vertex of H in GL and GR and
matching half-edges by involution

• here context-free: GL = H = C (v) corolla of a vertex v , and all
vertices of graphs in the graph language have same valence

M.Marcolli Mathematics & Linguistics

Insertion Operator and Lie Algebra
• given a context-free insertion graph grammar G
• V vector space spanned by set WG of all the graphs obtained by
repeated application of production rules starting with GS (not
same as graph language LG because also nonterminal labels)

• insertion operator ◁ : V ⊗ V → V

G1 ◁ G2 =
∑

v∈V (G1)

P(v , v2,G2)(G1) =
∑

v∈V (G1)

G1 ◁v G2

defines a pre-Lie structure on V
• Lie algebra LieG vector space V spanned graphs of WG with Lie
bracket [G1,G2] = G1 ◁ G2 − G2 ◁ G1

• there is also a version using corollas, and there are versions for
context-sensitive cases

M.Marcolli Mathematics & Linguistics

The Graph Language of a Quantum Field Theory

• Note: this is not the same construction as the Lie algebra of the
Connes–Kreimer Hopf algebra (because that would require an
infinite number of production rules: generated by all primitive
elements of the Hopf algebra

• This method based on just finitely many production rules that
realize all Feynman graphs of a given QFT as the graph language
of a graph grammar

M.Marcolli Mathematics & Linguistics

Example: Feynman graph language of ϕ4-theory

• quantum field theory with Lagrangian

L(ϕ) = 1

2
(∂ϕ)2 +

1

2
m2 ϕ2 +

1

4!
λϕ4

Feynman graphs have all vertices of valence four

• graph language LG generated by a graph grammar G with GS a
4-valent corolla and two production rules:

1 P(GS , {f , f ′} ⊂ FGS
,Ge) glues two external edges of GS

2 P(GS , {f } ⊂ FGS
,GS ∪f ′ Ge) glues two copies of GS

along an edge

M.Marcolli Mathematics & Linguistics

Example: Feynman graph language of ϕ4-theory

M.Marcolli Mathematics & Linguistics

Example: other scalar field theory examples ϕ3 and ϕ4

• scalar field theory with Lagrangian

L(ϕ) = 1

2
(∂ϕ)2 +

1

2
m2 ϕ2 +

1

6
λ3 ϕ

3 +
1

24
λ4 ϕ

4

• start graph GS given by a k-valent corolla, for smallest k in
interaction Lagrangian (here k = 3) and production rules

1 P(GS , {f , f ′} ⊂ FGS
,Ge) gluing two external edges of GS

2 P(GS ,Ge ,GS ,f) gluing a copy of Ge (edge propagator) to
start graph GS one half-edge of Ge with one half-edge of GS

other half edge f as new external edge

3 P(GS ,f1,...,fr , {fi} ⊂ FGS
,GS,f1,...,fr ∪fi=f ′j

GS,f ′1 ,...,f
′
s
) gluing

along an edge two corollas GS,f1,...,fr and GS ,f ′1 ,...,f
′
s

M.Marcolli Mathematics & Linguistics

Example: ϕ3 and ϕ4 terms

M.Marcolli Mathematics & Linguistics

Example: Feynman graph language of ϕ2A-theory

• similar to a ϕ3 theory but with two fields A and ϕ (similar to
electrodynamics) with a cubic interaction term ϕ2A

• all graphs have trivalent vertices: corolla with one A-labelled
half-edge and two ϕ-labelled half-edges

• graph grammar with initial graph that is more complicated than
a corolla: two vertices connected by one A-edge and each with two
ϕ half-edges and two production rules (gluing two ϕ half-edges;
gluing two copies of initial graph along a ϕ-edge)

M.Marcolli Mathematics & Linguistics

Example: Feynman graph language of ϕ2A-theory

M.Marcolli Mathematics & Linguistics

Intermediate step Manin’s Renormalization and Computation

Yu.I. Manin, Renormalization and computation I: motivation
and background. OPERADS 2009, 181–222, Sémin. Congr.,
26, Soc. Math. France, Paris, 2013

Yu.I. Manin, Infinities in quantum field theory and in classical
computing: renormalization program, Programs, proofs,
processes, 307–316, Lecture Notes in Comput. Sci., 6158,
Springer, 2010.

