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Banach Gelfand Triples for Applications
in Physics and Engineering

Hans G. Feichtinger

Faculty of Mathematics, NuHHAG, University Vienna, AUSTRIA

Abstract.

The principle of extension is widespread within mathematics. Starting from simple objects one
constructs more sophisticated ones, with a kind of natural embedding from the set of old objects to
the new, enlarged set. Usually a set of operations on the old set can still be carried out, but maybe
also some new ones. Done properly one obtains more completed objects of a similar kind, with
additional useful properties. Let us give a simple example: While multiplication and addition can
be done exactly and perfectly in the setting of @, the rational numbers, the field R of real numbers
has the advantage of being complete (Cauchy sequences have a limit ...) and hence allowing for
numbers like 7 or +/2. Finally the even “more complicated” field C of complex numbers allows to
find solutions to equations like z> = —1. The chain of inclusions of fields, @ € R < C is a good
motivating example in the domain of “numbers”.

The main subject of the present survey-type article is a new theory of Banach Gelfand triples
(BGTs), providing a similar setting in the context of (generalized) functions. Test functions are
the simple objects, elements of the Hilbert space L>(R?) are well suited in order to describe
concepts of orthogonality, and they can be approximated to any given precision (in the || - ||2-norm)
by test functions. Finally one needs an even larger (Banach) space of generalized functions resp.
distributions, containing among others pure frequencies and Dirac measures in order to describe
various mappings between such Banach Gelfand triples in terms of the most important “elementary
building blocks”, in a clear analogy to the finite/discrete setting (where Dirac measures correspond
to unit vectors).

Our concrete Banach Gelfand triple is based on the Segal algebra So(IR?), which coincides with
the modulation space M (R?) = M(l)’l(Rd ), and plays a very important and natural role for time-
frequency analysis. We will point out that it provides the appropriate setting for a description of
many problems in engineering or physics, including the classical Fourier transform or the Kohn-
Nirenberg or Weyl calculus for pseudo-differential operators. Particular emphasis will be given to
the concept of w*-convergence and w*-continuity of operators which allows to prove conceptual
uniqueness results, and to give a correct interpretation to certain formal expressions coming up in
various versions of the Dirac formalism.

Keywords: Keywords: Banach Gelfand triples, Fourier transform, Kohn-Nirenberg Symbol,
w*-convergence, spectrogram

PACS: 02.30.Sa Functional analysis, 02.30.Tb Operator theory, 02.30.Nw Fourier analysis,
02.30.Jr Partial differential equations, 03.65.Ca QM Formalism

CP1146, Modelling of Engineering and Technological Problems, edited by A. H. Siddiqi, A. K. Gupta, and M. Brokate
© 2009 American Institute of Physics 978-0-7354-0683-4/09/$25.00

189

8L:€¥:91 ¥Z0Z Ateniged zz



MOTIVATION AND INTRODUCTION

Although Gelfand triples such as (7,1%,.7") resp. so-called rigged Hilbert spaces
(Hilbert spaces endowed with an extra structure of surrounding spaces) have a certain
tradition, mostly within theoretical physics, not much systematic mathematical investi-
gation of this concept has been made. It is the purpose of the present paper to bring the
advantages of the concept of Banach Gelfand triples to the attention of a wider commu-
nity, to exhibit a concrete, simple and versatile example, coming from time-frequency
analysis, and to show how natural it is. The concrete content of these notes is only indica-
tive for the potential, both for the strict derivation of vague but somehow valid claims,
but also for teaching purposes, in a context where not the full power of Lebesgue inte-
gration or the theory of nuclear topological vector spaces is available. In fact, we even
believe that some of the involved mathematical concepts can be replaced by more natural
and hence more simple ones.

We address physicists and engineers and mathematicians interested in applications
or who have to teach students from the above community. While the applied scientists
are often using symbolic expressions and derive in this ways valid identities the more
strict mathematical view-point requires to have solid mathematical definitions, clear
rules and valid logical concatenations of arguments, step by step. By suggesting the
concept of Banach Gelfand triples (BGTs), which somehow extend the idea of rigged
Hilbert spaces, we hope to offer a quite natural but very powerful tool, which allows
to validate some of these heuristic ideas. One of the specific points emphasized is
the relevance of w*-convergence of sequences of generalized functions and w* — w*-
continuity of operators. Intuitively this can be explained to an audio engineer as follows:
A sequence o, of distributions converges to oy in the w*-sense if (and only if) the
spectrum (the short-time Fourier transform) of o, with respect to any reasonable (say
(Gaussian) window is going to look more and more like the spectrum of &y over larger
and larger parts of the time-frequency plane.

Let us mention that this is a written realization of explanations and statements given
at various occasions in talks on this subject during the last four years'. The material will
be covered in much more detail in a forth-coming book publication by the author (jointly
with G. Zimmermann, for Birkhduser’s NAHA series).

We also view this as a part of a series of publications, showing how to get from
basic linear algebra concepts to time-frequency analysis, in particular to Gabor analysis
([65], the discretized and computationally relevant version of time-frequency analysis).
It starts with the “Guided Tour from Linear Algebra to the Foundations of Gabor
Analysis” ([56]), where the basic algebraic principles are explained using the standard
concepts of linear independence and generating systems of vectors. It uses linear algebra
terminology, and works in the setting of finite dimensional vector spaces (cf. e.g. [108]).
In fact, finite vectors are understood as functions on the cyclic group Zy of unit roots
of order N, and the properties of involved matrices (e.g. PINV-matrices) show how to

1 Most of them are downloadable from NuHAG Talk server
http://www.univie.ac.at/nuhag-php/program/talks.php
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obtain implementations in an efficient way~. The algebraic theory is then pursued in [54]
in the setting of general finite Abelian groups. Based on this the papers [55, 24] provide
a refined view on the tools needed to handle the continuous case. Basic facts had been
already presented in [53, 61] and above all in the book “Foundations of Time-Frequency
Analysis” by K. Grochenig ([69]).

Linear Algebra and Matrix Analysis

Coming from linear algebra we have learned to focus on bases, i.¢. coordinate systems
which allow to express any vector in a unique way as a finite linear combination of the
elements of a basis. In matrix terminology this boils down to concentrate on invertible
matrices A, which have the pleasant property of allowing for every right hand side b a
unique solution x of the linear equation expressed® as A * x = b, or equivalently write
b as a linear combination of column vectors of A. Solving for x is then possible in
various ways, €.g. using Gauss elimination, but in MATLAB™ one could simply use
the command x = inv(A) * b. If one makes use of a scalar product on R? or C? one
finds that some bases are much more convenient than others, because they allow for
an effortless calculation of the coefficients of a vector, by calculating scalar products.
Let (ux)¢_, in C? be such an orthonormal basis, then we can form a matrix U, with
these vectors as column vectors. The fact that x = Z,‘le (x,uguy, for all x € C? is then
equivalent to the fact that * U x U’ = Id, the unit mairix of size n X n, or equivalently:

d
Id = Z Pk7 where Pk = U * u;C. (1)
k=1

Since for the case of square matrices any right inverse matrix is also a left inverse matrix
this good property is indeed equivalent to U’ * U = Id. This is compactly expressing
the fact that the columns of U (and hence in fact also the rows) form an orthonormal
set, or in terms of the individual elements of the Gramian matrix G = U’ % U and using
Kronecker’s §-symbol:

(uk7uj> = 5]{7]'. (2)

Much of this spirit of doing linear algebra, i.e. to work in the setting of finite dimen-
sional vector spaces, using bases to expand vectors, or matrices in order to describe
linear mappings, is simulated in the bra-ket formalism going back to Paul Dirac. This
allows for continuous integrals instead of (finite or infinite) sums, keeping in mind the
dual use of vectors, either as building blocks for synthesis (as with matrix multiplication
A — A xx, building linear combinations of the column vectors of A) or analysis, taking
scalar products with the same set of vectors, by forming y — A’ y. Unfortunately this
freedom makes things occasionally quite vague, due to a couple of new problems:

2 E.g. within the MATLABTM software.
3 Here  denotes matrix multiplication, following the convention used by MATLAB.
4 We use the MATLAB convention of writing U’ for the transpose, conjugate matrix of U.
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1. vectors and operators are expanded as a continuous superposition (in terms of
mtegrals) of certain building blocks instead of a series or sum,;

. the meaning of these integrals is not obvious (Riemann, Lebesgue);

. the building blocks may not belong to the Hilbert space anymore;

. hence scalar products between two such elements are not meaningful a priori;
. one may even have problems with the domain of the rank-one operators;

. as in the finite-dimensional case, one may have orthonormality without complete-
ness (and vice versa); however, in the infinite dimensional setting one cannot argue
with dimensions.

AN W N

Frames and Riesz Bases in Hilbert Spaces

Let us therefore describe an intermediate step, where we have collections of vectors
in a Hilbert space .7, for which the synthesis and/or the analysis mapping make sense,
as bounded linear mappings between 27 and (> = Ez(l ) for some (countable) index
sequence 1. We will see concrete examples (Gabor families) in a moment.

Definition 1. A family (g;);c; in a Hilbert space 57 is called a Bessel family if the
analysis mapping C : f +— ((f,g:))ics is bounded from .# into ¢2(I), i.e. if and only if
there exists some positive constant B > ) such that

ICAR g, — LI 8P <BIfI, forall f e 7. 3
iel

By adjointness this is the case if and only if the corresponding synthesis mapping
R:c=(¢)ier — Yep ¢igi s bounded. Using standard terminology known from O. Chris-
tensen’s book ([19]) one defines:

Definition 2. A family (g;):c; in a Hilbert space 57 is called a frame if there exist
constants A, B > 0 such that for all f € 57

AP < YN8 < BIFIP @
icl

Definition 3. A family (g;);e; in 57 is called a Riesz (basic) sequence if ¥ ;-7 c;g; has a
Hilbert space norm equivalent to the #%-norm of the sequence (¢;)ier, i-e. if there exist
constants C, D > 0 such that

C-llellZ < 1Y cigillZ < Dl forallce ¢, (5)
el

If (gi)icr is a frame respectively Riesz sequence then the analysis mapping C re-
spectively synthesis mapping R establishes an isomorphism between its domain Hilbert
space and its closed(!) range within its target Hilbert space.

One easily shows that a family (g;);cy in a Hilbert space 57 is a frame if and only if the
so-called frame operator S := R o C is bounded and invertible, with bounded mnverse.
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Analogous results apply for Riesz basic sequences, with C o R instead of R o C. Note
that the fact that the composition R o C (in the case of a frame) or C o R (for a Riesz
basic sequence) is invertible does not imply that C or R is invertible. However, if this
is indeed the case we have: A family (g;):cr is called a Riesz basis for ¢ if it is both a
frame and a Riesz sequence. In that case of course both C and R establish isomorphisms
between % and (2(I).

