

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  JULY 02 2009

Banach Gelfand Triples for Applications in Physics and
Engineering 
Hans G. Feichtinger

AIP Conf. Proc. 1146, 189–228 (2009)
https://doi.org/10.1063/1.3183542

 22 February 2024 16:43:18

https://pubs.aip.org/aip/acp/article/1146/1/189/864661/Banach-Gelfand-Triples-for-Applications-in-Physics
https://pubs.aip.org/aip/acp/article/1146/1/189/864661/Banach-Gelfand-Triples-for-Applications-in-Physics?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/acp/article/1146/1/189/864661/Banach-Gelfand-Triples-for-Applications-in-Physics?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
https://doi.org/10.1063/1.3183542
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2100974&setID=592934&channelID=0&CID=768787&banID=521069223&PID=0&textadID=0&tc=1&scheduleID=2025884&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Facp%22%5D&mt=1708620198793430&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Facp%2Farticle-pdf%2F1146%2F1%2F189%2F11688403%2F189_1_online.pdf&hc=6e293cfdcd49d73ec6e7730522da3d10e4015529&location=


Banach Gelfand Triples for Applications 
in Physics and Engineering 

Hans G. Feichtinger 

Faculty of Mathematics, NuHAG, University Vienna, AUSTRIA 

Abstract. 
The principle of extension is widespread within mathematics. Starting from simple objects one 

constructs more sophisticated ones, with a kind of natural embedding from the set of old objects to 
the new, enlarged set. Usually a set of operations on the old set can still be carried out, but maybe 
also some new ones. Done properly one obtains more completed objects of a similar kind, with 
additional useful properties. Let us give a simple example: While multiplication and addition can 
be done exactly and perfectly in the setting of Q, the rational numbers, the field R of real numbers 
has the advantage of being complete (Cauchy sequences have a limit . . . ) and hence allowing for 
numbers Uke :7r or \/2. Finally the even "more complicated" field C of complex numbers allows to 
find solutions to equations like z^ = — 1. The chain of inclusions of fields, Q C R C C is a good 
motivating example in the domain of "numbers". 

The main subject of the present survey-type article is a new theory of Banach Gelfand triples 
(BGTs), providing a similar setting in the context of (generalized) functions. Test functions are 
the simple objects, elements of the Hilbert space L^(R'*) are well suited in order to describe 
concepts of orthogonaUty, and they can be approximated to any given precision (in the 11 • 112-norm) 
by test functions. Finally one needs an even larger (Banach) space of generalized functions resp. 
distributions, containing among others pure frequencies and Dirac measures in order to describe 
various mappings between such Banach Gelfand triples in terms of the most important "elementary 
building blocks", in a clear analogy to the finite/discrete setting (where Dirac measures correspond 
to unit vectors). 

Our concrete Banach Gelfand triple is based on the Segal algebra 5o(R'*), which coincides with 
the modulation space M^(R'*) = MQ' (R**), and plays a very important and natural role for time-
frequency analysis. We will point out that it provides the appropriate setting for a description of 
many problems in engineering or physics, including the classical Fourier transform or the Kohn-
Nirenberg or Weyl calculus for pseudo-differential operators. Particular emphasis will be given to 
the concept of w*-convergence and w*-continuity of operators which allows to prove conceptual 
uniqueness results, and to give a correct interpretation to certain formal expressions coming up in 
various versions of the Dirac formalism. 

Keywords: Keywords: Banach Gelfand triples, Fourier transform, Kohn-Nirenberg Symbol, 
w*-convergence, spectrogram 
PACS: 02.30.Sa Functional analysis, 02.30.Tb Operator theory, 02.30.Nw Fourier analysis, 
02.30.Jr Partial differential equations, 03.65.Ca QM Formalism 
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MOTIVATION AND INTRODUCTION 

Although Gelfand triples such as {,y,L'^,,y') resp. so-called rigged Hilbert spaces 
(Hilbert spaces endowed with an extra structure of surrounding spaces) have a certain 
tradition, mostly within theoretical physics, not much systematic mathematical investi­
gation of this concept has been made. It is the purpose of the present paper to bring the 
advantages of the concept of Banach Gelfand triples to the attention of a wider commu­
nity, to exhibit a concrete, simple and versatile example, coming from time-frequency 
analysis, and to show how natural it is. The concrete content of these notes is only indica­
tive for the potential, both for the strict derivation of vague but somehow valid claims, 
but also for teaching purposes, in a context where not the full power of Lebesgue inte­
gration or the theory of nuclear topological vector spaces is available. In fact, we even 
believe that some of the involved mathematical concepts can be replaced by more natural 
and hence more simple ones. 

We address physicists and engineers and mathematicians interested in apphcations 
or who have to teach students from the above community. While the applied scientists 
are often using symbolic expressions and derive in this ways valid identities the more 
strict mathematical view-point requires to have solid mathematical definitions, clear 
rules and valid logical concatenations of arguments, step by step. By suggesting the 
concept of Banach Gelfand triples (BGTs), which somehow extend the idea of rigged 
Hilbert spaces, we hope to offer a quite natural but very powerful tool, which allows 
to validate some of these heuristic ideas. One of the specific points emphasized is 
the relevance of w*-convergence of sequences of generalized functions and w* — w*-
continuity of operators. Intuitively this can be explained to an audio engineer as follows: 
A sequence a„ of distributions converges to ao in the w*-sense if (and only if) the 
spectrum (the short-time Fourier transform) of a„ with respect to any reasonable (say 
Gaussian) window is going to look more and more like the spectrum of ao over larger 
and larger parts of the time-frequency plane. 

Let us mention that this is a written reahzation of explanations and statements given 
at various occasions in talks on this subject during the last four years^ The material will 
be covered in much more detail in a forth-coming book pubhcation by the author (jointly 
with G. Zimmermann, for Birkhauser's NAHA series). 

We also view this as a part of a series of publications, showing how to get from 
basic linear algebra concepts to time-frequency analysis, in particular to Gabor analysis 
([65], the discretized and computationally relevant version of time-frequency analysis). 
It starts with the "Guided Tour from Linear Algebra to the Foundations of Gabor 
Analysis" ([56]), where the basic algebraic principles are explained using the standard 
concepts of linear independence and generating systems of vectors. It uses linear algebra 
terminology, and works in the setting of finite dimensional vector spaces (cf. e.g. [108]). 
In fact, finite vectors are understood as functions on the cyclic group ZA? of unit roots 
of order N, and the properties of involved matrices (e.g. PINV-matrices) show how to 

Most of them are downloadable from NuHAG Talk server 
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obtain implementations in an efficient way^. The algebraic theory is then pursued in [54] 
in the setting of general finite Abehan groups. Based on this the papers [55, 24] provide 
a refined view on the tools needed to handle the continuous case. Basic facts had been 
already presented in [53, 61] and above all in the book "Foundations of Time-Frequency 
Analysis" by K. Grochenig ([69]). 

Linear Algebra and Matrix Analysis 

Coming from linear algebra we have learned to focus on bases, i.e. coordinate systems 
which allow to express any vector in a unique way as a finite linear combination of the 
elements of a basis. In matrix terminology this boils down to concentrate on invertible 
matrices A, which have the pleasant property of allowing for every right hand side b a 
unique solution x of the linear equation expressed^ as A * x = fc, or equivalently write 
fc as a linear combination of column vectors of A. Solving for x is then possible in 
various ways, e.g. using Gauss elimination, but in MATLAB^*^ one could simply use 
the command x = inv{A) * b. If one makes use of a scalar product on W^ or C* one 
finds that some bases are much more convenient than others, because they allow for 
an effortless calculation of the coefficients of a vector, by calculating scalar products. 
Let {ukj'l^i in C* be such an orthonormal basis, then we can form a matrix U, with 
these vectors as column vectors. The fact that x = Yi=i{x,Uk)uk for all x G C* is then 
equivalent to the fact that ^ U *U' = Id, the unit matrix of size n x n, or equivalently: 

d 

ld=Y_i Pk, where Pk = Uk* u'k- (1) 
k=l 

Since for the case of square matrices any right inverse matrix is also a left inverse matrix 
this good property is indeed equivalent io U'*U = Id. This is compactly expressing 
the fact that the columns of U (and hence in fact also the rows) form an orthonormal 
set, or in terms of the individual elements of the Gramian matrix G= U' *U and using 
Kronecker's 5-symbol: 

{uk,Uj) = 5kj. (2) 

Much of this spirit of doing linear algebra, i.e. to work in the setting of finite dimen­
sional vector spaces, using bases to expand vectors, or matrices in order to describe 
linear mappings, is simulated in the bra-ket formalism going back to Paul Dirac. This 
allows for continuous integrals instead of (finite or infinite) sums, keeping in mind the 
dual use of vectors, either as building blocks for synthesis (as with matrix multiplication 
Ai—f A*x, building linear combinations of the column vectors of A) or analysis, taking 
scalar products with the same set of vectors, by forming yi—f A' *y. Unfortunately this 
freedom makes things occasionally quite vague, due to a couple of new problems: 

2 E.g. within the MATLAB^*^ software, 

"* We use the MATLAB convention of writing U' for the transpose, conjugate matrix of U. 
Here * denotes matrix midtiplication, following the convention used by MATLAB. 
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1. vectors and operators are expanded as a continuous superposition (in terms of 
integrals) of certain building blocks instead of a series or sum; 

2. the meaning of these integrals is not obvious (Riemann, Lebesgue); 
3. the building blocks may not belong to the Hilbert space anymore; 
4. hence scalar products between two such elements are not meaningful a priori; 
5. one may even have problems with the domain of the rank-one operators; 
6. as in the finite-dimensional case, one may have orthonormality without complete­

ness (and vice versa); however, in the infinite dimensional setting one cannot argue 
with dimensions. 

Frames and Riesz Bases in Hilbert Spaces 

Let us therefore describe an intermediate step, where we have collections of vectors 
in a Hilbert space ,J^, for which the synthesis and/or the analysis mapping make sense, 
as bounded linear mappings between ^ and f = f{I) for some (countable) index 
sequence /. We will see concrete examples (Gabor families) in a moment. 

Definition 1. A family {gi)iei in a Hilbert space ,J^ is called a Bessel family if the 
analysis mapping C : / 1 - ^ {{fi§i))iei is bounded from ,J^ into C^{I), i.e. if and only if 
there exists some positive constant B >0 such that 

\\Cf\\l(r)=ll\if^Si)f<B\\ff^ for a l l / G ^ . (3) 
iei 

By adjointness this is the case if and only if the corresponding synthesis mapping 
R: c = (ci)ie/1-^ Y.iei ctgi is bounded. Using standard terminology known from O. Chris-
tensen's book ([19]) one defines: 

Definition 2. A family {gi)iei in a Hilbert space ,J^ is called a frame if there exist 
constants A, 5 > 0 such that for all / G . ^ 

A\\ff<l^\{f,gi)f<B\\ff. (4) 
iei 

Definition 3. A family {gi)iei in ^J^ is called a Riesz (basic) sequence if Y^iei Cigi has a 
Hilbert space norm equivalent to the ^^-norm of the sequence {ci)i(zj, i.e. if there exist 
constants C, Z) > 0 such that 

\Y,Cigit^<D\\c\\]2 for all CG 2̂̂  (5) 
iei 

If {8i)iei is a frame respectively Riesz sequence then the analysis mapping C re­
spectively synthesis mapping R establishes an isomorphism between its domain Hilbert 
space and its closed(!) range within its target Hilbert space. 

One easily shows that a family {gi)iei in a Hilbert space . ^ is a frame if and only if the 
so-called/rame operator S := R o C is bounded and invertible, with bounded inverse. 

