
Thermodynamic Semirings and Information
Algebras

Matilde Marcolli

Ma148b: Algebraic and Categorical Aspects of Information
Caltech, Winter 2025

Matilde Marcolli Information Algebras



Based on:

M. Marcolli, R. Thorngren, Thermodynamic semirings,
J. Noncommut. Geom. 8 (2014), no. 2, 337–392

N.Combe, Yu.I.Manin, M.Marcolli, Quantum Operads, work in
progress

Matilde Marcolli Information Algebras



Min-Plus Algebra (Tropical Semiring)

min-plus (or tropical) semiring T = R ∪ {∞}

• operations ⊕ and ⊙

x ⊕ y = min{x , y} with identity ∞

x ⊙ y = x + y with identity 0

• operations ⊕ and ⊙ satisfy:

associativity

commutativity

left/right identity

distributivity of product ⊙ over sum ⊕

Note: can work equivalently with (R ∪ {∞},min,+) or with
(R+,max, ∗) isomorphic under − log map
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Convexity in characteristic one semirings

on K = (R+,max, ∗) partial ordering ≤ by
x ≤ y ⇔ x ⊕ y = y = max{x , y} = y

more generally K commutative characteristic one semifield (ie
with ⊙-multiplicative inverses and where 1⊕ 1 = 1
idempotent)

idempotent property and distributive property imply
characteristic one Frobenius automorphism:

(x ⊕ y)⊙n = x⊙n ⊕ y⊙n

such K is (R+,max, ∗)-module through (x , t) 7→ x t

function f : X → K with X a convex subset of topological
(R+,max, ∗)-module is convex:

f (tx1 + (1− t)x2) ≤ f (x1)
t f (x2)

1−t

usual definition of convexity when r.h.s. in (R ∪ {∞},min,+)
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Legendre transform

epigraph epif = {(α, r) ∈ X × K |f (α) ⩽ r}
f is convex iff the epigraph epif is convex and f is closed iff
epif is closed

for X ⊆ K , Legendre transform of f : X → K

f ∗(x) =
∑
α∈X

xα

f (α)

on (R ∪ {∞},min,+) this is usual Legendre transform

f ∗(x) = sup
α∈X

(αx − f (α)),

Legendre transform of f is closed and convex (by epigraph)

(Fenchel-Moreau) for f : X → K with X ⊂ R⩾0

1 f ∗∗ is closed and convex and bounded by f
2 f ∗∗ = f iff f is closed and convex
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Thermodynamic semirings Tβ,S = (R ∪ {∞},⊕β,S ,⊙)

• deformation of the tropical addition ⊕β,S

x ⊕β,S y = min
p
{px + (1− p)y − 1

β
S(p)}

β thermodynamic inverse temperature parameter
S(p) = S(p, 1− p) binary information measure, p ∈ [0, 1]

• for β → ∞ (zero temperature) recovers unperturbed idempotent
addition ⊕

• multiplication ⊙ = + is undeformed

• for S = Shannon entropy considered first in relation to
F1-geometry in

A. Connes, C. Consani, From monoids to hyperstructures: in
search of an absolute arithmetic, arXiv:1006.4810
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Khinchin axioms Sh(p) = −C (p log p + (1− p) log(1− p))

• Axiomatic characterization of Shannon entropy S(p) = Sh(p)

1 symmetry S(p) = S(1− p)

2 minima S(0) = S(1) = 0

3 extensivity
S(pq) + (1− pq)S(p(1− q)/(1− pq)) = S(p) + pS(q)

• correspond to algebraic properties of semiring Tβ,S

1 commutativity of ⊕β,S

2 left and right identity for ⊕β,S

3 associativity of ⊕β,S

⇒ Tβ,S commutative, unital, associative iff S(p) = Sh(p)
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case of associativity:

x ⊕β,S (y ⊕β,S z) = x ⊕β,S min
p
(py + (1− p)z − 1

β
S(p))

= min
q
(qx + (1− q)min

p
(py + (1− p)z − 1

β
S(p))− 1

β
S(q))

= min
p,q

(qx + p(1− q)y + (1− q)(1− p)z − 1

β
(S(q) + (1− q)S(p)))

= min
p1+p2+p3=1

(p1x + p2y + p3z −
1

β
(S(p1) + (1− p1)S(

p2
1− p1

)))

while

(x ⊕β,S y)⊕β,S z = min
p
(px + (1− p)y − 1

β
S(p))⊕β,S z

= min
p,q

(pqx + q(1− p)y + (1− q)z − 1

β
(qS(p) + S(q))

= min
p1+p2+p3=1

(p1x + p2y + p3z −
1

β
(S(p1 + p2) + (p1 + p2)S(

p1
p1 + p2

)).
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Khinchin axioms n-ary form
Given S as above, define Sn : ∆n−1 → R⩾0 by

Sn(p1, . . . , pn) =
∑

1⩽j⩽n−1

(1−
∑
1⩽i<j

pi )S(
pj

1−
∑

1⩽i<j pi
).

Then Khinchin axioms:

1 (Continuity) S(p1, . . . , pn) continuous in (p1, . . . , pn) ∈ ∆n

simplex

2 (Maximality) S(p1, . . . , pn) maximum at the uniform pi = 1/n

3 (Additivity/Extensivity) pi =
∑mi

j=1 pij then

S(p11, . . . , pnmn) = S(p1, . . . , pn) +
n∑

i=1

piS(
pi1
pi

, . . . ,
pimi

pi
);

4 (Expandability) ∆n face in ∆n+1

S(p1, . . . , pn, 0) = S(p1, . . . , pn)
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extensivity axiom

(Jk)1⩽k⩽m be a partition of {p1, . . . , pn}
Sn(p1, . . . , pn) defined in terms of binary S(p) as

Sn(p1, . . . , pn) =
∑

1⩽j⩽n−1

(1−
∑
1⩽i<j

pi )S(
pj

1−
∑

1⩽i<j pi
)

then have

Sn(p1, . . . , pn) = Sm(q1, . . . , qm) +
∑

1⩽k⩽m

qk S|Jk |(Jk/qk),

where qk =
∑

p∈Jk p, so Jk/qk is a |Jk |-ary probability
distribution
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Shannon entropy case:

x ⊕β,Sh y = min
p
{px + (1− p)y − 1

β
Sh(p)}

equivalent form of ⊕β,Sh

x ⊕β,Sh y = −β−1 log
(
e−βx + e−βy

)
for T = 1/β (temperature parameter) and on tropical semiring
(R ∪ {∞},min,+)

x ⊕T ,Sh y = −T log(e−x/T + e−y/T )

or with multiplicative notation (R+,max, ∗)

x ⊕T ,Sh y = (x1/T + y1/T )T
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F (p) = px + (1− p)y + T (p log p + (1− p) log(1− p))

∂F (p) = x − y + T (log p − log(1− p))

∂F (p) = 0 when T log p + x − y = T log(1− p)

pmin =
1

1 + e
x
T
− y

T

=
e−x/T

e−x/T + e−y/T

so get at minimum in p

F (pmin) = −T log
(
e−x/T + e−y/T

)
Expressing Shannon thermodynamic addition as

x ⊕T ,Sh y = (x1/T + y1/T )T

leads to relation with Maslov dequantization and tropical geometry
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Relation to tropical geometry

• tropical polynomial p : Rn → R piecewise linear

p(x1, . . . , xn) = ⊕m
j=1aj ⊙ x

kj1
1 ⊙ · · · ⊙ x

kjn
n =

min{a1+k11x1+· · ·+k1nxn, a2+k21x1+· · ·+k2nxn, · · · , am+km1x1+· · ·+kmnxn}.

tropical hypersurface where tropical polynomial non-differentiable

• Entropical geometry: thermodynamic deformations of T

pβ,S(x1, . . . , xn) = ⊕β,S ,jaj ⊙ x
kj1
1 ⊙ · · · ⊙ x

kjn
n =

min
p=(pj )

