# Menger Universal Spaces Introduction to Fractal Geometry and Chaos

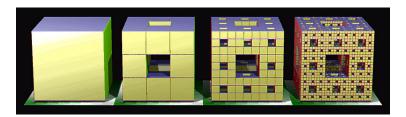
Matilde Marcolli

MAT1845HS Winter 2020, University of Toronto M 5-6 and T 10-12 BA6180

#### Some References

- Stephen Lipscomb, Fractals and Universal Spaces in Dimension Theory, Springer, 2008
- A. Panagiotopoulos, S. Solecki, A combinatorial model for the Menger curve, arXiv:1803.02516
- B.A. Pasynkov, Partial topological products, Trans. Moscow Math. Soc. 13 (1965), 153–271
- Greg Friedman, An elementary illustrated introduction to simplicial sets, Rocky Mountain Journal of Mathematics 42 (2012) 353–424

## Menger Sponge



- start with unit cube  $\mathcal{I}^3$
- divide into 27 cubes of side 1/3
- remove central cube on each face and central cube in the middle
- repeat construction on each of the 20 remaining cubes ...

## Menger Sponge

• n-th stage  $M_n$  of the construction of the Menger sponge consists of  $20^n$  cubes

$$M=\bigcap_{n\in\mathbb{N}}M_n$$

of side  $3^{-n}$ , so that  $Vol(M_n) = (20/27)^n$  and surface area  $\Sigma(M_n) = 2(20/9)^n + 4(8/9)^n$ 

 volume goes to zero surface area to infinity: Hausdorff dimension is between 2 and 3

$$\dim_H(M) = \frac{\log 20}{\log 3} = 2.727...$$

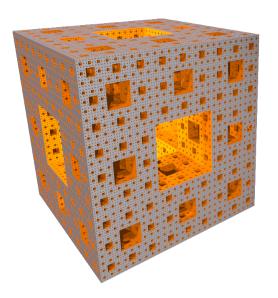
- each face is a Sierpinski carpet
- each intersection with a diagonal of the cube or a midline of the faces is a Cantor set







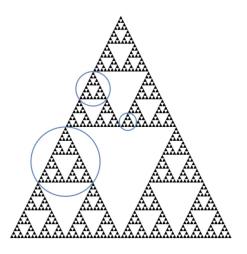




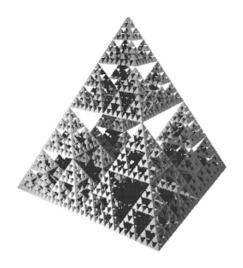
## Topological dimension

- with the previous construction seen that the Menger sponge has Haudorff dimension  $2 < \dim_H(M) < 3$
- so one would expect topological dimension is 2 but ... topological dimension one  $\dim_{top}(M) = 1$  (Menger curve)
- to see this use the following equivalent description of the topological dimension (for subsets of an ambient space  $\mathbb{R}^N$ ): a space  $M \subset \mathbb{R}^N$  has topological dimension n if each point  $x \in M$  has arbitrarily small neighborhoods U such that  $U \cap M$  is a set of topological dimension n-1, and n is the smallest non-negative integer with this property

## Example: the Sierpinski Gasket has topological dimension 1

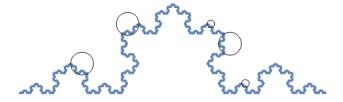


## Example: Sierpinski Tetrahedron

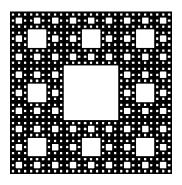


Hausdorff dimension 2 (4 pieces, scaling 1/2) and topological dimension 1 (similar neighborhoods balls as for Sierpinski Gasket)

Example: the Koch Snowflake has topological dimension 1



Example: Sierpinski Carpet also has topological dimension 1 (like Sierpinski Gasket) and Menger Sponge also in a similar way



more difficult to draw the right choice of neighborhoods here that make topological dimension 1 immediately visible

## Universality of the Menger Curve

- K. Menger, Kurventheorie, Teubner, 1932.
- R. Anderson, One-dimensional continuous curves and a homogeneity theorem, Ann. of Math. 68 (1958) 1–16
- universal property of the Menger curve
  - $\bullet$  universal space for the class of all compact metric spaces of topological dimension  $\leq 1$
  - every such space embeds inside the Menger curve
- the Cantor set is similarly universal for all compact metric spaces of topological dimension 0 (and the Sierpinski carpet for Jordan curves)
- on embedding and universality properties
  - Stephen Lipscomb, *Fractals and Universal Spaces in Dimension Theory*, Springer, 2008.