192 
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Analogous results apply for Riesz basic sequences, with C o R instead of R o C. Note 
that the fact that the composition R o C (in the case of a frame) or C o R (for a Riesz 
basic sequence) is invertible does not imply that C or R is invertible. However, if this 
is indeed the case we have: A family {gi)iei is called a Riesz basis for Jf if it is both a 
frame and a Riesz sequence. In that case of course both C and R estabhsh isomorphisms 
b e t w e e n ^ and ^2(7). 

It is not surprising that many of the concepts known from linear algebra extend first 
in a very natural way to (separable) Hilbert spaces M' such as L^{W^). Instead of finite 
sequences of vectors (resp. functional) one deals with infinite sequences and makes 
corresponding boundedness assumptions, which allow to establish a rather complete 
analogy to Ait four spaces concept proposed by G. Strang ([108]): The closed range of 
an operator and its adjoint together with the corresponding null-spaces can be used to 
have a full geometric understanding of the situation. 

For the case of a frame, the situation is best described by the following diagram, where 
C is the analysis mapping / H^ ({f,gi)), the operator R is defined as R := S^^ oR, and 
P := C oR is the orthogonal projection from i^{I) onto the range of C. 

Hence R o C = Wj^, i.e. R is a left-inverse to C, the so called Moore-Penrose inverse 
to C (realized as PINV in MATLAB). Explicitly one finds for / G ^ 

/ = W ^ / = ( R o C ) / = ( S - i o R o C ) / (6) 

= S-'C^{f,gi)gi)=Y,{f,gi)S-'gi. (7) 
iei iei 

This motivates the definition of the so-called dual frame {gi)iei by gi := S^^gi. Using 
the dual frame one can reconstruct any f e ^J^ from its coefficients C / = {{f,gi)) as 

f = Y,{f,8i)8i, (8) 
iei 

i.e. R is just the synthesis operator with respect to the dual frame {gi)iei-
For details conceming/ramei resp. Riesz basic sequences we refer to O. Christensen's 

book ([19]) or [77]. The definition of a frame can be generalized to also cover continuous 
frames, e.g. coherent frames obtained by the action of a continuous group on some 
reference vector. Instead of a discrete (typically countable) index set a measure space Q. 
is used, the mapping C is now an injective mapping into L?{Q.) with closed range, and 
hence the same kind of diagram is still valid. This concept has made early appearence 
in the work of G. Kaiser ([86, 85]), and S.T. Ah, J.P. Antoine and J.P. Gazeau ([3, 
4]). There are more recent papers on this subject by J.P. Gabardo and D. Han [64] 
or M. Fomasier and H. Rauhut in [63], discussing the transition from a (redudant) 
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continuous to a (typically still redundant) discrete frame. Their work has been certainly 
inspired by the papers on coorbit theory by Feichtinger/Grochenig ([48, 49]), which are 
also the basis for the first appearance of Banach frames in [67]. In this setting (the so-
called coorbit spaces) concrete continuous frames appear in the context of irreducible, 
square-integrable group representations. Further generalizations of coorbit theory and 
continuous frames are treated in the work of S. Dahlke and his coauthors, [31, 30, 29]. 

Going beyond Frame Theory, towards Dirac 

The Fourier transform is an important tool for both physics and engineering, making 
use of the "pure frequencies". What makes them so important is the fact that they are 
eigenvectors for the translation operators. Mathematicians like to consider the functions 
Xs{t) = e^^"' as characters of the group R^, viewed as a LCA (= locally compact 
Abelian) group, with respect to addition of vectors. The exponential law implies that 
Xsix + y) = X.'<{x)-X.'<{y), x,y G R'*. Since we have the pointwise relation Xr-X.'< = Xr+s 
we find that the dual group, or frequency domain is just 

i^ = te|iGR''}. (9) 

Spectral synthesis and spectral analysis (or Fourier analysis, or harmonic analysis in 
more general terms, see [102, 11]) address the question whether one can compose any 
signal, function, distribution / from this (continuous) family of "elementary building 
blocks" by superposition (since we have a continuous parameter it is natural to think of 
an integral representation), and on the other hand, wether and how one can identify the 
required coefficients (amplitudes/spectral components) from the signal / . 

As in linear algebra, one has to settle the problem whether every function, or more 
precisely, every element from a given (topological) vector space can be represented, and 
secondly whether the representation is unique. As we will see, the setting of BGTs will 
also allow to differentiate and decide which one of the objects (of different complexity) 
can be composed or decomposed in which concrete way, e.g. through integral represen­
tation, in the weak sense in the case of the Hilbert space M' = L^(]R'') or in the w*-sense 
within the dual space So{R^). 

Although it would be more natural from the linear algebra view-point described above 
to start with the synthesis problem, we find it more natural (in the Fourier context) to 
start with the analysis part. After all, according to our philosophy the two operations are 
mutually adjoint to each other 

Following the usual path the Fourier transform ^ i s defined on L^{W^), the Banach 
space of all absolutely Lebesgue-integrable functions (modulo null-functions) as an 
integral transform as follows: 

{^f){s) ^ f{s) = j f{t)W)At = {f,Xs)- (10) 

We will see later that it suffices to know it on some smaller spaces (such as the Schwartz 
space ,y{R^) or 5o(R''), where it is enough to use the ordinary Riemannian integral). 
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Together with .^ we have to consider the adjoint mapping, i.e. Fourier synthesis, 
which in analogy to the situation in matrix analysis is given, at least for nice functions 
h, by 

.^*h= f his)x.ds. (11) 
•JR'' 

This integral can be understood in the following sense: Each Xs is a bounded and 
continuous function with \Xs{t)\ = I ior t,s e W^, hence we have a pointwise well-
defined function {^*h){t) ifh is Riemann-integrable. 

Although it is well known how to extend^ to a unitary automorphism of 
[L?{R'^), II • II2), thanks to the fundamental identity of the Fourier transform 

[j{y)f{y)dy= [ J{s)g{s)ds, (12) 

it is clear that one has to expect a lot of trouble with the domains of ^ and ^ * , because 
the different domains do not fit (a typical element / G ^ L ^ {W^) may not be integrable 
itself, e.g. if / has discontinuities) and because the elementary building blocks, the pure 
frequencies {Xs)seR''^ ^o not belong to the Hilbert space L^CR^). On the other hand it is 
tempting to describe this continuous family (as Dirac did in some sense) as a "continuous 
coordinate system", satisfying a kind of (distributional) orthogonahty relation as well as 
a decomposition of the identity operator as a continuous integral of rank-one operators 
comparable to the pair (2) and (1). We will provide arguments towards a meaningful 
interpretation of such claims in the context of Banach Gelfand triples. 

THE BANACH GELFAND TRIPLE (^o,^^*') 

The above observation already calls for a unified treatment of the Fourier transform in 
the finite as well as in the Euclidean setting, or even (according to A. Weil) in the setting 
of LCA (locally compact Abehan) groups, including the field of p-adic numbers (see 
[116, 83, 102]). It is also clear that one cannot - despite its importance - stay within the 
Hilbert space L^{W^) anymore. We will try to convince the reader that the concept of 
BGTs (= Banach Gelfand triples) is a good way out of this problem. 

Banach Gelfand Triples and their Morphisms 

Recall the famous formula e^^^ = 1. It would not have made sense to a Greek mathe­
matician, even if he had perfect knowledge of the field Q of rationals. One has to be able 
to create irrational numbers such as n beforehand, and one also has to be able to extend 
addition and multiphcation to the larger domain of complex numbers. Finally one has 
to have a canonical way to give a meaning to the power series expression (adding up 

By arguments quite similar to those used in the extension of multiphcation of rational numbers to the 
domain R. 
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infinitely many of those numbers) to reach the perfect calculus of exponential functions 
in the complex domain. We will follow a similar path, with the Hilbert space .M" (typ­
ically L^(]R'')) playing the role of R'* and the generalized functions being the analogue 
of the complex numbers. Before going to the concrete BGT (5o,L^,^o') let us introduce 
the concept of Banach Gelfand triples in full generahty (for the sake of simplicity we 
restrict our discussions to the case of separable Banach spaces). 

Definition 4. We call a triple of vector spaces {B,,J^,B') a Banach Gelfand triple if 
(5, II • ||B) is Banach space, which is dense in some Hilbert space ,J^, and which in turn 
is contained in B', the dual of 5. 

There are many examples, and the basic fact is a natural embedding of the elements 
of 5 (usually the space of test functions) into its dual space B', the space of generalized 
functions or distributions'^. 

Although the idea of rigged Hilbert spaces ([103,6, 35,120, 36,2, 7]) is very close to 
our BGT concept there are two important differences First of all it is clear that we allow 
for Banach spaces instead of a Hilbert spaces of dual Hilbert spaces "surrounding" the 
central Hilbert space, nor any nuclear topological vector space, such as ,y{'R'^). The 
concrete example, starting from the space 5o(R'') allows to obtain nevertheless a kernel 
theorem. We are not aware of any kernel theorem for rigged Hilbert spaces other than 
those using nuclear (hence not Banach or Hilbert) spaces. One can trace the vahdity of 
the kernel theorem back to the tensor product factorization property (Lemma 4), which 
in turn has to do with the "separation of variables" property in the Fourier algebra, which 
has been historically one of the highlights of J.B. Fourier's concept. 

It has been expressed by several authors (cf. [36, 37, 66? ]) that rigged Hilbert 
spaces (a triple of Hilbert spaces, forming a BGT in our sense) allows to describe valid 
identities which cannot be formulated in the Hilbert space setting alone^ We take the 
same view-point, but emphasize the close connection between the inner Banach space 
and its dual by working with four topologies, i.e. by giving the (natural) w*-topology 
on B' a prominent role. Note that the dual space for SQ endowed with the w*-topology 
(often denoted as the weak a{B',B) topology) is just B itself, and hence one has a kind 
of Riesz-representation theory for BGTs in the background. Furthermore it is helpful to 
recall that bounded (closed) subsets in B' are compact in this topology according to the 
theorem of Banach-Alaoglou ([106], section 3.15). 

The prototype of a Banach Gelfand triple is {i^,i^,i'"){Z), where the w*-topology 
describes coordinate-wise convergence, i.e. views i°° as subset of R^ with the product 
topology in the sense of Tychonoff. 

In fact, one may view Banach Gelfand triples as a new category in the spirit of 
MacLane ([96]), where the morphisms are the "structure preserving mappings", i.e. 

While smaller spaces of test functions give larger space of bounded linear functionals on them, one has 
to keep in mind that B is not degenerating, because then this construction breaks down. So for our purpose 
one may think of a situation where y(S/) C B. 

For example, point evaluations do not make sense on L^(S/) while they make perfect sense on a Sobolev 
space, once the smoothness parameter satisfies s > d/2, according to Sobolev's embedding theorem. 
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linear mappings which are continuous with respect to each of \hefour (!) topologies. 

Definition 5. If {Bi,Mi,B\) and {82,^2,B'r^ are Gelfand triples then a linear operator 
T is called a [unitary] Gelfand triple isomorphism if 

1. A is an isomorphism between Bi and 52-
2. A is [a unitary operator resp.] an isomorphism between Mi and M2. 
3. A extends to a weak* isomorphism as well as a norm-to-norm continuous isomor­

phism between B'^ and 52-

In principle every ONB (= orthonormal basis) ^ = {^fi)ieI for a given Hilbert space 
M can be used to establish such a unitary isomorphism, by choosing as B the space 
of elements within M which have an absolutely convergent expansion, i.e. satisfy 
Lie/ \{xTVi)\< °°- Of course, this space, which deserves perhaps the symbol Avp, depends 
on the choice of the orthonormal basis W, but of course one has many equivalent bases 
describing the same space. 

