

Thermodynamic Semirings and Information Algebras

Matilde Marcolli

Ma148b: Algebraic and Categorical Aspects of Information
Caltech, Winter 2025

Based on:

- M. Marcolli, R. Thorngren, *Thermodynamic semirings*, J. Noncommut. Geom. 8 (2014), no. 2, 337–392
- N. Combe, Yu.I. Manin, M. Marcolli, *Quantum Operads*, work in progress

Min-Plus Algebra (Tropical Semiring)

min-plus (or tropical) semiring $\mathbb{T} = \mathbb{R} \cup \{\infty\}$

- operations \oplus and \odot

$$x \oplus y = \min\{x, y\} \quad \text{with identity } \infty$$

$$x \odot y = x + y \quad \text{with identity } 0$$

- operations \oplus and \odot satisfy:

- associativity
- commutativity
- left/right identity
- distributivity of product \odot over sum \oplus

Note: can work equivalently with $(\mathbb{R} \cup \{\infty\}, \min, +)$ or with $(\mathbb{R}_+, \max, *)$ isomorphic under $-\log$ map

Convexity in characteristic one semirings

- on $K = (\mathbb{R}_+, \max, *)$ partial ordering \leq by
 $x \leq y \Leftrightarrow x \oplus y = y = \max\{x, y\} = y$
- more generally K commutative characteristic one semifield (ie with \odot -multiplicative inverses and where $1 \oplus 1 = 1$ idempotent)
- idempotent property and distributive property imply characteristic one Frobenius automorphism:

$$(x \oplus y)^{\odot n} = x^{\odot n} \oplus y^{\odot n}$$

- such K is $(\mathbb{R}_+, \max, *)$ -module through $(x, t) \mapsto x^t$
- function $f : X \rightarrow K$ with X a convex subset of topological $(\mathbb{R}_+, \max, *)$ -module is convex:

$$f(tx_1 + (1 - t)x_2) \leq f(x_1)^t f(x_2)^{1-t}$$

- usual definition of convexity when r.h.s. in $(\mathbb{R} \cup \{\infty\}, \min, +)$

Legendre transform

- *epigraph* $\text{epif} = \{(\alpha, r) \in X \times K \mid f(\alpha) \leq r\}$
- f is convex iff the epigraph epif is convex and f is closed iff epif is closed
- for $X \subseteq K$, Legendre transform of $f : X \rightarrow K$

$$f^*(x) = \sum_{\alpha \in X} \frac{x^\alpha}{f(\alpha)}$$

- on $(\mathbb{R} \cup \{\infty\}, \min, +)$ this is usual Legendre transform

$$f^*(x) = \sup_{\alpha \in X} (\alpha x - f(\alpha)),$$

- Legendre transform of f is closed and convex (by epigraph)
- (Fenchel-Moreau) for $f : X \rightarrow K$ with $X \subset \mathbb{R}_{\geq 0}$
 - ① f^{**} is closed and convex and bounded by f
 - ② $f^{**} = f$ iff f is closed and convex

Thermodynamic semirings $\mathbb{T}_{\beta,S} = (\mathbb{R} \cup \{\infty\}, \oplus_{\beta,S}, \odot)$

- deformation of the tropical addition $\oplus_{\beta,S}$

$$x \oplus_{\beta,S} y = \min_p \{px + (1-p)y - \frac{1}{\beta}S(p)\}$$

β thermodynamic inverse temperature parameter

$S(p) = S(p, 1-p)$ binary information measure, $p \in [0, 1]$

- for $\beta \rightarrow \infty$ (zero temperature) recovers unperturbed idempotent addition \oplus
- multiplication $\odot = +$ is undeformed
- for $S =$ Shannon entropy considered first in relation to \mathbb{F}_1 -geometry in
 - A. Connes, C. Consani, *From monoids to hyperstructures: in search of an absolute arithmetic*, arXiv:1006.4810

Khinchin axioms $\text{Sh}(p) = -C(p \log p + (1-p) \log(1-p))$

- Axiomatic characterization of Shannon entropy $S(p) = \text{Sh}(p)$

① symmetry $S(p) = S(1-p)$

② minima $S(0) = S(1) = 0$

③ extensivity

$$S(pq) + (1-pq)S(p(1-q)/(1-pq)) = S(p) + pS(q)$$

- correspond to **algebraic properties** of semiring $\mathbb{T}_{\beta,S}$

① commutativity of $\oplus_{\beta,S}$

② left and right identity for $\oplus_{\beta,S}$

③ associativity of $\oplus_{\beta,S}$

$\Rightarrow \mathbb{T}_{\beta,S}$ commutative, unital, associative **iff** $S(p) = \text{Sh}(p)$

case of associativity:

$$\begin{aligned} x \oplus_{\beta, S} (y \oplus_{\beta, S} z) &= x \oplus_{\beta, S} \min_p (py + (1-p)z - \frac{1}{\beta} S(p)) \\ &= \min_q (qx + (1-q) \min_p (py + (1-p)z - \frac{1}{\beta} S(p)) - \frac{1}{\beta} S(q)) \\ &= \min_{p,q} (qx + p(1-q)y + (1-q)(1-p)z - \frac{1}{\beta} (S(q) + (1-q)S(p))) \\ &= \min_{p_1+p_2+p_3=1} (p_1x + p_2y + p_3z - \frac{1}{\beta} (S(p_1) + (1-p_1)S(\frac{p_2}{1-p_1}))) \end{aligned}$$

while

$$\begin{aligned} (x \oplus_{\beta, S} y) \oplus_{\beta, S} z &= \min_p (px + (1-p)y - \frac{1}{\beta} S(p)) \oplus_{\beta, S} z \\ &= \min_{p,q} (pqx + q(1-p)y + (1-q)z - \frac{1}{\beta} (qS(p) + S(q))) \\ &= \min_{p_1+p_2+p_3=1} (p_1x + p_2y + p_3z - \frac{1}{\beta} (S(p_1 + p_2) + (p_1 + p_2)S(\frac{p_1}{p_1 + p_2}))). \end{aligned}$$

Khinchin axioms n -ary form

Given S as above, define $S_n : \Delta_{n-1} \rightarrow \mathbb{R}_{\geq 0}$ by

$$S_n(p_1, \dots, p_n) = \sum_{1 \leq j \leq n-1} \left(1 - \sum_{1 \leq i < j} p_i\right) S\left(\frac{p_j}{1 - \sum_{1 \leq i < j} p_i}\right).$$

Then Khinchin axioms:

- ① (Continuity) $S(p_1, \dots, p_n)$ continuous in $(p_1, \dots, p_n) \in \Delta_n$ simplex
- ② (Maximality) $S(p_1, \dots, p_n)$ maximum at the uniform $p_i = 1/n$
- ③ (Additivity/Extensivity) $p_i = \sum_{j=1}^{m_i} p_{ij}$ then

$$S(p_{11}, \dots, p_{nm_n}) = S(p_1, \dots, p_n) + \sum_{i=1}^n p_i S\left(\frac{p_{i1}}{p_i}, \dots, \frac{p_{im_i}}{p_i}\right);$$

- ④ (Expandability) Δ_n face in Δ_{n+1}

$$S(p_1, \dots, p_n, 0) = S(p_1, \dots, p_n)$$

extensivity axiom

- $(J_k)_{1 \leq k \leq m}$ be a partition of $\{p_1, \dots, p_n\}$
- $S_n(p_1, \dots, p_n)$ defined in terms of binary $S(p)$ as

$$S_n(p_1, \dots, p_n) = \sum_{1 \leq j \leq n-1} \left(1 - \sum_{1 \leq i < j} p_i\right) S\left(\frac{p_j}{1 - \sum_{1 \leq i < j} p_i}\right)$$

- then have

$$S_n(p_1, \dots, p_n) = S_m(q_1, \dots, q_m) + \sum_{1 \leq k \leq m} q_k S_{|J_k|}(J_k/q_k),$$

where $q_k = \sum_{p \in J_k} p$, so J_k/q_k is a $|J_k|$ -ary probability distribution

Shannon entropy case:

$$x \oplus_{\beta, \text{Sh}} y = \min_p \{ px + (1-p)y - \frac{1}{\beta} \text{Sh}(p) \}$$

equivalent form of $\oplus_{\beta, \text{Sh}}$

$$x \oplus_{\beta, \text{Sh}} y = -\beta^{-1} \log \left(e^{-\beta x} + e^{-\beta y} \right)$$

for $T = 1/\beta$ (temperature parameter) and on tropical semiring $(\mathbb{R} \cup \{\infty\}, \min, +)$

$$x \oplus_{T, \text{Sh}} y = -T \log(e^{-x/T} + e^{-y/T})$$

or with multiplicative notation $(\mathbb{R}_+, \max, *)$

$$x \oplus_{T, \text{Sh}} y = (x^{1/T} + y^{1/T})^T$$

- $F(p) = px + (1 - p)y + T(p \log p + (1 - p) \log(1 - p))$
- $\partial F(p) = x - y + T(\log p - \log(1 - p))$
- $\partial F(p) = 0$ when $T \log p + x - y = T \log(1 - p)$

$$p_{min} = \frac{1}{1 + e^{\frac{x}{T} - \frac{y}{T}}} = \frac{e^{-x/T}}{e^{-x/T} + e^{-y/T}}$$

- so get at minimum in p

$$F(p_{min}) = -T \log \left(e^{-x/T} + e^{-y/T} \right)$$

Expressing Shannon thermodynamic addition as

$$x \oplus_{T, \text{Sh}} y = (x^{1/T} + y^{1/T})^T$$

leads to relation with Maslov dequantization and tropical geometry

Relation to tropical geometry

- tropical polynomial $p : \mathbb{R}^n \rightarrow \mathbb{R}$ piecewise linear

$$p(x_1, \dots, x_n) = \bigoplus_{j=1}^m a_j \odot x_1^{k_{j1}} \odot \cdots \odot x_n^{k_{jn}} =$$

$$\min\{a_1 + k_{11}x_1 + \cdots + k_{1n}x_n, a_2 + k_{21}x_1 + \cdots + k_{2n}x_n, \dots, a_m + k_{m1}x_1 + \cdots + k_{mn}x_n\}.$$

tropical hypersurface where tropical polynomial non-differentiable

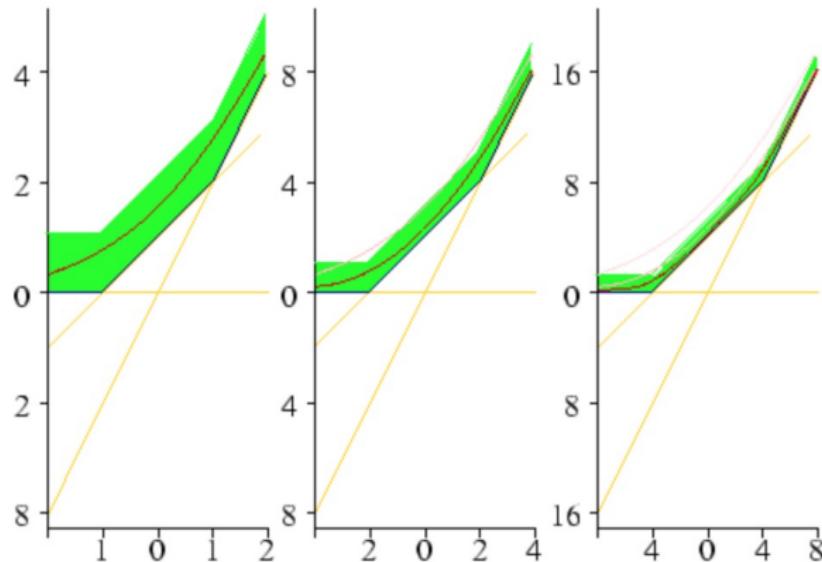
- Entropical geometry: thermodynamic deformations of \mathbb{T}

$$p_{\beta, S}(x_1, \dots, x_n) = \bigoplus_{\beta, S, j} a_j \odot x_1^{k_{j1}} \odot \cdots \odot x_n^{k_{jn}} =$$

$$\min_{p=(p_j)} \left\{ \sum_j p_j (a_j + k_{j1}x_1 + \cdots + k_{jn}x_n) - \frac{1}{\beta} S_n(p_1, \dots, p_n) \right\}$$

Tropicalization in algebraic geometry

- starting with a polynomial f defining a hypersurface V in $(\mathbb{C}^*)^n$
- Maslov dequantization, given by a one-parameter family f_h with zero set V_h
- example: for $f(x) = \sum_k a_k x^k$, write $a_k = e^{b_k}$ and $x^k = e^{kt}$, and replace $v = \log(\sum_k e^{kt+b_k})$ with deformed $v_h = h \log(\sum_k e^{(kt+b_k)/h})$: this gives dequantized family $f_h(x) = \sum_k a_k^{1/h} x^k$
- amoeba obtained by mapping V_h to \mathbb{R}^n under map $\text{Log}_h(z_1, \dots, z_n) = (h \log |z_1|, \dots, h \log |z_n|)$
- limit $h \rightarrow 0$, subsets $\mathcal{A}_h \subset \mathbb{R}^n$ converge in Hausdorff metric to tropical variety $\text{Tro}(V)$

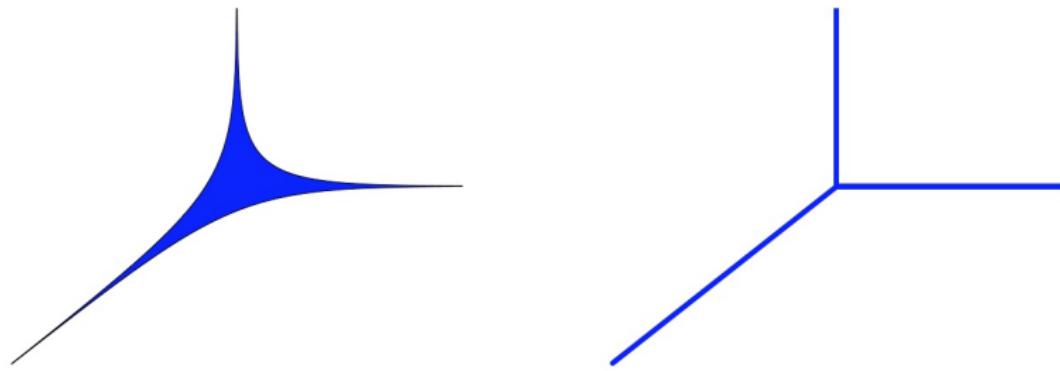


$$h = 1$$

$$h = 1/2$$

$$h = 1/4$$

Maslov dequantization and tropicalization of $f(x) = x^2 + ex + 1$
 from <http://www.pdmi.ras.ru/~olegviro/dequant>



amoeba and tropicalization of $z_1 + z_2 + 1 = 0$ in $(\mathbb{C}^*)^2$

Maslov dequantization

- instead of deforming coefficients of polynomial see dequantization by deforming ring operations
- Maslov dequantization based on family of semirings \mathbb{R}_+

$$a \oplus_h b = h \log(e^{a/h} + e^{b/h}), \quad a \odot b = a + b$$

isomorphism to usual \mathbb{R}_+ through $x \mapsto x^h$ but in limit $h \rightarrow 0$ becomes the idempotent tropical semiring

- $\Delta \subset \mathbb{R}^n$ convex lattice polyhedron

$$\{\alpha_j\}_{j \in \Delta}, \quad \phi_h(x) = \oplus_h(\alpha_j + jx)$$

- Maslov dequantization can be expressed in terms of the operation $\oplus_{Sh, T}$, where the dequantization parameter h plays the role of the temperature T
- dequantization with respect to other entropy functionals?