- a continuum is a connected compact metric (metrizable) topological space
- a Peano continuum is a locally-connected compact metrizable space
- Menger curve M topologically characterized as a one-dimensional Peano continuum without locally separating points (for every connected neighbourhood U of any point x the set  $U \setminus \{x\}$  is connected) and also without non-empty open subsets embeddable in the plane. Every one-dimensional Peano continuum can be embedded in M

## *n*-dimensional Menger universal spaces

- A.N. Dranishnikov, Universal Menger compacta and universal mappings, Math. USSR-Sb. 57 (1987), no. 1, 131–149.
- B.A. Pasynkov, Partial topological products, Trans. Moscow Math. Soc. 13 (1965), 153–271
- M. Bestvina, Characterizing k-dimensional universal Menger compacta, Bull. AMS 11 (1984) 2, 369–370
- R. Engelking, Dimension theory, North Holland, 1978

## • Menger universal $M_n^m$ -continuum

- first step unit cube  $\mathcal{I}^m$
- suppose at the k-th step of the construction have produced a configuration  $\mathcal{F}_k$  of smaller m-cubes
- at the (k+1)st step subdivide each cube D in  $\mathcal{F}_k$  into  $3^{m(k+1)}$  subcubes with edges  $3^{-m(k+1)}$
- for each  $D \in \mathcal{F}_k$  let  $\mathcal{F}_{k+1}(D)$  be those smaller cubes that intersect the *n*-faces of D
- take  $\mathcal{F}_{k+1} = \cup_{D \in \mathcal{F}_{k}} \mathcal{F}_{k+1}(D)$



• let  $M_n^m(k) = \bigcup_{D \in \mathcal{F}_k} D \subset \mathcal{I}^m$  union of the subcubes

$$M_n^m = \cap_{k=0}^\infty M_n^m(k)$$

- Menger curve is  $M_1^3$
- Sierpinski carpet is M<sub>1</sub><sup>2</sup>

## Universality of $M_n^m$

- the Menger  $M_n^m$ -continuum is universal for all compact metric spaces (compacta) of topological dimension  $\leq n$  that embed in  $\mathbb{R}^m$  (Štanko, 1971)
- a continuum X is homemorphic to  $M_n^m$  iff it can be ambedded in the sphere  $S^{m+1}$  so that  $S^{m+1} \setminus X$  has infinitely many connected components  $C_i$  with  $\operatorname{diam}(C_i) \to 0$  and  $\partial C_i \cap \partial C_j = \emptyset$  for  $i \neq i$ , the boundaries  $\partial C_i$  are m-cells for each i and  $\bigcup_{i=1}^{\infty} \partial C_i$  is dense in X (Cannon, 1973)

## Universal mapping of Menger $M_n = M_n^{2n+1}$ -continua

- A.N. Dranishnikov, *Universal Menger compacta and universal mappings*, Math. USSR-Sb. 57 (1987), no. 1, 131–149
  - (Bestvina, 1984): for  $m \ge 2n + 1$  all the Menger compacta  $M_n^m$  are homeomorphic
  - $\exists$  continuous maps  $f_n: M_n \to M_n$  universal in the class of maps between n-dimensional compacta
  - $\forall f: X \to Y$  continuous map between n-dimensional compacta there are embeddings  $\iota_X: X \hookrightarrow M_n$  and  $\iota_Y: Y \hookrightarrow M_n$  such that commuting diagram up to homeomorphism

$$\begin{array}{c|c}
X & \xrightarrow{f} & Y \\
\downarrow \iota_X & & \downarrow \iota_Y \\
M_n & \xrightarrow{f_n} & M_n
\end{array}$$

references added to the webpage



## All Cantor sets are homeomorphic

- Brouwer's theorem: a topological space is homeomorphic to the Cantor set if and only if it is non-empty, perfect, compact, totally disconnected, and metrizable
  - L.E.J. Brouwer, On the structure of perfect sets of points, Proc. Koninklijke Akademie van Wetenschappen, 12 (1910) 785–794.