For the case of the perhaps most important ONB for M = L^([0,1]), i.e. for the 
trigonometric system, the corresponding definition is already around since the times 
of N. Wiener, who suggested to consider specifically A(T), the space of absolutely 
continuous Fourier series, because it has very good and useful properties (compared 
to the Lebesgue space [L^{T), || • | | I ) , where e.g. the Fourier inversion is a non-trivial 
matter). It is also not surprising in retrospect to see that in the discussion the dual space 
PM{T) = A(T)' came up, the space of pseudo-measures. One can extend the Fourier 
transform to this space, and in fact interpret this extended mapping, in conjunction with 
the classical Plancherel theorem as the first unitary Banach Gelfand triple isomorphism, 
between {A,L^,PM){T) and {i\f,r){Z). ** 

It is the main goal of this article to show how the use of the Banach algebra 5o(R'') al­
lows to have a similar interpretation of the Fourier transform (and many other mappings 
relevant for physics, engineering, or mathematical considerations in time-frequency 
analysis), how to make use of the w*-concept and how to re-interpret the Dirac for­
malism in this context. 

Having expounded the general theory of Banach Gelfand triples, we are now ready to 
introduce the constituents of a particularly useful example, namely the Banach Gelfand 
triple (5O,L2,5O'). 

Modulation Spaces 

The Banach space (5o(R''), || • ||so) of test functions to be used in the following is a 
particular instance of a class of function spaces studied in time-frequency analysis (TF-
analysis), called modulation spaces. In order to define these spaces we have to recall 
some concepts from that field. The basic tools in TF-analysis are time- and frequency 
shifts (TF-shift) given by TJ{t) = f{t-x) and Mo/ (0 = e^'^'^^'fit), for functions / 

The Segal algebra 5o(G), defined for general LCA (= locally compact Abelian) groups is in fact a 
generalization of this construction, i.e. 5o(T) = A(T). 
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on W^. They are combined to (unitary) time-frequency shift operators 

7r(A) = 7r(x,ft))=Mo7;, for X = {x,(i}) eW^ xW^. (13) 

Using these operators one defines (e.g. on L'^{R^) or for continuous and absolutely 
Riemann-integrable functions) the Short-Time Fourier Transform as a function on the 
time-frequency plane ([69]) resp. phase space ([62]) in the following way: 

Vgf{X) = Vgfix,0)) = {f,Mo,T,g) = {f,n{X)g) for A = (x,ft)) G R'* xR'*. (14) 

Modulation spaces occur in the study of the concentration of a function in the time-
frequency plane, described in terms of function spaces over R'* x JR'*. The classical ones 
are defined as follows: Let g e ,y{R^) be a Schwartz function, I <p,q <oo,s eM., then 

MP^'^iR') = {/ G -y'iR') : 11/11̂ ., < oc}, (15) 

where the norm ||/ | |^.9 on Mf'^(]R'') is given as 

\{f,Mo,T,g)\Pdx] {l + \co\yUco] , (16) 

i.e. for which Vgf belongs to some weighted mixed-norm space over phase space. 
In the "classical" case the weight depends only on frequency, hence the spaces are 
isometrically translation invariant. The only important facts about the constraint imposed 
on Vgf is the membership in a solicP and translation invariant Banach space over R^^. 
We use the abbreviations Mf := Mf'̂  and M^ := Mg'^. 

The modulation space Mf'^(]R'') is a Banach space of tempered distributions, the 
definition is independent of the analyzing function g, and different ^'s yield equivalent 
norms on these spaces. The Gauss function is a good choice. Among the modulation 
spaces are the following important function spaces: 
(a) the space SoiW') we are after is justMo'^(R'') = M^W'); 
(h)L^{M.'')=Ml'^{M.''); 
(c) the Bessel potential spaces M's{W^), defined via the Fourier transform by 

Jf.iW^) = {f e ^': / |/(ft))|2(l + |ft)|)2Mft)<oc} (17) 

coincide with the modulation spaces M / ( 
(d) the Shubin classes Qj(R''), which can be characterized by a weighted L^{W-''')-
condition with respect to the radial symmetric weight over phase-space of the form 
Vs[X) = (l + lAp)''/^ instead of the usual weight Wj(ft)) := (l + |ft)|)''resp. [l + \co\^Yl^. 

In a solid space the norm behaves monotonically, i.e. \F{x)\ < |G(x)| for all x e R"* implies that the 
norm of F is smaller than the norm of G. 
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A lot of details on these spaces can be found in the book of Grochenig, and in the 
survey note [46] (written in 1983 and published in 2003). 

The original description of the modulation spaces was in terms of generalized Wiener 
amalgams, on the Fourier transform side: 

or equivalently, Banach spaces of distributions obtained using BUPUs (bounded uniform 
partitions of unity, such as a collection of shifted B-splines) (cf. [43, 78]). 

The Banach space iSb(]R'') and its Various Descriptions 

In the following we will establish the basic properties of the Banach space of test 
functions on which our BGT-approach will be based^". 5o(R'') can be described in many 
ways and many equivalent norms can be used to characterize this space. Originally (see 
[42]) it was introduced as the Wiener amalgam space W{,^L^,i ) (see [43] for gen-
erahties of this concept), but the equivalence between discrete and "continuous" norms 
(using control functions) can be used to show that it coincides with the coorbit space 
(as developed in full generality in [48]) or with the modulation space {M^{W^),\\-\\j^^i) 
(see the book [69] for a good introduction to the subject in the context of time-frequency 
analysis). We will follow the description given there, going back to [45], pubhshed in 
1989. 

According to the description above we can define ^(R' ' ) := M^ {W^) by means of the 
STFT with respect to the Gaussian window go{t) = e^^^'^ . This choice has the advantage 
that Fourier invariance of this space is easily verified. It is also not difficult to check that 
M^ {W^) C L^ DCo{W^y^. The following is an alternative definition not making reference 
to Lebesgue integrals (and thus suitable for apphed courses): 

Definition 6. 5o(R'') := {/ G Co{R'^): / absolutely Riemann-integrable over W^, 
y^o/absolutely Riemann-integrable over R^ x W^}, with the norm ||/||so := II^^O/IILI • 

An atomic characterization^^ also used by H. Reiter (see [101]) is 

Theorem 1. We call a function f G ,:^L^{W^) an atom (on the time-side) ifsupp{f) C 
Bi (0) for some x G M.'^. Then So{W^) consists of all absolutely convergent sums of atoms, 
i.e. f G ^(R' ' ) if and only it has a representation as 

f=Y.TxJn, With ^| |/„|Li<o°. (18) 
n>l n>l 

It is occasionally referred to as Feichtinger's algebra in the literature, see [102], 
^̂  We write (Co(R'*), || • ||oo) for the space of continuous, complex-valued functions, vanishing at infinity, 
i.e. with \imM-^^f{x) = 0, endowed with the sup-norm ||/||oo := sup^ggd l/WI-
^̂  This atomic characterization should be reminiscent of the atomic characterization of Hardy spaces, 
given by Coifman and Weiss ([23]). 
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Endowed with the natural norm, i.e. 

is the smallest (non-trivial) Banach space [B,\\-\\B) with the property 
IK( -^ ) / | |B = II/IIB/O?' all f G 5,A G R'* xik'*, i.e. it is continuously embedded into 
any other space with this property^^. Moreover So{'R'^) is invariant under the Fourier 
transform. 

This is [41], Thm.l. See [94, 95] for further characterizations of 5o(R''), and of 
course the book [69]. It was the clue for many other interesting properties of 5o(R''), 
which are nowadays proved using TF-arguments. Among others one has the following 
characterization. Since ^o = ^o it sheds some light on the Fourier invariance of 5o(R''). 
Due to the Fourier invariance one can also avoid the ^ L ^ norm ||/j||jr^i := ||/||z,i for 
h = f hy doing the decomposition into pieces of equal size on the Fourier transform 
side. In this way one achieves a description of / G ^o(IK'') as a sum of band-pass signals. 
This is what Hans Reiter really used, in [100, 101]. 

Lemma 1. All absolutely convergent series of time-frequency shifts of ga are contained 
in ^(R' ' ) , and even make up all ofSQ{W^), i.e. 

SQ{W^) = \ Y,ClnM^T^^gQ:{Xn,^n)e^'^X^'^,{an)nmel\n)\. (20) 

Since the choice of the window in the definition of modulation spaces gives these 
definition some smell of arbitrariness, some people prefer the characterization of 5o(R'') 
using the (quadratic) Wigner distribution as a suitable alternatively, despite the fact 
that from the description below it is a-priori not clear why 5o(R'') should be a linear 
manifold. Let us recall the definition of the cross-Wigner distribution (see [20, 21, 22, 
79, 80] for f,g G L^{M.'^) first, with z = (x,<^): 

W{f,g){z) = j^^e-^'''^yf{x+\y)g{x-\y)Ay. (21) 

Lemma 2. / G ^o(R'') if and only if the Wigner function W( / , / ) G L^( 

Whereas some basic invariance properties of 5o(R''), or properties like the restriction 
to subgroups or integration along subgroups can be derived quite easily (cf. [40]) the last 
criterion is the most useful for the derivation of metaplectic invariance (cf. last section). 

The dual space (*'(M^), || • \\s^) 

Together with the space 5o(R ) of test functions we will have to consider its dual 
space, the collection of all bounded linear functionals on [SQ {W^ ) J 11 • 11 SO ) • Since . 

See [102, 41, 99, 101] for background on Segal algebras resp. the Segal algebra viewpoint on 5o(R'*). 
It is also the smallest strongly character invariant Segal algebra. 
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is the smallest isometrically TF-invariant Banach space its dual is essentially the largest 
space (of distributions) with this property. We will make use of this space, endowed with 
its standard norm respectively the w*-topology. 

We use the symbol (*'(R''), || • Hv) for the space of bounded linear functionals on 
(^(R'*), II • llso)' where the norm for a e So{W^) is defined as usual by 

\\a\\s,> := sup{|a(/) | : / e So{M.'), \\f\\so < 1}. (22) 

Definition 7. A distribution a G SQ is regular, if there exists a locally integrable function 
(p G L^iociM.'') such that 

a{f)= [ cp{t)f{t)dt forall/G*(R''). (23) 
•JR'' 

In this case, we write a =: a,p. 

Here, we have a,p = a^, if and only if (p{t) = \if{t) almost everywhere. Regularity of a 
distribution does not necessarily imply that the integral in (23) is absolutely convergent 
for all f e So. This holds for 9 in an appropriate Wiener amalgam space, though. 

Proposition 1. For (p G W{L^,t°), we have that a^, G SQ with WOfpHsg' < ||9|ITV(LI £°°)' 
and the integral in (23) is absolutely convergent for all f G SQ. 

In particular, we see that spaces like SQ, U, W{LP\f/^) are continuously embedded 
in 5o' for 1 < /), /)i, /)2 < °°, in the sense that for an element (p of one of these spaces, we 
have Ofp G So, and the norm of a,p can be estimated from above by the respective norm 
of (p. For P2 = °° this argument implies that we can even consider periodic functions 
LP{T'^) as subspaces of W(L^, r ) c S({{M.'^). In a similar way every bounded measure 
jU G Mb{W') can be identified with a^ e So via 

(yn{f)= [j{t)Mt) fo ra l l /G* , 

with 11 ffju 11 SQ/ < C11 jU I IMJ • In particular, all finite discrete measures define elements of Sd. 
But there are also many other (unbounded) measures within So{W^), since the space 
of translation-bounded measures W{Mi,,t') is contained SQ. For example, UJ^ := 
IAGA h e *'(K) for any lattice A < R'*. 