Rényi entropy:

$$\text{Ry}_\alpha(p_1, \dots, p_n) := \frac{1}{1-\alpha} \log \left(\sum_i p_i^\alpha \right)$$

$$\lim_{\alpha \rightarrow 1} \text{Ry}_\alpha(p_1, \dots, p_n) = \text{Sh}(p_1, \dots, p_n)$$

- lack of associativity of $x \oplus_S y$, when $S = \text{Ry}_\alpha$

$$\text{Ry}_\alpha(p) = \frac{1}{1-\alpha} \log(p^\alpha + (1-p)^\alpha)$$

measured by the transformation $(p_1, p_2, p_3) \mapsto (p_3, p_2, p_1)$

- in a commutative non-associative semiring K lack of associativity corrected by morphism

$$\begin{array}{ccc}
 K \otimes K \otimes K & \xrightarrow{A} & K \otimes K \otimes K \\
 \oplus_w \otimes 1 \downarrow & & \downarrow 1 \otimes \oplus_w \\
 K \otimes K & \xrightarrow{\oplus_w} & K \xleftarrow{\oplus_w} K \otimes K
 \end{array}$$

which makes the diagram commutative

- morphism simply given by $A(x \otimes y \otimes z) = z \otimes y \otimes x$
- exactly the transformation $(p_1, p_2, p_3) \mapsto (p_3, p_2, p_1)$

$$\begin{aligned}
& \text{Ry}_\alpha(p_1) + (1-p_1)\text{Ry}_\alpha\left(\frac{p_2}{1-p_1}\right) = \\
& \frac{1}{1-\alpha} \left(\log(p_1^\alpha + (1-p_1)^\alpha) + (1-p_1) \log \left(\left(\frac{p_2}{1-p_1}\right)^\alpha + \left(\frac{1-p_1-p_2}{1-p_1}\right)^\alpha \right) \right) = \\
& \frac{1}{1-\alpha} \log \left((p_1^\alpha + (1-p_1)^\alpha) \frac{\left(\frac{p_2}{1-p_1}\right)^\alpha + \left(\frac{p_3}{1-p_1}\right)^\alpha}{\left(\left(\frac{p_2}{1-p_1}\right)^\alpha + \left(\frac{p_3}{1-p_1}\right)^\alpha\right)p_1} \right) = \\
& \frac{1}{1-\alpha} \log \left(\left(\frac{p_1p_2}{1-p_1}\right)^\alpha + \left(\frac{p_1p_3}{1-p_1}\right)^\alpha + p_2^\alpha + p_3^\alpha \right) - \frac{p_1}{1-\alpha} \log \left(\left(\frac{p_2}{1-p_1}\right)^\alpha + \left(\frac{p_3}{1-p_1}\right)^\alpha \right) \\
& \quad - \frac{1}{1-\alpha} \log \left(\frac{(p_2^\alpha + p_3^\alpha)(p_1^\alpha + (1-p_1)^\alpha)}{(1-p_1)^\alpha} \right) - \frac{p_1}{1-\alpha} \log \left(\frac{(p_2^\alpha + p_3^\alpha)}{(1-p_1)^\alpha} \right) \\
& = \frac{1}{1-\alpha} ((1-p_1) \log(p_2^\alpha + p_3^\alpha) + \log(p_1^\alpha + (1-p_1)^\alpha) - \alpha(1-p_1) \log(1-p_1))
\end{aligned}$$

On the other hand, we have

$$\text{Ry}_\alpha(p_1 + p_2) + (p_1 + p_2)\text{Ry}_\alpha\left(\frac{p_1}{p_1 + p_2}\right) =$$

$$\text{Ry}_\alpha(1 - p_3) + (1 - p_3)\text{Ry}_\alpha\left(\frac{p_1}{1 - p_3}\right) = \text{Ry}_\alpha(p_3) + (1 - p_3)\text{Ry}_\alpha\left(\frac{p_1}{1 - p_3}\right) =$$

$$\frac{1}{1 - \alpha} \log\left(\left(\frac{p_1 p_3}{1 - p_3}\right)^\alpha + \left(\frac{p_2 p_3}{1 - p_3}\right)^\alpha + p_1^\alpha + p_2^\alpha\right) - \frac{p_3}{1 - \alpha} \log\left(\left(\frac{p_1}{1 - p_3}\right)^\alpha + \left(\frac{p_2}{1 - p_3}\right)^\alpha\right)$$

$$= \frac{1}{1 - \alpha} \left((1 - p_3) \log(p_2^\alpha + p_1^\alpha) + \log(p_3^\alpha + (1 - p_3)^\alpha) - \alpha(1 - p_3) \log(1 - p_3) \right)$$

Non-extensive thermodynamics:

- gas of particles with chemical potentials $\log x$ and $\log y$ and Hamiltonian (p mole fraction)

$$\mathcal{H} = p \log x + (1 - p) \log y$$

- partition function $Z = e^{-F_{\text{eq}}}$ with F_{eq} equilibrium value of free energy at temperature $T = 1/\beta$

$$x \oplus_{\beta, S} y = \max_p (e^{TS(p) + p \log x + (1-p) \log y})$$

partition sum of a two state system with energies x and y

- Gibbs free energy $F = H - TS$ with S entropy and H enthalpy with $\min\{H - TS\}$ min of Gibbs free energy
- mixing can happen in non-Boltzmann thermodynamics (non-extensive) leading to non-associative thermodynamic semirings

- Extensive thermodynamics: independent subsystems A and B , combined system $A \star B$

$$S(A \star B) = S(A) + S(B)$$

- Non-extensive deformations (Tsallis)

$$S_q(A \star B) = S_q(A) + S_q(B) + (1 - q)S_q(A)S_q(B)$$

Tsallis entropy:

$$Ts_\alpha(p) = \frac{1}{\alpha - 1} (1 - p^\alpha - (1 - p)^\alpha)$$

reproduces Shannon entropy $\alpha \rightarrow 1$

- Tsallis entropy uniquely determined by symmetry
 $S(p) = S(1 - p)$, minima $S(0) = S(1) = 0$, and α -deformed extensivity

$$S(p_1) + (1 - p_1)^\alpha S\left(\frac{p_2}{1 - p_1}\right) = S(p_1 + p_2) + (p_1 + p_2)^\alpha S\left(\frac{p_1}{p_1 + p_2}\right)$$

Tsallis thermodynamic semiring

- Tsallis thermodynamic semiring: commutativity, unitarity and associativity of α -deformed $\oplus_{\beta, S, \alpha}$

$$x \oplus_{\beta, S, \alpha} y = \min_p \{ p^\alpha x + (1-p)^\alpha y - \frac{1}{\beta} \text{Ts}_\alpha(p) \}$$

- for Tsallis entropy associativity of the thermodynamic semiring can be restored by a deformation of the operation $\oplus_{S, T}$ depending on deformation parameter α (also written as q for q -deformed)
- in previous physical interpretation this means replacing the energy functional

$$\mathcal{H} = \sum p_i E_i$$

with free energy of q -deformed thermodynamics

$$\mathcal{H}_q = \sum p_i^q E_i$$

- $\alpha \in \mathbb{R}$ and ϕ a continuous function such that $\phi(\alpha)(1 - \alpha) > 0$ for $\alpha \neq 1$, with

$$\lim_{\alpha \rightarrow 1} \phi(\alpha) = 0$$

and such that $\exists 0 \leq a < 1 < b$ with ϕ differentiable on $(a, 1) \cup (1, b)$ and

$$\lim_{\alpha \rightarrow 1} \frac{d\phi(\alpha)}{d\alpha} < 0$$

- generalized Tsallis entropy:

$$\text{Ts}_\alpha(p) = \frac{1}{\phi(\alpha)}(p^\alpha + (1 - p)^\alpha - 1)$$

reproduces the Shannon entropy in the $\alpha \rightarrow 1$ limit

- (Suyari-Furuichi) generalized Tsallis entropy unique entropy functions that are commutative, have the L/R identity property, and satisfy the α -associativity condition

$$S(p_1) + (1 - p_1)^\alpha S\left(\frac{p_2}{1 - p_1}\right) = S(p_1 + p_2) + (p_1 + p_2)^\alpha S\left(\frac{p_1}{p_1 + p_2}\right)$$

- **General idea:** transform axiomatic characterizations of various entropy functionals into algebraic properties of corresponding thermodynamic deformations of min-plus algebras

Thermodynamic semirings of functions

- Ξ compact Hausdorff space
- $S = (S_\eta)$ family of information measures depending continuously on $\eta \in \Xi$
- $K = \mathbb{R}^{\min,+} \cup \{\infty\}$ and $C(\Xi, K)$ continuous functions with pointwise operations

$$x(\eta) \oplus_{T,S_\eta} y(\eta) = \min_{p \in [0,1]} (p x(\eta) + (1-p) y(\eta) - T S_\eta(p))$$

and ordinary pointwise sum as \odot

Kullback–Leibler divergence

- KL-divergence of two probability distributions

$$\text{KL}(p|q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$$

in binary form $P = (p, 1-p)$ and $Q = (q, 1-q)$

- smooth univariate binary statistical n -manifold \mathcal{Q} is a set of binary probability distributions $\mathcal{Q} = (q(\eta))$ smoothly parametrized by $\eta \in \mathbb{R}^n$
- topological univariate binary statistical n -space \mathcal{Q} is a set of binary probability distributions $\mathcal{Q} = (q(\eta))$ continuously parameterized by $\eta \in \Xi$, with Ξ a compact Hausdorff topological space
- first is setting of information geometry, second setting for multifractal dynamical systems
- semirings $\mathcal{R} = C^\infty(\mathcal{X}, K)$ or $\mathcal{R} = C(\mathcal{X}, K)$ with $\oplus_{T, \text{KL}}(\cdot | q(\eta))$ pointwise in η

multifractal systems

- Cantor set \mathcal{X} identified with the one sided full shift space Σ_2^+ on the alphabet $\{0, 1\}$

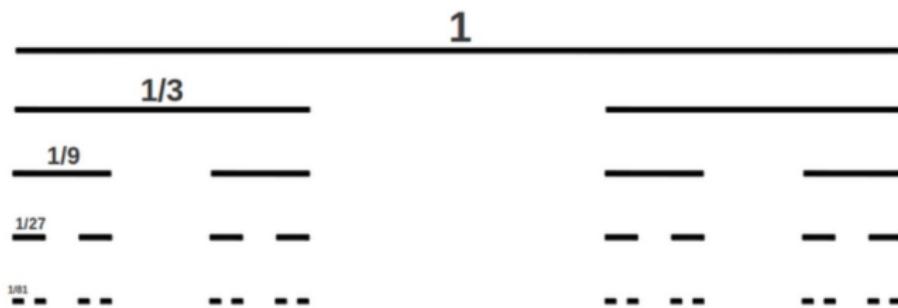
$$\eta = \eta_1 \eta_2 \eta_3 \cdots \eta_n \cdots, \quad \text{with } \eta_i \in \{0, 1\}$$

topologized with cylinder sets $\mathcal{X}(w) =$ sequences starting with the finite word w

- dynamical system with the shift map $\sigma(\eta) = \eta_2 \eta_3 \cdots$
- $a_n(\eta)$ denote the number of 1's that appear in the first n digits η_1, \dots, η_n of η
- when limit exists

$$q(\eta) = \lim_{n \rightarrow \infty} \frac{a_n(\eta)}{n}$$

- $\mathcal{Y} \subset \mathcal{X}$ set of points where limit exists



uniform middle-third Cantor set

- uniform Cantor set from contraction map f with contraction ratio λ
- with a Bernoulli measure μ_p for a given $0 < p < 1$

$$\mu_p(\mathcal{X}(w_1, \dots, w_n)) = p^{a_n(w)}(1-p)^{n-a_n(w)}$$

for cylinder sets

$$\mathcal{X}(w_1, \dots, w_n) = \{\eta \in \mathcal{X} \mid \eta_i = w_i, i = 1, \dots, n\}$$

- local dimension of \mathcal{X} at a point $\eta \in \mathcal{Y}$ given by

$$d_{\mu_p}(\eta) = \frac{q(\eta) \log p + (1 - q(\eta)) \log(1 - p)}{\log \lambda}$$

- local entropy of map f (shift σ) given by

$$h_{\mu_p, f}(\eta) = q(\eta) \log p + (1 - q(\eta)) \log(1 - p)$$

- non-uniform Cantor set \mathcal{X} with two contraction ratios λ_1 and λ_2 on the two intervals
- Lyapunov exponent of f is given by

$$\lambda_f(\eta) = q(\eta) \log \lambda_1 + (1 - q(\eta)) \log \lambda_2$$

- given Bernoulli measure μ_p on Cantor set \mathcal{X} there is a set $\mathcal{Z} \subset \mathcal{X}$ of full measure $\mu_p(\mathcal{Z}) = 1$ for which $q(\eta) = p$
- uniform measure $\mu_{1/2}$: full measure subset $\mathcal{Z}_{1/2}$ with limit $q(\eta) = 1/2$ uniform distribution (fair coin case)
- stratify set $\mathcal{Y} \subset \mathcal{X}$ into level sets of $q(\eta)$: multifractal decomposition of Cantor set
- consider $C(\mathcal{Y}, K)$ with the $\oplus_{KL_{q(\eta)}, T}$ with the Kullback–Leibler divergence $KL(p; q(\eta))$

