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Min-Plus Algebra (Tropical Semiring)
min-plus (or tropical) semiring T = R U {oo}

e operations @ and ®
x @y =min{x,y} with identity oo
X®y=x4y with identity 0

e operations @ and © satisfy:
@ associativity
@ commutativity
o left/right identity
o distributivity of product ® over sum @

Note: can work equivalently with (R U {co}, min, +) or with
(R, max, %) isomorphic under — log map
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Convexity in characteristic one semirings
e on K = (R, max, %) partial ordering < by
x<yexdy=y=max{x,y} =y
e more generally K commutative characteristic one semifield (ie

with ®-multiplicative inverses and where 1 1 =1
idempotent)

@ idempotent property and distributive property imply
characteristic one Frobenius automorphism:

(x ®y)?" =x"" @ y©"

@ such K is (R, max, x)-module through (x, t) — x*

@ function f : X — K with X a convex subset of topological
(R4, max, x)-module is convex:

f(tXl + (]_ — t)Xz) < f(Xl)tf(Xg)l_t

e usual definition of convexity when r.h.s. in (R U {co}, min, +)
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Legendre transform
o epigraph epif = {(a,r) € X x K|f(a) < r}
o f is convex iff the epigraph epif is convex and f is closed iff
epif is closed

o for X C K, Legendre transform of f : X — K

@ on (RU {co}, min,+) this is usual Legendre transform

f*(x) = sup(ax — f(a)),
aeX
@ Legendre transform of f is closed and convex (by epigraph)
o (Fenchel-Moreau) for f : X — K with X C Rxg

© ** is closed and convex and bounded by f
Q ** = f iff f is closed and convex

Matilde Marcolli Information Algebras



Thermodynamic semirings Tgs = (RU{o0},®s.s,®)
e deformation of the tropical addition ©g s

X @55y = min{px+ (1= ply ~ £S(p)}

B thermodynamic inverse temperature parameter
S(p) = S(p,1 — p) binary information measure, p € [0, 1]

e for 5 — oo (zero temperature) recovers unperturbed idempotent
addition @

e multiplication ® = + is undeformed

e for S = Shannon entropy considered first in relation to
F1-geometry in

@ A. Connes, C. Consani, From monoids to hyperstructures: in
search of an absolute arithmetic, arXiv:1006.4810
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Khinchin axioms  Sh(p) = —C(plogp + (1 — p) log(1 — p))
e Axiomatic characterization of Shannon entropy S(p) = Sh(p)
@ symmetry S(p) = S(1 — p)
@ minima 5(0) = 5(1) =0
© extensivity
5(pg) + (1 — pq)S(p(1 — q)/(1 — pq)) = S(p) + pS(q)
e correspond to algebraic properties of semiring Tg s
© commutativity of ©g s
@ left and right identity for ©g s
© associativity of ©g s

= Tp,s commutative, unital, associative iff S(p) = Sh(p)
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case of associativity:
X5 (y 05 2) = x s min(py + (1= p)z — 55(5)
= min(gx -+ (1~ @) min(py + (1. p)z — £5(p)) - 55(0)
= min(ax+ p(1 = a)y + (1= )1 = )z = 5(S() + (1= )S(p))

1
= umin (puxct pay sz 5(S(p) + (1 p)S(T )

while

. 1
(x®psy)DPpsz= mpm(px +(1—-p)y - 55(/9)) Dp,s 2

= min(pax + q(1 = py + (1= @)z = 5(aS(p) + S(a)

1
= _.min _(px+ pay + p3z = Z(S(p1+ p2) + (1 + p2)S( )

 pitptp= B p1+ p2
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Khinchin axioms n-ary form
Given S as above, define S, : A1 — Ryp by

pi
Sn(p1,- - pn) = Z (1- Z Pi)S(TJ_)'
1<j<n—1 1<i<j 1<i<j Pi
Then Khinchin axioms:

@ (Continuity) S(p1,...,pn) continuous in (p1,...,pn) € Ap
simplex
@ (Maximality) S(p1, ..., pn) maximum at the uniform p; = 1/n

© (Additivity/Extensivity) p; = >_™) p;; then

5(p117 e 7an,,) = S(p17 . ~7pn) + ZP,S(E, cety M)v
i1 pi pi
© (Expandability) A, face in Apyg
5(P1,--~,Pn,0) :5(p17"'7pn)
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extensivity axiom

® (Jk)1<k<m be a partition of {p1,...,pn}
® Sp(p1,...,pn) defined in terms of binary S(p) as

5n(P1,~--7Pn)= Z (1_ Z p,)S(#)

1— . p;
1<j<n—1 1<i<j ZKKJ Pi
@ then have

Sa(p1y-- -y pn) = Sm(q1, .-, qm) + Z ak S| (Jk/ax);

1<k<m

where g, = ZpeJk p, so Jx/qk is a |Jk|-ary probability
distribution
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Shannon entropy case:

X @asny = min{px+ (1= ply — 5Sh(p))

equivalent form of &g gn
X @gsny =~ log (e_ﬂx + e_ﬂy)

for T =1/ (temperature parameter) and on tropical semiring
(RU {oc}, min, +)

X®TShy = —Tlog(e_X/T + e_}’/T)
or with multiplicative notation (R;, max, %)

x@rsny = (YT YT
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o F(p)=px+(1—p)y+ T(plogp+(1—p)log(l—p))
o OF(p) =x—y+ T(logp —log(1— p))
@ OF(p) =0 when Tlogp+x—y = Tlog(l— p)

1 e*X/T

Prmin = 14+eT 7 T e xT +e¥/T

@ so get at minimum in p

F(pmin) = —T log (e’X/T + e*Y/T>

Expressing Shannon thermodynamic addition as
X ®T,Shy — (Xl/T +y1/T)T

leads to relation with Maslov dequantization and tropical geometry
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Relation to tropical geometry
e tropical polynomial p : R” — R piecewise linear

p(x1; ...y Xn) = D113 Ox O @x =
min{ai+kixi+: - +kinXn, a2tk xi+ - konXn, -+ s amtkmxait- -+ KmnXn}-
tropical hypersurface where tropical polynomial non-differentiable

e Entropical geometry: thermodynamic deformations of T

Kin _

ki
pﬁ,s(Xl, ce 7Xn) = @g,5,j3j @lel @O X,

. 1
min {Z pj(aj + kjizx1 + - - + kjnxn) — = Sn(p1, ..., pn)}
p=(p;) ; B
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Tropicalization in algebraic geometry

@ starting with a polynomial f defining a hypersurface V in
(C)"

@ Maslov dequantization, given by a one-parameter family f,
with zero set V}

o example: for f(x) = >, akxX, write ax = e and xk = ek
and replace v = log(3", et5¢) with deformed
v, = hlog(Y", elkt+bu/hy: this gives dequantized family
fa(x) = 2y 3 "Xk

@ amoeba obtained by mapping Vj to R” under map
Logp(z1,...,2n) = (hlog|z1], ..., hlog|zn|)

o limit h — 0, subsets A, C R" converge in Hausdorff metric to
tropical variety Tro( V)
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Maslov dequantization and tropicalization of f(x) = x? 4+ ex + 1
from http://www.pdmi.ras.ru/~olegviro/dequant
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http://www.pdmi.ras.ru/~olegviro/dequant

amoeba and tropicalization of z; + z +1 = 0 in (C*)2
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Maslov dequantization