The standard methods for Wiener amalgam spaces (cf. [43,78]) imply that Sd{^'^) can 
be characterized as W[.^U°,r){W^), the space of translation bounded quasi-measures, 
because ^L"{W^) = PM{W^) := {a = ^-% for some/j G U°{W^)}, the space of 
pseudo-measures, coincides locally with the space of quasi-measures ([92, 39]). 

There are also quite useful convolution relations, such as 

So*Sd<^W{.S^L\r)=.Jl{So){W^), (24) 

where J^{So) are the pointwise multiphers of 5o(R ). However, 5o(R ) is not dense in 
Sd{^'^) with respect to the norm topology and therefore we have to invoke a second, 
weaker topology on this dual space. 

201 

 22 February 2024 16:43:18



w*-convergence in iSb'(]R'') 

A sequence (c7„)„eN in So{'R'^) is w*-convergent '̂* to ao G Sd{W^), in symbols 

ao = w*-l ima„ (25) 

if for every test function / G ô(IK ) one has 

l i m a „ ( / ) ^ a o ( / ) , (26) 
n 

i.e. pointwise convergence of the sequence (a„) to some limit ao. The following equiv­
alent characterization is valid for arbitrary Banach spaces: 

Lemma 3. A (bounded) sequence {(y„)„eN in So{W^) is w*-convergent to OQ if and only 
if for every compact M c ^o(I^'') and every e > 0 one has: There exists some index no 
such that n>no implies 

\<ynif) - ooif) I < e, for all feM. (27) 

Since the atomic characterization of (5o(R''), || • ||so) implies that for any non-zero 
g G So{W^) the set of all TF-shifted copies of ^, i.e. the family {7t{X)g\X eR"^ xR'^jis 
total in (^(R'*), || • \\sg), we arrive at the following characterization of w*—convergence: 

Theorem 2. A bounded sequence (c7„)„eN is w*—convergent to Go G So if and only if for 
some (and therefore for any) non-zero g G ^o(I^'') one has pointwise, or equivalently uni­
form convergence over compact sets of the TF-plane ofVgCn to VgCo- More explicitely: 
For every R> 0 and e > 0 there exists some index no such that 

\Vg{an){X)-Vg{ao){l)\ < e \ln>noA with \X\<R. (28) 

A verbal description of this situation is to say that the spectrograms of a„ look more 
and more similar to the spectrogram of ao over larger and larger parts of phase space. 

There are of course many important examples where w*—convergence is valid, while 
in contrast we do not have norm convergence, even for some simple examples as 

1. if x„ -^ xo, then 5̂ 0 = w* -l im„ 5^^, while \\5^ - 5y\\sg' = 2iorx^y. 
2- Xsn -^ Xso in the w*-sense if and only if Sn^so; 
3. lUr = '£keZ'i^rk^So for r^oo; 
4. {Stpg)p^o ^ ^ in the w*—topology, for p ^ 0, if /jjd^(x)(ix = 1, where 

Stpg{x) = p^^g{x/p) is the L^—normalized, dilated version of ^; 

5 . / jLIJ / ,^ l = ai for h—fO (Riemannian integrals definition for / G 

The study of this convergence goes back to [17], where relative completions have been introduced for 
the study of multiplier spaces. 
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For later use let us describe exphcitely what it means that a linear mapping T on SQ 
is w* — w*-continuous using bounded and w*-convergent sequences: 

cT„(/) ̂  cTo(/) V/G5O(R'') ^ T{Gn){g)^T{GQ){g) ^geS^iW^). 

Under the boundedness assumption it is enough to test convergence on total subsets of 
5o(R'') only, e.g. on the set of atoms (or coherent states) {K{X)g)^^-^^^^i. 

Later on we will see that the usually vague and heuristic argument, exhibiting the 
Fourier transform as a limit of Fourier series expansions, can be made precise in such a 
context. In fact, the Fourier transform / of / G L̂  {W^) can be viewed as the w*-limit of 
the Fourier transforms of the correspondingly periodized version of / (in fact classical 
Fourier series expansions), with the period length going to infinity. 

Practically all the invariance properties of 5o(R''), including its invariance under the 
Fourier transform, can be extended to invariance properties for SQ{W^). One possible 
explanation for this fact is the w*-density of 5o(R'') in SQ{W^). From the point of view 
of introducing the extended operators it is more convenient to use adjointness relations, 
which we will do later on, using Banach Gelfand triples. 

The Fourier Transform on {SQ,L^, SQ) 

We now come back to the question we started with, namely to define a convenient 
setting for the Fourier transform. Using our Banach Gelfand triple {SO^L^^SQ), we find 
the following, satisfactory answer. It is a perfect demonstration example for the power 
of unitary Banach Gelfand triple automorphisms. 

Theorem 3. The Fourier transform, defined in the usual way via 

f{s)= f f{t)e^''"'dt for feSoiW') (29) 

extends in a unique way to a (unitary) Banach Gelfand triple automorphism, based on 
the definition 

o{f):=G{f), for GeS,l{W)JeS,iW). (30) 

It is also characterized by the fact that it is mapping the pure frequencies Xs are mapped 
on the corresponding Dirac measures 5s. 

The direct statement is based on the Fourier invariance of 5o(R''), while the unique­
ness follows from the w*-density of 5o(R'') respectively trigonometric polynomials in 

Gabor characterization of {So,L^,Sd) 

The space (5o(R''), || • ||so) has a number of further equivalent properties, some of 
them are quite convenient for various purposes. We will use Weyl-Heisenberg families, 
indexed by lattices A = AJ?'^ < R '̂*, for some non-singular 2d x 2d matrix A: 
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Definition 8. A family {7t{X)g))^^^ is called a Weyl-Heisenberg family. It will be 
convenient to write simply {gx)i^j^. 

A WH-family is also called a Gabor family, cf. [65]. If a WH-family is a frame or 
Riesz basis we will speak of a Gabor frame or Gabor Riesz basis (for its closed linear 
span). D. Gabor suggested to use the Gauss-function g = go, and the ("critical") von 
Neumann lattice A = Z^^. Despite the perfect time-frequency localization this family is 
not a Riesz basis for .M" = 1} (R'*), and the so-called dual j^ast proposed by M. Bastiaans 
([10]) is not in iJ-i^^). There are two other important results to be mentioned here. For 
their description we recall the adjoint lattice A°, which consists of those elements in W-'^ 
which satisfy the commutation property 

%{X°)%{X) = %{X)%[X°) foralUGA. (31) 

The so-called Wexler-Raz principle (see [118, 33, 82, 53]) says that a WH-family 
[gx)xeK is ^ Gabor frame if and only the Gabor frame operator S : fi—^ 'T.XeK{f^Sx)sx 
is invertible, or if and only if there exists a dual WH-family of the form {gx)xe\ ^i^h 
a generator g, characterized either as the solution of the frame equation Sg = g, or 
equivalently g = S^^g. There are many other possible (non-canonical) dual functions 
7, yielding perfect reconstruction, which are characterized according to [118] by the 
so-called bi-orthogonality relation. 

y ,7(^°-M°) = ( 4 M ° ) 7 , 4 ^ ° k ) = 5;io,̂ °, for X°,^°eA°. (32) 

The so-called Ron-Shen duality gives more detailed information (cf. [105, 53]): The 
condition number of the Gabor frame {gx)xeA î  the same as condition number of 
the Gabor Riesz (basic) sequence {gx°)x°eA°^ with explicit constants (going back to 
a symplectic version of Poisson's formula) relating upper and lower frame bounds. 
This result has a great impact for applications in communication theory. While one 
tries to use (preferably tight and) low redundancy Gabor frames with good localization 
properties in order to expand signals, avoiding the storage of too many coefficients for 
the Gabor expansion, one is interested to use Gaborian Riesz bases for the transmission 
of data, because the well chosen Gabor atoms (obtained using beam-shaping) g ensure 
that the family {gx)xeK consists oi joint approximate eigenvectors to all underspread 
resp. slowly varying linear systems, i.e. linear operators which have a spreading function 
supported by a small rectangle in R'* x JR'*, determined by the maximal time-delay and 
Doppler shift respectively (see [74]). Ground breaking work in this direction has been 
done in the PhD thesis [90] of W. Kozek; the link to {So,L?,So) has been established in 
[53]. 

It is one of the striking recent results due to Grochenig and Leinert ([75], following 
the rational case in [50]) to show that g e So{W^) implies also that the canonical dual 
g is in So{W^), or equivalently (because the frame operator associated with the Gabor 
system {^{^)g)xeA î  Just S^^ the inverse of the frame operator for the WH-family 
{7t{X)g)}^^j^. Expressed in terms of BGT-morphisms their result can be rephrased as 
follows. The boundedness part of the theorem below is given in detail in [61]: 
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Theorem 4. Assume that {gx)x^A ^^ '^ Gabor frame with g G 5o(R ), and hence 
S = Sg^A • f '—^ Hxeh^f^'^{^)s)sx i^ '^ '^ BGT-morphism on (So^L^^Sd) into itself. If 
S is invertible at the L^-level, then it is already BGT-isomorphism. 

In particular, g = S^^{g) is in So{M.'^) in this case and 

/ = I Vgf{X)gx = i : Vgf{X)gx. (33) 
XeA XeA 

We will call the corresponding families 5o-Gabor families. Another result where the 
BGT-spirit comes through and the relevance of considering Gabor problems at all three 
levels is evident can be found in [71] on "Gabor frames without inequalities". 

With this background we can give a characterization of elements in each of the levels 
of {SO^L^^SQ) in terms of Gabor coefficients: 

Theorem 5. Letg e y{W^) be given such that {gx)xeA is a Gabor frame with canonical 
dual {gx)xeA (also in y{W^)). Then one has: A tempered distribution f G y'{'R'^) 
belongs to (So^L^^Sd) if and only if the following (equivalent!) conditions are satisfied: 

1. f has a representation of the form^^ f = T.XeACx8X' ̂ '^^ {cx)xeA from 

2. The canonical coefficients {Vgf{X))xeA^ {^ J- j-^°°)(^).' 
3. The sampled STFT with window g satisfies: {Vgf{X))xeA'^ (̂  J^ J^°°)(^).' 

Overall this can be expressed by the fact that the reconstruction mapping 
R : {cx)xeA ^ LxeACxgX completes the following diagram: 

(^i\f,r)(^A) 

{So,L\Sd) - = = Vg{{So,L\Sd)) 

Poisson's Formula, Sampling and Periodization 

Using ^ ( R ) the classical Poisson's formula can be formulated as follows: 

Theorem 6. For f G ^o(K'') one has 

I/«=!/», (34) 

the sum being absolutely convergent on both sides. 

Here * denotes convolution, in contrast to the use of * earlier on, where it was representing matrix 
midtiplication, using MATLAB conventions. 
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This formula does not hold for arbitrary functions, even if both the left hand side 
and the right hand side are absolutely convergent, as has been described in the book of 
Katznelson ([87, 88]). Most of the usual conditions on / which are sufficient for the 
validity of (34) can be interpreted as sufficient conditions for / to belong to 5o(R'') (cf. 
[84, 68]). The symplectic version of Poisson relation is also highly relevant for Gabor 
analysis ([8, 112]). 