- for $\mathcal{Z} \subset \mathcal{Y}$ semiring $C(\mathcal{Z}, K)$ with $\oplus_{\text{KL}_{q(\eta)}, T}$ is commutative iff $\mathcal{Z} \subset \mathcal{Z}_{1/2}$ is a “fair coin” subset
- involution that measures the lack of associativity and commutativity ($q \leftrightarrow 1 - q$)

$$(p_1, p_2, p_3; q) \mapsto (p_3, p_2, p_1; 1 - q)$$

- uniform case only associativity “up to a shift”

$$\text{KL}(p_1; \frac{1}{2}) + (1 - p_1)\text{KL}\left(\frac{p_2}{1 - p_1}; \frac{1}{2}\right) =$$

$$p_1 \log p_1 + p_2 \log p_2 + p_3 \log p_3 + \log 2 + (1 - p_1) \log 2$$

while

$$\text{KL}(p_1 + p_2; \frac{1}{2}) + (p_1 + p_2)\text{KL}\left(\frac{p_1}{p_1 + p_2}; \frac{1}{2}\right) =$$

$$p_1 \log p_1 + p_2 \log p_2 + p_3 \log p_3 + \log 2 + (1 - p_3) \log 2$$

- KL divergence to the uniform distribution = Shannon entropy up to a constant shift

KL divergence and marginal distributions

- p and q are two distributions, we denote by p_i and q_i their i -th marginal distribution, then $\text{KL}(p|q) = \sum_i \text{KL}(p_i|q_i)$

$$\begin{aligned}\text{KL}(p|q) &= p_1 \cdots p_n \log \frac{p_1 \cdots p_n}{q_1 \cdots q_n} \\ &\quad + (1 - p_1)p_2 \cdots p_n \log \frac{(1 - p_1)p_2 \cdots p_n}{(1 - q_1)q_2 \cdots q_n} \\ &\quad + \cdots + (1 - p_1) \cdots (1 - p_n) \log \frac{(1 - p_1) \cdots (1 - p_n)}{(1 - q_1) \cdots (1 - q_n)} \\ &= p_1 \cdots p_n \left(\log \frac{p_1}{q_1} + \cdots + \log \frac{p_n}{q_n} \right) + \cdots + (1 - p_1) \cdots (1 - p_n) \left(\log \frac{1 - p_1}{1 - q_1} + \cdots + \log \frac{1 - p_n}{1 - q_n} \right) \\ &= p_1 \log \frac{p_1}{q_1} (p_2 \cdots p_n + (1 - p_2) \cdots p_n + \cdots) \\ &\quad + (1 - p_1) \log \frac{1 - p_1}{1 - q_1} (p_2 \cdots p_n + \cdots) + \cdots \\ &= p_1 \log \frac{p_1}{q_1} ((1 + p_2 - p_2)(p_3 \cdots p_n + \cdots)) + \cdots \\ &= p_1 \log \frac{p_1}{q_1} + (1 - p_1) \log \frac{1 - p_1}{1 - q_1} + \cdots + (1 - p_n) \log \frac{1 - p_n}{1 - q_n} = \sum_i \text{KL}(p_i|q_i)\end{aligned}$$

- if sum of KL divergences of marginals is minimized total KL is also minimized

product of semirings and hyperfield structure

- semirings $\mathcal{R} = C(\{1, \dots, n\}, K) = K^{\otimes n}$
- want an n -ary probability distribution not n binary probability distributions
- want ordering on \mathcal{R} that ensures trace is maximized

$$(x_1, \dots, x_n) \rightarrow x_1 + \dots + x_n \in K$$

- but such ordering does not uniquely determine a maximum between two tuples \Rightarrow *non-well-defined addition on K*
(multivalued): $(x_1, \dots, x_n) + (y_1, \dots, y_n)$ the set of tuples (z_1, \dots, z_n) with $z_i = x_i$ or y_i that maximize $z_1 + \dots + z_n$ in the ordering on K
- this multivalued addition together with coordinate-wise multiplication defines a characteristic one hyperfield structure on \mathcal{R}
- information measures S_1, \dots, S_n over $K = \mathbb{R}^{\min,+} \cup \{\infty\}$
- for $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$

$$x \oplus_{T, S_1, \dots, S_n} y = \min_{p_1, \dots, p_n} (p_1 x_1 + (1-p_1) y_1 - TS_1(p_1), \dots, p_n x_n + (1-p_n) y_n - TS_n(p_n))$$

- the p_i as marginal probabilities, and the min operation is the multivalued hyperring addition
- if each S_i is the KL-divergence from some q_i , results of this operation are distributions with marginals (p_1, \dots, p_n) minimizing the KL-divergence to the marginals (q_1, \dots, q_n) , subject to the *soft constraint* coming from the energy functional

$$\mathcal{H} = \sum p_i x_i + (1 - p_i) y_i$$

- lack of well-definedness of addition interpreted thermodynamically as non-uniqueness of equilibria, via existence of meta-equilibrium states
- when q_i uniform distribution addition is well-defined single-valued

Successor function

- encodes properties of thermodynamic semirings like measuring lack of associativity, commutativity
- $\lambda : K \times \mathbb{R} \rightarrow K$ is the Legendre transform of $TS : [0, 1] \rightarrow \mathbb{R}$

$$\lambda(x, T) = x \oplus_S 0 \equiv \min_p (px - TS(p))$$

$$TS(p) = \min_x (px - \lambda(x, T))$$

- when S is concave/convex, we can recover it from λ hence from the semiring
- call λ successor function because 0 is the multiplicative identity and over general K we write this as $\lambda(x, T) = x \oplus_S 1$
- when multiplication distributes over addition

$$x \oplus_S y = \lambda(x - y, T) + y$$

- entropy function S has following properties:

- ① commutativity $S(p) = S(1 - p)$ (ie $\oplus_{S,T}$ commutative) iff

$$\lambda(x) - \lambda(-x) = x$$

- ② left identity $S(0) = 0$ (ie \oplus_S has left identity ∞) iff $\lambda(x) \leq 0$ and $\lim_{x \rightarrow \infty} \lambda(x) = 0$
- ③ right identity $S(1) = 0$ (ie \oplus_S has right identity ∞) iff $\lambda(x) \leq x$ and $\lambda(x) \sim x$, as $x \rightarrow -\infty$
- ④ associativity iff

$$\lambda(x - \lambda(y)) + \lambda(y) = \lambda(\lambda(x - y) + y)$$

Successor for Shannon entropy

- in $\mathbb{R}^{\min,+} \cup \{\infty\}$

$$\lambda^{\text{Sh}}(x, T) = -T \log(1 + e^{-x/T})$$

- in $\mathbb{R}_{\geq 0}^{\max,+}$

$$\lambda^{\text{Sh}}(x, T) = (1 + x^{1/T})^T$$

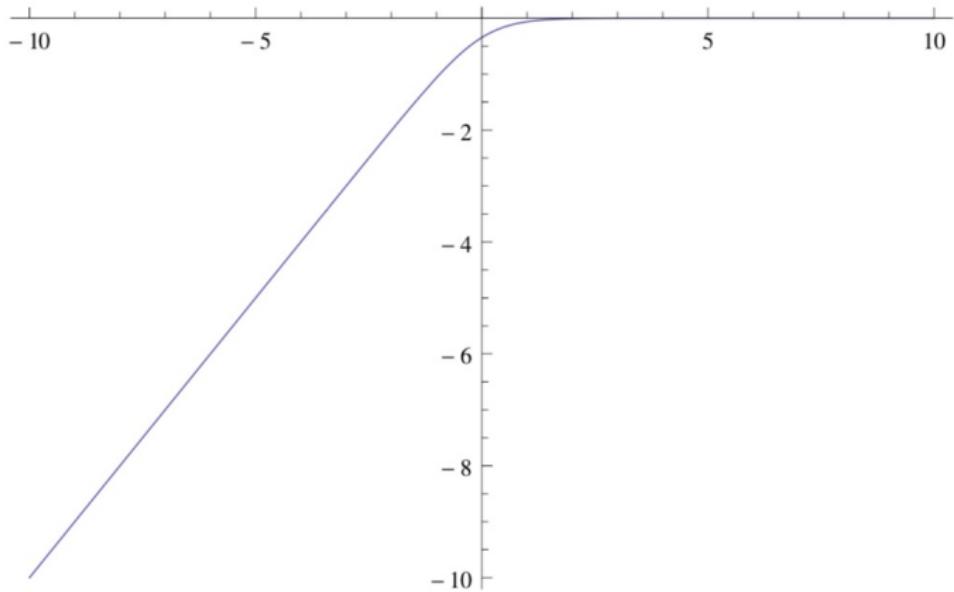
Successor for Kullback–Leibler divergence

- for $\mathbb{R}^{\min,+} \cup \{\infty\}$

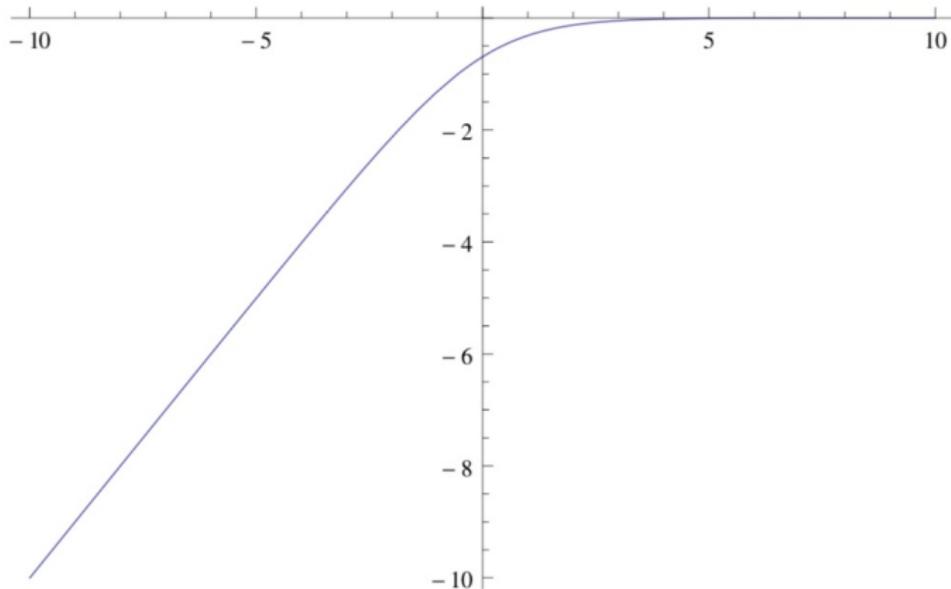
$$\lambda^{\text{KL}}(x, T) = -T \log(1 + e^{-x/qT})$$

- for $\mathbb{R}_{\geq 0}^{\max,+}$

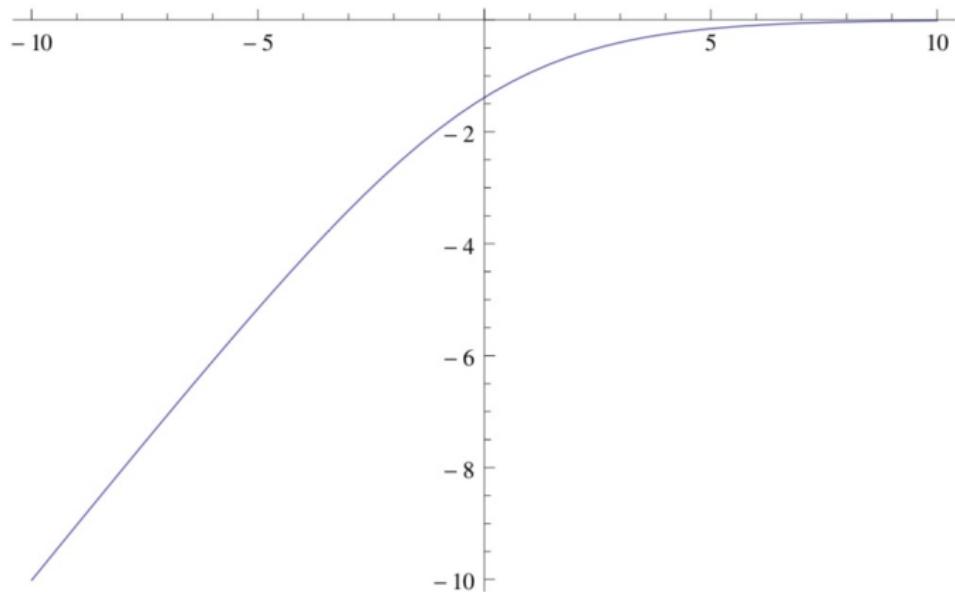
$$\lambda^{\text{KL}}(x, T) = (1/(1-q)^{1/T} + (x/q)^{1/T})^T$$



successor function for the Shannon entropy with $T = 0.5$



successor function for the Shannon entropy with $T = 1$



successor function for the Shannon entropy with $T = 2$

Successor for Tsallis entropy

$$\lambda^{\text{Ts}\alpha}(x, T) = \begin{cases} 0 & |\frac{\alpha}{1-\alpha}| < x/T \\ g(x) & -|\frac{\alpha T}{1-\alpha}| < x/T < |\frac{\alpha}{1-\alpha}| \\ x & x/T < -|\frac{\alpha T}{1-\alpha}| \end{cases}$$