@ instead of deforming coefficients of polynomial see
dequantization by deforming ring operations

@ Maslov dequantization based on family of semirings R
a®pb=hlog(e’"+e®"), acb=a+b

isomorphism to usual R through x +— x" but in limit h — 0
becomes the idempotent tropical semiring

o A C R”" convex lattice polyhedron

{aj}ien,  ¢n(x) = @n(aj + jx)

@ Maslov dequantization can be expressed in terms of the
operation @gy 7, Where the dequantization parameter h plays
the role of the temperature T

@ dequantization with respect to other entropy functionals?
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Rényi entropy:

1
Rya(pis-- pn) = 7 log <Z p?)

lim Ry, (pL. -+ pa) = Sh(pi, . pn)
a—1

e lack of associativity of x ®&s y, when S = Ry,

Rya(p) = 5 i - log(p® + (1 - p)")

measured by the transformation (p1, p2, p3) — (p3, p2, pP1)
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@ in a commutative non-associative semiring K lack of
associativity corrected by morphism

Ko KoK A Ko KoK
@W®1\L l1®@w

which makes the diagram commutative
e morphism simply given by A(x @y ®z) =z y ® x
e exactly the transformation (p1, p2, p3) — (ps3, P2, p1)
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P2
1—

Ryg(pl)+(1 7p1)Rya( Pl) =

2 (tostpr + (1= e + 1~ pr)tos (207 + (FFE B ) =

1—p1 1-—
P2 o P3 @
(1*P1 +(1*P1) ) _

()7 + (25)°)m

log <(Pi’ +(1—=p1)%)

1—«

1-p
1 P1P2 o PIP3 \a | o, .a P1 P2 \a P3 o
o (2220 4 (P2 ) pg 48 ) 12 to (20 + (12
1-a 1-—p1 1—p: l-a 1-p 1-p
1 (ps + p$)(PT + (1 = p1)*) p1 (pS' + pSY)
log - log
1-a (1-p)e 1- (1—p1)>

= ﬁ ((1 = p1) log(p5" + p5’) + log(pi + (1 — p1)) — (1 — p1) log(1 — p1))
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On the other hand, we have

p
Ry, (p1+ p2) + (p1+ p2)Ryo(———) =
p1+ p2
pP1 P1
Rya(1—p3)+ (1= p3)Ryq( ) =Rya(p3) + (1 - p3)Ry,( )=
1—p3 1—p3

P1P3 \ o P2P3 o P3 P1 a P2 \a
- loa((5 ) + ( ) + P+ p3) — log(( )+ ( %)

1-— 1— 11—« 1—p3 1—p3

1

=1 a ((1 = p3) log(p5" + pi’) + log(ps” + (1 — p3)*) — (1 — p3) log(1 — p3))
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Non-extensive thermodynamics:
e gas of particles with chemical potentials log x and log y and
Hamiltonian (p mole fraction)

H=plogx+(1—p)logy

e partition function Z = e~ Fea with Feq equilibrium value of free
energy at temperature T =1/0

XOpsy = m,?X(eTS(p)+p|°€X+(1—p) g )

partition sum of a two state system with energies x and y

e Gibbs free energy F = H — TS with S entropy and H enthalpy
with min{H — TS} min of Gibbs free energy

e mixing can happen in non-Boltzmann thermodynamics
(non-extensive) leading to non-associative thermodynamic
semirings
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e Extensive thermodynamics: independent subsystems A and B,
combined system Ax B

S(Ax B) = S(A) + S(B)

e Non-extensive deformations (Tsallis)

Sa(Ax B) = Sq(A) + S4(B) + (1 — 4)S5(A)Se(B)

Tsallis entropy:

1
T =—1-p*—(1-p)"~
sa(p) = ——7 (1= p* = (1—=p)7)
reproduces Shannon entropy o — 1

e Tsallis entropy uniquely determined by symmetry
S(p) = S(1 — p), minima S(0) = S(1) = 0, and a-deformed
extensivity

a p2 a P1
S(p1) + (1 —p1) 5(1—7;)1) = S(p1+ p2) + (p1 + p2)*S(

p1 + p2
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Tsallis thermodynamic semiring

e Tsallis thermodynamic semiring: commutativity, unitarity and
associativity of a-deformed ©g s

. 1
X®Bpsay = mpm{po‘x +(1—p)y— ETsa(p)}

e for Tsallis entropy associativity of the thermodynamic semiring
can be restored by a deformation of the operation ©s 1 depending
on deformation parameter a (also written as g for g-deformed)

e in previous physical interpretation this means replacing the

energy functional
H= Z piE;

with free energy of g-deformed thermodynamics

Hq:ZP:gEi
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e o € R and ¢ a continuous function such that ¢(a)(1 —a) >0
for a # 1, with

lim ¢(a) =0

a—1

and such that 3 0 < a <1 < b with ¢ differentiable on
(a,1)U(1,b) and
i 99()

a—1 da <0

e generalized Tsallis entropy:
1

Tsa(p) = —(P“+(1—p)* -1

lP) = gy (7" + (= p) — 1)

reproduces the Shannon entropy in the o — 1 limit

e (Suyari-Furuichi) generalized Tsallis entropy unique entropy
functions that are commutative, have the L/R identity property,
and satisfy the a-associativity condition

P1 )
p1+ p2

S(p1) +(1— P1)05(1572pl) = S(p1+ p2) + (p1 + p2)*S(
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e General idea: transform axiomatic characterizations of various
entropy functionals into algebraic properties of corresponding
thermodynamic deformations of min-plus algebras
Thermodynamic semirings of functions
@ = compact Hausdorff space
e S = (5;) family of information measures depending
continuously on n € =
e K=R™M"*+ U {oc} and C(Z, K) continuous functions with
pointwise operations

x(n) &1, y(n) = pren[(i)flll(p x(n)+ (1 =p)y(n) — T S,(p))

and ordinary pointwise sum as ©
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Kullback—Leibler divergence
e KL-divergence of two probability distributions

1-p
1—gq

p
KL(p|q) = plog i (1—p)log

in binary form P = (p,1—p) and Q = (g,1 — q)

@ smooth univariate binary statistical n-manifold Q is a set of
binary probability distributions Q = (g(n)) smoothly
parametrized by n € R”

@ topological univariate binary statistical n-space Q is a set of
binary probability distributions @ = (g(n)) continuously
parameterized by n € =, with = a compact Hausdorff
topological space

o first is setting of information geometry, second setting for
multifractal dynamical systems

e semirings R = C*°(X, K) or R = C(X, K) with &1 ki(|q(n))
pointwise in
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multifractal systems

@ Cantor set X identified with the one sided full shift space Z;
on the alphabet {0, 1}

n=mmn--npcc,  with g € {0,1}
topologized with cylinder sets X'(w) = sequences starting
with the finite word w

@ dynamical system with the shift map o(n) = mns3 - -

@ an(n) denote the number of 1's that appear in the first n
digits 71,...,m, of 7
@ when limit exists
atn) = tim 221

n—oo N

@ )V C X set of points where limit exists
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uniform middle-third Cantor set
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@ uniform Cantor set from contraction map f with contraction
ratio A
e with a Bernoulli measure ji, for a given 0 < p <1

pp(X (Wi, .., wa)) = p™ (1 — p)n=an()
for cylinder sets
X(wi,...,wp)={neX|n=w,i=1,...,n}
@ local dimension of X’ at a point n € ) given by

dy, (1) = q(n) log p + (1|o_gcj\(n)) log(1 — p)