Yu.I. Manin, Renormalization and computation II: time cut-off
and the halting problem, Math. Struct. in Comp. Science,
vol. 22, pp. 729–751, Cambridge University Press, 2012

C. Delaney, M. Marcolli, Dyson-Schwinger equations in the
theory of computation, Feynman amplitudes, periods and
motives, pp. 79–107, Contemp. Math., 648, Amer. Math.
Soc., 2015.

M.Marcolli Mathematics & Linguistics

Manin’s “renormalization and computation”

• Idea: treat noncomputable functions like infinities in QFT

• Renormalization = extraction of finite part from divergent
Feynman integrals; extraction of “computable part” from
noncomputables

• First step: build a Hopf algebra (flow charts) and a Feynman rule
that detects the presence of noncomputability (infinities)

• Second step: BPHZ type Birkhoff factorization procedure to
identify where undecidable part of computation is located in
substructures and which quotient structures remain computable
after “removal of infinities”

M.Marcolli Mathematics & Linguistics

Primitive recursive functions
• generated by basic functions

Successor s : N → N, s(x) = x + 1;

Constant cn : Nn → N, cn(x) = 1 (for n ≥ 0);

Projection πn
i : Nn → N, πn

i (x) = xi (for n ≥ 1);

• with elementary operations

Composition

Bracketing

Recursion

M.Marcolli Mathematics & Linguistics

Elementary operations:

Composition c(m,m,p): for f : Nm → Nn, g : Nn → Np,

g ◦ f : Nm → Np, D(g ◦ f) = f −1(D(g));

Bracketing b(k,m,ni): for fi : N
m → Nni , i = 1, . . . , k ,

f = (f1, . . . , fk) : Nm → Nn1+···+nk , D(f) = D(f1)∩· · ·∩D(fk);

Recursion rn: for f : Nn → N and g : Nn+2 → N,

h(x1, . . . , xn, 1) := f (x1, . . . , xn),

h(x1, . . . , xn, k+1) := g(x1, . . . , xn, k , h(x1, . . . , xn, k)), k ≥ 1,

where recursively (x1, . . . , xn, 1) ∈ D(h) iff (x1, . . . , xn) ∈ D(f)
and (x1, . . . , xn, k + 1) ∈ D(h) iff
(x1, . . . , xn, k , h(x1, . . . , xn, k) ∈ D(g).

M.Marcolli Mathematics & Linguistics

Manin’s Hopf algebra of flow charts
• planar labelled rooted trees (bracketing and recursion are
ordered: need planar)
• label set of vertices DV = {c(m,n,p), b(k,m,ni), rn} (composition,
bracketing, recursion)
• label set of flags DF primitive recursive functions
• admissible labelings:

ϕV (v) = c(m,n,p): v valence 3; labels h1 = ϕF (f1), h2 = ϕF (f2)
incoming flags with domains and ranges h1 : Nm → Nn and
h2 : Nn → Np; outgoing flag composition h2 ◦ h1 = c(m,n,p)(h1, h2).

ϕV (v) = rn: v valence 3; labels h1 = ϕF (f1), h2 = ϕF (f2) incoming
flags with domains and ranges h1 : Nn → N and h2 : Nn+2 → N,
outgoing flag recursion h = rn(h1, h2).

ϕV (v) = b(k,m,ni): v must have valence k + 1; labels hi = ϕF (fi)
incoming flags with domain Nm; outgoing flag bracketing
f = (f1, . . . , fk) = b(k,m,ni)(f1, . . . , fk).