It 1s not surprising that many of the concepts known from linear algebra extend first
in a very natural way to (separable) Hilbert spaces .## such as LZ(Rd). Instead of finite
sequences of vectors (resp. functionals) one deals with infinite sequences and makes
corresponding boundedness assumptions, which allow to establish a rather complete
analogy to the four spaces concept proposed by G. Strang ([108]): The closed range of
an operator and its adjoint together with the corresponding null-spaces can be used to
have a full geometric understanding of the situation.

For the case of a frame, the situation is best described by the following diagram, where
C is the analysis mapping f — ({f,g:)), the operator R is defined as R := S~ IoR, and
P :— CoR is the orthogonal projection from Ez( ) onto the range of C.

(1)
R P
AR ()

Hence Ro C=1d L, 1.e. R is a left-inverse to C, the so called Moore-Penrose inverse
to C (realized as PINV in MATL.AB). Explicitly one finds for f € 57

f = Idwf=RoC)f=(S"1oRoC)f (6)
ST (Y (fgive) = Y (f808 g (7
el el

This motivates the definition of the so-called dual frame (§;);c; by &; == S~ 'g;. Using
the dual frame one can reconstruct any f € 57 from its coefficients Cf = ({f,g:)) as

F=Y.(fe0gi, (8)

icl

i.e. R is just the synthesis operator with respect to the dual frame (g;);c;s.

For details concerning frames resp. Riesz basic sequences we refer to O. Christensen’s
book ([19]) or [77]. The definition of a frame can be generalized to also cover continuous
frames, e.g. coherent frames obtained by the action of a continuous group on some
reference vector. Instead of a discrete (typically countable) index set a measure space Q
is used, the mapping C is now an injective mapping into LZ(Q) with closed range, and
hence the same kind of diagram is still valid. This concept has made early appearence
in the work of G. Kaiser ([86, 85]), and S.T. Ali, J.P. Antoine and I.P. Gazeau ([3,
4]). There are more recent papers on this subject by J.P. Gabardo and D. Han [064]
or M. Fornasier and H. Rauhut in [63], discussing the transition from a (redudant)

193

8L:€¥:91 ¥Z0Z Ateniged zz



continuous to a (typically still redundant) discrete frame. Their work has been certainly
inspired by the papers on coorbit theory by Feichtinger/Grochenig ([48, 49]), which are
also the basis for the first appearance of Banach frames in [67]. In this setting (the so-
called coorbit spaces) concrete continuous frames appear in the context of irreducible,
square-integrable group representations. Further generalizations of coorbit theory and
continuous frames are treated in the work of S. Dahlke and his coauthors, [31, 30, 29].

Going beyond Frame Theory, towards Dirac

The Fourier transform is an important tool for both physics and engineering, making
use of the “pure frequencies”. What makes them so important is the fact that they are
eigenvectors for the translation operators. Mathematicians like to consider the functions
xs(t) = e27i5 ag characters of the group RY, viewed as a LCA (= locally compact
Abelian) group, with respect to addition of vectors. The exponential law implies that
2s(x+y) = xs(x) - x5(y), x,y € RY. Since we have the pointwise relation ;- x5 = Xrvs
we find that the dual group, or frequency domain 1s just

RY = {x,|s € RY}. ©)

Spectral synthesis and spectral analysis (or Fourier analysis, or harmonic analysis in
more general terms, see [102, 11]) address the question whether one can compose any
signal, function, distribution f from this (continuous) family of “elementary building
blocks” by superposition (since we have a continuous parameter it is natural to think of
an integral representation), and on the other hand, wether and how one can identify the
required coefficients (amplitudes/spectral components) from the signal f.

As in linear algebra, one has to settle the problem whether every function, or more
precisely, every element from a given (topological) vector space can be represented, and
secondly whether the representation is unique. As we will see, the setting of BGTs will
also allow to differentiate and decide which one of the objects (of different complexity)
can be composed or decomposed in which concrete way, e.g. through integral represen-
tation, in the weak sense in the case of the Hilbert space /7 = L2(R?) or in the w*-sense
within the dual space S (R?).

Although it would be more natural from the linear algebra view-point described above
to start with the synthesis problem, we find it more natural (in the Fourier context) to
start with the analysis part. After all, according to our philosophy the two operations are
mutually adjoint to each other.

Following the usual path the Fourier transform .Z is defined on L!'(R¢), the Banach
space of all absolutely Lebesgue-integrable functions (modulo null-functions) as an
integral transform as follows:

(FH)=76) = [0z = {1, (10)

We will see later that it suffices to know it on some smaller spaces (such as the Schwartz
space .7 (R?) or Sy(R?), where it is enough to use the ordinary Riemannian integral).
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Together with .% we have to consider the adjoint mapping, i.e. Fourier synthesis,
which in analogy to the situation in matrix analysis is given, at least for nice functions
h, by

T — /Rdh(s)xsds. (11)

This integral can be understood in the following sense: Each y; is a bounded and
continuous function with |y(t)| = 1 for ¢,s € R?, hence we have a pointwise well-
defined function (.#*h)(z) if h is Riemann-integrable.

Although it is well known how to extend® to a unitary automorphism of
(L2(R9), || ||2), thanks to the fundamental identity of the Fourier transform

a0 = [ Fsis)as 12

it is clear that one has to expect a lot of trouble with the domains of .% and .%*, because
the different domains do not fit (a typical element f € .FL! (]Rd) may not be integrable
itself, e.g. if f has discontinuities) and because the elementary building blocks, the pure
frequencies () cp4» do not belong to the Hilbert space L2(R?). On the other hand it is
tempting to describe this continuous family (as Dirac did in some sense) as a “continuous
coordinate system”, satisfying a kind of (distributional) orthogonality relation as well as
a decomposition of the identity operator as a continuous integral of rank-one operators
comparable to the pair (2) and (1). We will provide arguments towards a meaningful
interpretation of such claims in the context of Banach Gelfand triples.

THE BANACH GELFAND TRIPLE (S, L2, 57)

The above observation already calls for a unified treatment of the Fourier transform in
the finite as well as in the Euclidean setting, or even (according to A. Weil) in the setting
of LCA (locally compact Abelian) groups, including the field of p-adic numbers (see
[116, 83, 102]). It is also clear that one cannot - despite its importance - stay within the
Hilbert space 12(R?) anymore. We will try to convince the reader that the concept of
BGTs (= Banach Gelfand triples) is a good way out of this problem.

Banach Gelfand Triples and their Morphisms

Recall the famous formula ¢2™ = 1. It would not have made sense to a Greek mathe-
matician, even if he had perfect knowledge of the field @ of rationals. One has to be able
to create irrational numbers such as 7 beforehand, and one also has to be able to extend
addition and multiplication to the larger domain of complex numbers. Finally one has
to have a canonical way to give a meaning to the power series expression (adding up

5 By arguments quite similar to those used in the extension of multiplication of rational numbers to the
domain R.
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infinitely many of those numbers) to reach the perfect calculus of exponential functions
in the complex domain. We will follow a similar path, with the Hilbert space .7 (typ-
ically I2(R4)) playing the role of R? and the generalized functions being the analogue
of the complex numbers. Before going to the concrete BGT (S07L27So’ ) let us introduce
the concept of Banach Gelfand triples in full generality (for the sake of simplicity we
restrict our discussions to the case of separable Banach spaces).

Definition 4. We call a triple of vector spaces (B, 5#,B') a Banach Gelfand triple if
(B, ||-1|8) is Banach space, which is dense in some Hilbert space .#, and which in turn
is contained in &', the dual of B.

There are many examples, and the basic fact is a natural embedding of the elements
of B (usually the space of test functions) into its dual space B', the space of generalized
functions or distributions®.

Although the idea of rigged Hilbert spaces ([103, 6, 35, 120, 36, 2, 7]) is very close to
our BGT concept there are two important differences First of all it is clear that we allow
for Banach spaces instead of a Hilbert spaces of dual Hilbert spaces “surrounding” the
central Hilbert space, nor any nuclear topological vector space, such as .7 (]Rd ). The
concrete example, starting from the space So(]Rd ) allows to obtain nevertheless a kernel
theorem. We are not aware of any kernel theorem for rigged Hilbert spaces other than
those using nuclear (hence not Banach or Hilbert) spaces. One can trace the validity of
the kernel theorem back to the tensor product factorization property (Lemma 4), which
in turn has to do with the “separation of variables” property in the Fourier algebra, which
has been historically one of the highlights of J.B. Fourier’s concept.

It has been expressed by several authors (cf. [36, 37, 66? ]) that rigged Hilbert
spaces (a triple of Hilbert spaces, forming a BGT in our sense) allows to describe valid
identities which cannot be formulated in the Hilbert space setting alone’” We take the
same view-point, but emphasize the close connection between the inner Banach space
and its dual by working with four topologies, i.e. by giving the (natural) w*-topology
on B’ a prominent role. Note that the dual space for S endowed with the w*-topology
(often denoted as the weak o(B’, B) topology) is just B itself, and hence one has a kind
of Riesz-representation theory for BGTs in the background. Furthermore it is helpful to
recall that bounded (closed) subsets in B’ are compact in this topology according to the
theorem of Banach-Alaoglou ([1060], section 3.15).

The prototype of a Banach Gelfand triple is (¢!,¢2,¢*)(Z), where the w*-topology
describes coordinate-wise convergence, i.e. views (* as subset of R” with the product
topology in the sense of Tychonoff.

In fact, one may view Banach Gelfand triples as a new category in the spirit of
MacLane ([96]), where the morphisms are the “structure preserving mappings”, i.c.

6 While smaller spaces of test functions give larger space of bounded linear functionals on them, one has

to keep in mind that B is not degenerating, because then this construction breaks down. So for our purpose
: P d

one may think of a situation where ”(R*) C B.

7 For example, point evaluations do not make sense on L2(R%) while they make perfect sense on a Sobolev

space, once the smoothness parameter satisfies s > d/2, according to Sobolev’s embedding theorem.
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linear mappings which are continuous with respect to each of the four (1) topologies.

Definition 5. If (B, 71, B} ) and (By,5%,B)) are Gelfand triples then a linear operator
T is called a [unitary] Gelfand triple isomorphism if

1. A 1s an isomorphism between By and B».
2. A is [a unitary operator resp.] an isomorphism between .57 and 573,

3. A extends to a weak™ isomorphism as well as a norm-to-norm continuous isomor-
phism between B} and BY.

In principle every ONB (= orthonormal basis) W = (;):er for a given Hilbert space
¢ can be used to establish such a unitary isomorphism, by choosing as B the space
of elements within .5# which have an absolutely convergent expansion, i.e. satisfy
Yicr|{x, wi)| < eo. Of course, this space, which deserves perhaps the symbol Ay, depends
on the choice of the orthonormal basis ¥, but of course one has many equivalent bases
describing the same space.