- $g(x)$ is given by applying Ts to the inverse of its derivative

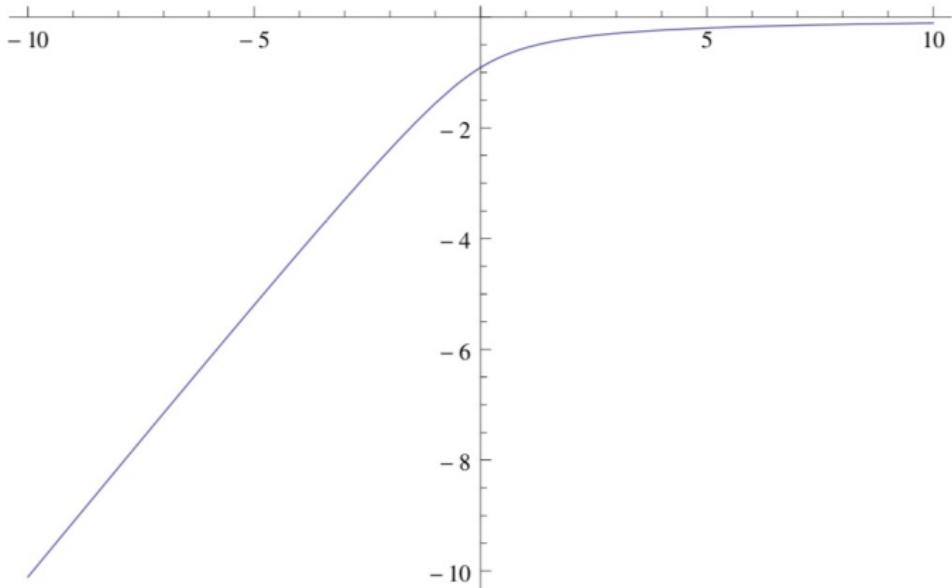
$$\frac{\partial \text{Ts}}{\partial p} = \frac{\alpha}{1-\alpha} (p^{\alpha-1} - (1-p)^{\alpha-1})$$

that has range $[-|\frac{\alpha}{1-\alpha}|, |\frac{\alpha}{1-\alpha}|]$

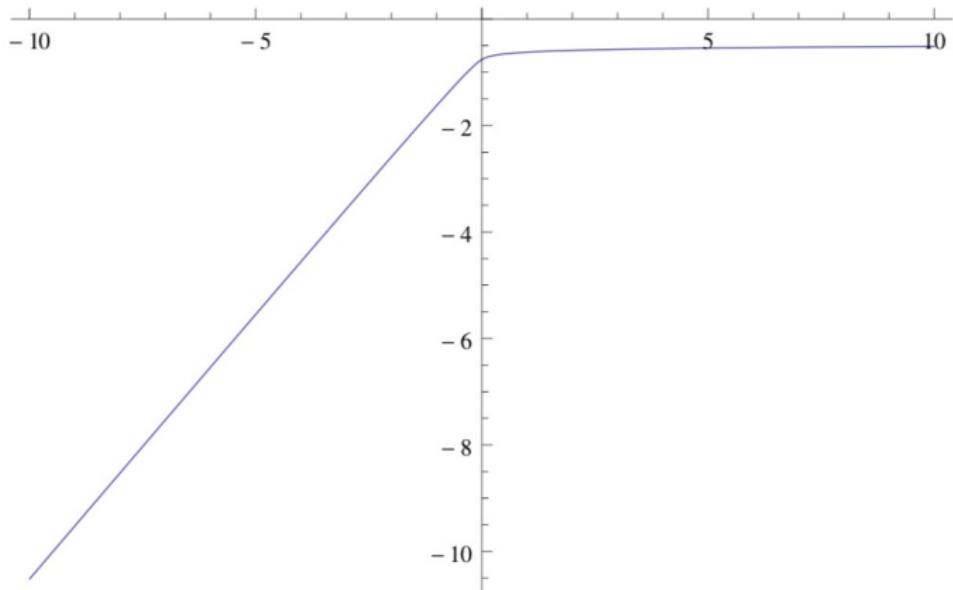
Successor for Rényi entropy

- applying Ry to inverse of its derivative (that now has range \mathbb{R})

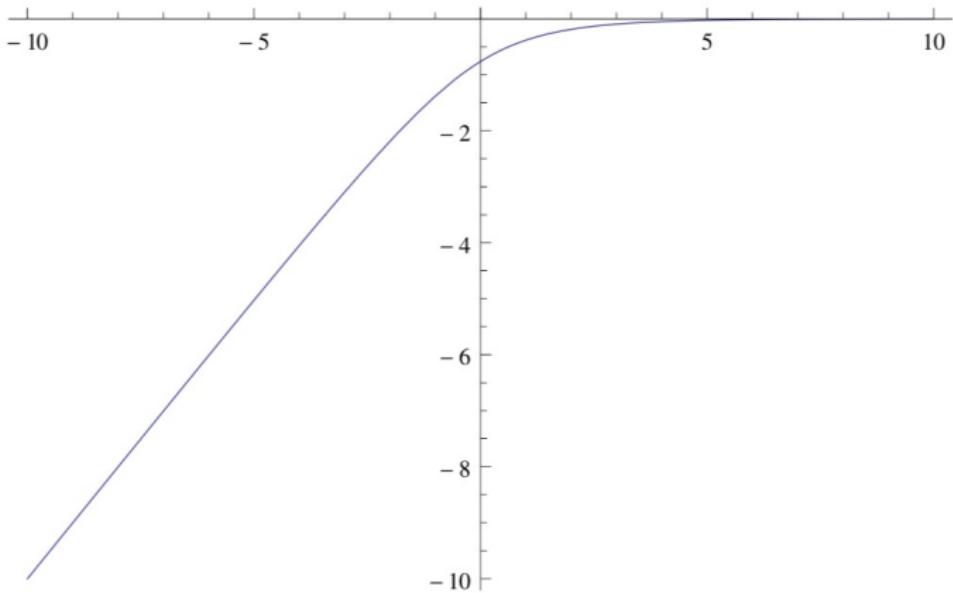
$$\frac{\partial \text{Ry}}{\partial p} = \frac{\alpha}{1-\alpha} (p^{\alpha-1} + (1-p)^{\alpha-1}) / (p^\alpha + (1-p)^\alpha).$$



successor function for the Tsallis entropy with $\alpha = 0.5$ and $T = 1$



successor function for the Rényi entropy with $\alpha = 0.1$ and $T = 1$



successor function for the Rényi entropy with $\alpha = 0.9$ and $T = 1$

Cumulant generating function

- random variable X
- $M_X(t)$ generating function of momenta of X

$$M_X(t) = \langle \exp(tX) \rangle = \sum_{m=0}^{\infty} \mu_m \frac{t^m}{m!}$$

- **cumulants** $\{\kappa_n\}$ of X coefficients of power series expansion of $\log M_X(t)$

$$\log M_X(t) = \sum_{n=0}^{\infty} \kappa_n \frac{t^n}{n!}$$

- information contained in cumulants or momenta is equivalent but cumulants are additive over independent variables

Cumulants and successor function

- $\lambda(x, T)$ successor function of a thermodynamic semiring K (assume it is analytic)
- function $-\lambda(x, T)/T$ is cumulant generating function of probability distribution for energy E in variable $-1/T = -\beta$

$$\kappa_n = \langle E^n \rangle_c$$

$$(-1)^{n+1} \frac{\partial^n}{\partial \beta^n} (\beta \lambda(x, T)) = \langle E^n \rangle_c$$

- partition function $Z(\beta) = \langle \exp(-\beta E) \rangle$
- Helmholtz free energy $F = -T \log \langle \exp(-E/T) \rangle$
- it is (up to $-1/T$ factor) cumulant generating function for random variable E
- Helmholtz free energy is Legendre transform of entropy so (up to $-1/T$ factor) the successor $\lambda(x, T)$

- for an arbitrary (concave and analytic) information measure

$$\lambda(x, T) - T \frac{\partial}{\partial T} \lambda(T, x) = \langle E \rangle = p_{\text{eq}} x$$

with $p_{\text{eq}} = p_T(x)$ equilibrium value of the mole fraction

- successor $\lambda(x, T) = \min_p (px - TS(p)) = p_T(x) - TS(p_T(x))$
- $p_T(x)$ satisfies

$$x/T = \frac{d}{dp} S(p_T(x))$$

$$\frac{\partial}{\partial T} \lambda(x/T) = x \frac{\partial}{\partial T} p(x/T) - S(p(x/T)) - T \frac{\partial}{\partial T} p(x/T) \frac{d}{dp} S(p(x/T))$$

which is just $-S(p(x/T))$

- so $p_T(x) = p(x/T)$ and similarly $\lambda(T, x) = \lambda(x/T)$
- explains effect of changing the temperature on $\oplus_{S,T}$
- get then $\frac{\partial}{\partial x} \lambda(x/T) = xp(x/T)$ hence well-known property of Legendre transform of smooth functions:

$$\lambda(x/T) = x \frac{\partial}{\partial x} \lambda(x/T) + T \frac{\partial}{\partial T} \lambda(x/T)$$

Operads

- Operad: objects $\mathcal{C}(j)$ in a symmetric monoidal category: parameter space of j -ary operations with composition maps

$$\gamma : \mathcal{C}(k) \otimes \mathcal{C}(j_1) \otimes \cdots \otimes \mathcal{C}(j_k) \rightarrow \mathcal{C}(j_1 + \cdots + j_k)$$

associative, unital, and equivariant under permutations

- unit: $e : I \rightarrow \mathcal{C}(1)$ (identity as unary operation) with identity compositions

$$\mathcal{C}(n) \simeq I \otimes \mathcal{C}(n) \xrightarrow{e \otimes 1} \mathcal{C}(1) \otimes \mathcal{C}(n) \xrightarrow{\gamma} \mathcal{C}(n)$$

$$\mathcal{C}(n) \simeq \mathcal{C}(n) \otimes I^{\otimes n} \xrightarrow{1 \otimes e^{\otimes n}} \mathcal{C}(n) \otimes \mathcal{C}(1)^{\otimes n} \xrightarrow{\gamma} \mathcal{C}(n)$$

- associativity condition: composition γ of operations is associative (no ambiguity in how expressions involving composition operations are written without parentheses)
- Note: operations in $\mathcal{C}(j)$ are not necessarily associative
- *non-symmetric operad* if without the condition on the action of permutations

Algebras over an operad

way to realize operations in an operad $\mathcal{C}(j)$ as concrete operations:
operations in $\mathcal{C}(j)$ have A -inputs (ie an input in $A^{\otimes j}$), output in A

- \mathcal{C} -algebra A : an object with Sym_j -equivariant maps

$$\mathcal{C}(j) \otimes A^{\otimes j} \rightarrow A,$$

thought of as actions, associative and unital

Note: operad structure closely related to trees and grafting trees,
but there are different ways of organizing trees into an operad

Example: Operad of rooted trees

- operad \mathcal{RT} with $\mathcal{RT}(n)$ the \mathbb{Z} -module generated by rooted trees T with n non-root vertices
- for an n -rooted tree T oriented towards the root, $\text{In}(T, i) =$ set of incoming edges at the vertex i
- to define all the operad compositions sufficient to define for $1 \leq i \leq n$

$$\circ_i : \mathcal{RT}(n) \times \mathcal{RT}(m) \rightarrow \mathcal{RT}(n + m - 1)$$

- operadic compositions then given by

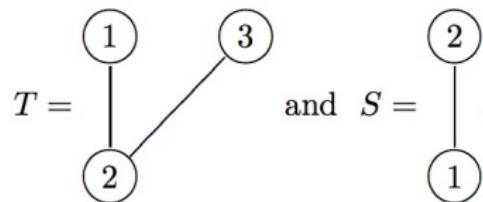
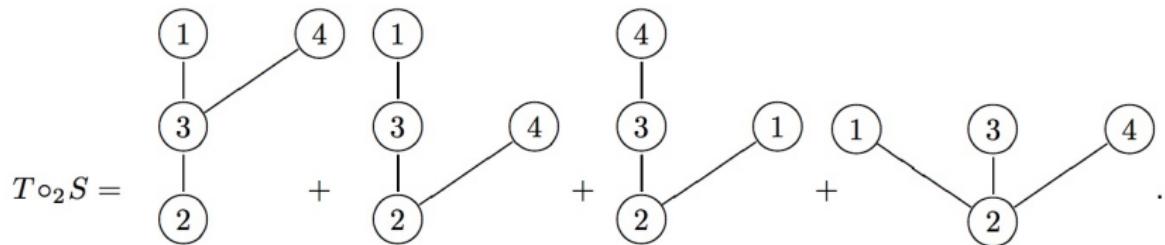
$$\gamma : \mathcal{RT}(n) \times \mathcal{RT}(k_1) \otimes \cdots \otimes \mathcal{RT}(k_n) \rightarrow \mathcal{RT}(k_1 + \cdots + k_n)$$

$$\gamma(T, S_1, \dots, S_n) = (\cdots (T \circ_n S_n) \circ_{n-1} S_{n-1}) \cdots \circ_1 S_1)$$

- for $T \in \mathcal{RT}(n)$ and $S \in \mathcal{RT}(m)$

$$T \circ_i S = \sum_{f: \text{In}(T, i) \rightarrow \{1, \dots, m\}} T \circ_i^f S$$

composition along the vertex i of T : outgoing edge at i becomes outgoing edge at the root of S , incoming edges at i are grafted on vertices of S as specified by the map f



$$f: \begin{cases} 1 \rightarrow 2 \\ 3 \rightarrow 2 \end{cases}$$

$$f: \begin{cases} 1 \rightarrow 2 \\ 3 \rightarrow 1 \end{cases}$$

$$f: \begin{cases} 1 \rightarrow 1 \\ 3 \rightarrow 2 \end{cases}$$

$$f: \begin{cases} 1 \rightarrow 1 \\ 3 \rightarrow 1 \end{cases}$$

- Poincaré series of the operad \mathcal{RT} of rooted trees

$$\Gamma_{\mathcal{RT}}(x) = \sum_{n \geq 1} \dim(\mathcal{RT}) \frac{(-x)^n}{n!}$$

- $\dim(\mathcal{RT}) = n^{n-1}$
- $\Gamma_{\mathcal{RT}}(x)$ is the inverse function of $x \mapsto -xe^{-x}$

Example: A_∞ -operad of planar rooted trees

- $A_\infty(n)$ is the linear span (over field \mathbb{K} or over \mathbb{Z}) of planar rooted trees with n leaves (with labels $\{1, \dots, n\}$)
- for $n = 1$ tree just a segment from root to single leaf
- symmetric group acts by relabeling the leaves
- operad composition

$$\gamma : A_\infty(n) \otimes A_\infty(k_1) \otimes \cdots \otimes A_\infty(k_n) \rightarrow A_\infty(k_1 + \cdots + k_n)$$

grafting n input leaves of $T \in A_\infty(n)$ to output roots of $T_i \in A_\infty(k_i)$



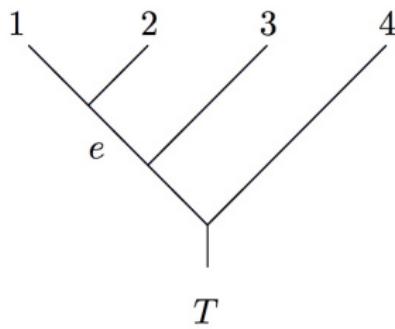
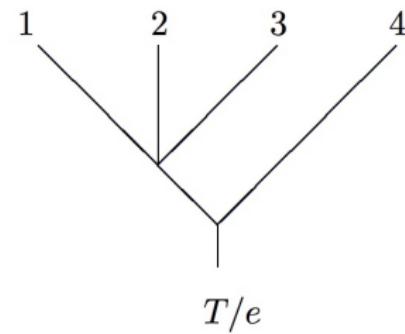
free operad generated by the corollas