{
∑
j

pj(aj + kj1x1 + · · ·+ kjnxn)−
1

β
Sn(p1, . . . , pn)}
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Tropicalization in algebraic geometry

starting with a polynomial f defining a hypersurface V in
(C∗)n

Maslov dequantization, given by a one-parameter family fh
with zero set Vh

example: for f (x) =
∑

k akx
k , write ak = ebk and xk = ekt ,

and replace v = log(
∑

k e
kt+bk ) with deformed

vh = h log(
∑

k e
(kt+bk )/h): this gives dequantized family

fh(x) =
∑

k a
1/h
k xk

amoeba obtained by mapping Vh to Rn under map
Logh(z1, . . . , zn) = (h log |z1|, . . . , h log |zn|)
limit h → 0, subsets Ah ⊂ Rn converge in Hausdorff metric to
tropical variety Tro(V )
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Maslov dequantization and tropicalization of f (x) = x2 + ex + 1
from http://www.pdmi.ras.ru/~olegviro/dequant
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amoeba and tropicalization of z1 + z2 + 1 = 0 in (C∗)2

Matilde Marcolli Information Algebras



Maslov dequantization

instead of deforming coefficients of polynomial see
dequantization by deforming ring operations

Maslov dequantization based on family of semirings R+

a⊕h b = h log(ea/h + eb/h), a⊙ b = a+ b

isomorphism to usual R+ through x 7→ xh but in limit h → 0
becomes the idempotent tropical semiring

∆ ⊂ Rn convex lattice polyhedron

{αj}j∈∆, ϕh(x) = ⊕h(αj + jx)

Maslov dequantization can be expressed in terms of the
operation ⊕Sh,T , where the dequantization parameter h plays
the role of the temperature T

dequantization with respect to other entropy functionals?
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Rényi entropy:

Ryα(p1, . . . , pn) :=
1

1− α
log

(∑
i

pαi

)

lim
α→1

Ryα(p1, . . . , pn) = Sh(p1, . . . , pn)

• lack of associativity of x ⊕S y , when S = Ryα

Ryα(p) =
1

1− α
log(pα + (1− p)α)

measured by the transformation (p1, p2, p3) 7→ (p3, p2, p1)
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in a commutative non-associative semiring K lack of
associativity corrected by morphism

K ⊗ K ⊗ K
A //

⊕w⊗1
��

K ⊗ K ⊗ K

1⊗⊕w

��
K ⊗ K

⊕w // K K ⊗ K
⊕woo

which makes the diagram commutative

morphism simply given by A(x ⊗ y ⊗ z) = z ⊗ y ⊗ x

exactly the transformation (p1, p2, p3) 7→ (p3, p2, p1)

Matilde Marcolli Information Algebras



Ryα(p1) + (1− p1)Ryα(
p2

1− p1
) =

1

1− α

(
log(pα1 + (1− p1)

α) + (1− p1) log

(
(

p2

1− p1
)α + (

1− p1 − p2

1− p1
)α
))

=

1

1− α
log

(
(pα1 + (1− p1)

α)
( p2
1−p1

)α + ( p3
1−p1

)α

(( p2
1−p1

)α + ( p3
1−p1

)α)p1

)
=

1

1− α
log

(
(
p1p2

1− p1
)α + (

p1p3

1− p1
)α + pα2 + pα3

)
−

p1

1− α
log

(
(

p2

1− p1
)α + (

p3

1− p1
)α
)

1

1− α
log

(
(pα2 + pα3 )(p

α
1 + (1− p1)α)

(1− p1)α

)
−

p1

1− α
log

(
(pα2 + pα3 )

(1− p1)α

)

=
1

1− α
((1− p1) log(p

α
2 + pα3 ) + log(pα1 + (1− p1)

α)− α(1− p1) log(1− p1))
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On the other hand, we have

Ryα(p1 + p2) + (p1 + p2)Ryα(
p1

p1 + p2
) =

Ryα(1− p3) + (1− p3)Ryα(
p1

1− p3
) = Ryα(p3) + (1− p3)Ryα(

p1

1− p3
) =

1

1− α
log((

p1p3

1− p3
)α + (

p2p3

1− p3
)α + pα1 + pα2 )−

p3

1− α
log((

p1

1− p3
)α + (

p2

1− p3
)α)

=
1

1− α
((1− p3) log(p

α
2 + pα1 ) + log(pα3 + (1− p3)

α)− α(1− p3) log(1− p3))
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Non-extensive thermodynamics:

• gas of particles with chemical potentials log x and log y and
Hamiltonian (p mole fraction)

H = p log x + (1− p) log y

• partition function Z = e−Feq with Feq equilibrium value of free
energy at temperature T = 1/β

x ⊕β,S y = max
p

(eTS(p)+p log x+(1−p) log y )

partition sum of a two state system with energies x and y

• Gibbs free energy F = H − TS with S entropy and H enthalpy
with min{H − TS} min of Gibbs free energy

• mixing can happen in non-Boltzmann thermodynamics
(non-extensive) leading to non-associative thermodynamic
semirings
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• Extensive thermodynamics: independent subsystems A and B,
combined system A ⋆ B

S(A ⋆ B) = S(A) + S(B)

• Non-extensive deformations (Tsallis)

Sq(A ⋆ B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B)

Tsallis entropy:

Tsα(p) =
1

α− 1
(1− pα − (1− p)α)

reproduces Shannon entropy α → 1

• Tsallis entropy uniquely determined by symmetry
S(p) = S(1− p), minima S(0) = S(1) = 0, and α-deformed
extensivity

S(p1) + (1− p1)
αS(

p2
1− p1

) = S(p1 + p2) + (p1 + p2)
αS(

p1
p1 + p2

)
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Tsallis thermodynamic semiring

• Tsallis thermodynamic semiring: commutativity, unitarity and
associativity of α-deformed ⊕β,S,α

x ⊕β,S ,α y = min
p
{pαx + (1− p)αy − 1

β
Tsα(p)}

• for Tsallis entropy associativity of the thermodynamic semiring
can be restored by a deformation of the operation ⊕S,T depending
on deformation parameter α (also written as q for q-deformed)

• in previous physical interpretation this means replacing the
energy functional

H =
∑

piEi

with free energy of q-deformed thermodynamics

Hq =
∑

pqi Ei

Matilde Marcolli Information Algebras



• α ∈ R and ϕ a continuous function such that ϕ(α)(1− α) > 0
for α ̸= 1, with

lim
α→1

ϕ(α) = 0

and such that ∃ 0 ⩽ a < 1 < b with ϕ differentiable on
(a, 1) ∪ (1, b) and

lim
α→1

dϕ(α)

dα
< 0

• generalized Tsallis entropy:

Tsα(p) =
1

ϕ(α)
(pα + (1− p)α − 1)

reproduces the Shannon entropy in the α → 1 limit

• (Suyari-Furuichi) generalized Tsallis entropy unique entropy
functions that are commutative, have the L/R identity property,
and satisfy the α-associativity condition

S(p1) + (1− p1)
αS(

p2
1− p1

) = S(p1 + p2) + (p1 + p2)
αS(

p1
p1 + p2

)
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• General idea: transform axiomatic characterizations of various
entropy functionals into algebraic properties of corresponding
thermodynamic deformations of min-plus algebras

Thermodynamic semirings of functions

Ξ compact Hausdorff space

S = (Sη) family of information measures depending
continuously on η ∈ Ξ

K = Rmin,+ ∪ {∞} and C (Ξ,K ) continuous functions with
pointwise operations

x(η)⊕T ,Sη y(η) = min
p∈[0,1]

(p x(η) + (1− p) y(η)− T Sη(p))

and ordinary pointwise sum as ⊙
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Kullback–Leibler divergence

KL-divergence of two probability distributions

KL(p|q) = p log
p

q
+ (1− p) log

1− p

1− q

in binary form P = (p, 1− p) and Q = (q, 1− q)

smooth univariate binary statistical n-manifold Q is a set of
binary probability distributions Q = (q(η)) smoothly
parametrized by η ∈ Rn

topological univariate binary statistical n-space Q is a set of
binary probability distributions Q = (q(η)) continuously
parameterized by η ∈ Ξ, with Ξ a compact Hausdorff
topological space

first is setting of information geometry, second setting for
multifractal dynamical systems

semirings R = C∞(X ,K ) or R = C (X ,K ) with ⊕T ,KL(·|q(η))
pointwise in η
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multifractal systems