For the case of the perhaps most important ONB for 7 — L2([0,1]), i.e. for the
trigonometric system, the corresponding definition is already around since the times
of N. Wiener, who suggested to consider specifically A(T), the space of absolutely
continuous Fourier series, because it has very good and useful properties (compared
to the Lebesgue space (L'(T), ||-||1), where e.g. the Fourier inversion is a non-trivial
matter). It is also not surprising in retrospect to see that in the discussion the dual space
PM(T) = A(T)’ came up, the space of pseudo-measures. One can extend the Fourier
transform to this space, and in fact interpret this extended mapping, in conjunction with
the classical Plancherel theorem as the first unitary Banach Gelfand triple isomorphism,
between (A, L2, PM)(T) and (¢*,¢2,¢)(Z).

It is the main goal of this article to show how the use of the Banach algebra Sy(R) al-
lows to have a similar interpretation of the Fourier transform (and many other mappings
relevant for physics, engineering, or mathematical considerations in time-frequency
analysis), how to make use of the w*-concept and how to re-interpret the Dirac for-
malism in this context.

Having expounded the general theory of Banach Gelfand triples, we are now ready to
introduce the constituents of a particularly useful example, namely the Banach Gelfand
triple (So,L%,S8¢).

Modulation Spaces

The Banach space (So(R?),||-||s,) of test functions to be used in the following is a
particular instance of a class of function spaces studied in time-frequency analysis (TF-
analysis), called modulation spaces. In order to define these spaces we have to recall
some concepts from that field. The basic tools in TF-analysis are time- and frequency
shifts (TE-shift) given by T, f(¢) = f(t —x) and M, f(¢) = ¥ f(¢), for functions f

8 The Segal algebra $o(G), defined for general LCA (= locally compact Abelian) groups is in fact a
generalization of this construction, i.e. $(T) = A(T).
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on R?. They are combined to (unitary) time-frequency shift operators
(A) = 7(x,0) = MpT,, for A= (x,0) e R xR, (13)

Using these operators one defines (e.g. on L?(R?) or for continuous and absolutely
Riemann-integrable functions) the Short-Time Fourier Transform as a function on the
time-frequency plane ([69]) resp. phase space ([62]) in the following way:

Vof(A) = Ve f(x,0) = (f,MpTeg) = (f,m(A)g) for A = (x,0) e RT xR, (14)

Modulation spaces occur in the study of the concentration of a function in the time-

frequency plane, described in terms of function spaces over R? x R?. The classical ones
are defined as follows: Let g € .7 (R?) be a Schwartz function, 1 < p,q < o, s € R, then

MEI(RY) = {f €7 (R) : || fllyge < o}, (15)
where the norm || f|,2a on M9 (R?) is given as

1/q

||f||M‘§‘1 = (/ </|<f7Mw73cg>|pdx>q/p (1+ |a)|)sqda)> 7 (16)

i.e. for which V,f belongs to some weighted mixed-norm space over phase space.
In the “classical” case the weight depends only on frequency, hence the spaces are
isometrically translation invariant. The only important facts about the constraint imposed
on V, f is the membership in a solid® and translation invariant Banach space over R?,
We use the abbreviations MY := M5" and MP .= MJ".

The modulation space M’?’q(]Rd) is a Banach space of tempered distributions, the
definition 1s independent of the analyzing function g, and different g’s yield equivalent
norms on these spaces. The Gauss function is a good choice. Among the modulation
spaces are the following important function spaces:

(a) the space So(R?) we are after is just Mé’l (RY) = MY (RY);
(b) L(R?) = Mg*(R);
(c) the Bessel potential spaces %”S(Rd), defined via the Fourier transform by

AR = {fes": [I@)P(1+ 0] do <} (17)

coincide with the modulation spaces M %’Z(Rd )

(d) the Shubin classes Q;(R?), which can be characterized by a weighted L?(R%?)-
condition with respect to the radial symmetric weight over phase-space of the form
vs(A) = (1+4]A|%)*/? instead of the usual weight w, (@) := (1+|@)|)* resp. (14 |w|?)/2.

® In a solid space the norm behaves monotonically, ie. |F(x)| < |G(x)| for all x € R? implies that the
norm of F' is smaller than the norm of G.
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A lot of details on these spaces can be found in the book of Grochenig, and in the
survey note [40] (written in 1983 and published in 2003).

The original description of the modulation spaces was in terms of generalized Wiener
amalgams, on the Fourier transform side:

MYI(RY) = 7 W(FLP 6, ) (R,

or equivalently, Banach spaces of distributions obtained using BUPUs (bounded uniform
partitions of unity, such as a collection of shifted B-splines) (cf. [43, 78]).

The Banach space S (R¢) and its Various Descriptions

In the following we will establish the basic properties of the Banach space of test
functions on which our BGT-approach will be based'’. Sy(R¢) can be described in many
ways and many equivalent norms can be used to characterize this sPace. Originally (see
[42]) it was introduced as the Wiener amalgam space W(F FLY Y (see [43] for gen-
eralities of this concept), but the equivalence between dlscrete and continuous” norms
(using control functions) can be used to show that it coincides with the coorbit space
(as developed in full generality in [48]) or with the modulation space (M*(R?), || |l,,1)
(see the book [69] for a good introduction to the subject in the context of time-frequency
analysis). We will follow the description given there, going back to [45], published in
1989.

According to the description above we can define So(]Rd) — M'(R?) by means of the

STFT with respect to the Gaussian window go(z) — e~ . This choice has the advantage
that Fourier invariance of this space is easily Veriﬁed. It is also not difficult to check that
MY (RY) ¢ L' NCy(R?)M. The following is an alternative definition not making reference
to Lebesgue integrals (and thus suitable for applied courses):

Definition 6. So(R?) := {f € Cy(R?) : f absolutely Riemann-integrable over R?,
V. f absolutely Riemann-integrable over R x R?}, with the norm || f]|s, := || Vo £l -

An atomic characterization'? also used by H. Reiter (see [101]) is

Theorem 1. We call a function f € FL'(RY) an atom (on the time-side) if supp(f) C
B1(0) for some x € RY. Then Sy(R?) consists of all absolutely convergent sums of atoms,
i.e. f € S(RY) if and only it has a representation as

F=Y Tofur with Y || fullpr <o (18)

n>1 n>1

10 1 4s occasionally referred to as Feichtinger’s algebra in the literature, see [102].

1 We write (Cy(R4), || ||..) for the space of continuous, complex-valued functions, vanishing at infinity,
i.e. with lim ... f(x) = 0, endowed with the sup-norm || f{c0 := sup,cga [ £(x)].

12 This atomic characterization should be reminiscent of the atomic characterization of Hardy spaces,
given by Coifman and Weiss ([23]).
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Endowed with the natural norm, i.e.

/155 == inf{ZanHyLl(Rd) D =Y Tode Yl 2p ey < °°}- (19)

So(RY) is the smallest (non-trivial) Banach space (B, ||-||s) with the property
|2 flls = ||f]ls for all f € B,A € RExXRY, ie. it is continuously embedded into
any other space with this property'3. Moreover So(]Rd) is invariant under the Fourier
transform.

This is [41], Thm.1. See [94, 95] for further characterizations of So(]Rd ), and of
course the book [69]. It was the clue for many other interesting properties of Sy(R?),
which are nowadays proved using TF-arguments. Among others one has the following
characterization. Since gy = gy it sheds some light on the Fourier invariance of S(R?).
Due to the Fourier invariance one can also avoid the ZL! norm ||h|| 71 := || f]|;1 for
h= f by doing the decomposition into pieces of equal size on the Fourier transform
side. In this way one achieves a description of f € So(]Rd) as a sum of band-pass signals.
This is what Hans Reiter really used, in [100, 101].

Lemma 1. All absolutely convergent series of time-frequency shifts of go are contained
in S(R?), and even make up all of SH(RY), i.e.

So(RY) = { Y anMg, T g0 (xn,&n) € R X RY (a)pens € EI(N)} . (20

neN

Since the choice of the window in the definition of modulation spaces gives these
definition some smell of arbitrariness, some people prefer the characterization of So(]Rd)
using the (quadratic) Wigner distribution as a suitable alternatively, despite the fact
that from the description below it is a-priori not clear why So(R?) should be a linear
manifold. Let us recall the definition of the cross-Wigner distribution (see [20, 21, 22,
79, 80] for f,g € L*(RY) first, with z = (x,&):

W) = [ e f (e )= ) dy e

Lemma 2. f € So(R?) if and only if the Wigner function W(f, f) € L'(R??).

Whereas some basic invariance properties of So(]Rd), or properties like the restriction
to subgroups or integration along subgroups can be derived quite easily (cf. [40]) the last
criterion is the most useful for the derivation of metaplectic invariance (cf. last section).

The dual space (S5 (RY), | -||s/)

Together with the space So(R?) of test functions we will have to consider its dual
space, the collection of all bounded linear functionals on (So(R?), || ||s,). Since Sp(RY)

13 See [102, 41, 99, 101] for background on Segal algebras resp. the Segal algebra viewpoint on So(IRY).
It is also the smallest strongly character invariant Segal algebra.
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is the smallest isometrically TF-invariant Banach space its dual is essentially the largest
space (of distributions) with this property. We will make use of this space, endowed with
its standard norm respectively the w*-topology.

We use the symbol (Sj'(R9),||-||s;) for the space of bounded linear functionals on
(S(R9),||-|s,)» where the norm for ¢ € §j (RY) is defined as usual by

lollsy = sup{lo(f)] : £ € So(R?),IIflls, < 1} (22)

Definition 7. A distribution o € S is regular, if there exists a locally integrable function
@ € L'10.(R?) such that

c(f):/Rd(p(t)f(t)dt for all f € S(RY). 23)

In this case, we write ¢ =: Gp.

Here, we have 6, = Gy, if and only if ¢(¢) = y(r) almost everywhere. Regularity of a
distribution does not necessarily imply that the integral in (23) is absolutely convergent
for all f € . This holds for ¢ in an appropriate Wiener amalgam space, though.

Proposition 1. For ¢ € W(L!, (%), we have that 64 € & with ||g||sy < lllw o=y
and the integral in (23) is absolutely convergent for all f € &.

In particular, we see that spaces like Sy, L?, W(LF1,¢P2) are continuously embedded
in S for 1 < p, p1, p2 < oo, in the sense that for an element @ of one of these spaces, we
have 6, € Sy, and the norm of 6, can be estimated from above by the respective norm
of ¢. For pp = o this argument implies that we can even consider periodic functions
L7 (T4) as subspaces of W(L?,£”) C Sf(R¢). In a similar way every bounded measure
p € My(RY) can be identified with o, € S via

oulf) = [ f)du(s) forall f € 5o,

with ||oy || sy < C||1t||a,- In particular, all finite discrete measures define elements of Sd.
But there are also many other (unbounded) measures within Sy (R?), since the space
of translation-bounded measures W (M,, () is contained S. For example, L1, =
Yica 0, € S¢(R) for any lattice A <1 R?.