The key properties of 5o(R'') needed to verify Thm. 6 are the fact that the restriction 
of a function / G 5o(R'') is in tiJJ^), that the Z'*-periodization of / is uniformly 
convergent, and the fact that the periodized function fper has as its Fourier coefficients 
just the samples {f{n)), which are again in l/^{%^), due to the Fourier invariance of 

It is an easy exercise to translate the Poisson formula into a statement about the Fourier 
invariance of the so-called Shah-distribution LUgd (also called Dirac Comb, etc.): 

Theorem 7. The Shah-distribution LUgd belongs to ^{{{W^), and 

Using the invariance of 5o(R ) under transformation of the argument it is easily 
extended to other lattices of the form A = A * Z'* < R'*, where det[A) ^ 0. For the sake 
of simplicity we will use ordinary dilation, which gives then LLIQ = LyteZ'' ^ak, which 
has as its (generalized) Fourier transform fcLUj, with b= \/a. 

One of the most important principles in harmonic analysis is the idea that sampling on 
the "time-side" corresponds to periodization on the frequency side. The most important 
consequence of this principle is the so-called Shannon sampling theorem, according to 
which a band-limited signal can be recovered from its regular or equidistant samples. 
Again, we do the detailed discussion only for the normalized case, i.e. for the case 
that the Nyquist sampling rate is the sampling over the integer lattice Z'*, or in other 
words, that the spectrum (the support of the Fourier transform of / under discussion) is 
contained in the cube Q := [—1/2,1/2]'*. We write Ig for the indicator function of Q 
and define SINC = ^ ' \ \ Q ) . 

Theorem 8. [Shannon Sampling Theorem] 
For any f G L'^{R^) with supp(/) C Q one has 

m= I^/(«)?; SINC(0, (35) 

with absolute and uniform convergence of the series and norm convergence in iJi^). 

The proof is based on the observation that the family (r„ SINC)„ggd is an orthonormal 
basis for the closed subspace B^ := {/ G L^{W^) \ supp(/) C Q} of {L^{W^), || • II2). In 
fact, one has convergence with respect to the Wiener amalgam norm W(Cb,^^)(R''), 
which imphes both uniform and L^-convergence. The fact that the SINC function is the 
(inverse) Fourier transform of the indicator function Ig, which is a Fourier multiplier for 
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I < p <°° also imphes, that a similar statement holds true for band-limited functions in 
LP {R^), for the same range of parameters. 

Proof. Given the sampling values {f{n))„^j^d we have all the information in our hands 
to describe LUgd • / = Y.neZ'' f{^)^«- This is a well defined (unbounded but translation-
bounded) discrete measure in So{W^) which has a Fourier transform of the form 

^ 2 . - / = ^ . * / = ^ 8n*f= ^ Tnf (36) 

which is nothing but the Z'*-periodic version of / . We can now use the fact that Q is 
a fundamental domain for the lattice l/ < W^, hence |n + Q n fe + Q| = 0 for n 7̂  fe. 
Multiplying this periodic version by Ig gives us exactly the original basic period, which 
is / , or back on the time domain 

f={VlA^,-f)*^-\\Q)= Y, f{n)8n*SmC= Y, f{n)TnSmC. (37) 

This series is convergent in L^(]R'') because on the Fourier transform side we just have 
the Fourier expansion of / (taken as a periodic function on W^). On the other hand SINC 
belongs to tfi^^) and even the Wiener amalgam space W(Cb,^^)(R''), which implies 
uniform and pointwise absolute convergence. D 

BANACH GELFAND TRIPLES AND OPERATORS 

In this section we will indicate the role of BGTs for the description of operators. The 
same role which is played by the pure frequencies for Fourier analysis (they are perfect 
building blocks forming an orthonormal basis in the case of finite Abelian groups but fail 
to belong to the natural Hilbert space) is now taken by other systems of natural objects. 
From the point of time-frequency analysis of course the collection of (^(•^));LeR''xR'' 
is a very natural choice, but again they are not in the natural Hilbert space, now .^f.^', 
the space of all Hilbert Schmidt operators on L^(]R''), endowed with the .^oJ^-scalar 
product (r, 5 ) ^ ^ : = T r ( r 5 * ) . 

On the other hand one of the most exciting developments in the field is the reahzation, 
that pseudo-differential operators have a very natural description in terms of time-
frequency expressions. To give an example: modulation spaces turn out to be the most 
natural spaces in order to describe slowly varying channels, i.e. convolution operators 
with a time-variant kernel (in an engineering terminology), resp. certain classes of 
pseudo-differential operators. These are the systems which preserve localization in the 
TF-sense and hence have a matrix representaion which is mostly concentrated along 
the diagonal. In the extreme case on has Gabor multipliers, i.e. operators which are 
factorized through a diagonal matrix, acting on the Gabor coefficients. 

There is a large number of papers on Gabor multipliers, such as [57, 12, 38, 5] and a 
self-contained survey (master thesis) by K. Schnass [107] from 2004 or the PhD thesis 
ofP. Balazs([9]). 
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AntiWick operators are operators which are defined as STFT-multipliers. They make 
use of the inversion formula for the STFT (which in turn based on the isometric proper­
ties of / Ĥ  Vg{f) from L^{M.'^) into L^{M.^): 

f (VgJ)ix,0))M^T,g2dxdo)={g2,gi)f (38) 

So one can use any g2 G L"̂ (R ) for reconstruction of / from Vg^ as long as it is 
not orthogonal to ^i . Usually the integral has to be understood in the weak sense 
for gi,g2 e L'^{W^), but if both of them are in 5o(R'') (cf. [117]) then one can even 
read the above integral as limit of vector-valued Riemannian integrals, which are norm 
convergent 'va .M" = L^(]R''). Due to the good local properties of functions in the range 
of the STFT one can even work with rough symbols (see [93, 13, 28]) 

Adjointness Relations 

First of all let us mention some principles that allow us to extend bounded linear 
mappings betwenn 5o-spaces to BGT-morphisms. The following principle is quite useful 
in order to "automatically extend" a mapping between the "inner spaces" to their dual 
spaces. 

Theorem 9. Let T he a BGT-homomorphism from {Bi,J^i,B[) into (52,-^,-82) , i.e. 
a bounded linear mapping which is bounded on all three layers, as well as w* — w*-
continuous. Then there exists a unique adjoint GT-homomorphism, i.e. another BGT-
homomorphism (denoted by) T* from {B2,J^2,B'2) into {Bi,J^i,B[), such that T* : 
J^ Ĥ  J^i is the adjoint operator, which extends to a GT-morphism in a unique way. 
Therefore we have the identity 

{Tf,g)(B2Mfi'2) ^ if^'^*S)(Bu^uB[) (^^) 

whenever the pairing makes sense. Moreover T** = T, i.e. in this sense any BGT-
morphism is the adjoint of another (uniquely determined) adjoint BGT-morphism, de­
noted by T*. 

The case of unitary operators has been discussed already in [53], Thm.7.3.3 (Exten­
sion of Unitary Gelfand Triple Isomorphism), p. 239. 

Theorem 10. A unitary mapping U acting from L^{W^) to L^{W^) extends to an isomor­
phism between the Gelfand triples {SO,L'^,SO){W^) to {SO,L'^,SO){W^) if and only if the 
restriction ofU and also of its adjoint U* are bounded linear operators from SQ{W^) to 

Remark 1. There are good reasons why the "central" Hilbert space M' = L^CR^) usually 
plays the dominant rule, just think of Plancherel's theorem as the central property of the 
Fourier transform, describing it as a unitary mapping on L^CR^). However, from an 
abstract point of view it is not so important, and in most cases the isomorphism property 
at the So and 5o'-level (both with the norm and the w*-topology) implies already that one 
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has the full continuity claim for the Hilbert space automatically, becausean application 
of complex interpolation between the dual pair So{G) and So{G) yieldŝ "̂  

Theorem 11. For any group {Ti)i^j of unitary operators leaving SQ(W^) invariant, which 
satisfy 

{f,g) = {Tif,Tig) yf,geSo(R''), (40) 

one has: The action of{Ti)i(ij extends in a unique way to a unitary Banach Gelfand triple 
automorphism of {So,L?,So){M.'^). 

Proof The assumption (40) implies (just in the same way as Plancherel's theorem is 
usually proved) that it is well defined and isometric on 5o(R'') with respect to the L^-
norm. Due to the density of 5o(R'') in L^(]R'') it can be uniquely extended to an isometric 
and in fact unitary automorphism on L^ [W^). D 

Kernel Theorems and Gelfand Triples 

The nuclear Frechet space ,y{W^) and its dual, the space of ,y'{R^) of tempered dis­
tributions are the prototype of function spaces for which on can prove a so-called kernel 
theorem, a continuous analogue of the existence of a matrix, completely describing the 
operator We next prepare a similar principle for our BGT-setting. 

Given two functions /^ and /^ on R^ respectively, we set /^ 0 /^ 

/ ® / ( x i , X 2 ) = /I(xi) /2(X2), XUX2 G ̂ "^• (41) 

Given two Banach spaces 5i and B2 embedded into ,y'{'R'^), Bi®B2 denotes their 
projective tensor product, i.e. 

{/I / = I/i®/', Ill/ilkll/'lk < -}• (42) 

It is easy to show that this defines a Banach space of tempered distributions on R '̂* with 
respect to the (quotient) norm: 

\\fU:=mf{Y,\\fXA\fn\W,-], (43) 
where the infimum is taken over all admissible representations. 

One of the most important properties of 5o(R'') (leading to a characterization given 
by V. Losert, [94]) is the tensor-product factorization: 

Lemma 4. 
" " ) . (44) 

One way to understand/accept this fact is to invoke the fact that the Wilson bases establish, at least for 
elementary locally compact Abelian groups, a BGT-isomorphism between {Sa,l?,Sa) and {£ ,£ ,t°). 
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The easiest way to realize this relationship is to make use of the atomic decomposition 
of 5o(R'"), observing that both time- and frequency shifts, but also the multi-dimensional 
Gaussian function factorize into lower dimensional partial ingredients. This tensor prod­
uct property of So is on the other hand the basis for the realization of the so called kernel 
theorem (see [53], Chap.7.4). 

The setting of BGTs is also well suited for the description of linear operators. The 
so-called kernel theorem shows how essentially every reasonable^^ operator T can be 
interpreted as a kind of integral operator, also called kernel from a suitable class of 
generahzed functions. One may expect similarity to the finite discrete case (= matrix 
multiplication), but now with continuous variables: 

Tf{x)= f K{x,y)f{y)dy (45) 

in analogy to the description of M = T / :i; M = A * z G C" via coordinates 

n 

{Tz)s=Y,^'',kZk, for s=l,...n. (46) 
k=l 

The usual way of finding the appropriate mxn matrix A for a linear mapping from C" to 
C" is easy: recall that one obtains coordinate number s of the vector u via scalar product 
with es, that the fe-th column of A has to correspond to T{ek) if (46) is supposed to be 
valid, hence the individual entry must be 

a,^k=A[s,k] = {T{ek,e,)). (47) 

Viewing A = (A(n,fe)) as a function over the product index set one can say that has to 
take the scalar product of A (in the sense of the Euclidean space C"") with the unit 
matrix eg * ®ek, which can also be expressed as via a trace formula of operators: 

A[s,k] = {A,e,®el) =lx{A*{ek*e:))}' (48) 

There is a lot of literature about Dirac's formahsm. On the one hand it is very intuitive, 
on the other hand it has created a lot of discussion concerning the strict mathematical 
interpretation of these formal symbols. Even engineers are by now aware of the fact 
5Q is no just another function, which is zero everywhere except at 0, but "so strongly 
infinite" that the integral equals 1. Nowadays it is well known that the Dirac measure 
^x'-f'—^ f{x) is a good way to formalize this procedure, but this still does not explain 
what the connection between Kronecker's 5, usually written as 5ij and Dirac's symbol 
which is nowadays just a distribution (of one variable, so to say) applied on a test 
function, while in many early interpretations of what Dirac might have had in mind 
with his symbol the idea of using the symbols he had introduced often comes with the 
recommendation of only using it within an integral, and not as an individual object. In 

E.g. r is a bounded linear operator from some L*-space to another L''—space. 
Where * corresponds to matrix multiplication in a MATLAB setting. 
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fact, we will argue that one should consider 5t_j, as a distributional kernel representing 
the identity mapping, so simply the continuous analogue of Kronecker's symbol. 