Cantor set X identified with the one sided full shift space Σ+
2

on the alphabet {0, 1}

η = η1η2η3 · · · ηn · · · , with ηi ∈ {0, 1}

topologized with cylinder sets X (w) = sequences starting
with the finite word w

dynamical system with the shift map σ(η) = η2η3 · · ·
an(η) denote the number of 1’s that appear in the first n
digits η1, . . . , ηn of η

when limit exists

q(η) = lim
n→∞

an(η)

n

Y ⊂ X set of points where limit exists
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uniform middle-third Cantor set
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uniform Cantor set from contraction map f with contraction
ratio λ

with a Bernoulli measure µp for a given 0 < p < 1

µp(X (w1, . . . ,wn)) = pan(w)(1− p)n−an(w)

for cylinder sets

X (w1, . . . ,wn) = {η ∈ X | ηi = wi , i = 1, . . . , n}

local dimension of X at a point η ∈ Y given by

dµp(η) =
q(η) log p + (1− q(η)) log(1− p)

log λ

local entropy of map f (shift σ) given by

hµp ,f (η) = q(η) log p + (1− q(η)) log(1− p)

non-uniform Cantor set X with two contraction ratios λ1 and
λ2 on the two intervals
Lyapunov exponent of f is given by

λf (η) = q(η) log λ1 + (1− q(η)) log λ2
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given Bernoulli measure µp on Cantor set X there is a set
Z ⊂ X of full measure µp(Z) = 1 for which q(η) = p

uniform measure µ1/2: full measure subset Z1/2 with limit
q(η) = 1/2 uniform distribution (fair coin case)

stratify set Y ⊂ X into level sets of q(η): multifractal
decomposition of Cantor set

consider C (Y,K ) with the ⊕KLq(η),T with the
Kullback–Leibler divergence KL(p; q(η))
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for Z ⊂ Y semiring C (Z,K ) with ⊕KLq(η),T is commutative
iff Z ⊂ Z1/2 is a “fair coin” subset

involution that measures the lack of associativity and
commutativity (q ↔ 1− q)

(p1, p2, p3; q) 7→ (p3, p2, p1; 1− q)

uniform case only associativity “up to a shift”

KL(p1;
1

2
) + (1− p1)KL(

p2

1− p1
;
1

2
) =

p1 log p1 + p2 log p2 + p3 log p3 + log 2 + (1− p1) log 2

while

KL(p1 + p2;
1

2
) + (p1 + p2)KL(

p1

p1 + p2
;
1

2
) =

p1 log p1 + p2 log p2 + p3 log p3 + log 2 + (1− p3) log 2

KL divergence to the uniform distribution = Shannon entropy
up to a constant shift
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KL divergence and marginal distributions
p and q are two distributions, we denote by pi and qi their
i-th marginal distribution, then KL(p|q) =

∑
i KL(pi |qi )

KL(p|q) =p1 · · · pn log
p1 · · · pn
q1 · · · qn

+(1− p1)p2 · · · pn log
(1− p1)p2 · · · pn
(1− q1)q2 · · · qn

+ · · ·+(1− p1) · · · (1− pn) log
(1− p1) · · · (1− pn)

(1− q1) · · · (1− qn)

= p1 · · · pn(log
p1

q1
+· · ·+log

pn

qn
)+· · ·+(1−p1) · · · (1−pn)(log

1− p1

1− q1
+· · ·+log

1− pn

1− qn
)

=p1 log
p1

q1
(p2 · · · pn + (1− p2) · · · pn + · · · )

+(1− p1) log
1− p1

1− q1
(p2 · · · pn + · · · ) + · · ·

= p1 log
p1

q1
((1 + p2 − p2)(p3 · · · pn + · · · )) + · · ·

= p1 log
p1

q1
+ (1− p1) log

1− p1

1− q1
+ · · ·+ (1− pn) log

1− pn

1− qn
=
∑
i

KL(pi |qi )

if sum of KL divergences of marginals is minimized total KL is
also minimized
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product of semirings and hyperfield structure

semirings R = C ({1, . . . , n},K ) = K⊗n

want an n-ary probability distribution not n binary probability
distributions

want ordering on R that ensures trace is maximized

(x1, ..., xn) → x1 + ...+ xn ∈ K

but such ordering does not uniquely determine a maximum
between two tuples ⇒ non-well-defined addition on K
(multivalued): (x1, ..., xn) + (y1, ..., yn) the set of tuples
(z1, ..., zn) with zi = xi or yi that maximize z1 + ...+ zn in the
ordering on K

this multivalued addition together with coordinate-wise
multiplication defines a characteristic one hyperfield structure
on R
information measures S1, ...,Sn over K = Rmin,+ ∪ {∞}
for x = (x1, ..., xn), y = (y1, ..., yn)

x⊕T ,S1,...,Sny = min
p1,...,pn

(p1x1+(1−p1)y1−TS1(p1), ..., pnxn+(1−pn)yn−TSn(pn))
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the pi as marginal probabilities, and the min operation is the
multivalued hyperring addition

if each Si is the KL-divergence from some qi , results of this
operation are distributions with marginals (p1, ..., pn)
minimizing the KL-divergence to the marginals (q1, ..., qn),
subject to the soft constraint coming from the energy
functional

H =
∑

pixi + (1− pi )yi

lack of well-definedness of addition interpreted
thermodynamically as non-uniqueness of equilibria, via
existence of meta-equilibrium states

when qi uniform distribution addition is well-defined
single-valued

Matilde Marcolli Information Algebras



Successor function

encodes properties of thermodynamic semirings like measuring
lack of associativity, commutativity

λ : K × R → K is the Legendre transform of TS : [0, 1] → R

λ(x ,T ) = x ⊕S 0 ≡ min
p
(px − TS(p))

TS(p) = min
x
(px − λ(x ,T ))

when S is concave/convex, we can recover it from λ hence
from the semiring

call λ successor function because 0 is the multiplicative
identity and over general K we write this as λ(x ,T ) = x ⊕S 1

when multiplication distributes over addition

x ⊕S y = λ(x − y ,T ) + y
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• entropy function S has following properties:

1 commutativity S(p) = S(1− p) (ie ⊕S,T commutative) iff

λ(x)− λ(−x) = x

2 left identity S(0) = 0 (ie ⊕S has left identity ∞) iff λ(x) ⩽ 0
and limx→∞ λ(x) = 0

3 right identity S(1) = 0 (ie ⊕S has right identity ∞) iff
λ(x) ⩽ x and λ(x) ∼ x , as x → −∞

4 associativity iff

λ(x − λ(y)) + λ(y) = λ(λ(x − y) + y)
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Successor for Shannon entropy

in Rmin,+ ∪ {∞}

λSh(x ,T ) = −T log(1 + e−x/T )

in Rmax,+
⩾0

λSh(x ,T ) = (1 + x1/T )T

Successor for Kullback–Leibler divergence

for Rmin,+ ∪ {∞}

λKL(x ,T ) = −T log(1 + e−x/qT )

for Rmax,+
⩾0

λKL(x ,T ) = (1/(1− q)1/T + (x/q)1/T )T
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successor function for the Shannon entropy with T = 0.5
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successor function for the Shannon entropy with T = 1
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successor function for the Shannon entropy with T = 2
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Successor for Tsallis entropy

λTsα(x ,T ) =


0 | α

1−α | < x/T

g(x) −| αT1−α | < x/T < | α
1−α |

x x/T < −| αT1−α |

g(x) is given by applying Ts to the inverse of its derivative

∂Ts

∂p
=

α

1− α
(pα−1 − (1− p)α−1)

that has range [−| α
1−α |, |

α
1−α |]

Successor for Rényi entropy

applying Ry to inverse of its derivative (that now has range R)

∂Ry

∂p
=

α

1− α
(pα−1 + (1− p)α−1)/(pα + (1− p)α).
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successor function for the Tsallis entropy with α = 0.5 and T = 1
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successor function for the Rényi entropy with α = 0.1 and T = 1
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successor function for the Rényi entropy with α = 0.9 and T = 1
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Cumulant generating function

random variable X

MX (t) generating function of momenta of X

MX (t) = ⟨exp(tX )⟩ =
∞∑

m=0

µm
tm

m!

cumulants {κn} of X coefficients of power series expansion of
logMX (t)

logMX (t) =
∞∑
n=0

κn
tn

n!

information contained in cumulants or momenta is equivalent
but cumulants are additive over independent variables
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Cumulants and successor function

λ(x ,T ) successor function of a thermodynamic semiring K
(assume it is analytic)

function −λ(x ,T )/T is cumulant generating function of
probability distribution for energy E in variable −1/T = −β

κn = ⟨En⟩c

(−1)n+1 ∂n

∂βn
(βλ(x ,T )) = ⟨En⟩c

partition function Z (β) = ⟨exp(−βE )⟩
Helmholtz free energy F = −T log⟨exp(−E/T )⟩
it is (up to −1/T factor) cumulant generating function for
random variable E