The standard methods for Wiener amalgam spaces (cf. [43, 78]) imply that Sy (]Rd ) can
be characterized as W(.# L=, () (R?), the space of translation bounded quasi-measures,
because FL*(R?) = PM(R?) := {c = F'h, for some h € L=(R%)}, the space of
pseudo-measures, coincides locally with the space of quasi-measures ([92, 39]).

There are also quite useful convolution relations, such as

SoxS¢ CW(FL ™) = (%) (RY), 24
where .7 (Sy) are the pointwise multipliers of Sy(R?). However, Sy(R?) is not dense in

S (]Rd ) with respect to the norm topology and therefore we have to invoke a second,
weaker topology on this dual space.
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w*-convergence in S (RY)
A sequence () e in Sy (R?) is w*-convergent' to oy € S§ (R?), in symbols

oy = w"—limo, (25)
n

if for every test function f € Sy(R¢) one has

i.e. pointwise convergence of the sequence (0,) to some limit 6p. The following equiv-
alent characterization is valid for arbitrary Banach spaces:

Lemma 3. A (bounded) sequence (G,),cry in S (RY) is w*-convergent to oy if and only
if for every compact M C So(]Rd ) and every € > 0 one has: There exists some index ny
such that n > ny implies

|0x(f) —o0(f)| < &, forall feM. (27)

Since the atomic characterization of (So(R?),]|-||s,) implies that for any non-zero

g € So(R?) the set of all TF-shifted copies of g, i.e. the family {7(A)g|A € R? x RY} is
total in (SH(RY), || ||s; ), we arrive at the following characterization of w*—convergence:

Theorem 2. A bounded sequence (Gy) e is w*—convergent to 6y € 8¢ if and only if for
some (and therefore for any) non-zero g € So(]Rd) one has pointwise, or equivalently uni-
form convergence over compact sets of the TF-plane of V, 0y to V,069. More explicitely:
For every R > 0 and € > 0 there exists some index ny such that

Ve(0n)(A) = V(oo)(A)| <& Yn>no, A with |A|<R. (28)

A verbal description of this situation is to say that the spectrograms of 6, look more
and more similar to the spectrogram of oy over larger and larger parts of phase space.

There are of course many important examples where w*—convergence is valid, while
in contrast we do not have norm convergence, even for some simple examples as

L. if x, — xo, then &y, = w* —lim,, &;,, while || 6, — 6,||sy = 2 for x # y.

2. Xs, — Xs, in the w*—sense if and only if 5, — so;

3. LWy =Y4e7d O — 8 for r— oo

4. (Stpg)p—0— 6 in the w*—topology, for p — 0, if [pag(x)dx = 1, where
Stpg(x) = p~9g(x/p) is the L' —normalized, dilated version of g;

5. hllly, —1=0; for h— 0 (Riemannian integrals definition for f € So(R%)).

13 The study of this convergence goes back to [17], where relative completions have been introduced for
the study of multiplier spaces.
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For later use let us describe explicitely what it means that a linear mapping 7' on Sy (R9)
is w* —w*-continuous using bounded and w*-convergent sequences:

ou(f) = o0(f) YFESHRY) = T(04)(g) —T(o0)(g) Vg€ SH(RY).

Under the boundedness assumption it is enough to test convergence on total subsets of
So(R9) only, e.g. on the set of atoms (or coherent states) (7(A)g) 5 R xR

Later on we will see that the usually vague and heuristic argument, exhibiting the
Fourier transform as a limit of Fourier series expansions, can be made precise in such a
context. In fact, the Fourier transform f of f € L!'(R?) can be viewed as the w*-limit of
the Fourier transforms of the correspondingly periodized version of f (in fact classical
Fourier series expansions), with the period length going to infinity.

Practically all the invariance properties of So(R¢), including its invariance under the
Fourier transform, can be extended to invariance properties for Sy (]Rd ). One possible
explanation for this fact is the w*-density of So(R¢) in Sf(R?). From the point of view
of introducing the extended operators it is more convenient to use adjointness relations,
which we will do later on, using Banach Gelfand triples.

The Fourier Transform on (S, 1.2, 5)

We now come back to the question we started with, namely to define a convenient
setting for the Fourier transform. Using our Banach Gelfand triple (S07L27S0’ ), we find
the following, satisfactory answer. It is a perfect demonstration example for the power
of unitary Banach Gelfand triple automorphisms.

Theorem 3. The Fourier transform, defined in the usual way via

N

J6) = [ 0™ dr for s e SR (29

extends in a unique way to a (unitary) Banach Gelfand triple automorphism, based on
the definition
6(f):=0c(f), for oceS/(RY),feSRY. (30)

It is also characterized by the fact that it is mapping the pure frequencies ¥, are mapped
on the corresponding Dirac measures 6.

The direct statement is based on the Fourier invariance of Sy(R?), while the unique-
ness follows from the w*-density of So(R?) respectively trigonometric polynomials in
S (RY).

Gabor characterization of (Sy,L?, 57)

The space (So(R?),||-|ls,) has a number of further equivalent properties, some of
them are quite convenient for various purposes. We will use Weyl-Heisenberg families,
indexed by lattices A = AZ?? <1 R??, for some non-singular 2d x 2d matrix A:
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Definition 8. A family (m(1)g);., is called a Weyl-Heisenberg family. It will be
convenient to write simply (g3,)7ca-

A WH-family is also called a Gabor family, cf. [65]. If a WH-family is a frame or
Riesz basis we will speak of a Gabor frame or Gabor Riesz basis (for its closed linear
span). D. Gabor suggested to use the Gauss-function ¢ = go, and the (“critical”’) von
Neumann lattice A = Z??. Despite the perfect time-frequency localization this family is
not a Riesz basis for 5% = .2 (]Rd ), and the so-called dual Y,y proposed by M. Bastiaans
([10]) is not in Lz(Rd). There are two other important results to be mentioned here. For
their description we recall the adjoint lattice A°, which consists of those elements in R
which satisfy the commutation property

n(A°)w(A) =m(A)w(A°) forall LeA. (31)

The so-called Wexler-Raz principle (see [118, 33, 82, 53]) says that a WH-family
(84)5ea is a Gabor frame if and only the Gabor frame operator S : f — Y54 (f,22)82
is invertible, or if and only if there exists a dual WH-family of the form (g ), with
a generator g, characterized either as the solution of the frame equation Sg = g, or
equivalently § = S~ !g. There are many other possible (non-canonical) dual functions
7, yielding perfect reconstruction, which are characterized according to [118] by the
so-called bi-orthogonality relation.

Ve — ) = (m(e )y w(00)g ) = By, for AT ptE AT (D)

The so-called Ron-Shen duality gives more detailed information (cf. [105, 53]): The
condition number of the Gabor frame (g, ); -, is the same as condition number of
the Gabor Riesz (basic) sequence (gj0);0ca0» With explicit constants (going back to
a symplectic version of Poisson’s formula) relating upper and lower frame bounds.
This result has a great impact for applications in communication theory. While one
tries to use (preferably tight and) low redundancy Gabor frames with good localization
properties in order to expand signals, avoiding the storage of too many coefficients for
the Gabor expansion, one is interested to use Gaborian Riesz bases for the transmission
of data, because the well chosen Gabor atoms (obtained using beam-shaping) g ensure
that the family (g, ), -, consists of joint approximate eigenvectors to all underspread
resp. slowly varying linear systems, i.¢. linear operators which have a spreading function
supported by a small rectangle in R? x R4 , determined by the maximal time-delay and
Doppler shift respectively (see [74]). Ground breaking work in this direction has been
done in the PhD thesis [90] of W. Kozek; the link to (S07L27So’ ) has been established in
[53].

It is one of the striking recent results due to Grochenig and Leinert ([75], following
the rational case in [50]) to show that g € Sy(R?) implies also that the canonical dual
£1isin So(]Rd ), or equivalently (because the frame operator associated with the Gabor
system (m(A)&);c4 is just 71, the inverse of the frame operator for the WH-family
(m(A)g)en- Expressed in terms of BGT-morphisms their result can be rephrased as
follows. The boundedness part of the theorem below is given in detail in [61]:
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Theorem 4. Assume that (g;), .5 be a Gabor frame with g € S(R?), and hence
S=S8en: [ Yacalf . ®(A)g)gs is a a BGT-morphism on (S0,L2,8¢) into itself If
S is invertible at the L*-level, then it is already BGT-isomorphism.

In particular, § = S~1(g) is in So(R?) in this case and

=Y VearA)ga =Y. Vef(A)@s- (33)

AEA AEA

We will call the corresponding families So-Gabor families. Another result where the
BGT-spirit comes through and the relevance of considering Gabor problems at all three
levels is evident can be found in [71] on “Gabor frames without inequalities™.

With this background we can give a characterization of elements in each of the levels
of (Sy,L2,8y) in terms of Gabor coefficients:

Theorem 5. Let g € .7 (RY) be given such that (g3,) ..  is a Gabor frame with canonical
dual (§;)sen (also in 7 (R?)). Then one has: A tempered distribution f € .'(R9)
belongs to (S()7L27 S) if and only if the following (equivalent!) conditions are satisfied:

L. f has a representation of the form™> f = Yjcacagn, with (c3)aea from
(€4, 02, 6)(A);

2. The canonical coefficients (Vzf(1))5.en € (1,02, 0°)(A);

3. The sampled STFT with window g satisfies: (Vg f(A))aeca € (61,02 0=)(A);

Overall this can be expressed by the fact that the reconstruction mapping
R:(c))aca — Lacacady completes the following diagram:

(01, 02,6°)(A)

R P

R

(S07L27S0/) Vg((S07L27SOI))

Vela

Poisson’s Formula, Sampling and Periodization

Using S (R¢) the classical Poisson’s formula can be formulated as follows:

Theorem 6. For f € S(RY) one has

Y f)="Y fn), (34)

kecz4 ncZd

the sum being absolutely convergent on both sides.

15 Here x denotes convolution, in contrast to the use of « earlier on, where it was representing matrix
multiplication, using MATLAB conventions.
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This formula does not hold for arbitrary functions, even if both the left hand side
and the right hand side are absolutely convergent, as has been described in the book of
Katznelson ([87, 88]). Most of the usual conditions on f which are sufficient for the
validity of (34) can be interpreted as sufficient conditions for f to belong to So(]Rd) (cf.
[84, 68]). The symplectic version of Poisson relation is also highly relevant for Gabor
analysis ([8, 112]).

The key properties of Sy(R?) needed to verify Thm. 6 are the fact that the restriction
of a function f € So(R?) is in ¢'(Z?), that the Z¢-periodization of f is uniformly
convergent, and the fact that the periodized function f., has as its Fourier coefficients
just tdhe samples (f(n)), which are again in ¢'(Z%), due to the Fourier invariance of
So(R?).