@ local entropy of map f (shift o) given by
By, (1) = q(n)log p + (1 — q(n)) log(1 — p)

@ non-uniform Cantor set X with two contraction ratios A1 and
A2 on the two intervals
@ Lyapunov exponent of f is given by

Ar(n) = q(n) log A1 + (1 — q(n)) log A2



@ given Bernoulli measure i, on Cantor set X’ there is a set
Z C X of full measure pp(Z) =1 for which q(n) = p

@ uniform measure fi1/5: full measure subset Z; , with limit
q(n) = 1/2 uniform distribution (fair coin case)

e stratify set ) C X into level sets of q(n): multifractal
decomposition of Cantor set

e consider C(Y, K) with the DKLy, T with the
Kullback-Leibler divergence KL(p; g(7n))
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e for Z C Y semiring C(Z, K) with BKL,,, T IS commutative
iff Z C 2,/ is a "fair coin” subset

@ involution that measures the lack of associativity and
commutativity (g <> 1 — q)
(P1, P2, p3:q) + (P3; P2, P11 — q)
@ uniform case only associativity “up to a shift”

_1
1—p' 2

KL(pyi 5) + (1= pr)KL(; 22 2) =

p1log p1 + p2 log p2 + p3 log p3 + log 2 + (1 — p1) log 2

while

KL(P1+P2v*)+(P1+P2)KL( +p2 5)*

p1log p1 + p2 log p2 + p3 log p3 + log 2 + (1 — p3) log 2

o KL divergence to the uniform distribution = Shannon entropy
up to a constant shift
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KL divergence and marginal distributions
@ p and g are two distributions, we denote by p; and g; their
i-th marginal distribution, then KL(p|q) = >, KL(pi|q;)
P Pn
q1---qn

KL(plq) =p1 - pnlog

(L—=p1)p2---pn
(1—aq1)g2---qn
(1—p1)---(1=pn)
(1-aq1) - (1—qn)

1-p
+---+log
1—aq 1—gqn

+(1 = p1)p2-- - pnlog

4+ (1= p1)--- (1~ pn)log

1—
= p1-+ pa(log 2t og 2)+- - (1—pa) - (1—pn)(log =)
q1 An
P1
=pilog (P2 Pt (L=p2)ceopnt o)

1—p;
1—q

+(1 = p1)log (P2 pnt--)+--

:pllog%((l—ka—p2)(p3...pn+...))+...

P1 1—p1 1-—p
= pilog 22+ (1 p1)log +oo (1= ) log 20 = S KL(pilay)
q 1—q 1—gqn -

o if sum of KL divergences of marginals is minimized total KL is
also minimized
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product of semirings and hyperfield structure
e semirings R = C({1,...,n},K) = K®"
@ want an n-ary probability distribution not n binary probability
distributions
@ want ordering on R that ensures trace is maximized

(X1 ey Xn) > X1+ . + x5 € K

@ but such ordering does not uniquely determine a maximum
between two tuples = non-well-defined addition on K
(multivalued): (x1, ..., xn) + (¥1, ..., ¥n) the set of tuples
(z1,...,zn) with z; = x; or y; that maximize z; + ... + z, in the
ordering on K

o this multivalued addition together with coordinate-wise
multiplication defines a characteristic one hyperfield structure
on R

o information measures Sy, ..., S, over K = R™"+ U {oo}

o for x = (x1,...sXn), ¥ = (V1, -, ¥n)

XOT,51,...,5,Y = plminp (p1x1+(1—p1)y1—T51(p1), ---aPan+(1_Pn))’n—TSn(Pn))
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@ the p; as marginal probabilities, and the min operation is the
multivalued hyperring addition

o if each S; is the KL-divergence from some g;, results of this
operation are distributions with marginals (p1, ..., pn)
minimizing the KL-divergence to the marginals (qu, ..., n),
subject to the soft constraint coming from the energy
functional

H= ZP,‘X; + (1= pi)yi

@ lack of well-definedness of addition interpreted
thermodynamically as non-uniqueness of equilibria, via
existence of meta-equilibrium states

@ when g; uniform distribution addition is well-defined
single-valued
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Successor function

@ encodes properties of thermodynamic semirings like measuring
lack of associativity, commutativity

@ A : K xR — K is the Legendre transform of TS :[0,1] — R

AMx, T)=x@s0= mpin(px — TS(p))

TS(p) = min(px — A(x. T)

@ when S is concave/convex, we can recover it from A hence
from the semiring

@ call A successor function because 0 is the multiplicative
identity and over general K we write this as A\(x, T) = x ®s 1

@ when multiplication distributes over addition

xOsy=MNx—y, T)+y
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e entropy function S has following properties:
@ commutativity S(p) = S(1 — p) (ie ®s, 7 commutative) iff

A(x) = A(—x) = x

Q left identity S(0) = 0 (ie s has left identity co) iff A(x) <0
and limy_,00 A(x) =0

© right identity S(1) = 0 (ie &5 has right identity co) iff
A(x) < x and A(x) ~ x, as x - —o0

@ associativity iff

Ax = A()) + Aly) = MAMx —y) + )
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Successor for Shannon entropy
e in R™nt | {o0}

MP(x, T) = —Tlog(1+e/T)

e in RTgF
Mh(x, T) =1 +xYT)T

Successor for Kullback—Leibler divergence
o for R™"* U {oo}

AL (x, T) = —Tlog(1 4 e */9T)
o for R;SX’+

A T) = (1/(1— YT + (x/g)V )T
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- 10 -5 f 5 10

successor function for the Shannon entropy with T =0.5
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—107

successor function for the Shannon entropy with T =1
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successor function for the Shannon entropy with T =2
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Successor for Tsallis entropy

0 72| <x/T
ABe(x, T) =14 &(x) =125 <x/T < ||
X x/T<—|%

e g(x) is given by applying Ts to the inverse of its derivative

JTs «

F TR A Ul O

that has range [—|ﬁ\, |ﬁ\]
Successor for Rényi entropy

e applying Ry to inverse of its derivative (that now has range R)

ORy  «
op  1—«

(Pt + (1= p)* /(P + (1 - p)*).
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successor function for the Tsallis entropy with o =0.5and T =1
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successor function for the Rényi entropy with « = 0.1 and T =1
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successor function for the Rényi entropy with « =09 and T =1
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Cumulant generating function
@ random variable X

e Mx(t) generating function of momenta of X

Mx(t) = (exp(tX)) = Y “m%’
m=0 '

e cumulants {k,} of X coefficients of power series expansion of
log Mx(t)

00 #n
log MX(t) = Z Knﬁ
n=0 '

@ information contained in cumulants or momenta is equivalent
but cumulants are additive over independent variables
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Cumulants and successor function

@ A(x, T) successor function of a thermodynamic semiring K
(assume it is analytic)

e function —A(x, T)/T is cumulant generating function of
probability distribution for energy E in variable —1/T = —f3

kn=(E")c

(1) 2 5Mx T)) = (E7)e

@ partition function Z(3) = (exp(—SE))
@ Helmholtz free energy F = — T log(exp(—E/T))