Helmholtz free energy is Legendre transform of entropy so (up
to −1/T factor) the successor λ(x ,T )
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for an arbitrary (concave and analytic) information measure

λ(x ,T )− T
∂

∂T
λ(T , x) = ⟨E ⟩ = peqx

with peq = pT (x) equilibrium value of the mole fraction

successor λ(x ,T ) = minp(px − TS(p)) = pT (x)− TS(pT (x))

pT (x) satisfies

x/T =
d

dp
S(pT (x))

∂

∂T
λ(x/T ) = x

∂

∂T
p(x/T )−S(p(x/T ))−T

∂

∂T
p(x/T )

d

dp
S(p(x/T ))

which is just −S(p(x/T ))

so pT (x) = p(x/T ) and similarly λ(T , x) = λ(x/T )

explains effect of changing the temperature on ⊕S,T

get then ∂
∂x λ(x/T ) = xp(x/T ) hence well-known property of

Legendre transform of smooth functions:

λ(x/T ) = x
∂

∂x
λ(x/T ) + T

∂

∂T
λ(x/T )
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Operads
• Operad: objects C(j) in a symmetric monoidal category:
parameter space of j-ary operations with composition maps

γ : C(k)⊗ C(j1)⊗ · · · ⊗ C(jk) → C(j1 + · · ·+ jk)

associative, unital, and equivariant under permutations

unit: e : I → C(1) (identity as unary operation) with identity
compositions

C(n) ≃ I ⊗ C(n) e⊗1−→ C(1)⊗ C(n) γ→ C(n)

C(n) ≃ C(n)⊗ I⊗n 1⊗e⊗n

−→ C(n)⊗ C(1)⊗n γ→ C(n)
associativity condition: composition γ of operations is
associative (no ambiguity in how expressions involving
composition operations are written without parentheses)

Note: operations in C(j) are not necessarily associative

non-symmetric operad if without the condition on the action
of permutations
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Algebras over an operad

way to realize operations in an operad C(j) as concrete operations:
operations in C(j) have A-inputs (ie an input in A⊗j), output in A

• C-algebra A: an object with Symj -equivariant maps

C(j)⊗ A⊗j → A,

thought of as actions, associative and unital

Note: operad structure closely related to trees and grafting trees,
but there are different ways of organizing trees into an operad
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Example: Operad of rooted trees

operad RT with RT (n) the Z-module generated by rooted
trees T with n non-root vertices

for an n-rooted tree T oriented towards the root, In(T , i) =
set of incoming edges at the vertex i

to define all the operad compositions sufficient to define for
1 ≤ i ≤ n

◦i : RT (n)×RT (m) → RT (n +m − 1)

operadic compositions then given by

γ : RT (n)×RT (k1)⊗ · · · ⊗ RT (kn) → RT (k1 + · · ·+ kn)

γ(T , S1, . . . ,Sn) = (· · · (T ◦n Sn) ◦n−1 Sn−1) · · · ◦1 S1)
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for T ∈ RT (n) and S ∈ RT (m)

T ◦i S =
∑

f :In(T ,i)→{1,...,m}

T ◦fi S

composition along the vertex i of T : outgoing edge at i
becomes outgoing edge at the root of S , incoming edges at i
are grafted on vertices of S as specified by the map f
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Poincaré series of the operad RT of rooted trees

ΓRT (x) =
∑
n≥1

dim(RT )
(−x)n

n!

dim(RT ) = nn−1

ΓRT (x) is the inverse function of x 7→ −xe−x
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Example: A∞-operad of planar rooted trees

A∞(n) is the linear span (over field K or over Z) of planar
rooted trees with n leaves (with labels {1, . . . , n})
for n = 1 tree just a segment from root to single leaf

symmetric group acts by relabeling the leaves

operad composition

γ : A∞(n)⊗ A∞(k1)⊗ · · · ⊗ A∞(kn) → A∞(k1 + · · ·+ kn)

grafting n input leaves of T ∈ A∞(n) to output roots of
Ti ∈ A∞(ki )
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free operad generated by the corollas
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DG operad

in grafting composition also introduce multiplication by a
sign: grafiting root of T ′ to i-th leaf of T multiplied by
(−1)(#E(T ′)−1)·Ri (T ) with Ri (T ) = number of edges to the
right or i-th leaf in T (strictly on the right of unique path
from i-th leaf to root)

reason for sign: the operad A∞ also had a compatible
differential (DG-operad)

differential defined by edge contractions

dT :=
∑

T ′ :T=T ′/e

ϵT ′

ϵ = (−1)L(e) with L(e) = number of edges below and to the
left of e
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edge contraction operation on a tree
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differential satisfies d2 = 0

degree deg(T ) = #V (T ) + 1− n = #E (T ) + 1− 2n

d has degree +1

compatibility between operad structure and differential:

d(T ′ ◦i T ) = dT ′ ◦i T + (−1)deg(T
′)T ′ ◦i dT

here still using the fact that the compositions ◦i determine all
the operad compositions γ
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differential for corollas
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algebra over the A∞ operad of planar rooted trees is a
morphism of operads (compatible with all compositions)

ϕ : A∞(n) → EndV (n)

where EndV (n) = Hom(V⊗n,V ) endomorphism operad

compatibiity with differentials (morphisms of DG operads) if
images ϕ(δn) of corollas satisfy the differential as above

same as requirement that Mn(v1, . . . , vn) = ϕ(δn)(v1, . . . , vn)
gives DG-algebra structure to V :

ϵ(i) = (−1)
∑i−1

k=1
deg(vi ) sign by moving d across v1, . . . , vi−1; σ(i) = sign by

moving Ml across v1, . . . , vi
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Entropy Operads

operad P of probabilities on finite sets P(j) = ∆j simplex

operadic compositions

γ((pi )i∈j⊗(q1l)l∈k0⊗· · ·⊗(qjl)l∈kj−1) = (piqil)l∈ki ,i∈j ∈ P(k0+· · ·+kj−1)

describe forming composites of subsystems

Algebra R+ over P
• category R≥0 with a single object and morphisms x ∈ R≥0 with
action of P trivial on unique object and on morphisms

(pi )i∈j · (xi )i∈j =
∑
i

pixi

• J. Baez, T. Fritz, T. Leinster, A characterization of entropy in
terms of information loss, Entropy 13 (2011) no. 11, 1945–1957.
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Information Algebras (over the entropy operad)

• object R≥0, morphisms x ∈ R≥0; action of operad P: maps S
from finite probabilities to non-negative real number with

1 For p ∈ P(n) and qi ∈ P(mi )

S(p ◦ (q1, . . . , qn)) = S(p) +
∑
i

piS(qi );

2 S((1)) = 0;

3 for p ∈ P(n) and σ ∈ Symn

S(σp) = S(p)

4 S : P(n) → R⩾0 continuous

Characterizes entropy functionals (Khinchin axioms of Shannon
entropy)
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Binary guessing trees

a general binary information measure, S : [0, 1] → R⩾0 (not
necessarily Shannon)

assume S satisfies the L/R identity axioms

build an information measure on ternary variables: X with
values in {x1, x2, x3} guessed with binary questions in two
ways

1 Is X = x1? If not, is X = x2?
2 Is X = x1 or x2? If yes, is X = x1?

counting possible permutations gives 2 · 3! = 12 possible
ternary information measures

S binary information measure with identity: for any n ⩾ 2,
one-to-one correspondence between rooted binary trees with n
leaves with labels in {1, . . . , n} and n-ary information
measures arising from S
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Example: this tree corresponds to information measure ST(p1, . . . , p6) =

S(p2) + (1− p2)S(
p1 + p4 + p3

1− p2
) + (p1 + p4 + p3)S(

p1
p1 + p4 + p3

)

+(p4 + p3)S(
p4

p4 + p3
) + (p5 + p6)S(

p5
p5 + p6

)
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this shows how binary trees with n leaves and determine
decision strategies and corresponding n-variable information
measures

conversely any decision strategy will consist of questions of
the form is X ∈ A for some subset A ⊂ {1, . . . , n} and has to
exhaust all possibilities so it will determine a binary rooted tree

also an (n, 2)-tree T determines a canonical way of
parenthesizing the expression x1 ⊕S · · · ⊕S xn

sufficient to consider case of T′ where labels of leaves are
{1, . . . , n} from left to right (in planar embedding): for more
general tree T there is a σ ∈ Sn that gives the relabeling, then