Itis an easy exercise to translate the Poisson formula into a statement about the Fourier
invariance of the so-called Shah-distribution LI+ (also called Dirac Comb, eic.):

Theorem 7. The Shah-distribution LU ;q belongs to S (R?), and
u/jzd — u—’Zd

Using the invariance of Sj(R?) under transformation of the argument it is easily
extended to other lattices of the form A = Ax Z¢ < RY, where det(A) # 0. For the sake
of simplicity we will use ordinary dilation, which gives then LU, = Y ;.74 6, which
has as its (generalized) Fourier transform bLL1I,, with b= 1/a.

One of the most important principles in harmonic analysis is the idea that sampling on
the “time-side” corresponds to periodization on the frequency side. The most important
consequence of this principle is the so-called Shannon sampling theorem, according to
which a band-limited signal can be recovered from its regular or equidistant samples.
Again, we do the detailed discussion only for the normalized case, i.e. for the case
that the Nyquist sampling rate is the sampling over the integer lattice Z¢, or in other
words, that the spectrum (the support of the Fourier transform of f under discussion) is
contained in the cube Q := [—1/2,1/2]%. We write 1, for the indicator function of Q
and define SINC = .7 ~!(1p).

Theorem 8. [Shannon Sampling Theorem]
For any f € I*(R?) with supp(f) C Q one has

ft)="Y, f(n)T,SINC(z), (35)

nezd

with absolute and uniform convergence of the series and norm convergence in Lz(Rd).

The proof is based on the observation that the family (7, SINC), .« is an orthonormal
basis for the closed subspace BY := {f € L*(R?) | supp(f) C Q} of (L2(R), | ||2). In
fact, one has convergence with respect to the Wiener amalgam norm W (Cy, (2)(R?),
which implies both uniform and L?-convergence. The fact that the SINC function is the
(inverse) Fourier transform of the indicator function 1¢, which is a Fourier multiplier for
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1 < p < oo also implies, that a similar statement holds true for band-limited functions in
L7 (R?), for the same range of parameters.

Proof. Given the sampling values (f(n)), .« we have all the information in our hands
to describe LLlzq - f =Y., 74 f(n)8,. This is a well defined (unbounded but translation-
bounded) discrete measure in Sy (R?) which has a Fourier transform of the form

gt f=gasf= Y 8xf= Y Tf (36)
kecz4 kecz4

which is nothing but the Z?-periodic version of f. We can now use the fact that Q is
a fundamental domain for the lattice Z¢ <t RY, hence |n+ QNk+ Q| = 0 for n # k.
Muliiplying this periodic version by 1¢ gives us exactly the original basic period, which
is f, or back on the time domain

f=(Wge f)=F 1g)= Y f(n)8,+SINC= Y f(n)I,SINC. (37)

ncZd ncZd

This series is convergent in L2(RY) because on the Fourier transform side we just have
the Fourier expansion of f (taken as a periodic function on R?). On the other hand SINC
belongs to L2(R?) and even the Wiener amalgam space W (Cy,¢2)(R?), which implies
uniform and pointwise absolute convergence. [

BANACH GELFAND TRIPLES AND OPERATORS

In this section we will indicate the role of BGTs for the description of operators. The
same role which is played by the pure frequencies for Fourier analysis (they are perfect
building blocks forming an orthonormal basis in the case of finite Abelian groups but fail
to belong to the natural Hilbert space) is now taken by other systems of natural objects.
From the point of time-frequency analysis of course the collection of (7(1)); _pa, pa
is a very natural choice, but again they are not in the natural Hilbert space, now 7.,
the space of all Hilbert Schmidt operators on L?(R?), endowed with the .7 -scalar
product (T, 8} s » := Tr(TS*).

On the other hand one of the most exciting developments in the field is the realization,
that pseudo-differential operators have a very natural description in terms of time-
frequency expressions. To give an example: modulation spaces turn out to be the most
natural spaces in order to describe slowly varying channels, 1.e. convolution operators
with a time-variant kernel (in an engineering terminology), resp. certain classes of
pseudo-differential operators. These are the systems which preserve localization in the
TF-sense and hence have a matrix representaion which is mostly concentrated along
the diagonal. In the extreme case on has Gabor multipliers, i.e. operators which are
factorized through a diagonal matrix, acting on the Gabor coefficients.

There is a large number of papers on Gabor multipliers, such as [57, 12, 38, 5] and a
self-contained survey (master thesis) by K. Schnass [107] from 2004 or the PhD thesis
of P. Balazs ([9]).
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AntiWick operators are operators which are defined as STFT-multipliers. They make
use of the inversion formula for the STFT (which in turn based on the isometric proper-
ties of f+— V,(f) from L2(R¢) into I?(R?):

Lo oV £ 0) MoTig2dxdo = (g2.81) 38)

So one can use any g € L?(RY) for reconstruction of f from Vg, as long as it is
not orthogonal to g;. Usually the integral has to be understood in the weak sense
for g1,¢2 € L*(R?), but if both of them are in Sp(R?) (cf. [117]) then one can even
read the above integral as limit of vector-valued Riemannian integrals, which are norm
convergent in 27 = L*(R?). Due to the good local properties of functions in the range
of the STFT one can even work with rough symbols (see [93, 13, 28])

Adjointness Relations

First of all let us mention some principles that allow us to extend bounded linear
mappings betwenn So-spaces to BGT-morphisms. The following principle is quite useful
in order to “automatically extend” a mapping between the “inner spaces” to their dual
spaces.

Theorem 9. Let T be a BGT-homomorphism from (By,,B)) into (By, 5#5,B)) , i.e.
a bounded linear mapping which is bounded on all three layers, as well as w* —w*-
continuous. Then there exists a unique adjoint GI-homomorphism, i.e. another BGT-
homomorphism (denoted by) T* from (By,#,B)) into (By,71,B}), such that T* :
Ft — FA is the adjoint operator, which extends to a GT-morphism in a unique way.
Therefore we have the identity

(Tf.8) (8,8 = (- T"8)(B).54.B,) (39)

whenever the pairing makes sense. Moreover T** = T, i.e. in this sense any BGT-
morphism is the adjoint of another (uniquely determined) adjoint BGT-morphism, de-
noted by T*.

The case of unitary operators has been discussed already in [53], Thm.7.3.3 (Exten-
sion of Unitary Gelfand Triple Isomorphism), p. 239.

Theorem 10. A unitary mapping U acting from L*>(R?) to L*(R?) extends to an isomor-
phism between the Gelfand triples (Sy,L?,8¢)(R?) to (Sy,L?,8¢)(R?) if and only if the
restriction of U and also of its adjoint U* are bounded linear operators from So(]Rd ) to
So(R9).

Remark 1. There are good reasons why the “central” Hilbert space 5% = L>(R?) usually
plays the dominant rule, just think of Plancherel’s theorem as the central property of the
Fourier transform, describing it as a unitary mapping on Lz(Rd). However, from an
abstract point of view it is not so important, and in most cases the isomorphism property
at the S and Sy'-level (both with the norm and the w*-topology) implies already that one
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has the full continuity claim for the Hilbert space automatically, becausean application
of complex interpolation between the dual pair §(G) and Sy (G) yields'©

180,861 1/2) = L.

Theorem 11. For any group (T;);cr of unitary operators leaving Sy(R?) invariant, which
satisfy
(f.8) = (TS Tig) ¥[.g€ SR, (40)

one has: The action of (1;)ier extends in a unique way to a unitary Banach Gelfand triple
automorphism of (So, 12,57 ) (R?).

Proof. The assumption (40) implies (just in the same way as Plancherel’s theorem is
usually proved) that it is well defined and isometric on So(R?) with respect to the L2
norm. Due to the density of S(R?) in L2(R¥) it can be uniquely extended to an isometric
and in fact unitary automorphism on L>(R¢). W

Kernel Theorems and Gelfand Triples

The nuclear Frechet space .7 (R) and its dual, the space of .’(R¥) of tempered dis-
tributions are the prototype of function spaces for which on can prove a so-called kernel
theorem, a continuous analogue of the existence of a matrix, completely describing the
operator. We next prepare a similar principle for our BGT-setting.

Given two functions f! and 2 on R? respectively, we set f1® f2

Lo x,0) = L) ), x,0 e R (41)

Given two Banach spaces By and B; embedded into .7 ! (]Rd ), B1%B, denotes their
projective tensor product, 1.e.

{rifr=Y o Ylrlslfle, <e=}. 42)

It is easy to show that this defines a Banach space of tempered distributions on R% with
respect to the (quotient) norm:

£l == inf Y A s 1 £2 g2} 43)

where the infimum is taken over all admissible representations.
One of the most important properties of So(]Rd) (leading to a characterization given
by V. Losert, [94]) is the tensor-product factorization:

Lemma 4.
So(RF)SH(R™) =2 So(RF™). (44)

16 One way to understand/accept this fact is to invoke the fact that the Wilson bases establish, at least for
elementary locally compact Abelian groups, a BGT-isomorphism between (Sp, L2, S¢) and (¢, £2,£7).
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The easiest way to realize this relationship is to make use of the atomic decomposition
of Sp(IR™), observing that both time- and frequency shifts, but also the multi-dimensional
(Gaussian function factorize into lower dimensional partial ingredients. This tensor prod-
uct property of S is on the other hand the basis for the realization of the so called kernel
theorem (see [53], Chap.7.4).

The setting of BGTs is also well suited for the description of linear operators. The
so-called kernel theorem shows how essentially every reasonable!” operator T can be
interpreted as a kind of integral operator, also called kernel from a suitable class of
generalized functions. One may expect similarity to the finite discrete case (= matrix
multiplication), but now with continuous variables:

1) = [ K f )y 45)
in analogy to the description of u = T f ~ u = A x z € C" via coordinates
n
(Tz)s =Y aspz, for s=1,...n. (46)
k=1

The usual way of finding the appropriate m x n matrix A for a linear mapping from C” to
C" is easy: recall that one obtains coordinate number s of the vector u via scalar product
with ey, that the k-th column of A has to correspond to 7'(eg) if (46) is supposed to be
valid, hence the individual entry must be

asp = Als.k] = (T(ex.e.)). "

Viewing A = (A(n,k)) as a function over the product index set one can say that has to
take the scalar product of A (in the sense of the Euclidean space C™) with the unit
matrix e; * ey, which can also be expressed as via a trace formula of operators:

Als, k] = (A,es @ ef) = Tr(Ax (exx €})).18 (48)

There is a lot of literature about Dirac’s formalism. On the one hand it is very intuitive,
on the other hand it has created a lot of discussion concerning the strict mathematical
interpretation of these formal symbols. Even engineers are by now aware of the fact
dp is no just another function, which is zero everywhere except at 0, but “so strongly
infinite" that the integral equals 1. Nowadays it is well known that the Dirac measure
S : f— f(x) is a good way to formalize this procedure, but this still does not explain
what the connection between Kronecker’s 8, usually written as §; ; and Dirac’s symbol
which is nowadays just a distribution (of one variable, so to say) applied on a test
function, while in many early interpretations of what Dirac might have had in mind
with his symbol the idea of using the symbols he had introduced often comes with the
recommendation of only using it within an integral, and not as an individual object. In

17 E.g. T is a bounded linear operator from some Li-space to another L —space.
18 Where  corresponds to matrix multiplication in a MATLAB setting.
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fact, we will argue that one should consider &,_, as a distributional kernel representing
the identity mapping, so simply the continuous analogue of Kronecker’s symbol.
Moreover it appears as a way to express a kind of orthogonality relations between
“pure frequencies” (and because they are not square-integrable the scalar product be-
tween (X, xs) has to be +e0) which allows to do derivations of very useful formulas'.