DG operad

- in grafting composition also introduce multiplication by a sign: grafting root of T' to i -th leaf of T multiplied by $(-1)^{(\#E(T')-1) \cdot R_i(T)}$ with $R_i(T)$ = number of edges to the right or i -th leaf in T (strictly on the right of unique path from i -th leaf to root)
- reason for sign: the operad A_∞ also had a compatible differential (DG-operad)
- differential defined by edge contractions

$$dT := \sum_{T' : T = T'/e} \epsilon T'$$

$\epsilon = (-1)^{L(e)}$ with $L(e)$ = number of edges below and to the left of e

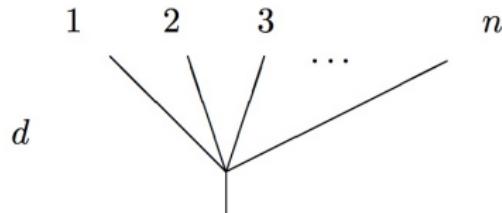


edge contraction operation on a tree

- differential satisfies $d^2 = 0$
- degree $\deg(T) = \#V(T) + 1 - n = \#E(T) + 1 - 2n$
- d has degree +1
- compatibility between operad structure and differential:

$$d(T' \circ_i T) = dT' \circ_i T + (-1)^{\deg(T')} T' \circ_i dT$$

- here still using the fact that the compositions \circ_i determine all the operad compositions γ



$$= \sum_{\substack{k+l=n+1 \\ k,l \geq 2}} \sum_{i=0}^{k-1} (-1)^i$$

A diagram of a corolla with a central point. Lines radiate to labels 1, $i+1$, $i+l$, ..., and n . The labels $i+1$ and $i+l$ are grouped together with ellipses.

differential for corollas

- algebra over the A_∞ operad of planar rooted trees is a morphism of operads (compatible with all compositions)

$$\phi : A_\infty(n) \rightarrow \text{End}_V(n)$$

where $\text{End}_V(n) = \text{Hom}(V^{\otimes n}, V)$ endomorphism operad

- compatibility with differentials (morphisms of DG operads) if images $\phi(\delta_n)$ of corollas satisfy the differential as above
- same as requirement that $M_n(v_1, \dots, v_n) = \phi(\delta_n)(v_1, \dots, v_n)$ gives DG-algebra structure to V :

$$\begin{aligned} dM_n(v_1, \dots, v_n) - (-1)^n \sum_{i=1}^n \epsilon(i) M_n(v_1, \dots, dv_i, \dots, v_n) \\ = \sum_{\substack{k+l=n+1 \\ k, l \geq 2}} \sum_{i=0}^{k-1} (-1)^{i+l(n-i-l)} \sigma(i) M_k(v_1, \dots, v_i, M_l(v_{i+1}, \dots, v_{i+l}), \dots, v_n) \end{aligned}$$

$\epsilon(i) = (-1)^{\sum_{k=1}^{i-1} \deg(v_k)}$ sign by moving d across v_1, \dots, v_{i-1} ; $\sigma(i)$ = sign by moving M_l across v_1, \dots, v_i

Entropy Operads

- operad \mathcal{P} of probabilities on finite sets $\mathcal{P}(j) = \Delta_j$ simplex
- operadic compositions

$$\gamma((p_i)_{i \in j} \otimes (q_{1l})_{l \in k_0} \otimes \cdots \otimes (q_{jl})_{l \in k_{j-1}}) = (p_i q_{il})_{l \in k_i, i \in j} \in \mathcal{P}(k_0 + \cdots + k_{j-1})$$

- describe forming composites of subsystems

Algebra \mathbb{R}_+ over \mathcal{P}

- category $\mathbb{R}_{\geq 0}$ with a single object and morphisms $x \in \mathbb{R}_{\geq 0}$ with action of \mathcal{P} trivial on unique object and on morphisms

$$(p_i)_{i \in j} \cdot (x_i)_{i \in j} = \sum_i p_i x_i$$

- J. Baez, T. Fritz, T. Leinster, *A characterization of entropy in terms of information loss*, Entropy 13 (2011) no. 11, 1945–1957.

Information Algebras (over the entropy operad)

- object $\mathbb{R}_{\geq 0}$, morphisms $x \in \mathbb{R}_{\geq 0}$; action of operad \mathcal{P} : maps S from finite probabilities to non-negative real number with

- ① For $p \in \mathcal{P}(n)$ and $q_i \in \mathcal{P}(m_i)$

$$S(p \circ (q_1, \dots, q_n)) = S(p) + \sum_i p_i S(q_i);$$

- ② $S((1)) = 0$;
- ③ for $p \in \mathcal{P}(n)$ and $\sigma \in \text{Sym}_n$

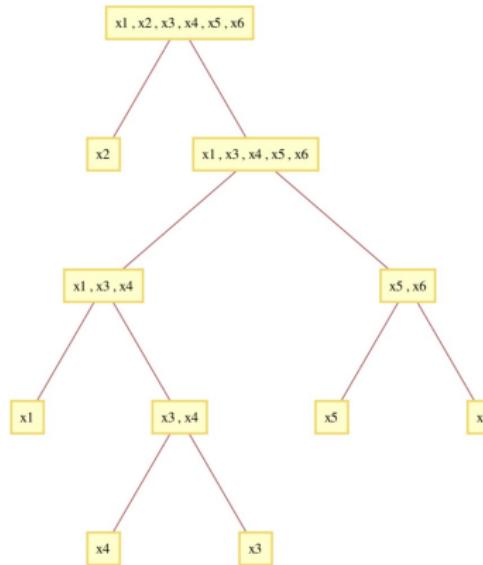
$$S(\sigma p) = S(p)$$

- ④ $S : \mathcal{P}(n) \rightarrow \mathbb{R}_{\geq 0}$ continuous

Characterizes entropy functionals (Khinchin axioms of Shannon entropy)

Binary guessing trees

- a general binary information measure, $S : [0, 1] \rightarrow \mathbb{R}_{\geq 0}$ (not necessarily Shannon)
- assume S satisfies the L/R identity axioms
- build an information measure on ternary variables: X with values in $\{x_1, x_2, x_3\}$ guessed with binary questions in two ways
 - ① Is $X = x_1$? If not, is $X = x_2$?
 - ② Is $X = x_1$ or x_2 ? If yes, is $X = x_1$?
- counting possible permutations gives $2 \cdot 3! = 12$ possible ternary information measures
- S binary information measure with identity: for any $n \geq 2$, one-to-one correspondence between rooted binary trees with n leaves with labels in $\{1, \dots, n\}$ and n -ary information measures arising from S



Example: this tree corresponds to information measure $S_T(p_1, \dots, p_6) =$

$$\begin{aligned}
 & S(p_2) + (1 - p_2)S\left(\frac{p_1 + p_4 + p_3}{1 - p_2}\right) + (p_1 + p_4 + p_3)S\left(\frac{p_1}{p_1 + p_4 + p_3}\right) \\
 & + (p_4 + p_3)S\left(\frac{p_4}{p_4 + p_3}\right) + (p_5 + p_6)S\left(\frac{p_5}{p_5 + p_6}\right)
 \end{aligned}$$

- this shows how binary trees with n leaves and determine decision strategies and corresponding n -variable information measures
- conversely any decision strategy will consist of questions of the form is $X \in A$ for some subset $A \subset \{1, \dots, n\}$ and has to exhaust all possibilities so it will determine a binary rooted tree
- also an $(n, 2)$ -tree \mathbf{T} determines a canonical way of parenthesizing the expression $x_1 \oplus_S \dots \oplus_S x_n$
- sufficient to consider case of \mathbf{T}' where labels of leaves are $\{1, \dots, n\}$ from left to right (in planar embedding): for more general tree \mathbf{T} there is a $\sigma \in S_n$ that gives the relabeling, then

$$(x_1 \oplus_S \dots \oplus_S x_n)_{\mathbf{T}} := (x_{\sigma_{\mathbf{T}}(1)} \oplus_S \dots \oplus_S x_{\sigma_{\mathbf{T}}(n)})_{\mathbf{T}'}$$

- then for the \mathbf{T} with left-to-right labels construct inductively $(x_1 \oplus_S \dots \oplus_S x_n)_{\mathbf{T}}$

- tree \mathbf{T}_2 with root vertex and two children leaves:
$$(x_1 \oplus_S x_2)_{\mathbf{T}_2} = x_1 \oplus_S x_2$$
- if \mathbf{T} has left-to-right labels, take L/R subtrees \mathbf{L} and \mathbf{D} at root: there is some $1 \leq r < n$ such that for $1 \leq j \leq r$ have $x_j \in L$, and for all $r < j < n$ have $x_j \in D$
- then inductively set

$$(x_1 \oplus_S \cdots \oplus_S x_n)_{\mathbf{T}} = (x_1 \oplus_S \cdots \oplus_S x_r)_{\mathbf{L}} + (x_{r+1} \oplus_S \cdots \oplus_S x_n)_{\mathbf{D}}$$

Bracketing and multivariable information measures

- $(n, 2)$ -tree \mathbf{T} and binary information measure S with identity axiom
- relation between bracketing and the n -variable measure $S_{\mathbf{T}}$

$$(x_1 \oplus_S \cdots \oplus_S x_n)_{\mathbf{T}} = \min_{\sum p_i = 1} \left(\sum p_i x_i - TS_{\mathbf{T}}(p_1, \dots, p_n) \right)$$

- first step: \mathbf{T} labeled left-to-right labels and subtrees \mathbf{L} with l leaves and \mathbf{D} with d leaves at root:

$$\begin{aligned} S_{\mathbf{T}}(p_1, \dots, p_l, p_{l+1}, \dots, p_{l+d}) = \\ S(p_1 + \cdots + p_l) + (p_1 + \cdots + p_l) S_{\mathbf{L}}\left(\frac{p_1}{p_1 + \cdots + p_l}, \dots, \frac{p_l}{p_1 + \cdots + p_l}\right) \\ + (p_{l+1} + \cdots + p_{l+d}) S_{\mathbf{D}}\left(\frac{p_{l+1}}{p_{l+1} + \cdots + p_{l+d}}, \dots, \frac{p_{l+d}}{p_{l+1} + \cdots + p_{l+d}}\right) \end{aligned}$$

- second step: in this case also

$$\begin{aligned} (x_1 \oplus_S \cdots \oplus_S x_l \oplus_S x_{l+1} \oplus_S \cdots \oplus_S x_{l+d})_{\mathbf{T}} \\ = \min_p (p(x_1 \oplus_S \cdots \oplus_S x_l)_{\mathbf{L}} + (1-p)(x_{l+1} \oplus_S \cdots \oplus_S x_{l+d})_{\mathbf{D}} - TS(p)) \end{aligned}$$

- third step: induction on trees with less than n leaves

$$(x_1 \oplus_S \cdots \oplus_S x_n)_{\mathbf{T}} = \min_p \left(\min_{p_1 + \cdots + p_l = 1} \left(\sum p_i x_i - TS_{\mathbf{L}}(p_1, \dots, p_l) \right) \right)$$

$$+ (1-p) \min_{p_{l+1} + \cdots + p_{l+d} = 1} \left(\sum p_i x_i - TS_{\mathbf{D}}(p_{l+1}, \dots, p_{l+d}) - TS(p) \right)$$

- fourth step: change of variables $q_i = pp_i$, for each $i \in \{1, \dots, l\}$, and $q_i = (1-p)p_i$, for each $i \in \{l+1, \dots, l+d\}$
- with this have $q_1 + \cdots + q_l = p$ and $q_{l+1} + \cdots + q_{l+d} = 1 - p$ so get

$$\begin{aligned}
 (x_1 \oplus_S \cdots \oplus_S x_n)_{\mathbf{T}} &= \min_{\sum q_i = 1} \left(\sum q_i x_i \right. \\
 &\quad \left. - T((q_1 + \cdots + q_l) S_{\mathbf{L}} \left(\frac{q_1}{q_1 + \cdots + q_l}, \dots, \frac{q_l}{q_1 + \cdots + q_l} \right) \right. \\
 &\quad \left. + (q_{l+1} + \cdots + q_{l+d}) S_{\mathbf{D}} \left(\frac{q_{l+1}}{q_{l+1} + \cdots + q_{l+d}}, \dots, \frac{q_{l+d}}{q_{l+1} + \cdots + q_{l+d}} \right) \right. \\
 &\quad \left. + S(q_1 + \cdots + q_l) \right))
 \end{aligned}$$

- by first step this is

$$\min_{\sum q_i=1} \left(\sum q_i x_i - TS_{\mathbf{T}}(q_1, \dots, q_n) \right)$$

- for arbitrary labelings then use permutation σ and

$$p_i = q_{\sigma^{-1}(i)}$$

$$\begin{aligned} (x_{\sigma(1)} \oplus_S \cdots \oplus_S x_{\sigma(n)})_{\mathbf{T}} &= \min_{\sum q_i=1} \left(\sum q_i x_{\sigma(i)} - TS_{\mathbf{T}}(q_1, \dots, q_n) \right) \\ &= \min_{\sum p_i=1} \left(\sum p_i x_i - TS_{\mathbf{T}}(p_{\sigma(1)}, \dots, p_{\sigma(n)}) \right) \end{aligned}$$

Example: same binary tree illustrated above

$$\begin{aligned} & x_1 \oplus_S ((x_2 \oplus_S (x_3 \oplus_S x_4)) \oplus_S (x_5 \oplus_S x_6)) = \\ & \min_{p_1} (p_1 x_1 + (1 - p_1)((x_2 \oplus_S (x_3 \oplus_S x_4)) \oplus_S (x_5 \oplus_S x_6)) - TS(p_1)) \\ & = \min_{p_1} (p_1 x_1 + (1 - p_1) \min_{p_2} (p_2 (x_2 \oplus_S (x_3 \oplus_S x_4)) + (1 - p_2)(x_5 \oplus_S x_6) - TS(p_2)) - TS(p_1)) \\ & = \min_{p_1, p_2} \left(p_1 x_1 + (1 - p_1) p_2 \min_{p_3} (p_3 x_2 + (1 - p_3)(x_3 \oplus_S x_4) - TS(p_3)) \right. \\ & \quad \left. + (1 - p_1)(1 - p_2) \min_{p_4} (p_4 x_5 + (1 - p_4)x_6 - TS(p_4)) - T(S(p_1) + (1 - p_1)S(p_2)) \right) \\ & = \min_{p_1, p_2, p_3, p_4, p_5} (p_1 x_1 + (1 - p_1) p_2 p_3 x_2 + (1 - p_1) p_2 (1 - p_3) p_5 x_3 \\ & \quad + (1 - p_1) p_2 (1 - p_3) (1 - p_5) x_4 + (1 - p_1) (1 - p_2) p_4 x_5 + (1 - p_1) (1 - p_2) (1 - p_4) x_6 \\ & \quad - T(S(p_1) + (1 - p_1)S(p_2) + (1 - p_1)p_2 S(p_3) + (1 - p_1)(1 - p_2)S(p_4) + (1 - p_1)p_2 (1 - p_3)S(p_5))) \\ \bullet \text{ then change of variables with } & q_1 + \cdots + q_6 = 1: \end{aligned}$$

$$p_1 = q_1$$

$$p_2 = (q_2 + q_3 + q_4) / (1 - q_1)$$

$$p_3 = q_2 / (q_2 + q_3 + q_4)$$

$$p_4 = q_5 / (q_5 + q_6)$$

$$p_5 = q_3 / (q_3 + q_4).$$

- change of variables gives

$$x_1 \oplus_S ((x_2 \oplus_S (x_3 \oplus_S x_4)) \oplus_S (x_5 \oplus_S x_6)) =$$

$$\begin{aligned} & \min_{\sum q_i=1} \left(\sum q_i x_i - T(S(q_1) + (1-q_1)S\left(\frac{q_2+q_3+q_4}{1-q_1}\right) \right. \\ & \left. + (q_2+q_3+q_4)S\left(\frac{q_2}{q_2+q_3+q_4}\right) + (q_3+q_4)S\left(\frac{q_3}{q_3+q_4}\right) + (q_5+q_6)S\left(\frac{q_5}{q_5+q_6}\right) \right) \end{aligned}$$