(x1 ⊕S · · · ⊕S xn)T := (xσT(1) ⊕S · · · ⊕S xσT(n))T′

then for the T with left-to-right labels construct inductively
(x1 ⊕S · · · ⊕S xn)T
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tree T2 with root vertex and two children leaves:
(x1 ⊕S x2)T2 = x1 ⊕S x2

if T has left-to-right labels, take L/R subtrees L and D at
root: there is some 1 ⩽ r < n such that for 1 ⩽ j ⩽ r have
xj ∈ L, and for all r < j < n have xj ∈ D

then inductively set

(x1⊕S · · ·⊕S xn)T = (x1⊕S · · ·⊕S xr )L+(xr+1⊕S · · ·⊕S xn)D
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Bracketing and multivariable information measures

(n, 2)-tree T and binary information measure S with identity
axiom

relation between bracketing and the n-variable measure ST

(x1 ⊕S · · · ⊕S xn)T = min∑
pi=1

(
∑

pixi − TST(p1, . . . , pn))

first step: T labeled left-to-right labels and subtrees L with l
leaves and D with d leaves at root:

ST(p1, . . . , pl , pl+1, . . . , pl+d) =

S(p1+· · ·+pl)+(p1+· · ·+pl)SL(
p1

p1 + · · ·+ pl
, . . . ,

pl
p1 + · · ·+ pl

)

+(pl+1+· · ·+pl+d)SD(
pl+1

pl+1 + · · ·+ pl+d
, . . . ,

pl+d

pl+1 + · · ·+ pl+d
)

second step: in this case also

(x1 ⊕S · · · ⊕S xl ⊕S xl+1 ⊕S · · · ⊕S xl+d)T

= min
p
(p(x1⊕S · · ·⊕Sxl)L+(1−p)(xl+1⊕S · · ·⊕Sxl+d)D−TS(p))
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third step: induction on trees with less than n leaves

(x1⊕S · · ·⊕Sxn)T = min
p
(p min

p1+···+pl=1
(
∑

pixi−TSL(p1, . . . , pl))

+(1−p) min
pl+1+···+pl+d=1

(
∑

pixi−TSD(pl+1, . . . , pl+d))−TS(p))

fourth step: change of variables qi = ppi , for each
i ∈ {1, . . . , l}, and qi = (1− p)pi , for each
i ∈ {l + 1, . . . , l + d}
with this have q1 + · · ·+ ql = p and
ql+1 + · · ·+ ql+d = 1− p so get

(x1 ⊕S · · · ⊕S xn)T = min∑
qi=1

(
∑

qixi

−T ((q1 + · · ·+ ql)SL(
q1

q1 + · · ·+ ql
, . . . ,

ql
q1 + · · ·+ ql

)

+(ql+1+· · ·+ql+d)SD(
ql+1

ql+1 + · · ·+ ql+d
, . . . ,

ql+d

ql+1 + · · ·+ ql+d
)

+S(q1 + · · ·+ ql)))
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by first step this is

min∑
qi=1

(
∑

qixi − TST(q1, . . . , qn)))

for arbitrary labelings then use permutation σ and
pi = qσ−1(i):

(xσ(1)⊕S · · ·⊕S xσ(n))T = min∑
qi=1

(
∑

qixσ(i)−TST(q1, . . . qn))

= min∑
pi=1

(
∑

pixi − TST(pσ(1), . . . , pσ(n)))
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Example: same binary tree illustrated above

x1 ⊕S ((x2 ⊕S (x3 ⊕S x4))⊕S (x5 ⊕S x6)) =

min
p1

(p1x1 + (1− p1)((x2 ⊕S (x3 ⊕S x4))⊕S (x5 ⊕S x6))− TS(p1))

= min
p1

(p1x1+(1−p1)min
p2

(p2(x2⊕S (x3⊕S x4))+(1−p2)(x5⊕S x6)−TS(p2))−TS(p1))

= min
p1,p2

(
p1x1 + (1− p1)p2 min

p3
(p3x2 + (1− p3)(x3 ⊕S x4)− TS(p3))

+(1− p1)(1− p2)min
p4

(p4x5 + (1− p4)x6 − TS(p4))− T (S(p1) + (1− p1)S(p2))

)
= min

p1,p2,p3,p4,p5
(p1x1 + (1− p1)p2p3x2 + (1− p1)p2(1− p3)p5x3

+(1− p1)p2(1− p3)(1− p5)x4 + (1− p1)(1− p2)p4x5 + (1− p1)(1− p2)(1− p4)x6

−T (S(p1)+(1−p1)S(p2)+(1−p1)p2S(p3)+(1−p1)(1−p2)S(p4)+(1−p1)p2(1−p3)S(p5)))

• then change of variables with q1 + · · ·+ q6 = 1:

p1 =q1

p2 =(q2 + q3 + q4)/(1− q1)

p3 =q2/(q2 + q3 + q4)

p4 =q5/(q5 + q6)

p5 =q3/(q3 + q4).
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change of variables gives

x1 ⊕S ((x2 ⊕S (x3 ⊕S x4))⊕S (x5 ⊕S x6)) =

min∑
qi=1

(
∑

qixi − T (S(q1) + (1− q1)S(
q2 + q3 + q4

1− q1
)

+(q2 + q3 + q4)S(
q2

q2 + q3 + q4
) + (q3 + q4)S(

q3

q3 + q4
) + (q5 + q6)S(

q5

q5 + q6
))

then get by applying permutation σ = (12)(34) ∈ S6

Matilde Marcolli Information Algebras



More general (non-binary) guessing trees

for some V ⊂ N≥2 a family {Sn}n∈V of n-ary information
measures

satisfying coherence axiom: for n > m if for all but
1 < i1 < · · · < im < n, pj = 0 then

Sn(p1, . . . , pn) = Sm(pi1 , . . . , pim)

typical examples have the form

Sn(p1, . . . , pn) = f (
∑

1⩽i⩽n

g(pi ))

for suitable functions f , g (all these satisfy coherence)

for v = supV , can ask questions with up to v possible
answers (instead of just binary)
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given n, v ⩾ 2, suppose for each 2 ⩽ j < v + 1 have j-ary
information measure Sj (with coherence axiom)

guessing strategies of n-ary random variables with questions
with up to v possible answers

in bijective correspondence with the set of (n, v)-trees: rooted
trees with labelled leaves such that every vertex is either a leaf
or has between 2 and v children
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Entropy functionals and general planar rooted trees

A collection S = {Sn}n∈N of n-ary entropy functionals Sn
coherence condition:

Sn(p1, . . . , pn) = Sm(pi1 , . . . , pim),

whenever, for some m < n, we have pj = 0 for all
j /∈ {i1, . . . , im}
Shannon, Rényi, Tsallis entropies satisfy this condition

collection S = {Sn}n∈N of coherent entropy functionals
determines n-ary operations Cn,β,S on R ∪ {∞}

Cn,β,S(x1, . . . , xn) = min
p
{

n∑
i=1

pixi −
1

β
Sn(p1, . . . , pn)}

minimum taken over p = (pi ), with
∑

i pi = 1

also write as (x1 ⊕S · · · ⊕S xn) := Cn,β,S(x1, . . . , xn)
in example tree above

(x1 ⊕S x2 ⊕S x3 ⊕S x4 ⊕S x5)⊕S ((x6 ⊕S x7 ⊕S x8)⊕S (x9 ⊕S x12)⊕S (x10 ⊕S x11))
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more generally: n-ary operations Cn,β,S,T(x1, . . . , xn) with S
as above and T planar rooted trees with n leaves

Cn,β,S,T(x1, . . . , xn) = min
p
{

n∑
i=1

pixi −
1

β
ST(p1, . . . , pn)}

with the ST(p1, . . . , pn) obtained from the Sj , for j = 2, . . . , n
if root of (n, v)-tree T has sub-(lj , v)-trees (resp. from left to
right) A1, . . . ,Am, and the leaves of T are labeled left to right
(and Lj = l1 + · · ·+ lj and L0 = 0)

ST(p1, . . . , pn) =∑
1⩽j⩽m

(pLj−1+1+· · ·+pLj )SAj (
pLj−1+1

pLj−1+1 + · · ·+ pLj

, . . . ,
pLj

pLj−1+1 + · · ·+ pLj

)