Sequences of regularizing operators

Once we have continuous variables one comes into a world where finite dimensional
arguments break down, where one may have unbounded operators, and even point eval-
vations are not always possible, i.¢. the use of e.g. Dirac distributions is required. Nev-
ertheless one has a number of different products, which often can be written as integrals
(convolution, twisted convolution) or using point values (defining the “ordinary point-
wise product”), and sometimes such products immediately make sense, in some other
case on has first approximate the involved ingredients before applying the operation, us-
ing a regularized version of one or both partners involved, and then let the regularization
parameter tend to 0 or oo, as appropriate.

Such a principle is not really new, as many special cases can be located in the lit-
erature. The definition of the Fourier transform is one case, where one has to “push”
general L2(R¢)-functions into L' (R¢) (in case they are not already within L' N L?(R?),
which is fortunately a dense subspace of (L2(R?), ||-||2)), e.g. via pointwise multipli-
cation with the indicator function 1;_y y, for N — co. For the inversion of the Fourier
transform a similar strategy can be applied, now by doing a pointwise multiplication
with some suitable summability kernel. Although it would again be enough to use any
localizing function, it has been realized that a sharp frequency cut-off is not a good way,
since .% *11[,N7N] ¢ L'(R?). Choosing a summability kernel from Sy(R¢) will help and
ensure that its inverse Fourier transform is in L!(R?) as well. Since stretching in Fourier
space is the same as L!-norm preserving dilation the resulting sequence of Dirac-like
convolution kernels is an approximate identity for the Banach Gelfand triple (Sp, 12,8 ),
while the SINC-function is not having this good property.

Wiener amalgam convolution and pointwise multiplier results ([78]) imply that

So(R?) - (S (RY)* So(RT)) € So(RY),  So(RY) # (S (RY) -So(R?)) C So(R?)  (49)

Proof. The key arguments for both of these regularization procedures, be it convolution
followed by pointwise multiplication (a so-called product-convolution operator, for
short PC-operator), or corresponding CP-operators, are based on the pointwise and
convolutive behaviour of generalized Wiener amalgam spaces, such as the relation
So(RY) x Sf(RY) = W(FL 4N« W(FL2 4°) CW(FLL (). 1

19 We suggest to view the well known identity ¢2* = 1 in a similar way, as an extremely useful for-

mula which makes use of the complex numbers, the irrational number 7, which is never explicitly and
constructively realized, let alone the power series expression of the exponential function.
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Let now h € ZL'(R?) be given with 1(0) = 1. Then the dilated version () =
h(t/n) are a uniformly bounded family of multipliers on (5,12, 8¢), tending to the
identity operator in a suitable way. Similarly, the usual Dirac sequences, obtained by
compressing a function g € L'(R?) with [ g(x)dx = 1 are showing a similar behavior:
gn(t) = n-g(nt)

Following the above rules the combination of the two procedures, i.e. product-
convolution or convolution-product operators of the form provide suitable regularizers:
Anf=gn¥(hy- f)or Buf = hy(gn* f).

Following Theorem 5 we know that elements in f € (Sy,L?,S¢) can be characterized
(among others) by their minimal norm coefficients, given in the form (V5 f(1));ea. Itis
therefore clear that the partial sum operators for this canonical Gabor expansions, such
as

Anf = Y Var(Ma (50
max(|Ag |;|Az]) <N

is mapping Sy (R?) into Sy(R?), while on the other hand one has obviously that Ay f — f
as N — oo for any f in Sp(R?) or L2(R?) respectively, in the corresponding norm, while
the convergence occurs in the w*-sense, for all f € Sy (R?).

Similar statements can be made for rectangular or any other kind of ‘exhausting partial
sums, also with respect to Wilson basis. The better the building blocks are (in terms of
time-frequency localization, typically expressed using membership in the modulation
spaces M &s(]Rd)) the more can be said about the rate of approximation, given the quality
of the signal, i.e. speed of approximation of f in some Shubin class Q,(R?), measured
in the Z2-norm.

Various types of regularizations are also used in the discussion about the most general
definition of convolution between distributions, see the work of M. Oberguggenberger
([1, 18]). In fact, one can say, that the basic idea is to assume the the limit of Ay o1 *AnG)
exists (for a sufficiently rich class of regularization operators, implying that this limit is
then independent of the particular choice of the sequence (Ay)).

Kernel Theorem for Sy(R?)

There are many different ways to show that the space of test functions So(RY) is
w*—dense in Sy (]Rd). One very important and natural way (also valid in a similar way
for the space of Schwartz test functions from the space . (R) of rapidly decreasing
functions and its corresponding dual space, .7’ (]Rd) of tempered distributions)

Theorem 12. If K is a bounded operator from Sy(R?) to Sf(R?), then there exists
a unique kernel k € S§(R??) such that (Kf,g) = (k,g @ f) for f,g € So(R?), where
8@ f(x,y) = g(0)f(v).

Formally sometimes one writes by “abuse of language™

K10 = [ k) f()dy (5)
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with the understanding that one can define the action of the functional K f € S (R?) as

kf(e)= [, [ Koenfdvsodr= [ [ kes(osoiddy. <2

This result is the "outer shell of the Gelfand triple isomorphism, which corresponds to
the well-known result that Hilbert Schmidt operators on Lz(Rd ) are just those compact
operators which arise as integral operators with LZ(RZd)-kernels. The complete picture
can again be expressed by a unitary Gelfand triple isomorphism. Let us start with the
classical setting: The Hilbert space .7 of Hilbert Schmidt operators on L>(RY) is
important, because the classical kernel theorem establishes a unitary mapping between
operators ' € #7.% and their kernels K. The scalar product of .7#.%” —operators is given
by (T,8) x5 = Tr(T *§') and turns 7.5 into a Hilbert space.

Theorem 13 (Kernel Theorem for Sy). Let T € 7.7 be given, with kernel K € I*(R??).
Such an operator has a kernel in S()(RZd ) if and only if it maps bounded, w*—convergent
sequences in 8¢ (RY) into norm convergent in So(R??). The most general operators from
£(80,8) are in a one-to-one correspondence with Sy (R*%).

Overall the kernel theorem allows us to establish a unitary BGT isomophism between
the BGT (£ (8/,%), 7., % (80,5)) of operator spaces and the corresponding ker-
nels in (So,L%, 8 )(R?),

Remark 2. Note that for regularizing kernels in So(R??) the usual identification (recall

that the entry of a matrix 4, is the coordinate number n of the image of the k—th unit
vector under that action of the matrix A = (a, )) holds:

k(x,y) = K(8)(x) = 8:(K(8y))- (53)

Since &y € Sy (R?) and thus K(8,) € So(R?) the pointwise evaluation makes sense.

Remark 3. Tt is of course interesting to ask how the w*-topology can be transferred to
the operator level. Here again a characterization of general linear operators using Gabor
expansions comes into the picture:

Definition 9. Assume that (g; ), -4 and (;); ca is a dual pair of Gabor frames, with
2,8 € So(RY), and assume T € .Z(Sy,S), i.e. that T is a bounded linear operator from
So(RY) into S¢ (R?). Then the matrix elements of T with respect to the Gabor frame are

ay i ={Tgr.8r), A,A EA (54)
Using these matrix coefficients (one can use either g or £), both in the first or the
second place, on obtains

Lemma 5. Let T, be a sequence of operators from So(R?) into Sf(R?), such that the
corresponding kernels K" form a bounded sequence in S (]Rz‘i ), convergent to KV in the
w*-sense. Then T, f is w*-convergent for every [ & So(]Rd) to some limiting operator
TO( f) =1im, T, f and conversely. In particular, K% = w* —1im, K,, if and only if all the
matrix coefficients converge pointwise, i.e. for each pair (A,A’) € A X A one has

ay W—wz% w forn— oo
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Kohn-Nirenberg Symbol and Spreading Function

The Kohn-Nirenberg symbol of an operator (respectively its symplectic Fourier trans-
form, the so-called spreading symbol) can be obtained from the kernel by applying suit-
able coordinate (ransforms (automorphisms) and partial Fourier transforms *°. Hence
they define functions or distributions over R? x R?. Since all these ingredients are uni-
tary BGT isomorphisms of (S07L27S0’ ) the known correspondences at the level of 7.7~
operators can be extended to BGT isomorphisms.

Theorem 14. The correspondence between an operator T with kernel K from the Ba-
nach Gelfand triple (£ (8¢ ,S0), 7€, £ (80,8 ) ) and the corresponding spreading dis-
tribution (T in S§(R??) is the uniquely defined Gelfand triple isomorphism between
(L(S4,80), 7.7, 2 (S0, 5)) and (Sy,L2, 8¢ )(RY x RY) which maps the time-frequency
shift operators M, o T, onto the Dirac measure 5(x7y).

The w*-continuity of this mapping allows among others to calculate (in the sense
of approximate) 1(7') by first dealing with regularizing operators from #(Sy,S) with
kernels and symbols in Sy. For this “core” space one can apply transformations and
partial Fourier transform in a direct way, while more general case is realized either by
taking w*-limits of using an adjointness argument.

The Kohn-Nirenberg description of operators is particularly interesting in the discus-
sion of Gabor multipliers, i.e. of operators of the form

Tf=Y m/(f,n(A)g)gr =Y, mP(f), (55)

AEA AEA

where P, is the projection of f onto the one-dimensional space generated by g, . Equiv-
alently, P, = (A1) o Pym(A)'. The mapping H — 7t(4) o Pym(A) is a unitary group rep-
resentation of the additive group R?? on the Hilbert space .##.%, and one crucial facts is
the relation

k[m(A)oPym(A) ]| =Ty x(H), A€EA. (56)

Composition of Operators

Given the kernel representation (or whatever other form of “symbol”, from Weyl- to
Kohn-Nirenberg or spreading representation) it is clear that the composition of operators
corresponds to some kind of composition rule at the level of symbols. For the case of
matrices we know that we have to perform matrix multiplication, i.e. the matrix-product
C := A= B is given (coefficientwise) by the rule

el = Y QicsDsy (57)
s=1

20 j.e. Fourier transforms with respect to one variable only with R? x R4,
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whenever the matrix product is possible, resp. whenever the composition of operators is
possible (the range of B has to be equal to the domain of A, in our example C™),

Of course the situation is - from a purely technical point - much more delicate in
the case of (perhaps even unbounded) linear mappings between (infinite) dimensional
vector spaces (typically Hilbert spaces or Banach spaces), and even if we are next
discussing the composition of BGT-morphism it is not absolutely clear how to interpret
their composition (which is kind of obvious from the point of view of operators).