Moreover it appears as a way to express a kind of orthogonality relations between 
"pure frequencies" (and because they are not square-integrable the scalar product be­
tween (XsiXs) has to be +0°) which allows to do derivations of very useful formulas^'. 

Sequences of regularizing operators 

Once we have continuous variables one comes into a world where finite dimensional 
arguments break down, where one may have unbounded operators, and even point eval­
uations are not always possible, i.e. the use of e.g. Dirac distributions is required. Nev­
ertheless one has a number of different products, which often can be written as integrals 
(convolution, twisted convolution) or using point values (defining the "ordinary point-
wise product"), and sometimes such products immediately make sense, in some other 
case on has first approximate the involved ingredients before applying the operation, us­
ing a regularized version of one or both partners involved, and then let the regularization 
parameter tend to 0 or 0°, as appropriate. 

Such a principle is not really new, as many special cases can be located in the lit­
erature. The definition of the Fourier transform is one case, where one has to "push" 
general L^(]R'')-functions into L^{'R'^) (in case they are not already within L^DL^CW^), 
which is fortunately a dense subspace of [L^CR^), \\ • II2)), e.g. via pointwise multipli­
cation with the indicator function l[_Af A?], for N —^ °°. For the inversion of the Fourier 
transform a similar strategy can be applied, now by doing a pointwise multiplication 
with some suitable summability kernel. Although it would again be enough to use any 
localizing function, it has been realized that a sharp frequency cut-off is not a good way, 
since '^^'^1[-N/J] ^ L^{R^). Choosing a summability kernel from ^(R'*) will help and 
ensure that its inverse Fourier transform isinLi(R' ')as well. Since stretching in Fourier 
space is the same as L^-norm preserving dilation the resulting sequence of Dirac-like 
convolution kernels is an approximate identity for the Banach Gelfand triple {SO^L^^SQ), 

while the SINC-function is not having this good property. 
Wiener amalgam convolution and pointwise multiplier results ([78]) imply that 

SoiM.'') • {S,l{m'')*So{M.'')) C SoiM''), SoiM'') * {S,I{M.'') •So{M.'')) C So{M'') (49) 

Proof. The key arguments for both of these regularization procedures, be it convolution 
followed by pointwise multiphcation (a so-called product-convolution operator, for 
short PC-operator), or corresponding CP-operators, are based on the pointwise and 
convolutive behaviour of generalized Wiener amalgam spaces, such as the relation 
So{M.'^)*S({{M.'^) = w{^L\i^)*w{^L'^,r)cw{^L\r). a 

We suggest to view the well known identity e^"' = 1 in a similar way, as an extremely useful for­
mula which makes use of the complex numbers, the irrational number it, which is never explicitly and 
constructively realized, let alone the power series expression of the exponential function. 
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Let now h G .:^L^{R^) be given with h{0) = 1. Then the dilated version h„{t) = 
h{t/n) are a uniformly bounded family of multipliers on {SO,L^,SQ), tending to the 
identity operator in a suitable way. Similarly, the usual Dirac sequences, obtained by 
compressing a function geL}-{W^) with /^d^(x)rfx = 1 are showing a similar behavior: 
gn[t) = n-g(nt) 

Following the above rules the combination of the two procedures, i.e. product-
convolution or convolution-product operators of the form provide suitable regularizers: 
A„f = g„*{h„-f) OTB„f = h„-{g„*f). 

Following Theorem 5 we know that elements in / G (5o,L^,^o') can be characterized 
(among others) by their minimal norm coefficients, given in the form (V|/(/l));LeA- K is 
therefore clear that the partial sum operators for this canonical Gabor expansions, such 
as 

ANf:= "£ Vgf{X)gx (50) 
max{\X\ |,|>l2l)^-^ 

is mapping So (R ) into 5o (R ), while on the other hand one has obviously that A^f -^ f 
asN —f°° for any / in 5o(]R'') or L'^{R^) respectively, in the corresponding norm, while 
the convergence occurs in the w*-sense, for all / G So{R'^). 

Similar statements can be made for rectangular or any other kind of'exhausting partial 
sums, also with respect to Wilson basis. The better the building blocks are (in terms of 
time-frequency localization, typically expressed using membership in the modulation 
spaces M J (R'*)) the more can be said about the rate of approximation, given the quality 
of the signal, i.e. speed of approximation of / in some Shubin class Qj(R''), measured 
in the L^-norm. 

Various types of regularizations are also used in the discussion about the most general 
definition of convolution between distributions, see the work of M. Oberguggenberger 
([1,18]). In fact, one can say, that the basic idea is to assume the the limit of A^^ai *AN(y2 
exists (for a sufficiently rich class of regularization operators, implying that this limit is 
then independent of the particular choice of the sequence {AN)). 

Kernel Theorem for ^o(K^) 

There are many different ways to show that the space of test functions 5o(R'*) is 
w—dense in So{'R'^). One very important and natural way (also valid in a similar way 
for the space of Schwartz test functions from the space y{W) of rapidly decreasing 
functions and its corresponding dual space, ,y'{W^) of tempered distributions) 

Theorem 12. If K is a bounded operator from SQ{W^) to S^iW^), then there exists 
a unique kernel k G SQ{M^'^) such that iKf,g) = {k,g® f) for f,g G ^o(K''), where 
g®f{xj)=g{x)f{y). 

Formally sometimes one writes by "abuse of language" 

Kf{x)= [ k{x,y)f{y)dy (51) 
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with the understanding that one can define the action of the functional Kf G SQ{W^) as 

Kf{g) = / , j k{x,y)f{y)dyg{x)dx= f j k{x,y)g{x)f{y)dxdy. (52) 

This result is the "outer shell of the Gelfand triple isomorphism, which corresponds to 
the well-known result that Hilbert Schmidt operators on L'^{W^) are just those compact 
operators which arise as integral operators with L^CM?^)-kernels. The complete picture 
can again be expressed by a unitary Gelfand triple isomorphism. Let us start with the 
classical setting: The Hilbert space ,J^,y of Hilbert Schmidt operators on L'^{R'^) is 
important, because the classical kernel theorem estabhshes a unitary mapping between 
operators T G ,J^,y and their kernels K. The scalar product of .^o?^—operators is given 
by {T,S)^y = Tr(r * S') and turns ,J^,y into a Hilbert space. 

Theorem 13 (Kernel Theorem for So). Let T e JfJ^ be given, with kernel K e L^{M.^). 
Such an operator has a kernel in So{'M?'^) if and only if it maps bounded, w*—convergent 
sequences in So{M.'^) into norm convergent in So{'M?'^). The most general operators from 
Ji^{So,So) are in a one-to-one correspondence with So{'M?'^). 

Overall the kernel theorem allows us to establish a unitary BGT isomophism between 
the BGT {J^{S() ,So),J^J^,^{So,S())) of operator spaces and the corresponding ker­
nels in {So,L^,S(^){M.^''). 

Remark 2. Note that for regularizing kernels in 5o(R ) the usual identification (recall 
that the entry of a matrix a„^k is the coordinate number n of the image of the fe—th unit 
vector under that action of the matrix A = {an^k)) holds: 

k{x,y) = K{5y){x) = 5,{K{5y)). (53) 

Since 5y G So'{^^) and thus K{5y) e So{^^) the pointwise evaluation makes sense. 

Remark 3. It is of course interesting to ask how the w*-topology can be transferred to 
the operator level. Here again a characterization of general linear operators using Gabor 
expansions comes into the picture: 

Definition 9. Assume that {gx)x^A ^^^ i8l)xeA î  ^ dual pair of Gabor frames, with 
g,g G ^o(IK'')> and assume T G JI^{SO,SO), i.e. that T is a bounded linear operator from 
5o(R'') into Sd{R^). Then the matrix elements of T with respect to the Gabor frame are 

a?.,V.= {Tgx,gX>), XA'eA. (54) 

Using these matrix coefficients (one can use either g or g), both in the first or the 
second place, on obtains 

Lemma 5. Let Tn be a sequence of operators from So{^'^) into So(^'^), such that the 
corresponding kernels K"^ form a bounded sequence in So(^'^), convergent to K^ in the 
w*-sense. Then Tnf is w*-convergent for every f G ̂ o(K'') to some limiting operator 
T^\f) = lrm„T„f and conversely. In particular, K^ =w* — lJm„K„ if and only if all the 
matrix coefficients converge pointwise, i.e. for each pair (A, A') G A x A one has 

4,1'^4,1' forn^o.. 
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Kohn-Nirenberg Symbol and Spreading Function 

The Kohn-Nirenberg symbol of an operator (respectively its symplectic Fourier trans­
form, the so-called spreading symbol) can be obtained from the kernel by applying suit­
able coordinate transforms (automorphisms) and partial Fourier transforms ^°. Hence 
they define functions or distributions over R'* x R'*. Since all these ingredients are uni­
tary BGT isomorphisms of (5o,L^,^o') the known correspondences at the level of ,J^,y-
operators can be extended to BGT isomorphisms. 

Theorem 14. The correspondence between an operator T with kernel K from the Ba-
nach Gelfand triple {J^{Sd ,So),J^J^,^{So,Sd)) andthe corresponding spreading dis­
tribution T}(r) in Sd{M?'^) is the uniquely defined Gelfand triple isomorphism between 
{^{So',So),,J^,y,^{So,So')) and {So,L^,S({){W^ x W^) which maps the time-frequency 
shift operators MyoTx onto the Dirac measure 5(_j y). 

The w*-continuity of this mapping allows among others to calculate (in the sense 
of approximate) r\{T) by first dealing with regularizing operators from J^{SQ ,SQ) with 
kernels and symbols in SQ. For this "core" space one can apply transformations and 
partial Fourier transform in a direct way, while more general case is realized either by 
taking w*-limits of using an adjointness argument. 

The Kohn-Nirenberg description of operators is particularly interesting in the discus­
sion of Gabor multipliers, i.e. of operators of the form 

Tf=Y.^l (/' <^ )S)8X =Y,mxPx (/), (55) 
XeA XeA 

where Px is the projection of / onto the one-dimensional space generated by gx. Equiv-
alently, Px = 7t{X) oPQK{X)'. The mapping H H^ K{X)OPQK{X)' is a unitary group rep­
resentation of the additive group R '̂* on the Hilbert space JfS^, and one crucial facts is 
the relation 

K[%{X)OPQ%{X)'] = TXK{H), XeK. (56) 

Composition of Operators 

Given the kernel representation (or whatever other form of "symbol", from Weyl- to 
Kohn-Nirenberg or spreading representation) it is clear that the composition of operators 
corresponds to some kind of composition rule at the level of symbols. For the case of 
matrices we know that we have to perform matrix multiplication, i.e. the matrix-product 
C := A * 5 is given (coefficientwise) by the rule 

n 

Ck,i=Y,ak^sbs,i (57) 
s=l 

i.e. Fourier transforms with respect to one variable only with R"* ; 
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whenever the matrix product is possible, resp. whenever the composition of operators is 
possible (the range of B has to be equal to the domain of A, in our example C"). 