+Sm(pL0+1 + · · ·+ pL1 , . . . , pLm−1+1 + · · ·+ pLm)

then also for Cn,β,S,T(x1, . . . , xn) =: (x1 ⊕S · · · ⊕S xn)T

(x1 ⊕S · · · ⊕S xn)T = min∑
qi=1

(q1(x1 ⊕S · · · ⊕S xl1)

+ · · ·+ qm(xl1+···+lm−1+1 ⊕S · · · ⊕S xl1+···+lm)

−TSm(q1, . . . , qm)).
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same inductive argument then gives

Cn,β,S,T(x1, . . . , xn) = min∑
pi=1

(
∑

pixi − TST(p1, . . . , pn))

indeed have

(x1⊕S · · ·⊕Sxn)T = min∑
qi=1

(q1 min
p1+···+pl1=1

(p1x1+· · ·+pl1xl1−TSA1
(p1, . . . , pl1 )+· · ·

+qk min
pl1+···+lk−1+1+···+pl1+···+lk

=1
(

l1+···+lk∑
j=l1+···+lk−1+1

pjxj−TSAk
(pl1+···+lk−1+1, . . . , pl1+···+lk ))

−TSk (p1 + · · ·+ pl1 , . . . , pl1+···+lk−1+1 + · · ·+ pn))

for each i ∈ {1, . . . , k}, and each
j ∈ {l1 + · · ·+ li−1 + 1, . . . , l1 + · · ·+ li}, with l0 = 0, use

substitution q̃j = qipj with
∑l1+···+li

j=l1+···+li−1+
q̃j = qi :

(x1⊕S · · ·⊕Sxn)T = min∑
q̃j=1

(
∑

q̃jxj−T ((q̃1+· · ·+q̃l1 )SA1
(

q̃1

q̃1 + · · ·+ q̃l1
, . . .)+· · ·

+(q̃l1+···+lk−1+1 + · · ·+ q̃n)SAk
(

q̃l1+···+lk−1+1

q̃l1+···+lk−1+1 + · · ·+ q̃n
, . . .))
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by first step (subtrees) this equals

min∑
q̃j=1

(
∑

q̃jxj − TST(q̃1, . . . , q̃n))

then adjust order of leaves with a permutation, with
pi = qσ−1(i):

(xσ(1)⊕S · · ·⊕S xσ(n))T = min∑
qi=1

(
∑

qixσ(i)−TST(q1, . . . qn))

= min∑
pi=1

(
∑

pixi − TST(pσ(1), . . . , pσ(n)))
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Entropy functionals and operad

collection S = {Sn}n∈N of n-ary entropy functionals with
coherence
R as single-object topological category
algebra over the A∞ operad of rooted trees with operations

Cn,β,S,T(x1, . . . , xn) = min∑
pi=1

(
∑

pixi − TST(p1, . . . , pn))

satisfy additivity

Cn,β,S,T(x1, . . . , xj−1, xj + y , xj+1, . . . , xn) =

Cn,β,S,T(x1, . . . , xj , . . . , xn) + Cn,β,S,T(x1, . . . , y , . . . , xn)

distributive property

yCn,β,S,T(x1, . . . , xn) = Cn,β,S,T(yx1, . . . , yxn)

also satifies (scaling of deformation variable)

(x1 ⊕S · · · ⊕S xn)
α
T(T ) = (xα1 ⊕S · · · ⊕S xαn )T(αT )

additional relations between trees: T1 ∼ T2 when ∀xi
Cn,β,S,T1(x1, . . . , xn) = Cn,β,S,T2(x1, . . . , xn)
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Information algebras and operad

for R = (R+,max,+) and αn : A∞(n) → R
in general, consider A∞(n) vector space spanned by rooted
trees with n leaves

internal A∞-algebra in R:
1 for T ∈ A∞(n) and Ai ∈ A∞(ki )

αk1+···+knγ(T ,A1, . . . ,An) = αn(T+Cn,β,S,T(αk1(A1), . . . , αkn(An))

2 for all T ∈ A∞(n) and σ ∈ Symn

αn(σT) = αn(T)

3 α1|A∞(1) = 0

values hn of αn on the (n, v)-tree with n + 1 vertices

α(T) = hn⊕(α(A1)⊕S · · ·⊕Sα(An)) = max(hn, α(A1)⊕S · · ·⊕Sα(An))
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case of Shannon entropy: quotient of operad with exactly one
class of (n, v)-trees for each n (by associativity and
commutativity relations of Shannon)

for Shannon entropy

α(T) = max(hn, (α(A1)
1/T + · · ·+ α(An)

1/T )T )

so entropy functionals in classical probability can be
understood as algebras over the A∞-operad of rooted trees
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Witt rings and thermodynamic semirings

Witt ring W (R) of a commutative ring R: as a group
(W (R),+W ) isomorphic to (1 + tR[[t]],×) and product ⋆W
completely specified by

(1− at)−1 ⋆W (1− bt)−1 = (1− abt)−1

identities 1 = 1 + 0t + 0t2 + · · · for addition and
(1− t)−1 for multiplication

functoriality: ring homomorphisms f : A → B induce
W (f ) : W (A) → W (B)

built so that W (Fp) is the ring Zp of p-adic integers

elements a ∈ Zp have usual p-adic expansion
a = a0 + a1p + a2p

2 + · · ·
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quotient map to residue field Zp → Fp = Zp/pZp has a
unique multiplicative lift τ : Fp → Zp (map of multiplicative
monoids) maps solution of xp = x in Fp to solution in Zp

congruent to x mod p

π ◦ τ = idK , τ(xy) = τ(x)τ(y) ∀x , y ∈ Fp

can identify elements a ∈ Zp uniquely through coordinates
a = τ(a0) + τ(a1)p + τ(a2)p

2 + · · ·
Witt vector (τ(a0), τ(a1), τ(a2), . . .)

these Teichmüller representatives are not {0, 1, . . . , p − 1} but
roots of xp − x = 0

Witt formula expresses sum of these representatives as

τ(x) + τ(y) = τ̃(
∑
α∈Ip

wp(α,T )xαy1−α)

Ip = {α ∈ Q ∩ [0, 1] | pnα ∈ Z for some n}
and τ̃ : Fp[[T ]] → Zp unique map with τ̃(xT n) = τ(x)pn and
wp(α,T ) ∈ Fp[[T ]]
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the Witt formula has general form

x ⊕w y =
∑
s∈Ip

wp(s)x
sy1−s

with coefficients

wp(s) =
∑

a/pn=s

w(pn, a)T n

with w(pn, k) ∈ Z/pZ, for 0 < k < pn, determined by
addition formula

τ(x)+ τ(y) = τ(x+y)+
∞∑
n=1

τ
(∑

w(pn, k)xk/p
n
y1−k/pn

)
pn

as first observed by Connes-Consani the Shannon entropy
semiring deformation gives an analog in characteristic one
semirings
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Entropy and thermodynamics in positive characteristics

the universal sequence of the w(pn, k) can be seen as the
characteristic p analog of the Shannon information

non-extensive Tsallis entropy case also has a characteristic p
analog in the form of q-deformations of the Witt ring

see for instance:

Y.T. Oh, q-Deformations of Witt–Burnside rings, Math. Z.
257 (2007), N.1, 151–191.
M. Marcolli, Z. Ren, q-deformations of statistical mechanical
systems and motives over finite fields, p-Adic Numbers
Ultrametric Anal. Appl. 9 (2017), no. 3, 204–227
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from classical to quantum: operadic structures

from N. Combe, Yu.I. Manin, M. Marcolli, Quantum operads,
in “Dialogues between physics and mathematics–C. N. Yang
at 100”, pp. 113–145, Springer, 2022.

is there a way to extend the operad P of finite probabilities to
quantum states?

are there interesting algebras over operads in the quantum
setting?

what is the role of quantum information measures like von
Neumann entropy?
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density matrices and classical probabilities
given a density matrix ρ two natural classical probabilities
associated to it:

1 P = P(ρ) given by pi = ρii diagonal elements
2 Λ = Λ(ρ) eigenvalues λi of ρ (up to a choice of ordering: sort

in non-increasing order)

properties:

Schur lemma: sequence Λ of eigenvalues of hermitian matrix
majorizes sequence P of diagonal entries, both sorted
non-increasingly

bistochastic matrix: since Λ(ρ) ≻ P(ρ) there is a bistochastic
matrix B such that P = BΛ

Shannon entropy non-decreasing S(BP) ≥ S(P)