- then get by applying permutation $\sigma = (12)(34) \in S_6$

More general (non-binary) guessing trees

- for some $V \subset \mathbb{N}_{\geq 2}$ a family $\{S_n\}_{n \in V}$ of n -ary information measures
- satisfying coherence axiom: for $n > m$ if for all but $1 < i_1 < \dots < i_m < n$, $p_j = 0$ then

$$S_n(p_1, \dots, p_n) = S_m(p_{i_1}, \dots, p_{i_m})$$

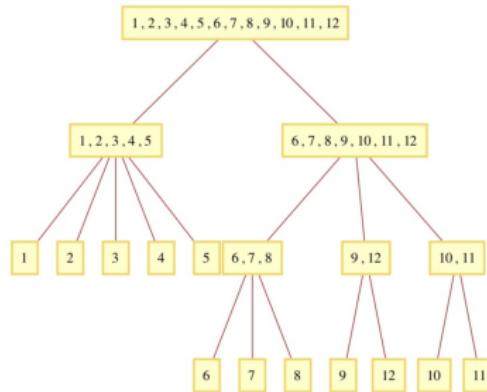
- typical examples have the form

$$S_n(p_1, \dots, p_n) = f\left(\sum_{1 \leq i \leq n} g(p_i)\right)$$

for suitable functions f, g (all these satisfy coherence)

- for $v = \sup V$, can ask questions with up to v possible answers (instead of just binary)

- given $n, v \geq 2$, suppose for each $2 \leq j < v + 1$ have j -ary information measure S_j (with coherence axiom)
- guessing strategies of n -ary random variables with questions with up to v possible answers
- in bijective correspondence with the set of (n, v) -trees: rooted trees with labelled leaves such that every vertex is either a leaf or has between 2 and v children



Entropy functionals and general planar rooted trees

- A collection $\mathcal{S} = \{S_n\}_{n \in \mathbb{N}}$ of n -ary entropy functionals S_n
- coherence condition:

$$S_n(p_1, \dots, p_n) = S_m(p_{i_1}, \dots, p_{i_m}),$$

whenever, for some $m < n$, we have $p_j = 0$ for all $j \notin \{i_1, \dots, i_m\}$

- Shannon, Rényi, Tsallis entropies satisfy this condition
- collection $\mathcal{S} = \{S_n\}_{n \in \mathbb{N}}$ of coherent entropy functionals determines n -ary operations $C_{n,\beta,\mathcal{S}}$ on $\mathbb{R} \cup \{\infty\}$

$$C_{n,\beta,\mathcal{S}}(x_1, \dots, x_n) = \min_p \left\{ \sum_{i=1}^n p_i x_i - \frac{1}{\beta} S_n(p_1, \dots, p_n) \right\}$$

minimum taken over $p = (p_i)$, with $\sum_i p_i = 1$

- also write as $(x_1 \oplus_S \dots \oplus_S x_n) := C_{n,\beta,\mathcal{S}}(x_1, \dots, x_n)$
- in example tree above

$$(x_1 \oplus_S x_2 \oplus_S x_3 \oplus_S x_4 \oplus_S x_5) \oplus_S ((x_6 \oplus_S x_7 \oplus_S x_8) \oplus_S (x_9 \oplus_S x_{12}) \oplus_S (x_{10} \oplus_S x_{11}))$$

- more generally: n -ary operations $C_{n,\beta,\mathcal{S},\mathbf{T}}(x_1, \dots, x_n)$ with \mathcal{S} as above and \mathbf{T} planar rooted trees with n leaves

$$C_{n,\beta,\mathcal{S},\mathbf{T}}(x_1, \dots, x_n) = \min_p \left\{ \sum_{i=1}^n p_i x_i - \frac{1}{\beta} S_{\mathbf{T}}(p_1, \dots, p_n) \right\}$$

- with the $S_{\mathbf{T}}(p_1, \dots, p_n)$ obtained from the S_j , for $j = 2, \dots, n$
- if root of (n, v) -tree \mathbf{T} has sub- (l_j, v) -trees (resp. from left to right) $\mathbf{A}_1, \dots, \mathbf{A}_m$, and the leaves of \mathbf{T} are labeled left to right (and $L_j = l_1 + \dots + l_j$ and $L_0 = 0$)

$$S_{\mathbf{T}}(p_1, \dots, p_n) =$$

$$\sum_{1 \leq j \leq m} (p_{L_{j-1}+1} + \dots + p_{L_j}) S_{\mathbf{A}_j} \left(\frac{p_{L_{j-1}+1}}{p_{L_{j-1}+1} + \dots + p_{L_j}}, \dots, \frac{p_{L_j}}{p_{L_{j-1}+1} + \dots + p_{L_j}} \right) + S_m(p_{L_0+1} + \dots + p_{L_1}, \dots, p_{L_{m-1}+1} + \dots + p_{L_m})$$

- then also for $C_{n,\beta,\mathcal{S},\mathbf{T}}(x_1, \dots, x_n) =: (x_1 \oplus_{\mathcal{S}} \dots \oplus_{\mathcal{S}} x_n)_{\mathbf{T}}$

$$(x_1 \oplus_{\mathcal{S}} \dots \oplus_{\mathcal{S}} x_n)_{\mathbf{T}} = \min_{\sum q_i = 1} (q_1(x_1 \oplus_{\mathcal{S}} \dots \oplus_{\mathcal{S}} x_{l_1}) + \dots + q_m(x_{l_1+\dots+l_{m-1}+1} \oplus_{\mathcal{S}} \dots \oplus_{\mathcal{S}} x_{l_1+\dots+l_m}) - TS_m(q_1, \dots, q_m)).$$

- same inductive argument then gives

$$C_{n,\beta,\mathcal{S},\mathbf{T}}(x_1, \dots, x_n) = \min_{\sum p_i = 1} \left(\sum p_i x_i - TS_{\mathbf{T}}(p_1, \dots, p_n) \right)$$

- indeed have

$$(x_1 \oplus_S \dots \oplus_S x_n)_{\mathbf{T}} = \min_{\sum q_i = 1} \left(q_1 \min_{p_1 + \dots + p_{l_1} = 1} (p_1 x_1 + \dots + p_{l_1} x_{l_1} - TS_{\mathbf{A}_1}(p_1, \dots, p_{l_1})) + \dots \right.$$

$$\begin{aligned} & + q_k \min_{p_{l_1 + \dots + l_{k-1} + 1} + \dots + p_{l_1 + \dots + l_k} = 1} \left(\sum_{j=l_1 + \dots + l_{k-1} + 1}^{l_1 + \dots + l_k} p_j x_j - TS_{\mathbf{A}_k}(p_{l_1 + \dots + l_{k-1} + 1}, \dots, p_{l_1 + \dots + l_k}) \right) \\ & \quad \left. - TS_k(p_1 + \dots + p_{l_1}, \dots, p_{l_1 + \dots + l_{k-1} + 1} + \dots + p_n) \right) \end{aligned}$$

- for each $i \in \{1, \dots, k\}$, and each $j \in \{l_1 + \dots + l_{i-1} + 1, \dots, l_1 + \dots + l_i\}$, with $l_0 = 0$, use substitution $\tilde{q}_j = q_i p_j$ with $\sum_{j=l_1 + \dots + l_{i-1} + 1}^{l_1 + \dots + l_i} \tilde{q}_j = q_i$:

$$(x_1 \oplus_S \dots \oplus_S x_n)_{\mathbf{T}} = \min_{\sum \tilde{q}_j = 1} \left(\sum \tilde{q}_j x_j - T((\tilde{q}_1 + \dots + \tilde{q}_{l_1}) S_{\mathbf{A}_1} \left(\frac{\tilde{q}_1}{\tilde{q}_1 + \dots + \tilde{q}_{l_1}}, \dots \right) + \dots \right.$$

$$\left. + (\tilde{q}_{l_1 + \dots + l_{k-1} + 1} + \dots + \tilde{q}_n) S_{\mathbf{A}_k} \left(\frac{\tilde{q}_{l_1 + \dots + l_{k-1} + 1}}{\tilde{q}_{l_1 + \dots + l_{k-1} + 1} + \dots + \tilde{q}_n}, \dots \right) \right)$$

- by first step (subtrees) this equals

$$\min_{\sum \tilde{q}_j = 1} \left(\sum \tilde{q}_j x_j - TS_{\mathbf{T}}(\tilde{q}_1, \dots, \tilde{q}_n) \right)$$

- then adjust order of leaves with a permutation, with

$$p_i = q_{\sigma^{-1}(i)}$$

$$\begin{aligned} (x_{\sigma(1)} \oplus_S \cdots \oplus_S x_{\sigma(n)})_{\mathbf{T}} &= \min_{\sum q_i = 1} \left(\sum q_i x_{\sigma(i)} - TS_{\mathbf{T}}(q_1, \dots, q_n) \right) \\ &= \min_{\sum p_i = 1} \left(\sum p_i x_i - TS_{\mathbf{T}}(p_{\sigma(1)}, \dots, p_{\sigma(n)}) \right) \end{aligned}$$

Entropy functionals and operad

- collection $\mathcal{S} = \{S_n\}_{n \in \mathbb{N}}$ of n -ary entropy functionals with coherence
- \mathbb{R} as single-object topological category
- algebra over the A_∞ operad of rooted trees with operations

$$C_{n,\beta,\mathcal{S},\mathbf{T}}(x_1, \dots, x_n) = \min_{\sum p_i = 1} \left(\sum p_i x_i - TS_{\mathbf{T}}(p_1, \dots, p_n) \right)$$

- satisfy additivity

$$C_{n,\beta,\mathcal{S},\mathbf{T}}(x_1, \dots, x_{j-1}, x_j + y, x_{j+1}, \dots, x_n) =$$

$$C_{n,\beta,\mathcal{S},\mathbf{T}}(x_1, \dots, x_j, \dots, x_n) + C_{n,\beta,\mathcal{S},\mathbf{T}}(x_1, \dots, y, \dots, x_n)$$

- distributive property

$$yC_{n,\beta,\mathcal{S},\mathbf{T}}(x_1, \dots, x_n) = C_{n,\beta,\mathcal{S},\mathbf{T}}(yx_1, \dots, yx_n)$$

- also satisfies (scaling of deformation variable)

$$(x_1 \oplus_S \dots \oplus_S x_n)_{\mathbf{T}}^\alpha(T) = (x_1^\alpha \oplus_S \dots \oplus_S x_n^\alpha)_{\mathbf{T}}(\alpha T)$$

- additional relations between trees: $\mathbf{T}_1 \sim \mathbf{T}_2$ when $\forall x_i$

$$C_{n,\beta,\mathcal{S},\mathbf{T}_1}(x_1, \dots, x_n) = C_{n,\beta,\mathcal{S},\mathbf{T}_2}(x_1, \dots, x_n)$$

Information algebras and operad

- for $R = (\mathbb{R}_+, \max, +)$ and $\alpha_n : A_\infty(n) \rightarrow \mathbb{R}$
- in general, consider $A_\infty(n)$ vector space spanned by rooted trees with n leaves
- internal A_∞ -algebra in R :
 - ① for $\mathbf{T} \in A_\infty(n)$ and $\mathbf{A}_i \in A_\infty(k_i)$

$$\alpha_{k_1+\dots+k_n} \gamma(\mathbf{T}, A_1, \dots, A_n) = \alpha_n(\mathbf{T} + C_{n, \beta, \mathcal{S}, \mathbf{T}}(\alpha_{k_1}(\mathbf{A}_1), \dots, \alpha_{k_n}(\mathbf{A}_n)))$$

- ② for all $\mathbf{T} \in A_\infty(n)$ and $\sigma \in \text{Sym}_n$

$$\alpha_n(\sigma \mathbf{T}) = \alpha_n(\mathbf{T})$$

- ③ $\alpha_1|_{A_\infty(1)} = 0$

- values h_n of α_n on the (n, v) -tree with $n + 1$ vertices

$$\alpha(\mathbf{T}) = h_n \oplus (\alpha(\mathbf{A}_1) \oplus_S \dots \oplus_S \alpha(\mathbf{A}_n)) = \max(h_n, \alpha(\mathbf{A}_1) \oplus_S \dots \oplus_S \alpha(\mathbf{A}_n))$$

- case of Shannon entropy: quotient of operad with exactly one class of (n, v) -trees for each n (by associativity and commutativity relations of Shannon)
- for Shannon entropy

$$\alpha(\mathbf{T}) = \max(h_n, (\alpha(\mathbf{A}_1)^{1/T} + \cdots + \alpha(\mathbf{A}_n)^{1/T})^T)$$

- so entropy functionals in classical probability can be understood as algebras over the A_∞ -operad of rooted trees

Witt rings and thermodynamic semirings

- Witt ring $W(R)$ of a commutative ring R : as a group $(W(R), +_W)$ isomorphic to $(1 + tR[[t]], \times)$ and product \star_W completely specified by

$$(1 - at)^{-1} \star_W (1 - bt)^{-1} = (1 - abt)^{-1}$$

identities $1 = 1 + 0t + 0t^2 + \dots$ for addition and $(1 - t)^{-1}$ for multiplication