Of course the situation is - from a purely technical point - much more dehcate in 
the case of (perhaps even unbounded) linear mappings between (infinite) dimensional 
vector spaces (typically Hilbert spaces or Banach spaces), and even if we are next 
discussing the composition of BGT-morphism it is not absolutely clear how to interpret 
their composition (which is kind of obvious from the point of view of operators). 

Let us therefore consider first the composition of two simple integral operators, with 
the corresponding kernels K2{x, s) and Ki{s,y) in 5o(R^''). It is not difficult to verify that 
one has in such a case, in complete analogy to case of matrix multiphcation: 

Lemma 6. The composition of two operators T2 o Ti, both of which have a kernel 
representation with So{M?'^)-kernels K2{x,s) and Ki{s,y) respectively, has a kernel in 
SQ{M^'^) of the form 

K{x,y)= f K2{x,s)Ki{s,y)ds (58) 

This formula is also valid if one of the kernels belongs to L'^(M?'^) c SQ{ 

Proof The kernels in Ki and K2 define a bounded linear operator from SQ{W^) space into 
5o(R''), converting w*-convergent sequences into norm convergent sequences. Hence 
one can compose the operators, but also verify without difficulties (under the L~-
condition) the existence of the corresponding integrals in (58) ^̂ . D 

For more general cases, e.g. for the composition of general bounded linear operators 
on . ^ = L^{W^) it turns out that a composition rule like the simple integral composi­
tion of (58) may become questionable. Among others, because it is known to be hard to 
characterize the L^-boundedness of the operator T in terms of the kernel K{x, s). There­
fore one has to use the approximation of operators by "good" ones before calculating 
the "product-kernel", i.e. the (distributional) kernel of the composite linear mapping. In 
order to reahze this in a systematic way (admitting that there are many other ways of 
doing it) we formulate an auxiliary result. It is based on the use of sequences of regu-
larzing operators with kernels in5o(R2''),i.e.a bounded sequence A„ of BGT-morphism 
with kernels K"{s,u) G 5o(R^'') such that the sequence (as well as its adjoint) acts as 
an approximation to the identity operator on So{W^) (hence on the larger spaces), i.e. 
satisfies \\Anf-f\\so ^ 0 for n ^ 00, for each / e So{M.'^). 

Lemma 7. For each regularizing sequence A„, n > 1 and linear mappings Ti and T2 one 
finds thatA„oTi resp. T2oA„ are regularizing operators in Ji^{So,So)(W^). Hence their 
kernel of composite mappings such as 72 oA„ oA„ o Ti can be composed according to 
formula (58), and the product kernels K" obtained in this way are w*-convergent to the 

^̂  Various properties of the kernel of the composite mapping can be derived from the properties of the 
resulting product operators. The composition itself need not be "well-defined" in the sense of Lebesgue-
integrabUity almost everywhere. This problem can be overcome using regularization techniques described 
below. 

Here is a warning in place: even if the kernels are given as bounded and continuous functions we do 
not claim in the most general case that the integration has to make sense in the Lebesgue sense! 
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kernel of T20T1. At the same time the corresponding operators are convergent (in the 
sense of pointwise convergence) to the action ofT2 o T\, because 

\\T2{Tif)-T2{An{Tif))\\s^,^Q for all fe^^''). (59) 

There are of course many variations of this principle, and the concrete form of the 
regularizing operator can vary from case to case. Again the Fourier transform is a 
perfect example. We know that the Fourier transform, viewed as an integral transform on 
{L\W'), II • 111), maps into {^L\M.''), \\ • \\^^i) ^ {Co{W), \\ • \\J), according to the 
Riemann-Lebesgue Lemma, as a proper but dense subspace. The problem with Fourier 
inversion on .:^L^{W^) is not the roughness of those functions, but their lack of decay, 
since they need not be integrable. Since L^ {R^) * So {W^) C So {R^) we have the pointwise 
relationship ^L\W') • SoiW) C So{W), or ^L\W') - ^ ^{So){M.'') (the pointwise 
multipliers of 5o(R'')). Hence it is enough that regularization takes place in the form 
of pointwise multiphcation with any function h G 5o(R''), typically h„{t) = h{t/n) for 
n ^ 00, with /j(0) = 1. That indeed all known classical summabihty kernels are in fact 
elements of 5o(R'') has been investigated in some detail in joint work with F. Weisz 

([58, 59, 60]). Of course choices such as the Gauss-Weierstrass kernel g{t) = e^^^'^ , the 
inverse exponential/j(;) = exp{—\t\) or h{t) = l/{l + t^) on R come to mind. 

FURTHER APPLICATIONS, COMMENTS, OUTLOOK 

So far we have only outlined some general principles where the setting of Banach 
Gelfand triples, and specifically the 5o-BGT come very handy and natural. In the rest 
of this paper let us just give some indications about further areas where such a setting 
appears to be quite natural. 

Generalized stochastic processes 

Already the PhD thesis of A.J.E.M. Janssen [81] indicates that generalized stochastic 
processes can be modeled appropriately using distribution theoretic methods. His space 
of test functions did not allow for compactly supported elements, hence he could not 
define the support of linear functionals in his setting. In this respect the setting of the 
BGT (SOTL^TSO) is more suitable for a treatment of generalized stochastic processes. 
We can give only a quick indication of how this works (up to the topic of "spectral 
representations" of stationary stochastic processes), see [52]. 

First of all we view a generalized stochastic process as a generalization of an ordinary 
stochastic process, in the sense that an ordinary stochastic process assigns to each xeW^ 
some random variable, abstractly speaking some element p (x) in some Hilbert space^^ 
[of L^-functions on some measure space, usually with expected value £(X) = 0]. As in 

Usually it is the set of all square-integrable functions random variables with zero expectation over some 
probabiUty space, but this does not matter in our description of basic concepts. 
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the case of regular distributions one can integrate against a test function, i.e. extend the 
mapping xi—fp{x)e^J^toa linear mapping 

k'—fp(k):= / k(x)p(x)dx, 
Js.'' 

which is well defined at least for Cc{Mr), the space of compactly supported, continuous 
and complex-valued functions on R^. For us 5o(R'') is more attractive as a (Banach) 
space of test functions and therefore we give the following definition: 

Definition 10. We call a bounded linear mapping p : f i—f p{f) from 5o(R'') into some 
Hilbert space J^ a generalized stochastic process, for short a GSP. 

In the standard approach to stochastic processe it is quite cumbersome, at least from 
the technical point of view, to check the existence of an autocorrelation function (resp. 
distribution) or to provide the spectral representation of a GSP, using vector-valued 
measures, such things become quite smooth and natural in our setting: 

Definition 11. For any GSP p one defines its Fourier transform p via 

P ( / ) : = P ( / ) , ^^feSoiM.'). (60) 

Obviously the inverse Fourier transform of a GSP is defined in an analogous manner, 
and thus every GSP has a spectral representation in this sense. An important object for 
GSPs is the autocorrelation of such a process, which is given as follows: 

Definition 12. Let p be a GSP. The autocovariance is characterized via 

(cTp,/®^) := (p(/) |p(f)) yf,g e SoiR'). (61) 

Theorem 15. For a GSP p the following properties are equivalent: 
a) p stationary <^=^ Op diagonally invariant, i.e. L^^y^^Op = Op^/x^W^; 
b) p bounded -^^ Op extends in a unique way to a bimeasure on R'* x R'* ; 
c) p orthogonally scattered 

<^^ Op has support on the diagonal, i.e. supp{ap) C A^d := {(x,x) | x G R ' ' } ; 
•^^ there exists a positive and translation bounded measure Xp with: 

{(ypJ®g) = {TpJg)yf.geS,{W'). 

Corollary 1. A GSP p is bounded and orthogonally scattered if and only if there exists 
a bounded measure pip on W^ such that 

{cypJ<E>g) = {^pJg) = j^J{x)g{x)d^p{x) V / , ^ G 5 O ( R ' ' ) (62) 

These statements should only indicate that the BGT {SQ,L^,SQ) is also very helpful 
in this context, and therefore likely to be useful in the context of stochastic signal 
processing, where most often differentiation does not play any role (which in turn would 
justify using the Schwartz space S^{W^) instead), cf. also the PhD thesis of B. Keville 
([89]). There is more recent work using such tools by P. Wahlberg ([114, 115]). 
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Modulation spaces and Coorbit Theory 

The Banach Gelfand triple (5o,L^,^o') is just a prototype of the much more general 
family of modulation spaces, introduced in the early 80's (see ([44, 46])). The by now 
classical modulation spaces Af/'^CR^) have been modeled in similarity to the family 
of (inhomogenous) Besov spaces and have similar properties. Moreover, the classical 
L^—Sobolev spaces belong to both families (by choosing p = 2 = q). The parameter 
5 G R is the most important one, describing the smoothness. The family of modulation 
spaces is closed under duality (at least for finite parameters) or complex interpolation. 
A summary of the state of the art is given in the survey article ([47], in the special issue 
of STSIP on modulation spaces). 

In the last few years these spaces have found a lot of interest both as a family of 
Banach spaces of (tempered) distributions of its own right, but above all as a natural tool 
to describe pseudo-differential operators ([109, 104, 110, 72, 91, 73, 70, 111] and many 
others, or Chap. 14 of ([69]).) 

At the beginning there was the impression that the defining property of a modulation 
space is the fact that it is a Wiener amalgam space (see ([43, 78]) on the Fourier 
transform side, meaning that it is characterized by uniform decomposition of / , for 
/ G S^'{W^) (as opposed to standard dyadic decompositions used for Besov spaces, 
see ([97, 113])), or perhaps because a mixed norm-space was used over the TF-plane 
W^ X W, with a specific order of integration (first along the time axis, with respect to 
the L^-norm, and then in the frequency direction, using an L^-norm with polynomial 
weight m), be it a partially discrete or continuous norm of the form 

VIILS.- ' = U^ (_{ , \VJ{x,(o)\Pm{x,(oYd^' ' d(o\ , (63) 
qlp \ 1/9 

However, soon the time-frequency point of view suggested to make also use of radial 
symmetric weights in phase space, not only of weights depending only on the frequency 
parameter, but rather on polynomial weights of the form Vj(x, « ) : = ( ! + |xp + |ft)p)''/^. 
The advantage of the corresponding space Mvj(R''), defined via a weighted L^-condition 
with weight Vj,i G R, on the short-time Fourier transform Vg^f (with respect to any non­
zero window gQ, say the Gauss function) is the fact, that they are invariant, not only 
under the Fourier transform, but even under fractional Fourier transform (and even the 
whole metaplectic group, cf. ([69]), Chap.9.4). 

The realization that modulation spaces and the classical family of Besov-Triebel-
Lizorkin spaces have a lot in common, namely the fact that they can be described 
using so-called representation coefficients of (square-) integrable and irreducible group 
representations^'* had a great impact on the view on modulation spaces. They appear 
now as a special example of a more general principle, which is described through the 
theory of so-called coorbit spaces 'ioo{Y) (see ([48])). From this point of view modulation 
spaces are those spaces which are described by the (global) behaviour of the STFT of its 

For the afiSne ax + fo-group one obtains the continuous wavelet transform, while one has the STFT in 
the case of the Heisenberg group R"* x R"* x T, using the Schrodinger representation on M" = L^(R'*). 
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elements, expressed by some sohd and translation invariant Banach space of functions 
over phase space R'* x R'*. 

METAPLECTIC OPERATORS AND SCHRODINGER EQUATION 

In this last section we try to indicate that the invariance properties of the BGT {SO^L^^SQ) 

can be used to describe in the case of quadratic Hamiltonians the properties of solutions 
of the Schrodinger equation in the BGT setting. 