Kullback–Leibler under bistochastic matrices
KL(BP|BQ) ≤ K (P||Q)

uniform distribution Q(N) = (1/N)Ni=1 is a fixed point,
BQ(N) = Q(N)

Shannon entropy KL(P|Q(N)) = logN − S(P)
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QP -operad of quantum states

QP(n) = M(n) convex set of density matrices

composition laws

γP : Q(n)×Q(k1)× · · · × Q(kn) → Q(k1 + · · ·+ kn)

γP(ρ; ρ1, . . . , ρn) = γ(P(ρ); ρ1, . . . , ρn) =


p1ρ1

p2ρ2
... · · ·

...
pnρn


it is a non-unital, symmetric operad

it restricts to unital operad P of classical probabilities on
∆n ⊂ M(n)
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associativity of composition in QP

associativity condition is given by the identities

γ(γ(ρ(m); ρ(n1), . . . , ρ(nm)); ρ(r1,1), . . . , ρ(r1,n1 ), . . . , ρ(rm,1), . . . , ρ(rm,nm )) =

γ(ρ(m); γ(ρ(n1); ρ(r1,1), . . . , ρ(r1,n1 )), . . . , γ(ρ(nm); ρ(rm,1), . . . , ρ(rm,nm )))

for ρ(m) ∈ Q(m), ρ(ni ) ∈ Q(ni ), i = 1, . . . ,m, and
ρ(ri,ℓi ) ∈ Q(ri ,ℓi ) with ℓi = 1, . . . , ni
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left-hand-side is

γ




ρ
(m)
11 ρn1

ρ
(m)
22 ρn2

.

.

. · · ·
.
.
.

ρ
(m)
mmρnm

 ; ρ
(r1,1), . . . , ρ

(r1,n1
)
, . . . , ρ

(rm,1), . . . , ρ
(rm,nm )

 =



ρ
(m)
11 ρ

n1
11ρ

(r1,1)

. . .

ρ
(m)
11 ρ

n1
n1n1

ρ
(r1,n1

)

. . .

ρ
(m)
mmρ

n1
11ρ

(rm,1)

. . .

ρ
(m)
mmρ

n1
nmnmρ(rm,nm )


which agrees with the right-hand-side

γ

ρ(m);


ρn111ρ

(r1,1)

. . .

ρn1n1n1ρ
(r1,n1 )

 , . . . ,


ρnm11 ρ

(rm,1)

. . .

ρnmnmnmρ
(rm,nm )



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action of symmetric groups and equivariance

permutations σi ∈ Σni and σ ∈ Σm

symmetric operad:
1 first condition

γP(σ(ρ); ρσ−1(1), . . . , ρσ−1(m)) = σ̃(γP(ρ; ρ1, . . . , ρm))

where σ̃ ∈ Σn1+···+nm permutation that splits into blocks of ni
indices and permutes blocks by σ

2 second condition

γP(ρ;σ1(ρ1), . . . , σm(ρm)) = σ̂(γP(ρ; ρ1, . . . , ρm))

with σ̂ ∈ Σn1+···+nm permutation that acts on the i-th block of
ni indices as σi
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action of symmetric group Σn on M(n) by σ(ρ) = σρσ∗

on diagonal matrices permutation of entries: agrees with Σn

action on P(n)

induced action on Λ and P

Λ(σρσ∗) = Λ(ρ) and P(σρσ∗) = σ∗P(ρ)

because σρσ∗ and ρ same set of eigenvalues and both listed
non-increasingly; for P have pi = ρii = Tr(πiρ) with 1-dim
projection πi and Tr(πiσρσ

∗) = Tr(σ∗πiσρ) = Tr(πσ−1(i)ρ)

so compatibility of operad QP with symmetric group action as

γP(σ(ρ); ρσ−1(1), . . . , ρσ−1(m)) = γP(σ
−1P(ρ); ρσ−1(1), . . . , ρσ−1(m))

is the same as σ̃γP(ρ; ρ1, . . . , ρm))σ̃
∗ in M(n1+···+nm) and

similar for second condition
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non-unital operad

unit axiom is satisfied for ρ = 1 ∈ Q(1) with γP(1; ρ) = ρ

it fails for ρi = 1 ∈ Q(1), where the composition gives instead
γP(ρ; 1, . . . , 1) = P(ρ)

unit axiom is restored when restricting to ∆n ⊂ M(n) classical
probabilities where QP agrees with unital operad P
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QΛ-operad of quantum states

can do a similar construction of an operad with same
QΛ(n) = M(n)

with composition given by

γΛ(ρ; ρ1, . . . , ρn) = γ(Λ(ρ); ρ1, . . . , ρn) =


λ1ρ1

λ2ρ2
... · · ·

...
λnρn


with λi the eigenvalues of ρ listed in non-increasing order
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the associativity condition for compositions holds as before
because

Spec


λ1ρ

n1

λ2ρ
n2

... · · ·
...

λmρ
nm

 =
⋃
i

λi Spec(ρ
ni )

the unit axiom fails as before: γΛ(1; ρ) = ρ holds but
γΛ(ρ; 1, . . . , 1) = Λ(ρ) ̸= ρ

the need to choose an ordering (non-increasing) of eigenvalues
breaks the Σn-equivariance as Λ(σρσ∗) = Λ(ρ) so symmetric
condition no longer satisfied

QΛ is a non-unital non-symmetric operad

when restricted to ∆n ⊂ M(n) the operad QΛ only agrees
with P up to permutations
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different versions of non-unital operads

for unital operads O can describe operad through
compositions

γ : O(n)⊗O(k1)⊗ · · · ⊗ O(kn) → O(k1 + · · ·+ kn)

can also descibe O through insertion operations

◦i : O(n)⊗O(m) → O(n +m − 1)

with constraints: for 1 ≤ j ≤ a and b, c ≥ 0, with X ∈ O(a),
Y ∈ O(b), and Z ∈ O(c)

(X ◦jY )◦i Z =


(X ◦i Z ) ◦j+c−1 Y 1 ≤ i < j
X ◦j (Y ◦i−j+1 Z ) j ≤ i < b + j
(X ◦i−b+1 Z ) ◦j Y j + b ≤ i ≤ a+ b − 1

then composition laws γ with associativity obtained by

γ(X ,Y1, . . . ,Yn) = (· · · (X ◦n Yn) ◦n−1 Yn−1) · · · ◦1 Y1)
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for non-unital operads these two descriptions no longer the
same

if described through the ◦i then also obtained via the γ
operations

but not always through that if described by the compositions
γ these can be obtained from insertions ◦i
see M. Markl, Operads and PROPs, Handbook of algebra.
Vol. 5, 87–140, Elsevier/North-Holland, 2008
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the operads QP and QΛ are also in the more restrictive class
of non-unital operads

the compositions γ are induced by insertions ◦i
for ρ ∈ M(n) and ρ′ ∈ M(m) the insertion ρ ◦i ρ′ in M(n+m−1)

is obtained by removing the i-th row and column of ρ and
replacing them m rows and m columns, respectively, with

all the entries outside of the m ×m-block around the diagonal
are zero
the m ×m-block around the diagonal is piρ

′

then (· · · (ρ ◦n ρn) · · · ◦1 ρ1) produce exactly the matrix
p1ρ1

p2ρ2
... · · ·

...
pnρn

 = γP(ρ; ρ1, . . . , ρn)

same thing for QΛ but with the m ×m-block around the
diagonal given λiρ

′
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range of the operad maps

image of insertion map ◦i : QP(n)×QP(m) → Q(n +m − 1)
consists of all density matrices ρ ∈ M(n+m−1) that are block
diagonal with one (n−1)× (n−1)-block and one m×m block

all block diagonal density matrices are in the image of some
composition of insertion maps

these are all the quantum states that decompose nontrivially
into disjoint states with orthogonal ranges

a block diagonal density matrix can be realized in several
different ways through compositions of insertion maps

Matilde Marcolli Information Algebras



projective quantum measurements

fixed fin dim Hilbert space H (choice of on basis)

operators on density matrices are described by quantum
channels

special case: projective quantum measurement Π = {Πi}ni=1

projectors Π∗
i = Πi = Π2

i mutually orthogonal, ΠiΠj = δijΠi

and
∑

i Πi = 1

outcome of projective measurement Π on a quantum state
ρ ∈ M(N)