- functoriality: ring homomorphisms $f : A \rightarrow B$ induce $W(f) : W(A) \rightarrow W(B)$
- built so that $W(\mathbb{F}_p)$ is the ring \mathbb{Z}_p of p -adic integers
- elements $a \in \mathbb{Z}_p$ have usual p -adic expansion
$$a = a_0 + a_1 p + a_2 p^2 + \dots$$

- quotient map to residue field $\mathbb{Z}_p \rightarrow \mathbb{F}_p = \mathbb{Z}_p/p\mathbb{Z}_p$ has a unique *multiplicative* lift $\tau : \mathbb{F}_p \rightarrow \mathbb{Z}_p$ (map of multiplicative monoids) maps solution of $x^p = x$ in \mathbb{F}_p to solution in \mathbb{Z}_p congruent to $x \bmod p$

$$\pi \circ \tau = \text{id}_{\mathbb{K}}, \quad \tau(xy) = \tau(x)\tau(y) \quad \forall x, y \in \mathbb{F}_p$$

- can identify elements $a \in \mathbb{Z}_p$ uniquely through coordinates $a = \tau(a_0) + \tau(a_1)p + \tau(a_2)p^2 + \dots$
- Witt vector $(\tau(a_0), \tau(a_1), \tau(a_2), \dots)$
- these Teichmüller representatives are not $\{0, 1, \dots, p-1\}$ but roots of $x^p - x = 0$
- Witt formula expresses sum of these representatives as

$$\tau(x) + \tau(y) = \tilde{\tau}\left(\sum_{\alpha \in I_p} w_p(\alpha, T) x^\alpha y^{1-\alpha}\right)$$

$$I_p = \{\alpha \in \mathbb{Q} \cap [0, 1] \mid p^n \alpha \in \mathbb{Z} \text{ for some } n\}$$

and $\tilde{\tau} : \mathbb{F}_p[[T]] \rightarrow \mathbb{Z}_p$ unique map with $\tilde{\tau}(xT^n) = \tau(x)p^n$ and $w_p(\alpha, T) \in \mathbb{F}_p[[T]]$

- the Witt formula has general form

$$x \oplus_w y = \sum_{s \in I_p} w_p(s) x^s y^{1-s}$$

- with coefficients

$$w_p(s) = \sum_{a/p^n=s} w(p^n, a) T^n$$

with $w(p^n, k) \in \mathbb{Z}/p\mathbb{Z}$, for $0 < k < p^n$, determined by addition formula

$$\tau(x) + \tau(y) = \tau(x+y) + \sum_{n=1}^{\infty} \tau \left(\sum w(p^n, k) x^{k/p^n} y^{1-k/p^n} \right) p^n$$

- as first observed by Connes-Consani the Shannon entropy semiring deformation gives an analog in characteristic one semirings

Entropy and thermodynamics in positive characteristics

- the universal sequence of the $w(p^n, k)$ can be seen as the characteristic p analog of the Shannon information
- non-extensive Tsallis entropy case also has a characteristic p analog in the form of q -deformations of the Witt ring
- see for instance:
 - Y.T. Oh, *q -Deformations of Witt–Burnside rings*, Math. Z. 257 (2007), N.1, 151–191.
 - M. Marcolli, Z. Ren, *q -deformations of statistical mechanical systems and motives over finite fields*, p-Adic Numbers Ultrametric Anal. Appl. 9 (2017), no. 3, 204–227

from classical to quantum: operadic structures

- from N. Combe, Yu.I. Manin, M. Marcolli, *Quantum operads*, in “Dialogues between physics and mathematics—C. N. Yang at 100”, pp. 113–145, Springer, 2022.
- is there a way to extend the operad \mathcal{P} of finite probabilities to quantum states?
- are there interesting algebras over operads in the quantum setting?
- what is the role of quantum information measures like von Neumann entropy?

density matrices and classical probabilities

given a density matrix ρ two natural classical probabilities associated to it:

- ① $P = P(\rho)$ given by $p_i = \rho_{ii}$ diagonal elements
- ② $\Lambda = \Lambda(\rho)$ eigenvalues λ_i of ρ (up to a choice of ordering: sort in non-increasing order)

properties:

- **Schur lemma:** sequence Λ of eigenvalues of hermitian matrix majorizes sequence P of diagonal entries, both sorted non-increasingly
- **bistochastic matrix:** since $\Lambda(\rho) \succ P(\rho)$ there is a bistochastic matrix B such that $P = B\Lambda$
- Shannon entropy non-decreasing $S(BP) \geq S(P)$
- Kullback–Leibler under bistochastic matrices
 $KL(BP|BQ) \leq K(P||Q)$
- uniform distribution $Q^{(N)} = (1/N)_{i=1}^N$ is a fixed point, $BQ^{(N)} = Q^{(N)}$
- Shannon entropy $KL(P|Q^{(N)}) = \log N - S(P)$

\mathcal{Q}_P -operad of quantum states

- $\mathcal{Q}_P(n) = \mathcal{M}^{(n)}$ convex set of density matrices
- composition laws

$$\gamma_P : \mathcal{Q}(n) \times \mathcal{Q}(k_1) \times \cdots \times \mathcal{Q}(k_n) \rightarrow \mathcal{Q}(k_1 + \cdots + k_n)$$

$$\gamma_P(\rho; \rho_1, \dots, \rho_n) = \gamma(P(\rho); \rho_1, \dots, \rho_n) = \begin{pmatrix} p_1 \rho_1 & & & \\ & p_2 \rho_2 & & \\ \vdots & & \ddots & \\ & & & p_n \rho_n \end{pmatrix}$$

- it is a **non-unital, symmetric operad**
- it restricts to unital operad \mathcal{P} of classical probabilities on $\Delta_n \subset \mathcal{M}^{(n)}$

associativity of composition in \mathcal{Q}_P

- associativity condition is given by the identities

$$\gamma(\gamma(\rho^{(m)}; \rho^{(n_1)}, \dots, \rho^{(n_m)}); \rho^{(r_{1,1})}, \dots, \rho^{(r_{1,n_1})}, \dots, \rho^{(r_{m,1})}, \dots, \rho^{(r_{m,n_m})}) =$$

$$\gamma(\rho^{(m)}; \gamma(\rho^{(n_1)}; \rho^{(r_{1,1})}, \dots, \rho^{(r_{1,n_1})}), \dots, \gamma(\rho^{(n_m)}; \rho^{(r_{m,1})}, \dots, \rho^{(r_{m,n_m})}))$$

for $\rho^{(m)} \in \mathcal{Q}(m)$, $\rho^{(n_i)} \in \mathcal{Q}(n_i)$, $i = 1, \dots, m$, and
 $\rho^{(r_{i,\ell_i})} \in \mathcal{Q}(r_{i,\ell_i})$ with $\ell_i = 1, \dots, n_i$

- left-hand-side is

$$\gamma \left(\begin{pmatrix} \rho_{11}^{(m)} \rho^{n_1} & & & & \\ & \rho_{22}^{(m)} \rho^{n_2} & & & \\ \vdots & & \ddots & & \\ & & & \ddots & \\ & & & & \rho_{mm}^{(m)} \rho^{n_m} \end{pmatrix}; \rho^{(r_{1,1})}, \dots, \rho^{(r_{1,n_1})}, \dots, \rho^{(r_{m,1})}, \dots, \rho^{(r_{m,n_m})} \right) =$$

$$\begin{pmatrix} \rho_{11}^{(m)} \rho_{11}^{n_1} \rho^{(r_{1,1})} \\ \vdots \\ \rho_{11}^{(m)} \rho_{n_1 n_1}^{n_1} \rho^{(r_{1,n_1})} \\ \vdots \\ \rho_{mm}^{(m)} \rho_{11}^{n_1} \rho^{(r_{m,1})} \\ \vdots \\ \rho_{mm}^{(m)} \rho_{n_m n_m}^{n_1} \rho^{(r_{m,n_m})} \end{pmatrix}$$

which agrees with the right-hand-side

$$\gamma \left(\rho^{(m)}; \begin{pmatrix} \rho_{11}^{n_1} \rho^{(r_{1,1})} \\ \vdots \\ \rho_{n_1 n_1}^{n_1} \rho^{(r_{1,n_1})} \end{pmatrix}, \dots, \begin{pmatrix} \rho_{11}^{n_m} \rho^{(r_{m,1})} \\ \vdots \\ \rho_{n_m n_m}^{n_m} \rho^{(r_{m,n_m})} \end{pmatrix} \right)$$

action of symmetric groups and equivariance

- permutations $\sigma_i \in \Sigma_{n_i}$ and $\sigma \in \Sigma_m$
- symmetric operad:

- ① first condition

$$\gamma_P(\sigma(\rho); \rho_{\sigma^{-1}(1)}, \dots, \rho_{\sigma^{-1}(m)}) = \tilde{\sigma}(\gamma_P(\rho; \rho_1, \dots, \rho_m))$$

where $\tilde{\sigma} \in \Sigma_{n_1+\dots+n_m}$ permutation that splits into blocks of n_i indices and permutes blocks by σ

- ② second condition

$$\gamma_P(\rho; \sigma_1(\rho_1), \dots, \sigma_m(\rho_m)) = \hat{\sigma}(\gamma_P(\rho; \rho_1, \dots, \rho_m))$$

with $\hat{\sigma} \in \Sigma_{n_1+\dots+n_m}$ permutation that acts on the i -th block of n_i indices as σ_i

- action of symmetric group Σ_n on $\mathcal{M}^{(n)}$ by $\sigma(\rho) = \sigma\rho\sigma^*$
- on diagonal matrices permutation of entries: agrees with Σ_n action on $\mathcal{P}(n)$
- induced action on Λ and P

$$\Lambda(\sigma\rho\sigma^*) = \Lambda(\rho) \quad \text{and} \quad P(\sigma\rho\sigma^*) = \sigma^*P(\rho)$$

- because $\sigma\rho\sigma^*$ and ρ same set of eigenvalues and both listed non-increasingly; for P have $p_i = \rho_{ii} = \text{Tr}(\pi_i\rho)$ with 1-dim projection π_i and $\text{Tr}(\pi_i\sigma\rho\sigma^*) = \text{Tr}(\sigma^*\pi_i\sigma\rho) = \text{Tr}(\pi_{\sigma^{-1}(i)}\rho)$
- so compatibility of operad \mathcal{Q}_P with symmetric group action as

$$\gamma_P(\sigma(\rho); \rho_{\sigma^{-1}(1)}, \dots, \rho_{\sigma^{-1}(m)}) = \gamma_P(\sigma^{-1}P(\rho); \rho_{\sigma^{-1}(1)}, \dots, \rho_{\sigma^{-1}(m)})$$

is the same as $\tilde{\sigma}\gamma_P(\rho; \rho_1, \dots, \rho_m))\tilde{\sigma}^*$ in $\mathcal{M}^{(n_1+\dots+n_m)}$ and similar for second condition

non-unital operad

- unit axiom is satisfied for $\rho = 1 \in \mathcal{Q}(1)$ with $\gamma_P(1; \rho) = \rho$
- it fails for $\rho_i = 1 \in \mathcal{Q}(1)$, where the composition gives instead $\gamma_P(\rho; 1, \dots, 1) = P(\rho)$
- unit axiom is restored when restricting to $\Delta_n \subset \mathcal{M}^{(n)}$ classical probabilities where \mathcal{Q}_P agrees with unital operad \mathcal{P}

\mathcal{Q}_Λ -operad of quantum states

- can do a similar construction of an operad with same $\mathcal{Q}_\Lambda(n) = \mathcal{M}^{(n)}$
- with composition given by

$$\gamma_\Lambda(\rho; \rho_1, \dots, \rho_n) = \gamma(\Lambda(\rho); \rho_1, \dots, \rho_n) = \begin{pmatrix} \lambda_1 \rho_1 & & & \\ & \lambda_2 \rho_2 & & \\ \vdots & & \ddots & \\ & & & \lambda_n \rho_n \end{pmatrix}$$

with λ_i the eigenvalues of ρ listed in non-increasing order

- the associativity condition for compositions holds as before because

$$\text{Spec} \begin{pmatrix} \lambda_1 \rho^{n_1} & & & \\ & \lambda_2 \rho^{n_2} & & \\ \vdots & & \ddots & \vdots \\ & & & \lambda_m \rho^{n_m} \end{pmatrix} = \bigcup_i \lambda_i \text{Spec}(\rho^{n_i})$$

- the unit axiom fails as before: $\gamma_\Lambda(1; \rho) = \rho$ holds but $\gamma_\Lambda(\rho; 1, \dots, 1) = \Lambda(\rho) \neq \rho$
- the need to choose an ordering (non-increasing) of eigenvalues breaks the Σ_n -equivariance as $\Lambda(\sigma \rho \sigma^*) = \Lambda(\rho)$ so symmetric condition no longer satisfied
- \mathcal{Q}_Λ is a non-unital non-symmetric operad
- when restricted to $\Delta_n \subset \mathcal{M}^{(n)}$ the operad \mathcal{Q}_Λ only agrees with \mathcal{P} up to permutations

different versions of non-unital operads

- for unital operads \mathcal{O} can describe operad through compositions

$$\gamma : \mathcal{O}(n) \otimes \mathcal{O}(k_1) \otimes \cdots \otimes \mathcal{O}(k_n) \rightarrow \mathcal{O}(k_1 + \cdots + k_n)$$

- can also describe \mathcal{O} through insertion operations

$$\circ_i : \mathcal{O}(n) \otimes \mathcal{O}(m) \rightarrow \mathcal{O}(n + m - 1)$$

- with constraints: for $1 \leq j \leq a$ and $b, c \geq 0$, with $X \in \mathcal{O}(a)$, $Y \in \mathcal{O}(b)$, and $Z \in \mathcal{O}(c)$

$$(X \circ_j Y) \circ_i Z = \begin{cases} (X \circ_i Z) \circ_{j+c-1} Y & 1 \leq i < j \\ X \circ_j (Y \circ_{i-j+1} Z) & j \leq i < b+j \\ (X \circ_{i-b+1} Z) \circ_j Y & j+b \leq i \leq a+b-1 \end{cases}$$

- then composition laws γ with associativity obtained by

$$\gamma(X, Y_1, \dots, Y_n) = (\cdots (X \circ_n Y_n) \circ_{n-1} Y_{n-1}) \cdots \circ_1 Y_1)$$

- for non-unital operads these two descriptions no longer the same
- if described through the \circ ; then also obtained via the γ operations
- but not always through that if described by the compositions γ these can be obtained from insertions \circ ;
- see M. Markl, *Operads and PROPs*, Handbook of algebra. Vol. 5, 87–140, Elsevier/North-Holland, 2008