@ itis (up to —1/T factor) cumulant generating function for
random variable E

@ Helmholtz free energy is Legendre transform of entropy so (up
to —1/T factor) the successor A(x, T)
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for an arbitrary (concave and analytic) information measure

Ax, T)— T%)\(T x) = (E) = peqX

with peq = p7(x) equilibrium value of the mole fraction
@ successor A(x, T) = miny(px — TS(p)) = pr(x) — TS(pr(xX))
e pr(x) satisfies

d
x/T = 2 S(pr()
A/ T) = X/ T)=S(p(x/ T)=T 57 plx/ T) 2 S(p(/ )

which is just —S(p(x/T))

@ so pr(x) = p(x/T) and similarly A(T,x) = A(x/T)

@ explains effect of changing the temperature on ©s

@ get then %/\(x/ T) = xp(x/ T) hence well-known property of
Legendre transform of smooth functions:

A(x/T) —xE Ax/T)+ T%)\(X/T)
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Operads
e Operad: objects C(j) in a symmetric monoidal category:
parameter space of j-ary operations with composition maps

v:C(k)®CUL) @ - @Clik) = CUr + - - - +Jk)
associative, unital, and equivariant under permutations
e unit: e: | — C(1) (identity as unary operation) with identity
compositions

C(n) ~ 1 ®C(n) <2 c(1) @ C(n) X C(n)

C(n) ~ C(n) @ 12" 25" ¢(n) @ C(1)2" 2% c(n)

@ associativity condition: composition v of operations is
associative (no ambiguity in how expressions involving
composition operations are written without parentheses)

e Note: operations in C(j) are not necessarily associative

@ non-symmetric operad if without the condition on the action
of permutations
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Algebras over an operad

way to realize operations in an operad C(j) as concrete operations:
operations in C(j) have A-inputs (ie an input in A®/), output in A

e C-algebra A: an object with Sym;-equivariant maps
C(j) ® A% — A,
thought of as actions, associative and unital

Note: operad structure closely related to trees and grafting trees,
but there are different ways of organizing trees into an operad
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Example: Operad of rooted trees

@ operad RT with RT (n) the Z-module generated by rooted
trees T with n non-root vertices

e for an n-rooted tree T oriented towards the root, In(T,/) =
set of incoming edges at the vertex /

o to define all the operad compositions sufficient to define for
1<i<n

0j : RT(n) x RT(m) = RT(n+m—1)
@ operadic compositions then given by
v RT(n) x RT (ki) @ -+ @ RT (kn) — RT (ki + - - + kn)

YT,51,...,5,) = (- (TopSp)on_1Sn—1)---0151)
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e for T € RT(n) and S € RT(m)

ToS= > Tofs

fIn(T,)—{1,...,m}

composition along the vertex / of T: outgoing edge at /
becomes outgoing edge at the root of S, incoming edges at i
are grafted on vertices of S as specified by the map f
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@ Poincaré series of the operad R7T of rooted trees

(=x)"
!

n

Frr(x) = dim(RT)

n>1

o dim(RT) = n""1

o ['r7(x) is the inverse function of x — —xe™
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Example: As-operad of planar rooted trees

@ A (n) is the linear span (over field K or over Z) of planar
rooted trees with n leaves (with labels {1,...,n})

@ for n =1 tree just a segment from root to single leaf
@ symmetric group acts by relabeling the leaves

@ operad composition
v 1 Aso(n) ® Aso(ki) @ -+ @ Aso(kn) = Aok + -+ + kn)

grafting n input leaves of T € A (n) to output roots of
Ti € Ax(ki)
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free operad generated by the corollas
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DG operad

@ in grafting composition also introduce multiplication by a
sign: grafiting root of T’ to i-th leaf of T multiplied by
(—1)#E(T)=1)R(T) with R;(T) = number of edges to the
right or i-th leaf in T (strictly on the right of unique path
from i-th leaf to root)

@ reason for sign: the operad A, also had a compatible
differential (DG-operad)

o differential defined by edge contractions

dT = Z eT’

T . T=T'/e

e = (—1)H®) with L(e) = number of edges below and to the
left of e
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edge contraction operation on a tree
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differential satisfies d = 0
degree deg(T) =#V(T)+1—n=#E(T)+1—-2n
d has degree +1

compatibility between operad structure and differential:

d(T'o; T) =dT o; T+ (—1)%eT) T o, dT

here still using the fact that the compositions o; determine all
the operad compositions

Matilde Marcolli Information Algebras



differential for corollas

Matilde Marcolli Information Algebras



@ algebra over the A, operad of planar rooted trees is a
morphism of operads (compatible with all compositions)

¢ Aso(n) — Endy(n)

where Endy/(n) = Hom(V®" V) endomorphism operad

e compatibiity with differentials (morphisms of DG operads) if
images ¢(d,) of corollas satisfy the differential as above

@ same as requirement that My(vi,...,vp) = ¢(0n)(vi,. .., Vp)
gives DG-algebra structure to V:

n

AMp(v1, ..., v0) = (=1)" D €()) M (v1, .. ., dvs, . .., )

i=1

k-1
= Y D ()T Do) My(vy, 0 Mi(Vigas - Vigt), - Un)
k+l=n+1 i=0
k,1>2

i—1
e(i) = (—l)zkzl deg(vi) sign by moving d across vi, ..., vi_1; o(i) = sign by

moving M, across vy, ..., V;
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Entropy Operads

@ operad P of probabilities on finite sets P(j) = A; simplex
@ operadic compositions

Y((P1)icj@(qu)1ek®- - @(qit)ick_,) = (Pigi)ick.icj € Plkot--+ki—1)
@ describe forming composites of subsystems

Algebra R, over P
e category R>( with a single object and morphisms x € R>q with
action of P trivial on unique object and on morphisms

(Pi)iej XI iej — ZPIXI

e J. Baez, T. Fritz, T. Leinster, A characterization of entropy in
terms of information loss, Entropy 13 (2011) no. 11, 1945-1957.
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Information Algebras (over the entropy operad)

e object R>q, morphisms x € R>¢; action of operad P: maps S
from finite probabilities to non-negative real number with

@ For p € P(n) and g; € P(m;)

S(po(q1,---1aqn)) = +Zpl a);
@ 5((1))=0;
@ for p € P(n) and o € Sym,,
5(op) = S(p)

Q@ S :P(n) — Ry continuous

Characterizes entropy functionals (Khinchin axioms of Shannon
entropy)
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Binary guessing trees

@ a general binary information measure, S : [0,1] — R>o (not
necessarily Shannon)

@ assume S satisfies the L/R identity axioms

@ build an information measure on ternary variables: X with
values in {x1, x2, x3} guessed with binary questions in two
ways

Q Is X =x? If not, is X = x7
Q Is X =xg or x7 If yes, is X = x,?