Metaplectic and Heisenberg-Weyl invariance properties 

Recall that the metaplectic group Mp{2d,'R) is the unitary representation of the con­
nected double covering of the symplectic group Sp{2d, R) (see e.g. [62]). The metaplec­
tic group is generated by the following elementary unitary operators: 

• The Fourier transform / = i^"I^F, that is 

whose projection on Sp(2(i,R) is the standard symplectic matrix J = \ _T r, 

• The "chirps" V-p defined, for P = P^, by 

V2pyf{x) = e2'̂ '̂ -̂ -̂ ,//(x) (65) 

and whose projection on Sp(2,R) are the symplectic shears ( „ , 

• The unitary changes of variables, defined for invertible L, by 

ML,mVix) = i'"^\detL\yf{Lx) (66) 

where the integer m corresponds to a choice of argdetL; the projection of ML,™ on 

Sp(2rf,R) is (^^Q' l^r 

Proposition 2. The Segal algebra So{W^) is invariant under the action o/Mp(2(i,R); in 
particular Xjf e So{^'^) if and only ifFxif e So{'^'^). 

Proof. This is an immediate property of the metaplectic covariance property 

W{SY){z) = WY{S-h) (67) 

of the Wigner distribution (S e Sp{2d,M.) the projection of ^G Mp(2rf,R)) and of the 
characterization given in Lemma (2). D 
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Further references are [40, 43, 44, 62, 34]. Finally let us mention that 5o(R ) can 
be charactized via Wilson bases (see [53]) and local Fourier bases ( see [76]). One can 
show that / G L^CR^) is in 5o(R'') if and only if it has Wilson coefficients in i^{I), where 
/ is essentially a half-space in Z'* x Z'*. In this sense Wilson bases over R'* are like the 
Fourier basis (defining A(T) and PM{T)) for the torus group. 

The construction of Wilson bases was pubhshed by Daubechies/Jaffard/Joume in 
[32]. This author learned about Wilson bases from I. Daubechies already in 1989 it was 
possible to publish the follow-up result (connecting it with modulation spaces) already 
one year later in [51]. Wilson bases in the discrete domain are given in [14,15, 16]. They 
have also been used to prove the kernel theorem in [53]. 

The Schrodinger equation for quadratic Hamiltonians 

The metaplectic group Mp(2(i,]R) plays a crucial role in quantum mechanics because 
of the following property. Consider a Hamiltonian function H which is quadratic in the 
Xj,/)fc variables: 

Hix,p) = ^ix,p)M{x,pf (68) 

(M a real symmetric 2d x 2d matrix). Such Hamiltonians generalize the "harmonic 
oscillator" 

Hix,p) = ^i\pf + m^O)^\xf) (69) 
2m 

familiar from elementary physics. The solution of the Hamilton equations 

(70) 
dx dH 

dt dp 

x{t),p{t)) = 

with St = 

dp dH 

dt dx 

= St{x{0),p{0)) 

= ex]){tJM); 

is explicitly given by 

since JM is in the Lie algebra of Sp(2(i,]R) we have St G Sp(2(i,]R) for every t G R. Now, 
when t varies the symplectic matrices St describe a differentiable curve in Sp(2(i,]R) 
passing through the identity at time T = 0 (in fact, {St) is a one-parameter subgroup). 
It follows from a classical result from the theory of covering spaces (the "unique path 
lifting property") that there exists a unique path 11—> St in Mp(2(i,]R) whose projection 
is precisely the path 11—> St; in particular ^o is the identity in Mp(2(i,]R). The interest 
of these considerations comes from the following well-known result, whose second part 
trivially follows from Proposition 2 above: 

Proposition 3. (i) Consider the Schrodinger equation 

ih^=H(x,-ihd:,)Y (71) 
at 
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where H{x, —ihd^) is the partial differential operator obtained by Weyl quantization from 
the quadratic Hamiltonian H. Its solution is given by the formula 

xif{x,t) = SMx,0). (72) 

(ii) Thus, ifY{-,0) G 5o(K'') then Y ^ '?o(K'') and the solution depends continuously in 
the So-norm on the time parameter t. 

Part (i) has been known for a very long time, it has been implicit in the early work of 
Hermann Weyl ([119]), and proofs can be found in [62]. 

We said above that there is an alternative description of the metaplectic group 
Mp(2(i,]R) in terms of generators. We set 

W{x,x') = -Px-x-Lx-x'+-Qx'-x' (73) 

where P (resp. Q) and L are as above, and consider the Fourier integral operator Sw,m 
defined by 

Sw,n,¥{x)=(^Y A{W) f ei^(-'-V(x')rfx' 
\27tlhJ jRd 

A(w) = r^^toz^. 

One verifies, by simple inspection, that Sw,m is easily expressed in terms of the elemen­
tary generators of Mp{2d,'R), in fact: 

Sw,m = V:pM^J\Q)- (74) 

It follows that Sw,m ^ Mp(2(i,]R); one proves that the Fourier integral operators Sw,m 
generate the metaplectic group, more precisely: every S G Mp(2(i,]R) can be written 
(non-uniquely) as a product of exactly two such operators: S = Sw,mSw',m'- In the case 
of the Schrodinger equation, it turns out that if the Hessian matrix M of the Hamiltonian 
is non-singular, the operators St are, except for a set of exceptional values of t, of the 
type Sw,m-

Note that more concrete realizations of this principle allow E. Cordero and coauthors 
to derive Strichartz-type estimates for the solutions of the Schrodinger equation (see 
[26, 25, 27]). 

A Fresh Look on Dirac's Functional Calculus 

In the case of matrices unitary matrices U are the most useful ones. A complex-valued 
n X n-matrix U is unitary if and only one has 

U*U' = Idn = U'*U. (75) 
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Sometimes it is also interesting to consider rectangular matrices U of size m x n, satisfy­
ing one or the other of these two properties. If n < m it is still possible that U' *U = Id„, 
or equivalently, that the columns of U form an orthonormal system. In particular, they 
are a linear independent system of vectors. Alternatively for n > m one can have a 
"perfect set of generators", or a so called tight frame, satisfying U *U' = Idm, or 
X = Yi=i{x,Uk)uk for all x G C"^^. It is obvious that only for the case n = m (finite 
dimension!) these two properties are equivalent, while in one can have one without the 
other, also for the case Jf = i^. 

Let us now go for the analogue of these two identities in the case of the Fourier 
transform. Recall that ^ is a unitary Banach Gelfand morphism, which however is 
typically used in the spirit of an analysis mapping -^ • f '—^ {{f,Xs)) or {{f,Xs)), 
while the inverse Fourier transform {synthesis of a function or distribution from "pure 
frequencies") is more in the spirit of the adjoint mapping. Since in both cases the kernel 
for the corresponding mapping is continuous and bounded (actually smooth) , namely 
K{x, s) = e"2;̂ Ĵ̂ :̂ ^^^ ^ a n d K{s,y) = e^^"'^ for ^^^ the fact that they are corresponding 
to two mappings which are inverse to each other, i.e. they satisfy 

^ 0 ^ - 1 = Idj^ = ^ - 1 o ^ , (76) 

implies obviously that the composition of their symbols according to (58) has to result in 
the kernel of the identity operator. This brings us to a short discussion of the connection 
between the Kronecker's Delta and Dirac's Delta. Modem distribution theory (and in 
fact the kernel theorem) tell us that the identity mapping (or equivalently multiplication 
by the constant 1) is given by a kind of 5-distribution concentrated along the diagonal, 
namely the functional (we just use an "arbitrary symbol" reminding of this idea) 5A, 
given as an element of SQ{^'^) via the action / H^ Jf^df{t,t)dt for / G 5o(R^''). In the 
matrix setting we can view the unit matrix Id„ as a collection of unit vectors, which 
is clearly described in an equivalent way by the Kronecker 5-function A^ron- Viewed 
as a matrix kernel we have of course A^mn *x = x. The continuous analogue of such a 
situation is a kernel K{x,y) such that 

K{x,y)fiy)dx = fix), 

so somehow one should have for any fixed x that K{x,y) represents 5^ (in the sense of the 
point measure at x). However, starting from a general distributional kernel x G So{R^^), 
even if we write it symbolically in the form the "restriction" to x, i.e. the distribution 
K{x, •) does not make sense a priori. So we should probably really interpret the Dirac 
symbol as a continuous analogue of the Kronecker symbol. 

In books and papers on quantum mechanics, (using slightly different symbols) one 
often finds relationships such as the following formulas: 

{x,.Xt) = 5{s-t),s,teM.^, ill) 

One can show that these systems are nothing else than orthogonal 1 projections of orthonormal bases 
in higher dimensions. 
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as a replacement for the orthogonality relation, mostly in the form 

{x..Xt) = 8t{s), s.teM.^, (78) 

which is view-point similar to the interpretation of the n x n identity matrix as a collec­
tion of unit vectors (cf. (75)). On the other hand one finds expressions such as 

W ^ = f \Xs){Xs\ds (79) 
JR'' 

claiming that the identity operator can viewed as a superposition of rank-one operators 

(cf. [98], Chap.l), evidently expressing completeness of the system of characters W. 
We can say: both formulas can be given their proper meanings in different ways. First 

of all we view the Fourier transform and its inverse (or equivalently its conjugate kernel) 
as Banach Gelfand triple morphisms. In some cases it is the "how", i.e. the way how the 
transformation is first defined, at least on the space of test function 5o (R''), which catches 
our intention. One is lead to beheve that the Fourier transform is primarily an integral 
transform, which has the Lebesgue space L^{W^) as natural domain. On the other hand 
(when we talk about Fourier synthesis) the w*-convergence is helpful, because it does 
not make sense to interpret the Fourier inversion formula (we write / as a superposition 
of pure frequencies) in any other natural topology. 

Despite the fact that Xs ^ Qi^^) C Sd{R^) is only applicable (via integration) on 
test functions from ^(R' ' ) , concrete (hard analysis) arguments allow to show that they 
determine even a unitary Banach Gelfand Gelfand triple automorphism. Obviously one 
has ^ o ^ ^ i = Id as well as ^^^ o^ = Id. Both identities can be useful, e.g. in order 
to show that the Fourier transform is injective, or that a given function is the Fourier 
transform of another function (or distribution) of the same kind. If we try to describe 
these two mappings through their kernels and try to compose the kernels using the 
standard composition formula for kernels we end up with exactly the relations (??) and 
(79) respectively. Of course, one can combine these kernels with regularizing operators, 
in order to have kernels from SQ{M^'^), and in this case the composition can be carried 
out in the usual way, using Riemannian integrals. Their products are then well defined 
(according to (58)), and then the claim is: in the w*-sense the limit of these kernels 
is the (kernel of the) identity operator, or 5{t — s), which is in standard terminology 
the tensor product of 5Q (the usual Dirac measures at zero) with the function constant 
one, rotated by 45 degrees. From this point of view Dirac's intention might not have 
been too far away from simply going from the well-known Kronecker symbol with 
discrete entries to a continuous version. The fact that the Fourier transform is using 
building blocks from "outside the Hilbert space" gives troubles to anybody who tries 
to stay within the world of Hilbert spaces, while the viewpoint of Banach Gelfand 
triples (in our view only a convenient reahzation of the idea underlying the concept 
of rigged Hilbert spaces) opens up a new view and a technically sound perspective. As 
mathematician we suggest therefore to provide in any concrete apphcation the details 
of the involved BGT-morphism instead of relying on the symbohc calculus per se. Most 
likely one can overcome the purely technical problems using the idea of approximation 
by test functions using regularization ideas, while obviously at critical points (where the 
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symbohc manipulations lead to misleading conclusions) such justification will fail for 
good reasons. 
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