- the operads \mathcal{Q}_P and \mathcal{Q}_Λ are also in the more restrictive class of non-unital operads
- the compositions γ are induced by insertions \circ ;
- for $\rho \in \mathcal{M}^{(n)}$ and $\rho' \in \mathcal{M}^{(m)}$ the insertion $\rho \circ_i \rho'$ in $\mathcal{M}^{(n+m-1)}$ is obtained by removing the i -th row and column of ρ and replacing them m rows and m columns, respectively, with
 - all the entries outside of the $m \times m$ -block around the diagonal are zero
 - the $m \times m$ -block around the diagonal is $\rho_i \rho'$
- then $(\cdots (\rho \circ_n \rho_n) \cdots \circ_1 \rho_1)$ produce exactly the matrix

$$\begin{pmatrix} \rho_1 \rho_1 & & & \\ & \rho_2 \rho_2 & & \\ \vdots & & \ddots & \\ & & & \rho_n \rho_n \end{pmatrix} = \gamma_P(\rho; \rho_1, \dots, \rho_n)$$

- same thing for \mathcal{Q}_Λ but with the $m \times m$ -block around the diagonal given $\lambda_i \rho'$

range of the operad maps

- image of insertion map $\circ_i : \mathcal{Q}_P(n) \times \mathcal{Q}_P(m) \rightarrow \mathcal{Q}(n+m-1)$ consists of all density matrices $\rho \in \mathcal{M}^{(n+m-1)}$ that are block diagonal with one $(n-1) \times (n-1)$ -block and one $m \times m$ block
- all block diagonal density matrices are in the image of some composition of insertion maps
- these are all the quantum states that decompose nontrivially into disjoint states with orthogonal ranges
- a block diagonal density matrix can be realized in several different ways through compositions of insertion maps

projective quantum measurements

- fixed fin dim Hilbert space \mathcal{H} (choice of on basis)
- operators on density matrices are described by quantum channels
- special case: projective quantum measurement $\Pi = \{\Pi_i\}_{i=1}^n$ projectors $\Pi_i^* = \Pi_i = \Pi_i^2$ mutually orthogonal, $\Pi_i \Pi_j = \delta_{ij} \Pi_i$ and $\sum_i \Pi_i = 1$
- outcome of projective measurement Π on a quantum state $\rho \in \mathcal{M}^{(N)}$

$$\rho_i = \frac{\Pi_i \rho \Pi_i}{\text{Tr}(\Pi_i \rho)} \quad \text{with probability} \quad p_i = \text{Tr}(\Pi_i \rho)$$

- quantum channel Π maps

$$\rho \mapsto \Pi(\rho) = \sum_i p_i \rho_i$$

- range in $\mathcal{M}^{(N)}$ of a composition of insertion maps specified by assigning $N = k_1 + \dots + k_n$ and $\mathcal{M}_{k_1, \dots, k_n} \subset \mathcal{M}^{(N)}$ block-diagonal density matrices with n blocks of size k_i
- projective measurement $\Pi = \{\Pi_i\}_{i=1}^n$, where Π_i is the orthogonal projection onto the span of the i -th subset of k_i basis elements
- quantum channel then maps $\Pi : \mathcal{M}^{(N)} \rightarrow \mathcal{M}_{k_1, \dots, k_n}$, assigning to ρ the block-diagonal density matrix $\Pi(\rho) = \sum_i p_i \rho_i$
- different realizations as composition of insertion maps \Leftrightarrow different realizations of this quantum channel through rooted trees

- τ planar rooted tree with n leaves decorated by integers $k_i \geq 1$, oriented from leaves to root
- at root vertex v_0 identity projector $\Pi^{(v_0)} = 1$
- v any vertex with set of incoming edges e at v , orthogonal projectors $\{\Pi^{(s(e))}\}_{t(e)=v}$ with $\sum_{e:t(e)=v} \Pi^{(s(e))} = \Pi^{(v)}$
- Π_i projectors at the leaves
- for $t(e) = v$

$$\rho^{(s(e))} = \frac{\Pi^{(s(e))} \rho^{(v)} \Pi^{(s(e))}}{\text{Tr}(\Pi^{(s(e))} \rho^{(v)})},$$

with $\rho^{(v_0)} = \rho$

- quantum measurement Π_τ with outcomes ρ_i^τ with probabilities p_i^τ

$$p_i^\tau = \prod_w \text{Tr}(\Pi_{i_w}^{(w)} \rho^{(w)})$$

product over the vertices on directed path from i -th leaf to root along with i_w idirection

- ρ_i^τ obtained by repeatedly computing $\rho^{(s(e))}$ from $\rho^{(t(e))}$ along the path from i -th leaf to root
- all the quantum channels Π_τ are the same quantum channel $\Pi : \mathcal{M}^{(N)} \rightarrow \mathcal{M}_{k_1, \dots, k_n}$

$$\prod_w \text{Tr}(\Pi_{i_w}^{(w)} \rho^{(w)}) = \prod_\ell \frac{\text{Tr}(\Pi^{(w_\ell)} \Pi^{(w_{\ell-1})} \dots \Pi^{(w_0)} \rho)}{\text{Tr}(\Pi^{(w_{\ell-1})} \dots \Pi^{(w_0)} \rho)} = \prod_\ell \frac{\text{Tr}(\Pi^{(w_\ell)} \rho)}{\text{Tr}(\Pi^{(w_{\ell-1})} \rho)} = \text{Tr}(\Pi_i \rho)$$

Π_i projection at leaf

$$\Pi_j^{(s(e))} \Pi_e^{(t(e))} = \Pi_j^{(s(e))}$$

as $\Pi_j^{(s(e))}$ projection onto a subspace of the range of $\Pi_e^{(t(e))}$

quantum entropy functionals

- family of quantum entropy functionals

$$S_n : \mathcal{M}^{(n)} \rightarrow \mathbb{R}$$

- consistency condition: S_n restricts to S_k , $k < n$, over $\mathcal{M}^{(k)} \subset \mathcal{M}^{(n)}$ ($n - k$ vanishing eigenvalues)
- Examples of consistent quantum entropy functionals:
 - 1 von Neumann entropy

$$\mathcal{N}(\rho) = -\text{Tr}(\rho \log \rho)$$

- 2 quantum Rényi entropy ($q \in \mathbb{R}_+^*, q \neq 1$)

$$Ry_q(\rho) = \frac{1}{1-q} \log \text{Tr}(\rho^q)$$

- 3 quantum Tsallis entropy ($q \in \mathbb{R}_+^*, q \neq 1$)

$$Ts_q(\rho) = \frac{1}{1-q} (\text{Tr}(\rho^q) - 1)$$

Tree quantum entropy functionals

- tree τ with n leaves decorated by integers $k_i \geq 1$, $N = k_1 + \dots + k_n$ together with coherent family $\{S_n\}$ of quantum entropies, determines entropy functional

$$S_\tau : \mathcal{M}^{(N)} \rightarrow \mathbb{R}$$

- if τ corolla with root vertex and n leaves

$$S_\tau(\rho) := S(P) + \sum_i p_i S(\rho_i)$$

with $p_i = \text{Tr}(\Pi_i \rho)$ and $\rho_i = \frac{\Pi_i \rho \Pi_i}{\text{Tr}(\Pi_i \rho)}$

- for von Neumann entropy by extensivity same as $\mathcal{N}(\Pi^\tau(\rho)) = \mathcal{N}(\sum_i p_i \rho_i)$
- Inductively assume S_τ constructed for all trees with less than n leaves
- subtrees τ_j , $j = 1, \dots, m$, attached at root v_0 , set L_j of leaves, $\#L_j < n$

- in quantum channel Π^τ have Π_j orthogonal projections with $\sum_j \Pi_j = 1$ along incoming edges e_j at root
- probabilities $p_j = \text{Tr}(\Pi_j \rho)$ and density matrices $\rho_j = \frac{\Pi_j \rho \Pi_j}{\text{Tr}(\Pi_j \rho)}$ at root vertices v_j of subtrees τ_j
- define

$$S_\tau(\rho) := S(P) + \sum_j p_j S_{\tau_j}(\rho_j)$$

$S(P)$ Shannon entropy of classical probability $P = (p_j)$ and S_{τ_j} inductive entropy functionals of subtrees τ_j

- these completely specify S_τ
- for von Neumann by extensivity get
 $\mathcal{N}(\sum_i p_i \rho_i) = S(P) + \sum_i p_i \mathcal{N}(\rho_i)$ but not for other non-extensive entropies

Quantum channels

- quantum channel $\Phi : \mathcal{M}^{(N)} \rightarrow \mathcal{M}^{(N)}$ trace preserving completely positive map
- in Kraus form

$$\Phi(\rho) = \sum_i A_i \rho A_i^*$$

$\{A_i\}$ operators with $\sum_i A_i^* A_i = 1$ (but the $A_i^* A_i$ not necessarily projections)

- τ planar rooted tree with n leaves, oriented from leaves to root
- **tree quantum channel** C_A^τ assignment of operators $A = \{A_e\}_{e \in E(\tau)}$ edges of τ with at each vertex v condition

$$\sum_{e : t(e)=v} A_e^* A_e = 1$$

- channel C_A^τ acts on density matrices $\rho \in \mathcal{M}^{(N)}$ by

$$C_A^\tau(\rho) = \sum_{i=1}^n A_{\gamma_i} \rho A_{\gamma_i}^*$$

with $A_{\gamma_i} = A_{e_{i,1}} \cdots A_{e_{i,m_i}}$ along oriented path $\gamma_i e_{i,1}, \dots, e_{i,m_i}$ from i -th leaf to root

- it is quantum channel

$$\sum_{i=1}^n A_{e_{i,m_i}}^* \cdots A_{e_{i,1}}^* A_{e_{i,1}} \cdots A_{e_{i,m_i}} = 1$$

as have inductively $\sum_{e: t(e)=v} A_e^* A_e = 1$ for paths of length one and reduce length by grouping sum by adjacent vertices

$$\sum_v \sum_{i: t(e_i)=v} A_{\gamma_v}^* A_{e_{i,1}}^* A_{e_{i,1}} A_{\gamma_v} = \sum_v A_{\gamma_v}^* A_{\gamma_v}$$

A_∞ -operad \mathcal{QC} of tree quantum channels

- $\mathcal{QC}(n) = \text{span}_{\mathbb{Z}}\{C_A^\tau \mid \tau \in \mathcal{T}(n)\}$ with $\mathcal{T}(n)$ planar rooted trees
- operad composition laws

$$\gamma_{\mathcal{QC}} : \mathcal{QC}(n) \otimes \mathcal{QC}(k_1) \otimes \cdots \otimes \mathcal{QC}(k_n) \rightarrow \mathcal{QC}(k_1 + \cdots + k_n)$$

$$\gamma_{\mathcal{QC}}(C_A^\tau; C_{A_1}^{\tau_1}, \dots, C_{A_n}^{\tau_n}) = C_{A \cup \{A_1, \dots, A_n\}}^{\gamma\tau(\tau; \tau_1, \dots, \tau_n)}$$

with additional signs as in \mathcal{T}

- DG-structure (ϵ signs as in \mathcal{T})

$$dC_A^\tau = \sum_{\tau' : \tau = \tau'/e} \epsilon C_{A'}^{\tau'}$$

- A' on τ' agrees with A on $\tau = \tau'/e$ for all edges non-adjacent to e , need to define A' on edges adjacent to e so that conditions at vertices still hold

- E_t set of edges of τ with target $t(e)$ in τ' and E_s the set of edges in τ with target $s(e)$ in τ'
- all same target vertex in τ so $\sum_{e' \in E_t \cup E_s} A_{e'}^* A_{e'} = 1$
- operators $B_t := \sum_{e' \in E_t} A_{e'}^* A_{e'}$ and $B_s := \sum_{e' \in E_s} A_{e'}^* A_{e'}$
- operators $\frac{1}{N_s} B_t$ and $A_{e'}^* A_{e'} + \frac{1}{N_s} B_t$ for $e' \in E_s$
- all these are positive, $\langle Bv, v \rangle \geq 0$ for all $v \in \mathcal{H}$
- so there are operators A and $\tilde{A}_{e'}$ with $B_s = A^* A$ and $A_{e'}^* A_{e'} + \frac{1}{N_s} B_t = \tilde{A}_{e'}^* \tilde{A}_{e'}$
- take A' to be $A'_e := A$ and $A'_{e'} := \tilde{A}_{e'}$ for $e' \in E_s$ and $A'_{e'} = A_{e'}$ for $e' \in E_t$

$$\sum_{e' : t(e') = s(e)} {A'}_{e'}^* {A'}_{e'} = \sum_{e' \in E_s} (A_{e'}^* A_{e'} + \frac{1}{N_s} B_t) = \sum_{e' \in E_s} A_{e'}^* A_{e'} + \sum_{e' \in E_t} A_{e'}^* A_{e'} = 1$$

$$\sum_{e' : t(e') = t(e)} {A'}_{e'}^* {A'}_{e'} = {A'}_e^* {A'}_e + \sum_{e' \in E_t} A_{e'}^* A_{e'} = \sum_{e' \in E_s} A_{e'}^* A_{e'} + \sum_{e' \in E_t} A_{e'}^* A_{e'} = 1$$

\mathcal{QC}^+ -operad

- taking \mathbb{Z} -linear combinations of quantum channels allows for DG-structure but loses positivity
- if use convex combinations instead get operad but without differential
- $\mathcal{QC}^+(n) = \text{convex span}\{C_A^\tau \mid \tau \in \mathcal{T}(n)\}$
- compositions same as $\gamma_{\mathcal{QC}}$ (no signs)
- $\mathcal{M}^{(N)}$ algebra over the operad \mathcal{QC}^+
- operations $\alpha : \mathcal{QC}^+(n) \otimes \mathcal{M}^{(N)}^{\otimes n} \rightarrow \mathcal{M}^{(N)}$

$$\alpha(C_A^\tau; \rho_1, \dots, \rho_n) = \sum_{i=1}^n p_i \tilde{\rho}_i$$

$$\tilde{\rho}_i = \frac{A_{\gamma_i} \rho_i A_{\gamma_i}^*}{\text{Tr}(A_{\gamma_i}^* A_{\gamma_i} \rho_i)} \quad \text{and} \quad p_i = \text{Tr}(A_{\gamma_i}^* A_{\gamma_i}),$$

- $A_{\gamma_i} = A_{e_{i,1}} \cdots A_{e_{i,m_i}}$, along path $\gamma_i = e_{i,1}, \dots, e_{i,m_i}$ from i -th leaf to root