@ counting possible permutations gives 2 - 3! = 12 possible
ternary information measures

@ S binary information measure with identity: for any n > 2,
one-to-one correspondence between rooted binary trees with n
leaves with labels in {1,...,n} and n-ary information
measures arising from S
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X1,%2,%3, x4, %5, %6

1.x3.x4 5. x6
/ \ VAR
\
/ \ /
g £ %5
/ A\ /
/ \ / \
1 X3, x4 : -] x6
// \\
/\
// \
/ \
4 3

Example: this tree corresponds to information measure St(p1,...,ps) =

pP1+ ps + p3 b1
S(E—=—3) + (p1 + pa + p3)S(—————
PO, ) et pt p)SCm =)

Pa Ps
+(ps + p3)S +(ps + ps)S
(Pa + p3) (p4+p3) (ps + Ps) (p5+p6)
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@ this shows how binary trees with n leaves and determine
decision strategies and corresponding n-variable information
measures

@ conversely any decision strategy will consist of questions of
the form is X € A for some subset A C {1,...,n} and has to
exhaust all possibilities so it will determine a binary rooted tree

@ also an (n,2)-tree T determines a canonical way of
parenthesizing the expression x; ®s - - - Bs Xp

e sufficient to consider case of T’ where labels of leaves are
{1,...,n} from left to right (in planar embedding): for more
general tree T there is a 0 € S, that gives the relabeling, then

(x1 @5 s Xn)T 1= (Xgr(1) DS+ DS Xoq(m)) T/

@ then for the T with left-to-right labels construct inductively
(x1 Ds -+ Ds xa)T

Matilde Marcolli Information Algebras



@ tree T» with root vertex and two children leaves:
(x1 Bs x2)T, = X1 Bs X2

o if T has left-to-right labels, take L/R subtrees L and D at
root: there is some 1 < r < n such that for 1 < j < r have
xj € L, and for all r < j < nhave x; € D

@ then inductively set

(x1Ps - Bsxn)T =21 DBs - Dsx, )L+ (Xr+1Ds - Bs Xn)D
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Bracketing and multivariable information measures
@ (n,2)-tree T and binary information measure S with identity
axiom
@ relation between bracketing and the n-variable measure St

(x1 Ds -+ Ds xn)T = zn:)iil(z pixi — TSt(p1, .- -, pn))

o first step: T labeled left-to-right labels and subtrees L with /
leaves and D with d leaves at root:

St(p1s- -5 P PIFLs - - Pibd) =

P1 pi
S(p1+--+pr)+(pr+--+pr)SL v
(p pi)+(p P T T )
Pi+1 Pi+d
Pre1t e+ pied’ Pkt Pred
@ second step: in this case also

+(pre1+ - +prrd)Sp(

(x1 ®s - Ds x| Ds Xi41 Ds - - Bs X14d)T

= mpin(p(xl@s- ~@sx)LH(1-p)(x141Ds - -Dsxi1d)p—TS(p))
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@ third step: induction on trees with less than n leaves

— mi i xi—TSL(p1, ...
(x1Ps- - - Dsxn)T mljln(ppﬁﬂr;n:l(Zp,x, L(p1, .-, p1))

+(1-p) Pl+1+'m'fi'rlll+d:1(z Pixi—TSp(Pi+1;- - -+ Prd))— TS(P))
o fourth step: change of variables g; = pp;, for each
ie{l,...,1}, and g; = (1 — p)p;, for each
ie{l+1,...,1+d}
@ with this have g1 +---+ g, = p and
qi41+ -+ qiyg =1 — p so get

(X1 Bs - DBs Xn)T = anli'il(z qiX;

qi q )
atota ot ta
qdi+1 qi+d
1+ +q4d Q1+ + G

+S(@+ -+ a)))

—T((qr+ -+ ar)Sc(

+(qr1+ - +911+4)So(



@ by first step this is

i 1M T PR ) n
i (2 T5en a0

@ for arbitrary labelings then use permutation ¢ and
Pi = do-1(i):

(Xo(1) Bs = BS Xo(n))T = Zﬁéiil(z 9i%s(i) — TST(q1, - qn))

= mm ZPIXI TST pcr(l)v"-’pcr(n)))

Matilde Marcolli Information Algebras



Example: same binary tree illustrated above
x1 Bs ((x2 Bs (x3 Bs xa)) Bs (x5 Bs x6)) =
min(pxa + (1 = p1)((e @s (33 Bs xa)) Bs (x5 ®s x6)) — T5(p1))

= n;iln(p1><1+(1—p1) n;;n(Pz(& Bs(x3Bsxa))+(1—p2)(xsBsx6) — TS(p2)) — TS(p1))
= ;ﬂln (P1X1 +(1—p1)p2 mln (p3x2 + (1 — p3)(x3 Ds xa) — TS(p3))

(@ = p)(A = p2) min (paxs + (1 — pa)xe — TS(pa)) — T(S(pr) + (1 = P1)5(P2)))

= min (P1X1 + (1 = p1)p2p3xz + (1 — p1)p2(1 — p3)psx3
" P1.P2,P3,Pa P

+(1 = p1)p2(1 = p3)(1 = ps)xa + (1 — p1)(L — p2)paxs + (1 — p1)(1 — p2)(1 — pa)xs
=T(5(p1)+(1=p1)5(p2)+(1=p1)p25(p3)+(1—p1)(1—p2)S(pa)+(1—p1)p2(1—p3)S(ps)))
e then change of variables with g1 +--- 4+ g = 1:

P1 =q1

p2 =(q2 + g3+ q4)/(1 — q1)
=q2/(q2 + g3 + qa)
=qs/(q5 + qs)

ps =q3/(q3 + qa).

Matilde Marcolli Information Algebras



@ change of variables gives

x1 ®s ((x2 ®s (x3 Bs x4)) Bs (x5 Bs x6)) =

+ a3+
min (3~ ax — T(S(an) + (1~ an )5(%:1"4)
+(CI2+q3+q4)5($)+(q3+m)5( )+ (95 +46)S( )

92+ g3+ qa %+ q+%

@ then get by applying permutation o = (12)(34) € S¢
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More general (non-binary) guessing trees

e for some V C Nxj a family {Sp}nev of n-ary information
measures

@ satisfying coherence axiom: for n > m if for all but
1<ip<---<im<n, pj=0then

Sn(p17 L] pn) - Sm(pi17 s 7pim)

@ typical examples have the form

Sa(prs- - pa) = (D &(pi))

1<i<n

for suitable functions f, g (all these satisfy coherence)

o for v = sup V, can ask questions with up to v possible
answers (instead of just binary)
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@ given n,v > 2, suppose for each 2 < j < v + 1 have j-ary
information measure S; (with coherence axiom)

@ guessing strategies of n-ary random variables with questions
with up to v possible answers

@ in bijective correspondence with the set of (n, v)-trees: rooted
trees with labelled leaves such that every vertex is either a leaf
or has between 2 and v children

1,2,3,4,5,6,7,8,9.10,11,12

AN

157330 6.7.8,9,10,11,12

\/\

5| s6.7.8 10,11
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Entropy functionals and general planar rooted trees
@ A collection § = {S,}en of n-ary entropy functionals S,
@ coherence condition:

Sn(Pla R Pn) = Sm(pi17 tety Pim)7

whenever, for some m < n, we have p; = 0 for all
JéE i, .. im}
@ Shannon, Rényi, Tsallis entropies satisfy this condition
@ collection § = {S,} hen of coherent entropy functionals
determines n-ary operations C, 3.5 on RU {oo}

e 1
Cn7575(X1, . ,Xn) = mpm{z PiXj — BS,,(pl, . ,pn)}
i=1

minimum taken over p = (p;), with . p; =1

@ also write as (x; ®s -+ ®s xp) = Cpp,s(x1,...,Xn)
@ in example tree above

(x1 Dsx2®sx3 s xa Ds x5) Ds ((x6 s x7 Ds xg) s (xo Bs x12) s (x10 Bs x11))
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@ more generally: n-ary operations C, 3.5 T(X1,...,Xp) with S
as above and T planar rooted trees with n leaves