• Coproduct, grading, antipode from Hopf algebra of rooted trees

M.Marcolli Mathematics & Linguistics

Variants on the Hopf algebra of flow charts

• noncommutative Hopf algebra Hnc
flow,P

• Hopf algebra with only vertex labels Hnc
flow,V

• Use only binary operations (valence 3 vertices): express
bracketing as a composition of binary operations

b(k,m,ni) = b(2,m,n1,n2+···+nk) ◦ · · · ◦ b(2,m,nk−1,nk)

• Extend composition and recursion to k-ary operations

k-ary compositions c(k,m,ni)(hi) = hk ◦ · · · ◦ h1 of functions
hi : Nni−1 → Nni , for i = 1, . . . , k , with n0 = m

(k + 1)-ary recursions with k initial conditions:

h(x1, . . . , xn, 1) = h1(x1, . . . , xn), . . .
h(x1, . . . , xn, k) = hk(x1, . . . , xn),
h(x1, . . . , xn, k + ℓ) =
hk+1(x1, . . . , xn, h1(x1, . . . , xn), . . . , hk(x1, . . . , xn), k + ℓ− 1),
for ℓ ≥ 1

M.Marcolli Mathematics & Linguistics

Partial recursive functions and the Hopf algebra

• enlarge from primitive recursive to partial recursive: same
elementary operations c, b, r of composition, bracketing and
recursion but additional µ operation

• µ operation: input function f : Nn+1 → N, output

h : Nn → N, h(x1, . . . , xn) = min{xn+1 | f (x1, . . . , xn+1) = 1},

with domain D(h) those (x1, . . . , xn) such that ∃xn+1 ≥ 1

f (x1, . . . , xn+1) = 1, with (x1, . . . , xn, k) ∈ D(f), ∀k ≤ xn+1

• Church’s thesis: get all semi-computable functions, for which ∃
program computing f (x) for x ∈ D(f) and never stops for
x /∈ D(f)

• Hopf algebra: additional vertex decoration by µ operations,
extended to arbitrary valence by combining with bracketing; edge
decorations by partial recursive functions

M.Marcolli Mathematics & Linguistics

Manin’s proposal of possible types of Feynman rules for
computation

• B algebra of functions Φ : Nk → M(D) from Nk , for some k, to
algebra M(D) of analytic functions in unit disk
D = {z ∈ C : |z | < 1}.
• Rota–Baxter operator T on B componentwise projection onto
polar part at z = 1

• For any tree τ that computes f set

Φτ (k , z) = Φ(k , f , z) :=
∑
n≥0

zn

(1 + nf̄ (k))2

f̄ : Nm → Z≥0 computes f (x) at x ∈ D(f) and 0 at x /∈ D(f).

• Φτ (k , z) pole at z = 1 iff k /∈ D(f)

• this Φ is algebraic Feynman rule: commutative algebra
homomorphism from enlarged Hopf algebra of flow charts to
Rota–Baxter algebra B

M.Marcolli Mathematics & Linguistics

Birkhoff factorization
• negative part of Birkhoff factorization becomes

Φ−(k , fτ , z) = −T (Φ(k , fτ , z) +
∑
C

Φ−(k , fπC (τ), z)Φ(k , fρC (τ), z))

• Note: f = fτ label of outgoing flag of τ : then fρC (τ) = fτ

Φ−(k , fτ , z) = −T

(
Φ(k , fτ , z)(1 + Φ−(k,

∑
C

fπC (τ), z))

)

• What is happening here? Like in QFT, looking not only at
“divergences” of program τ but also of all subprograms πC (τ) and
ρC (τ) determined by admissible cuts (the problem of
subdivergences in renormalization)

M.Marcolli Mathematics & Linguistics

Why subdivergences in computation?

• Φ−(k , fτ , z) detects not only if τ has infinities but if any
subroutine does

• Note: Φ(k , fτ , z) only depends on f = fτ not on τ , but
Φ−(k , fτ , z) really depends on τ

• Unlike QFT there are programs without divergences that do have
subdivergences

Note: Useful viewpoint: every partial recursive function can be
computed by a Hopf-primitive program: Kleene normal form as µ
of a total function

• this general idea on Renormalization and Computation remains
to be developed... but it serves as a useful conceptual intermediate
step between the physics of QFT and the syntax-semantics
interface model for generative linguistics

M.Marcolli Mathematics & Linguistics