Let us therefore consider first the composition of two simple integral operators, with
the corresponding kernels K»(x, s) and K1 (s,y) in So(R?%). It is not difficult to verify that
one has in such a case, in complete analogy to case of matrix multiplication:

Lemma 6. The composition of two operators Tr o T1, both of which have a kernel
representation with So(R*)-kernels K»(x,s) and Ki(s,y) respectively, has a kernel in
So(R??) of the form

K(x,y) = /RdKz(x7s)K1(s7y) ds (58)

This formula is also valid if one of the kernels belongs to L*(R??) C Sy (R?#)™,

Proof The kernels in K; and K> define a bounded linear operator from Sy (]Rd ) space into
So(RY), converting w*-convergent sequences into norm convergent sequences. Hence
one can compose the operators, but also verify without difficulties (under the L*-
condition) the existence of the corresponding integrals in (58) %2, O

For more general cases, ¢.g. for the composition of general bounded linear operators
on # = L*(R) it turns out that a composition rule like the simple integral composi-
tion of (58) may become questionable. Among others, because it is known to be hard to
characterize the L.2-boundedness of the operator 7 in terms of the kernel K (x,s). There-
fore one has to use the approximation of operators by “good” ones before calculating
the “product-kernel”, i.e. the (distributional) kernel of the composite linear mapping. In
order to realize this in a systematic way (admitting that there are many other ways of
doing it) we formulate an auxiliary result. It is based on the use of sequences of regu-
larzing operators with kernels in So(]RZd ), i.e. a bounded sequence A, of BGT-morphism
with kernels K”(s,u) € So(R??) such that the sequence (as well as its adjoint) acts as
an approximation to the identity operator on Sy (]Rd ) (hence on the larger spaces), i.e.
satisfies [|A,f — f|ls, — O for n — oo, for each f € SH(R?).

Lemma 7. For each regularizing sequence A,,n > 1 and linear mappings T1 and T» one
finds that A, o Ty resp. Tr o A, are regularizing operators in £ (S, So)(R?). Hence their
kernel of composite mappings such as Ty oA, oA, o Ty can be composed according to
Jormula (58), and the product kernels K" obtained in this way are w*-convergent to the

21 Various properties of the kernel of the composite mapping can be derived from the properties of the
resulting product operators. The composition itself need not be “well-defined” in the sense of Lebesgue-
integrability almost everywhere. This problem can be overcome using regularization techniques described
below.

22 Here is a warning in place: even if the kernels are given as bounded and continuous functions we do
not claim in the most general case that the integration has to make sense in the Lebesgue sense!
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kernel of T o Ty. At the same time the corresponding operators are convergent (in the
sense of pointwise convergence) to the action of T, o T, because

|B(T1f) — Ta(An(Tif))|lsy — O forall f e S(RY). (59)

There are of course many variations of this principle, and the concrete form of the
regularizing operator can vary from case to case. Again the Fourier transform is a
perfect example. We know that the Fourier transform, viewed as an integral transform on
(LY®RYY, || []1), maps into (ZLYR?), |||l z11) — (Co(RY), || ||), according to the
Riemann-Lebesgue L.emma, as a proper but dense subspace. The problem with Fourier
inversion on .ZL!(IR?) is not the roughness of those functions, but their lack of decay,
since they need not be integrable. Since L' (R9)  $(R?) C Sp(R?) we have the pointwise
relationship .Z L' (RY) - $H(RY) C $H(RY), or FL'(RY) — . (5)(R?) (the pointwise
multipliers of So(]Rd )). Hence it is enough that regularization takes place in the form
of pointwise multiplication with any function & € S(R?), typically &, (t) = h(t /n) for
n — oo, with #(0) = 1. That indeed all known classical summability kernels are in fact
elements of Sy(R?) has been investigated in some detail in joint work with F. Weisz

([38, 59, 60]). Of course choices such as the Gauss-Weierstrass kernel g(1) = el ‘2, the
inverse exponential (1) = exp(—|t|) or h(t) = 1/(1+?) on R come to mind.

FURTHER APPLICATIONS, COMMENTS, OUTLOOK

So far we have only outlined some general principles where the setting of Banach
Gelfand triples, and specifically the So-BGT come very handy and natural. In the rest
of this paper let us just give some indications about further areas where such a setting
appears to be quite natural.

Generalized stochastic processes

Already the PhD thesis of A.J.E.M. Janssen [81] indicates that generalized stochastic
processes can be modeled appropriately using distribution theoretic methods. His space
of test functions did not allow for compactly supported elements, hence he could not
define the support of linear functionals in his setting. In this respect the setting of the
BGT (S07L27S0’ ) is more suitable for a treatment of generalized stochastic processes.
We can give only a quick indication of how this works (up to the topic of “spectral
representations” of stationary stochastic processes), see [52].

First of all we view a generalized stochastic process as a generalization of an ordinary
stochastic process, in the sense that an ordinary stochastic process assigns to each x € R?
some random variable, abstractly speaking some element p(x) in some Hilbert space®®
[of L?-functions on some measure space, usually with expected value E (X)=0]. Asin

23 Usually it is the set of all square-integrable functions random variables with zero expectation over some
probability space, but this does not matter in our description of basic concepts.
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the case of regular distributions one can integrate against a test function, i.e. extend the
mapping x — p(x) € 4 to a linear mapping

ki p(k) ::/

[ kop()d,

which is well defined at least for Cc(]Rd), the space of compactly supported, continuous
and complex-valued functions on R4. For us So(]Rd ) is more attractive as a (Banach)
space of test functions and therefore we give the following definition:

Definition 10. We call a bounded linear mapping p : f +— p(f) from Sp(R?) into some
Hilbert space 5% a generalized stochastic process, for short a GSP.

In the standard approach to stochastic processe it is quite cumbersome, at least from
the technical point of view, to check the existence of an autocorrelation function (resp.
distribution) or to provide the spectral representation of a GSP, using vector-valued
measures, such things become quite smooth and natural in our setting:

Definition 11. For any GSP p one defines its Fourier transform p via

Plf)=p(f), YfeSH(RY). (60)

Obviously the inverse Fourier transform of a GSP is defined in an analogous manner,
and thus every GSP has a spectral representation in this sense. An important object for
GSPs is the autocorrelation of such a process, which is given as follows:

Definition 12. Let p be a GSP. The autocovariance is characterized via

(0p, f@8) = (p(£)|P(2)) VY [, € So(RY). (61)

Theorem 15. For a GSP p the following properties are equivalent:

a) p stationary <= ©p diagonally invariant, i.e. L x)0p = Op VX € R?;

b) p bounded < o extends in a unique way to a bimeasure on R? xR?;

¢) p orthogonally scattered
<= 0, has support on the diagonal, i.e. supp(6p) C Apa == {(x,x) | x € R},
<= there exists a positive and translation bounded measure T, with:

(Cp, f®8) = (Tp,f8) ¥V [.g € SH(RY).

Corollary 1. A GSP p is bounded and orthogonally scattered if and only if there exists
a bounded measure [y on R? such that

(00 S 8) = (o f5) = [ f(WeWdup(x) Ve H®)  (62)

RE

These statements should only indicate that the BGT (S07L27S0’ ) is also very helpful
in this context, and therefore likely to be useful in the context of stochastic signal
processing, where most often differentiation does not play any role (which in turn would
justify using the Schwartz space .7 (]Rd ) instead), cf. also the PhD thesis of B. Keville
([89]). There is more recent work using such tools by P. Wahlberg ([114, 115]).
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Modulation spaces and Coorbit Theory

The Banach Gelfand triple (S07L27So’ ) is just a prototype of the much more general
family of modulation spaces, introduced in the early 80’s (see ([44, 46])). The by now
classical modulation spaces M5“(R?) have been modeled in similarity to the family
of (inhomogenous) Besov spaces and have similar properties. Moreover, the classical
L?—Sobolev spaces belong to both families (by choosing p = 2 = ¢). The parameter
s € R is the most important one, describing the smoothness. The family of modulation
spaces is closed under duality (at least for finite parameters) or complex interpolation.
A summary of the state of the art is given in the survey article ([47], in the special issue
of STSIP on modulation spaces).

In the last few years these spaces have found a lot of interest both as a family of
Banach spaces of (tempered) distributions of its own right, but above all as a natural tool
to describe pseudo-differential operators ([109, 104, 110, 72, 91, 73, 70, 111] and many
others, or Chap. 14 of ([69]).)

At the beginning there was the impression that the defining property of a modulation
space is the fact that it is a Wiener amalgam space (see ([43, 78]) on the Fqurier
transform side, meaning that it is characterized by uniform decomposition of f, for
fe. (]Rd ) (as opposed to standard dyadic decompositions used for Besov spaces,
see ([27, 113])), or perhaps because a mixed norm-space was used over the TF-plane
R? x R?, with a specific order of integration (first along the time axis, with respect to
the L”-norm, and then in the frequency direction, using an L?-norm with polynomial
weight m), be it a partially discrete or continuous norm of the form

q/p 1/q
||f||M:;ﬂ||ng||L1,;ﬁ</Rd ([, Westxo)ms o ar) dw) S

However, soon the time-frequency point of view suggested to make also use of radial
symmetric weights in phase space, not only of weights depending only on the frequency
parameter, but rather on polynomial weights of the form v, (x, @) := (14 |x|? + |@[?)*/2.
The advantage of the corresponding space MY, (Rd), defined via a weighted L7 -condition
with weight vy, s € R, on the short-time Fourier transform Vg, f (with respect to any non-
zero window gq, say the Gauss function) is the fact, that they are invariant, not only
under the Fourier transform, but even under fractional Fourier transform (and even the
whole metaplectic group, cf. ([69]), Chap.9.4).

The realization that modulation spaces and the classical family of Besov-Triebel-
Lizorkin spaces have a lot in common, namely the fact that they can be described
using so-called representation coefficients of (square-) integrable and irreducible group
representations” had a great impact on the view on modulation spaces. They appear
now as a special example of a more general principle, which is described through the
theory of so-called coorbit spaces €o(Y ) (see ([48])). From this point of view modulation
spaces are those spaces which are described by the (global) behaviour of the STFT of its

2 For the affine ax + b-group one obtains the continuous wavelet transform, while one has the STFT in
the case of the Heisenberg group R? x R? x T, using the Schrdinger representation on 5% = L2(R4).
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elements, expressed by some solid and translation invariant Banach space of functions
over phase space R? x R?.

METAPLECTIC OPERATORS AND SCHRODINGER EQUATION

In this last section we try to indicate that the invariance properties of the BGT (So, 12,8 )
can be used to describe in the case of quadratic Hamiltonians the properties of solutions
of the Schrédinger equation in the BGT setting.