Copst(Xt,. .., xn) = mm{z pixi — =St(p1,.--,pn)}

e with the St(p1,...,pn) obtamed from the SJ forj=2,...,n

e if root of (n, v)-tree T has sub-(/;, v)-trees (resp. from left to
right) A1,...,Ap,, and the leaves of T are labeled left to right
(and Lj:/1+"'+/j and L0:O)

St(pry .. pa) =
PL;_1+1 PL:
(Prj_y 1t +pL)5A( i ; )
1<JZ<m -1 J 1+1 + -+ pLj pLj71+1 + .+ PLj
+Sm(Pro+1+ + PLys- s PLys+1 + 0+ L)
@ then also for Cn,B,S,T(Xla L. ,X,,) = (Xl Bs - Bs Xn)T

(x1 ®s -+ Bs xp)T = _min (q1(x1 Bs -+~ Ds xy,)
> gi=1

ot G (Xt 41 B DS Xyl
- Tsm(q17 R Qm))
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@ same inductive argument then gives
Cn,B,S,T(Xl, . ,Xn) = Zmih 1(2 piXi — TST(pl, Ce 7p,,))
pPi=

@ indeed have

(x1Ps- - Psxn)T = _min (g1 min  (prxi+--+pyxy—TSa, (P1,-- ., pp )+ -
> qi=1 " pit-tpy =1 17 1ALy P
Rty
+axk T'"+ _1( Z PiXi— TSA (Pht ol 1415+ s Pty )
Pl o+l _q+1 Pl = J=ht 41

—TSk(pr+ - 4Py Pttty g1+ -+ pn))

e for each i € {1,..., k}, and each
jE{/1+~~-+/i_1—|—1,...,/1—|—-~~—|—/,'},With /0:0, use

. . ~ . | +“‘+/i ~ i
substitution §; = g;p; with Zj1211+...+/,_1+ Gj = qi:

. o ~ ~ q1
(x1®s- - -Dsxn)T = Zn}vj-il(z Gixi—T((g1+ - -+d1)Sa, ( o

)t
)

5 . Gh el g 41
H(Ght oty t1 + o+ Gn)Sa (5 —,...))
! k= . Qi+ +l_1+1 + -+ Gn
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@ by first step (subtrees) this equals

i Gix; — TSt(dn, - - - din
Z@;;(qu (1, -+ dn))

@ then adjust order of leaves with a permutation, with
Pi = Qy-1(i):

(Xg(l) Ps---Ds Xo(n))T = Znygl(z QiXg(i) — TST(ql, - q,,))

= i ii_T (1) - -5 Fo(n
Z”;:_L(ZPX ST(Po(1) Po(n)))
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Entropy functionals and operad
@ collection & = {S,}nen of n-ary entropy functionals with
coherence
@ R as single-object topological category
@ algebra over the A, operad of rooted trees with operations

Crps (X1, . xn) = Zﬂ;iﬂl(z pixi — TSt(pi,---,pn))

@ satisfy additivity
Cn,ﬁ,S,T(Xla ey X1, X + Yy Xj41y- - 7Xn) =

Crps T, X, %) + Cogs (X1, -y, Xn)
o distributive property

yCopsT(Xt,. . Xn) = Cag.s1(¥x1, ..., ¥Xn)
e also satifies (scaling of deformation variable)
(1 ®s - Ds xn)T(T) = (" Bs -+ s x7)1(T)
@ additional relations between trees: T1 ~ T> when Vx;
Copsti(X1,.. o, xn) = CopsT,(X1,. .., Xn)
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Information algebras and operad
e for R=(Ry,max,+) and a, : Axo(n) = R

@ in general, consider Ay, (n) vector space spanned by rooted
trees with n leaves

@ internal Ay-algebra in R:
Q for T € Ax(n) and A; € Axo(ki)

otk (T AL - An) = an(T+Co s (v (A1), - - iy ()
@ forall T € A(n) and o € Sym,,
an(oT) = an(T)

Q aifa.a)=0
@ values h, of o, on the (n, v)-tree with n+ 1 vertices

a(T) = hy®(a(A1)s - -Bsa(A,)) = max(h,, o(A1)Ps- - -Dsa(A,))

Matilde Marcolli Information Algebras



@ case of Shannon entropy: quotient of operad with exactly one
class of (n, v)-trees for each n (by associativity and
commutativity relations of Shannon)

@ for Shannon entropy

o(T) = max(hn, (e(A)YT + -+ a(A)YT)T)

@ so entropy functionals in classical probability can be
understood as algebras over the A,.-operad of rooted trees
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Witt rings and thermodynamic semirings

e Witt ring W(R) of a commutative ring R: as a group
(W(R),+w) isomorphic to (1 + tR[[t]], x) and product
completely specified by

(1—at) Layw (1 —bt)"t = (1 — abt)™?

identities 1 = 1 + 0t + 0t? 4 - - - for addition and
(1 — t)~! for multiplication

o functoriality: ring homomorphisms f : A — B induce
W(f): W(A) — W(B)

@ built so that W(IF},) is the ring Z,, of p-adic integers

@ elements a € Z, have usual p-adic expansion
a=ap+ap+ap’+---
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@ quotient map to residue field Z, — F, = Z,/pZ, has a
unique multiplicative lift 7 : F, — Z, (map of multiplicative
monoids) maps solution of x? = x in F, to solution in Z,
congruent to x mod p

mor =idk, 7T(xy)=71(x)7(y) Vx,y €,
@ can identify elements a € Z, uniquely through coordinates
a=7(a0) + 7(a1)p +7(a2)p* + - -
e Witt vector (7(ap), 7(a1), 7(a2),...)
@ these Teichmiiller representatives are not {0,1,...,p — 1} but

roots of xP —x =10
@ Witt formula expresses sum of these representatives as

T0) + () = F(D_ wp(ar, T)xy'™?)
acl,
lp ={a€QnJ0,1]| p"a € Z for some n}

and 7 : Fp[[T]] = Zp unique map with 7(xT") = 7(x)p" and
wp(, T) € Fp[[T]]
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o the Witt formula has general form

1-
X By y = 2 : Wp xSyl=s
s€lp

@ with coefficients
WP(S) = Z W(pnva)Tn
a/p=s

with w(p", k) € Z/pZ, for 0 < k < p", determined by
addition formula

() +7(y) = T(x+Y) +2 (D= wlpn, kxk/Py1=kle ) pr

@ as first observed by Connes-Consani the Shannon entropy
semiring deformation gives an analog in characteristic one
semirings
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Entropy and thermodynamics in positive characteristics

@ the universal sequence of the w(p”, k) can be seen as the
characteristic p analog of the Shannon information

@ non-extensive Tsallis entropy case also has a characteristic p
analog in the form of g-deformations of the Witt ring
@ see for instance:
e Y.T. Oh, g-Deformations of Witt—Burnside rings, Math. Z.
257 (2007), N.1, 151-191.
e M. Marcolli, Z. Ren, g-deformations of statistical mechanical
systems and motives over finite fields, p-Adic Numbers
Ultrametric Anal. Appl. 9 (2017), no. 3, 204-227
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from classical to quantum: operadic structures

o from N. Combe, Yu.l. Manin, M. Marcolli, Quantum operads,
in “Dialogues between physics and mathematics—C. N. Yang
at 100", pp. 113-145, Springer, 2022.