ρi =
ΠiρΠi

Tr(Πiρ)
with probability pi = Tr(Πiρ)

quantum channel Π maps

ρ 7→ Π(ρ) =
∑
i

piρi
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range in M(N) of a composition of insertion maps specified by
assigning N = k1 + · · ·+ kn and Mk1,...,kn ⊂ M(N)

block-diagonal density matrices with n blocks of size ki

projective measurement Π = {Πi}ni=1, where Πi is the
orthogonal projection onto the span of the i-th subset of ki
basis elements

quantum channel then maps Π : M(N) → Mk1,...,kn , assigning
to ρ the block-diagonal density matrix Π(ρ) =

∑
i piρi

different realizations as composition of insertion maps ⇔
different realizations of this quantum channel through rooted
trees
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τ planar rooted tree with n leaves decorated by integers
ki ≥ 1, oriented from leaves to root

at root vertex v0 identity projector Π(v0) = 1

v any vertex with set of incoming edges e at v , orthogonal
projectors {Π(s(e))}t(e)=v with

∑
e:t(e)=v Π

(s(e)) = Π(v)

Πi projectors at the leaves

for t(e) = v

ρ(s(e)) =
Π(s(e))ρ(v)Π(s(e))

Tr(Π(s(e))ρ(v))
,

with ρ(v0) = ρ
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quantum measurement Πτ with outcomes ρτi with
probabilities pτi

pτi =
∏
w

Tr(Π
(w)
iw

ρ(w))

product over the vertices on directed path from i-th leaf to
root along with iw idirection

ρτi obtained by repeatedly computing ρ(s(e)) from ρ(t(e)) along
the path from i-th leaf to root
all the quantum channels Πτ are the same quantum channel
Π : M(N) → Mk1,...,kn∏
w

Tr(Π
(w)
iw

ρ(w)) =
∏
ℓ

Tr(Π(wℓ)Π(wℓ−1) · · ·Π(w0)ρ)

Tr(Π(wℓ−1) · · ·Π(w0)ρ)
=
∏
ℓ

Tr(Π(wℓ)ρ)

Tr(Π(wℓ−1)ρ)
= Tr(Πiρ)

Πi projection at leaf

Π
(s(e))
j Π

(t(e))
e = Π

(s(e))
j

as Π
(s(e))
j projection onto a subspace of the range of Π

(t(e))
e
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quantum entropy functionals

family of quantum entropy functionals

Sn : M(n) → R

consistency condition: Sn restricts to Sk , k < n, over
M(k) ⊂ M(n) (n − k vanishing eigenvalues)

Examples of consistent quantum entropy functionals:
1 von Neumann entropy

N (ρ) = −Tr(ρ log ρ)

2 quantum Rényi entropy (q ∈ R∗
+, q ̸= 1)

Ryq(ρ) =
1

1− q
logTr(ρq)

3 quantum Tsallis entropy (q ∈ R∗
+, q ̸= 1)

Tsq(ρ) =
1

1− q
(Tr(ρq)− 1)
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Tree quantum entropy functionals

tree τ with n leaves decorated by integers ki ≥ 1,
N = k1 + · · ·+ kn together with coherent family {Sn} of
quantum entropies, determines entropy functional

Sτ : M(N) → R

if τ corolla with root vertex and n leaves

Sτ (ρ) := S(P) +
∑
i

piS(ρi )

with pi = Tr(Πiρ) and ρi =
ΠiρΠi
Tr(Πiρ)

for von Neumann entropy by extensivity same as
N (Πτ (ρ)) = N (

∑
i piρi )

Inductively assume Sτ constructed for all trees with less than
n leaves

subtrees τj , j = 1, . . . ,m, attached at root v0, set Lj of leaves,
#Lj < n
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in quantum channel Πτ have Πj orthogonal projections with∑
j Πj = 1 along incoming edges ej at root

probabilities pj = Tr(Πjρ) and density matrices ρj =
ΠjρΠj

Tr(Πjρ)

at root vertices vj of subtrees τj

define
Sτ (ρ) := S(P) +

∑
j

pjSτj (ρj)

S(P) Shannon entropy of classical probability P = (pj) and
Sτj inductive entropy functionals of subtrees τj

these completely specify Sτ

for von Neumann by extensivity get
N (
∑

i piρi ) = S(P) +
∑

i piN (ρi ) but not for other
non-extensive entropies
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Quantum channels

quantum channel Φ : M(N) → M(N) trace preserving
completely positive map

in Kraus form
Φ(ρ) =

∑
i

AiρA
∗
i

{Ai} operators with
∑

i A
∗
i Ai = 1 (but the A∗

i Ai not
necessarily projections)

τ planar rooted tree with n leaves, oriented from leaves to root

tree quantum channel C τ
A assignment of operators

A = {Ae}e∈E(τ) edges of τ with at each vertex v condition∑
e : t(e)=v

A∗
eAe = 1
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channel C τ
A acts on density matrices ρ ∈ M(N) by

C τ
A(ρ) =

n∑
i=1

AγiρA
∗
γi

with Aγi = Aei,1 · · ·Aei,mi
along oriented path γiei ,1, . . . , ei ,mi

from i-th leaf to root

it is quantum channel

n∑
i=1

A∗
ei,mi

· · ·A∗
ei,1

Aei,1 · · ·Aei,mi
= 1

as have inductively
∑

e : t(e)=v A
∗
eAe = 1 for paths of length

one and reduce length by grouping sum by adjacent vertices∑
v

∑
i : t(ei )=v

A∗
γvA

∗
ei,1

Aei,1Aγv =
∑
v

A∗
γvAγv
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A∞-operad QC of tree quantum channels

QC(n) = spanZ{C τ
A | τ ∈ T (n)} with T (n) planar rooted trees

operad composition laws

γQC : QC(n)⊗QC(k1)⊗ · · · ⊗ QC(kn) → QC(k1 + · · ·+ kn)

γQC(C
τ
A;C

τ1
A1
, . . . ,C τn

An
) = C

γT (τ ;τ1,...,τn)
A∪{A1,...,An}

with additional signs as in T
DG-structure (ϵ signs as in T )

dC τ
A =

∑
τ ′ : τ=τ ′/e

ϵC τ ′
A′

A′ on τ ′ agrees with A on τ = τ ′/e for all edges non-adjacent
to e, need to define A′ on edges adjacent to e so that
conditions at vertices still hold
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Et set of edges of τ with target t(e) in τ ′ and Es the set of
edges in τ with target s(e) in τ ′

all same target vertex in τ so
∑

e′∈Et∪Es
A∗
e′Ae′ = 1

operators Bt :=
∑

e′∈Et
A∗
eAe and Bs :=

∑
e′∈Es

A∗
eAe

operators 1
Ns
Bt and A∗

e′Ae′ +
1
Ns
Bt for e

′ ∈ Es

all these are positive, ⟨Bv , v⟩ ≥ 0 for all v ∈ H
so there are operators A and Ãe′ with Bs = A∗A and
A∗
e′Ae′ +

1
Ns
Bt = Ã∗

e′Ãe′

take A′ to be A′
e := A and A′

e′ := Ãe′ for e
′ ∈ Es and

A′
e′ = Ae′ for e

′ ∈ Et

∑
e′ : t(e′)=s(e)

A′
e′

∗
A′
e′ =

∑
e′∈Es

(A∗
e′Ae′ +

1

Ns
Bt) =

∑
e′∈Es

A∗
e′Ae′ +

∑
e′∈Et

A∗
e′Ae′ = 1

∑
e′ : t(e′)=t(e)

A′
e′

∗
A′
e′ = A′

e
∗
A′
e +

∑
e′∈Et

A∗
e′Ae′ =

∑
e′∈Es

A∗
e′Ae′ +

∑
e′∈Et

A∗
e′Ae′ = 1
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QC+-operad

taking Z-linear combinations of quantum channels allows for
DG-structure but loses positivity

if use convex combinations instead get operad but without
differential

QC+(n) = convex span{C τ
A | τ ∈ T (n)}

compositions same as γQC (no signs)

M(N) algebra over the operad QC+

operations α : QC+(n)⊗M(N)⊗n → M(N)

α(C τ
A; ρ1, . . . , ρn) =

n∑
i=1

pi ρ̃i

ρ̃i =
AγiρiA

∗
γi

Tr(A∗
γi
Aγiρi )

and pi = Tr(A∗
γi
Aγi ),

Aγi = Aei,1 · · ·Aei,mi
, along path γi = ei ,1, . . . , ei ,mi

from i-th
leaf to root
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