Metaplectic and Heisenberg—Weyl invariance properties

Recall that the metaplectic group Mp(2d,R) is the unitary representation of the con-
nected double covering of the symplectic group Sp(2d,R) (see e.g. [62]). The metaplec-
tic group is generated by the following elementary unitary operators:

« The Fourier transform J = i —*/2F , that is

Ty(x) = /R e (64)

whose projection on Sp(2d,R) is the standard symplectic matrix J = <_OI (I)> ;

+ The “chirps” \7,\1: defined, for P = PT, by

S

VfPlI/()C) _ eZEiPxxlI/(x) (65)

and whose projection on Sp(2,IR) are the symplectic shears <}{, (I)> ;

+» The unitary changes of variables, defined for invertible L, by

My (x) = "/ detL]y(Lx) (66)
where the integer m corresponds to a choice of argdetL; the projection of m on
. (L7V 0
Sp(2d,R) is < 0 LT> .

Proposition 2. The Segal algebra So(R?) is invariant under the action of Mp(2d,R); in
particular y € So(RY) if and only if Fy € So(R?).

Proof. This is an immediate property of the metaplectic covariance property
W(Sy)(z) = Wy(S o) (67)

of the Wigner distribution (S € Sp(2d,R) the projection of S € Mp(2d,RR)) and of the
characterization given in Lemma (2). ]
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Further references are [40, 43, 44, 62, 34]. Finally let us mention that So(]Rd ) can
be charactized via Wilson bases (see [53]) and local Fourier bases ( see [76]) . One can
show that f € L>(R?) is in So(IR¥) if and only if it has Wilson coefficients in £!(I), where
I is essentially a half-space in Z¢ x Z?. In this sense Wilson bases over R? are like the
Fourier basis (defining A(T) and PM(T)) for the torus group.

The construction of Wilson bases was published by Daubechies/Jaffard/Journe in
[32]. This author learned about Wilson bases from I. Daubechies already in 1989 it was
possible to publish the follow-up result (connecting it with modulation spaces) already
one year later in [51]. Wilson bases in the discrete domain are given in [14, 15, 16]. They
have also been used to prove the kernel theorem in [53].

The Schriodinger equation for quadratic Hamiltonians

The metaplectic group Mp(2d,R) plays a crucial role in quantum mechanics because
of the following property. Consider a Hamiltonian function H which is quadratic in the
Xj, pi variables:

1
H(x,p) = 5 (x,p)M(x,p)" (68)

(M a real symmetric 2d X 2d matrix). Such Hamiltonians generalize the “harmonic
oscillator”

1
H(x.p) = 5. (o + mPe ) (©9)
m
familiar from elementary physics. The solution of the Hamilton equations

dx OJH dp JH
@ 9p A ox (70)

is explicitly given by

(x(1),p(1)) = 8:(x(0), p(0))
with S = exp(tJM);

since JM is in the Lie algebra of Sp(2d,R) we have S; € Sp(2d,R) for every t € R. Now,
when ¢ varies the symplectic matrices S; describe a differentiable curve in Sp(2d,R)
passing through the identity at time 7' = 0 (in fact, (S;) is a one-parameter subgroup).
It follows from a classical result from the theory of covering spaces (the “unique path
lifting property”) that there exists a unique path t — S:in Mp(2d,R) whose projection
is precisely the path  — §;; in particular So is the identity in Mp(2d,R). The interest
of these considerations comes from the following well-known result, whose second part
trivially follows from Proposition 2 above:

Proposition 3. (i) Consider the Schrodinger equation

ih%—zl — H(x,—ihd)y (71)
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where H(x,—ihd,) is the partial differential operator obtained by Weyl quantization from
the quadratic Hamiltonian H. Its solution is given Dy the formula

w(x,t) = Sy(x,0). (72)

(ii) Thus, if w(-,0) € So(R?) then y € SH(RY) and the solution depends continuously in
the So-norm on the time parameter t.

Part (i) has been known for a very long time, it has been implicit in the early work of
Hermann Weyl ([119]) , and proofs can be found in [62].

We said above that there is an alternative description of the metaplectic group
Mp(2d,R) in terms of generators. We set

1 1
W(x,x') = 5Px~x—Lx~x'+ EQX/ X (73)

where P (resp. Q) and L are as above, and consider the Fourier integral operator §W7m
defined by

ra 1 n/2 i /
St = (57 ) - AW) [ ey )av

AW) = i"\/[det].

One verifies, by simple inspection, that §W7m is easily expressed in terms of the elemen-
tary generators of Mp(2d,R), in fact:

Swm =V pMpmJV_ . (74)

It follows that §W7m € Mp(2d,R); one proves that the Fourier integral operators §W7m
generate the metaplectic group, more precisely: every Se Mp(2d,R) can be written
(non-uniquely) as a product of exactly two such operators: S= §W7m§w/7m/. In the case
of the Schrédinger equation, it turns out that if the Hessian matrix M of the Hamiltonian
is norl-singular, the operators S; are, except for a set of exceptional values of ¢, of the
type Sw .

Note that more concrete realizations of this principle allow E. Cordero and coauthors
to derive Strichartz-type estimates for the solutions of the Schrodinger equation (see
[26, 25, 27]).

A Fresh Look on Dirac’s Functional Calculus

In the case of matrices unitary matrices U are the most useful ones. A complex-valued
n x p-matrix U is unitary if and only one has

UxU' =1d,=U"xU. (79)
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Sometimes it is also interesting to consider rectangular matrices U of size m X n, satisfy-
ing one or the other of these two properties. If n < m it is still possible that U’ « U = Id,,,
or equivalently, that the columns of U form an orthonormal system. In particular, they
are a linear independent system of vectors. Alternatively for n > m one can have a
“perfect set of generators”, or a so called tight frame, satisfying U « U’ = Id,,, or
x = Yi_ (x,u)uy for all x € C™3, 1t is obvious that only for the case n = m (finite
dimension!) these two properties are equivalent, while in one can have one without the
other, also for the case 57 = (2.

Let us now go for the analogue of these two identities in the case of the Fourier
transform. Recall that .% is a unitary Banach Gelfand morphism, which however is
typically used in the spirit of an analysis mapping F : f — ({f,2s)) or ({f, %)),
while the inverse Fourier transform (synthesis of a function or distribution from “pure
frequencies™) is more in the spirit of the adjoint mapping. Since in both cases the kernel
for the corresponding mapping is continuous and bounded (actually smooth) , namely
K(x,5)= e 2%5% for Z and K (s,y) = e**~ for % ! the fact that they are corresponding
to two mappings which are inverse to each other, i.¢. they satisfy

FoF ' =Idy=F 1oz, (76)

implies obviously that the composition of their symbols according to (58) has to result in
the kernel of the identity operator. This brings us to a short discussion of the connection
between the Kronecker’s Delta and Dirac’s Delta. Modern distribution theory (and in
fact the kernel theorem) tell us that the identity mapping (or equivalently multiplication
by the constant 1) is given by a kind of §-distribution concentrated along the diagonal,
namely the functional (we just use an “arbitrary symbol” reminding of this idea) 64,
given as an element of Sf(R??) via the action f — [pa f(2,t)dt for f € S(R%?). In the
matrix setting we can view the unit matrix Id, as a collection of unit vectors, which
is clearly described in an equivalent way by the Kronecker 8-function Ag,,. Viewed
as a matrix kernel we have of course Ay, * x = x. The continuous analogue of such a
situation is a kernel K (x,y) such that

K 0)dx= 1)

so somehow one should have for any fixed x that K (x,y) represents &, (in the sense of the
point measure at x). However, starting from a general distributional kernel x € &/ (de ),
even if we write it symbolically in the form the “restriction” to x, i.¢. the distribution
K(x,-) does not make sense a priori. So we should probably really interpret the Dirac
symbol as a continuous analogue of the Kronecker symbol.

In books and papers on quantum mechanics, (using slightly different symbols) one
often finds relationships such as the following formulas:

()(“)@:5(s—t)7s7t€]Rd7 a7

25 One can show that these systems are nothing else than orthogonal 1 projections of orthonormal bases
in higher dimensions.
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as a replacement for the orthogonality relation, mostly in the form

<XS7XI>:51‘(S)7 s7t€Rd7 (78)

which is view-point similar to the interpretation of the n X n identity matrix as a collec-
tion of unit vectors (cf. (75)). On the other hand one finds expressions such as

ldor = [ 12} (xlds 19)

claiming that the identity operator can viewed as a superposition of rank-one operators

(cf. [98], Chap.1), evidently expressing completeness of the system of characters R<.

We can say: both formulas can be given their proper meanings in different ways. First
of all we view the Fourier transform and its inverse (or equivalently its conjugate kernel)
as Banach Gelfand triple morphisms. In some cases it is the “how”, i.e. the way how the
transformation is first defined, at least on the space of test function Sy(R?), which catches
our intention. One is lead to believe that the Fourier transform is primarily an integral
transform, which has the Lebesgue space L' (R?) as natural domain. On the other hand
(when we talk about Fourier synthesis) the w*-convergence is helpful, because it does
not make sense to interpret the Fourier inversion formula (we write f as a superposition
of pure frequencies) in any other natural topology.

Despite the fact that y; € C,(RY) C S§(R?) is only applicable (via integration) on
test functions from So(]Rd), concrete (hard analysis) arguments allow to show that they
determine even a unitary Banach Gelfand Gelfand triple automorphism. Obviously one
has Zo.Z ! = Id as well as Z ' 0. = Id. Both identities can be useful, e.g. in order
to show that the Fourier transform is injective, or that a given function is the Fourier
transform of another function (or distribution) of the same kind. If we try to describe
these two mappings through their kernels and try to compose the kernels using the
standard composition formula for kernels we end up with exactly the relations (??) and
(79) respectively. Of course, one can combine these kernels with regularizing operators,
in order to have kernels from So(]RZd), and in this case the composition can be carried
out in the usual way, using Riemannian integrals. Their products are then well defined
(according to (58)), and then the claim is: in the w*-sense the limit of these kernels
is the (kernel of the) identity operator, or (¢ — s), which is in standard terminology
the tensor product of & (the usual Dirac measures at zero) with the function constant
one, rotated by 45 degrees. From this point of view Dirac’s intention might not have
been too far away from simply going from the well-known Kronecker symbol with
discrete entries to a continuous version. The fact that the Fourier transform is using
building blocks from “outside the Hilbert space™ gives troubles to anybody who tries
to stay within the world of Hilbert spaces, while the viewpoint of Banach Gelfand
triples (in our view only a convenient realization of the idea underlying the concept
of rigged Hilbert spaces) opens up a new view and a technically sound perspective. As
mathematician we suggest therefore to provide in any concrete application the details
of the involved BGT-morphism instead of relying on the symbolic calculus per se. Most
likely one can overcome the purely technical problems using the idea of approximation
by test functions using regularization ideas, while obviously at critical points (where the
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symbolic manipulations lead to misleading conclusions) such justification will fail for
good reasons.
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