@ is there a way to extend the operad P of finite probabilities to
quantum states?

@ are there interesting algebras over operads in the quantum
setting?

@ what is the role of quantum information measures like von
Neumann entropy?
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density matrices and classical probabilities
given a density matrix p two natural classical probabilities
associated to it:
@ P = P(p) given by p; = pj; diagonal elements
@ A = A(p) eigenvalues \; of p (up to a choice of ordering: sort
in non-increasing order)

properties:

@ Schur lemma: sequence A of eigenvalues of hermitian matrix
majorizes sequence P of diagonal entries, both sorted
non-increasingly

@ bistochastic matrix: since A(p) = P(p) there is a bistochastic
matrix B such that P = BA

@ Shannon entropy non-decreasing S(BP) > S(P)

o Kullback—Leibler under bistochastic matrices
KL(BP|BQ) < K(P||Q)

o uniform distribution QV) = (1/N)V_, is a fixed point,
BQWN) = @(N)

@ Shannon entropy KL(P|QM) = log N — S(P)



Qp-operad of quantum states
o Qp(n) = M convex set of density matrices

@ composition laws
vp: Q(n) x Q(ki) x -+ x Q(kn) = Qlks + -+ + kn)

P1p1

P22
Ye(pip1s - -5 pn) = Y(P(p)i p1y- -5 pn) =

PnpPn
@ it is a non-unital, symmetric operad

@ it restricts to unital operad P of classical probabilities on
A, € M
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associativity of composition in Qp
@ associativity condition is given by the identities

(m). (m)

Yy (™ P, ) plra) L plrie) L plma) L pliman )y —

(™A () plr) L plrm)) Ly (ptm); plma) L plimam) )

for p(m) € Q(m), ,0(”") € Q(nj),i=1,...,m, and
p(”i,l,-) S Q(r,'ygl.) with ¢; =1,...,n;
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o left-hand-side is

PiP o™ -
m)
Py P
¥ . _ ol L ple) L plma) L prmnm) |
ol pm
(m) n1 (r1.1)
P11 P11P
;
p(ﬂ")pﬁinlp( Lm)

n
pm) o7 plrm, 1)

n
o) oL o plmsnm)

which agrees with the right-hand-side
Pﬁpm*l) P;lmp(r'"’l)

v | o™

primy o) Py Lo 0m)

Matilde Marcolli Information Algebras



action of symmetric groups and equivariance

@ permutations 0; € X, and 0 € ¥,
@ symmetric operad:
@ first condition

P (0 (p)i Po-1(1)s - -+ Po-1(m)) = E(vP(Pi p1, - - -, Pm))

where & € ¥, 1.1, permutation that splits into blocks of n;
indices and permutes blocks by o
@ second condition

Ye(pioi(pr); - om(om)) = 6(vp(pip1s-- -\ pm))

with & € X, 1.4, Permutation that acts on the i-th block of
n; indices as o;
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@ action of symmetric group X, on M(" by o(p) = opo*
@ on diagonal matrices permutation of entries: agrees with ¥,
action on P(n)

@ induced action on A and P
Nopa™) =Np) and  P(opo™) =o"P(p)
@ because opc™* and p same set of eigenvalues and both listed
non-increasingly; for P have p; = p;i = Tr(m;p) with 1-dim
projection 7; and Tr(m;opo™) = Tr(o*miop) = Tr(me-1(;yp)

@ so compatibility of operad Qp with symmetric group action as
’YP(O-(p); Po=1(1)s- -+ ’pa_l(m)) = ’YP(O-ilp(p); Po=1(1)s- -+ ’pa_l(m))

is the same as Gyp(p; p1, - - -, pm))d* in MME=F0m) and
similar for second condition
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non-unital operad

@ unit axiom is satisfied for p =1 € Q(1) with vp(1;p) = p

e it fails for p; = 1 € Q(1), where the composition gives instead
we(pi 1, 1) = P(p)

@ unit axiom is restored when restricting to A, C M(" classical
probabilities where Qp agrees with unital operad P
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Qp-operad of quantum states

@ can do a similar construction of an operad with same
QA(”) = M(n)
@ with composition given by
A1p1
A2p2
WP p1, - pn) = Y(NP)i p1, - - -, pn) =
AnPn

with A; the eigenvalues of p listed in non-increasing order
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@ the associativity condition for compositions holds as before
because

m

A1p
Aop™
Spec _ . = U Ai Spec(p™)

Nm

Amp

@ the unit axiom fails as before: ya(1; p) = p holds but
Wil ... 1) =Np) # p

@ the need to choose an ordering (non-increasing) of eigenvalues
breaks the ¥ ,-equivariance as A(opo*) = A(p) so symmetric
condition no longer satisfied

@ Qp is a non-unital non-symmetric operad

@ when restricted to A, C M(" the operad Qa only agrees
with P up to permutations
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different versions of non-unital operads

@ for unital operads O can describe operad through
compositions

7:0(n) @O0(k1) ® -+ @ O(kn) = O(ky + -+ - + kn)
@ can also descibe O through insertion operations
0j : O(n)®@O(m) = O(n+m—1)

e with constraints: for 1 <j < aand b,c > 0, with X € O(a),
Y € O(b), and Z € O(c¢)

(XOiZ)Oj+c—1Y 1SI<]
(XOJ'Y)O,'Z: XOj(YO;,jJrl Z) J<i<b+j
(XO,’,bJrlZ)OJ'Y J+b§/§a+b—l

@ then composition laws v with associativity obtained by

’Y(X, Yla--~ , Yn) = ((X On Yn) Op—1 Y,,,]_)'-' o1 Yl)
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@ for non-unital operads these two descriptions no longer the
same

@ if described through the o; then also obtained via the ~y
operations

@ but not always through that if described by the compositions
~ these can be obtained from insertions o;

@ see M. Markl, Operads and PROPs, Handbook of algebra.
Vol. 5, 87-140, Elsevier/North-Holland, 2008
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@ the operads Qp and O are also in the more restrictive class
of non-unital operads

@ the compositions v are induced by insertions o;

o for p e M and p’ € M(™ the insertion po;p’ in M(1Tm=1)
is obtained by removing the i-th row and column of p and
replacing them m rows and m columns, respectively, with

o all the entries outside of the m x m-block around the diagonal
are zero
o the m x m-block around the diagonal is p;p’

@ then (---(poppn)--- o1 p1) produce exactly the matrix

p1p1

P22
=p(p; p15-- -, Pn)

PnpPn
@ same thing for Oa but with the m x m-block around the
diagonal given \;p’

Matilde Marcolli Information Algebras



range of the operad maps

@ image of insertion map o; : Qp(n) x Qp(m) — Q(n+ m —1)
consists of all density matrices p € M(™t™=1) that are block
diagonal with one (n—1) x (n—1)-block and one m x m block

@ all block diagonal density matrices are in the image of some
composition of insertion maps

@ these are all the quantum states that decompose nontrivially
into disjoint states with orthogonal ranges

@ a block diagonal density matrix can be realized in several
different ways through compositions of insertion maps
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projective quantum measurements
o fixed fin dim Hilbert space H (choice of on basis)

@ operators on density matrices are described by quantum
channels

@ special case: projective quantum measurement M = {I;}7_;
projectors 17 =T1; = I'I% mutually orthogonal, M;11; = §;T1;

and ) .M; =1
@ outcome of projective measurement [1 on a quantum state
M;pl; . .
pi = ——=— with probability p; = Tr(l1;p
To(i0) (Mie)

@ quantum channel 1 maps

pN(p) =D pipi
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o range in M) of a composition of insertion maps specified by
assigning N = ky + - + k, and My, x, € MWN)
block-diagonal density matrices with n blocks of size k;

@ projective measurement 1 = {I1;}7_;, where [1; is the
orthogonal projection onto the span of the j-th subset of k;
basis elements

e quantum channel then maps M : M) — My, ...k, assigning
to p the block-diagonal density matrix MN(p) = >_; pipi

o different realizations as composition of insertion maps <
different realizations of this quantum channel through rooted
trees
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@ 7 planar rooted tree with n leaves decorated by integers
k; > 1, oriented from leaves to root

at root vertex v identity projector M(*0) = 1

v any vertex with set of incoming edges e at v, orthogonal
projectors {H(S(e))}t(e):v with Ze:t(e):v nese)) — nv)

@ [1; projectors at the leaves
o for t(e) =v
p(s(e)) _ ns(e)) p(vIn(ste))
Tr(N(s(e) pv))
with p(v0) = p
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@ quantum measurement [l with outcomes p7 with
probabilities p]

p =[] TNt p))

product over the vertices on directed path from i-th leaf to
root along with i, idirection

@ p7 obtained by repeatedly computing p(s(e)) from p(t(e)) along
the path from i-th leaf to root

@ all the quantum channels 1 are the same quantum channel

n: mm My ok

w Tr(n(WZ)H(WZ—l) -N(wo) Tr(MN Wz)p)
HTr ( )) H (we—1) ... (w H nwe-1) ) = Tr(Mip)
) Tr(MN 0 P) ¢ Tr(N p)

I; projection at leaf

(s(e)(t(e)) _ pqls(e))
niEtelngte) = ot

)

as I'IJ(-S(e)) projection onto a subspace of the range of I'IS:(e

Matilde Marcolli Information Algebras



quantum entropy functionals

e family of quantum entropy functionals
Sp: M SR

@ consistency condition: S, restricts to Sk, k < n, over
M) MM (n — k vanishing eigenvalues)
@ Examples of consistent quantum entropy functionals:
© von Neumann entropy

N(p) = —Tr(plog p)

@ quantum Rényi entropy (g € R%, g # 1)

1
Ryqlp) = - 7 log Tr(p?)
© quantum Tsallis entropy (g € R%, g # 1)

1

Tsq(p) = 1fq(Tl“(ﬂq) -1)
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Tree quantum entropy functionals

@ tree 7 with n leaves decorated by integers k; > 1,
N = ki + - - - + k, together with coherent family {S,} of
quantum entropies, determines entropy functional

S, MM R

@ if 7 corolla with root vertex and n leaves

Sr(p) == S(P) + ZP/‘S(P,’)

with p; = Tr(M;p) and p; = Tg(ﬁr,]p)

@ for von Neumann entropy by extensivity same as
N7 (p)) = N(32; piri)

@ Inductively assume S, constructed for all trees with less than
n leaves

@ subtrees 7;, j = 1,..., m, attached at root vp, set L; of leaves,
#Lj <n
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@ in quantum channel I1™ have [1; orthogonal projections with
Zj l; =1 along incoming edges ¢; at root

e probabilities p; = Tr(IM;p) and density matrices p; = %
at root vertices v; of subtrees 7;

@ define

S-(p) == S(P)+ > piSy(p))
j

S(P) Shannon entropy of classical probability P = (p;) and
S, inductive entropy functionals of subtrees 7;

@ these completely specify S;

@ for von Neumann by extensivity get
N, pipi) = S(P) + > piN(pi) but not for other

non-extensive entropies
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Quantum channels

e quantum channel ® : M) — MV) trace preserving
completely positive map

@ in Kraus form

o) = > Aip A7

{Ai} operators with ), AYA; = 1 (but the A7A; not
necessarily projections)
@ 7 planar rooted tree with n leaves, oriented from leaves to root

@ tree quantum channel Cj assignment of operators
A = {Ac}eck(r) edges of T with at each vertex v condition

Y AA=1

e:t(e)=v
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@ channel Cj acts on density matrices p € M) by

a(0) =D Aup AL,
i=1

with Ay, = Ag ;- -+ Aei,m,- along oriented path vyjej1,..., € m,

from i-th leaf to root

@ it is quantum channel

i

n
Z A:i, . A:, 1 Aei,l T Aei,m- =1

as have inductively . t(e)=v AeAe = 1 for paths of length
one and reduce length by grouping sum by adjacent vertices

Z Z A*VA:i,l Aei,lAVv = ZA*VA’YV

v oi:t(e)=v
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Aso-operad QC of tree quantum channels
e QC(n) = spanz{C, |7 € T(n)} with T(n) planar rooted trees

@ operad composition laws
Yoc : QC(n) ® QC(k1) ® - -+ ® QC(kn) = QC(ky + -+ + kn)

Yoc(Chi Gty Cn) = CRT T

with additional signs as in T
@ DG-structure (e signs as in T)

dCi= > eCh
T'iT=T1]e

e A on 7/ agrees with A on 7 = 7'/e for all edges non-adjacent
to e, need to define A’ on edges adjacent to e so that
conditions at vertices still hold
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o E,; set of edges of T with target t(e) in 7/ and Es the set of
edges in T with target s(e) in 7/

o all same target vertex in 750 Y g g, AuAe =1

© operators By 1= g, AsAe and Bs := ) g ALAe

@ operators N%Bt and AL Aer + N%Bt for ¢’ € E;

o all these are positive, (Bv,v) >0 for all v € H

@ so there are operators A and Ae/ with Bs = A*A and
AL Ao + 3B = AL Ac

° take A tobe A, :=Aand A, := Ao for € € E, and

Ao for € € E;

e’_

dOALAL = Z(A*Ae/-i-—Bt)_ STALA+ D ALAL =1

e’ t(e’)=s(e) e’ €Es e’ €Es e’ €kt
STOALAL=AUAL D AL A = D ALAL+ Y AL AL =1
e’ 1 t(e’)=t(e) e’€Ey e’ €Es e’ €Ey
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QC*-operad

o taking Z-linear combinations of quantum channels allows for
DG-structure but loses positivity

@ if use convex combinations instead get operad but without
differential

QC™(n) = convex span{Cj |7 € T(n)}
compositions same as yo¢ (no signs)
M) algebra over the operad QCJr
operations a : QC*(n) @ MM®"  pN

n
a(CZ;plv cee 7pn) = Zpiﬁi

AviPiA,
e Tr(A%,Aqpi)
° A'Yi = Aei,l"'A
leaf to root
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and p; = Tr(A7 Ay,),

along path v7; = € 1,..., € m from i-th

E,"ml. 1