## Cantor sets are projective limits of finite sets:

- projective system  $\{X_n\}$  of finite sets (discrete topology) with surjective maps  $\phi_{n,m}: X_n \to X_m$  for n > m
- projective limit  $X = \varprojlim_n X_n$  is subspace of the product  $\prod_n X_n$  (with product topology)

$$X = \{x = (x_n) \in \prod_n X_n \mid x_m = \phi_{n,m}(x_m), \forall n \leq m\}$$

 either use characterization above or construct a coding by strings on an alphabet

## Categorical view of the Menger curve $M = M_1^3$

- A. Panagiotopoulos, S. Solecki, A combinatorial model for the Menger curve, arXiv:1803.02516
- Menger prespace M generic inverse limit in the category of finite connected graphs with surjective graph homomorphisms
- ullet Edge relation: equivalence relation  ${\mathcal R}$  on  ${\mathbb M}$
- Menger curve: quotient by this equivalence  $M = \mathbb{M}/\mathcal{R}$
- ullet topological realization  $M=|\mathbb{M}|$  of combinatorial object  $\mathbb{M}$

## Category of graphs

- a graph G is a pair  $(V, \mathcal{R}_V)$  where V is a set (vertices) and  $\mathcal{R}_V \subset V \times V$  is a relation that is reflexive  $((v, v) \in \mathcal{R}_V)$  and symmetric  $((v, w) \in \mathcal{R}_V \Leftrightarrow (w, v) \in \mathcal{R}_V)$  defining edges
- Note nonconventional assumption that  $(v, v) \in \mathcal{R}_V$  (like presence of a "trivial" looping edge at each vertex)
- homomorphism of graphs: function  $f: V \to V'$  preserving edge relations (if  $(v, w) \in \mathcal{R}_V$  then  $(f(v), f(w)) \in \mathcal{R}_{V'}$ ); epimorphism if surjective on vertices and edges
- ullet only consider induced subgraphs: subset of vertices V and all edges of  $\mathcal{R}_V$  between them
- category: C objects finite connected graphs morphisms epimorphisms between them that are connected (preimage of each connected subset of target is a connected subset of source graph)
- epimorphism between connected graphs is connected iff preimages of vertices are connected

- Projective limits of finite graphs
  - topological graph  $(K, \mathcal{R}_K)$  with K a zero-dimensional compact metrizable topological space and  $\mathcal{R}_K \subset K \times K$  closed subset, continuous morphisms
  - for finite graph discrete topology
  - inverse system  $f_m^n: V_n \to V_m$  with  $f_{n,n} = \mathrm{id}$  and  $f_{n,m} \cdot f_{m,k} := f_{m,k} \circ f_{n,m} = f_{n,k}$  for  $n \ge m \ge k$
  - inverse limit is a topological graph

$$(K, \mathcal{R}_K) = \varprojlim_n (V_n, \mathcal{R}_{V_n})$$

- no longer a finite graph in general: set of vertices K is Cantor-like
- viewing projective limit as subset of product,  $x = (x_0, x_1, x_2, ...) \in K$  with  $x_i \in V_i$  and with projections  $f_i : K \to V_i$  satisfying  $f_{i,j} \circ f_i = f_j$
- connectedness: point  $x = (x_0, x_1, x_2,...)$  and  $y = (y_0, y_1, y_2...)$  connected in K iff  $x_i$  connected to  $y_i$  in  $V_i$  for all coordinates

- Category of projective limits of finite graphs
  - objects are projective limits  $K = \varprojlim_n (V_n, \mathcal{R}_{V_n}, f_{n,m})$  and morphisms are connected epimorphisms between these topological graphs
  - K connected and locally-connected, coordinatewise in  $\prod_n K_n$  each  $f_{m,n}^{-1}(v)$  connected
  - morphism of projective limits  $h: K \to L$  with  $K = \varprojlim_n K_n$  and  $L = \varprojlim_n L_n$  then for all m there is n and  $h_{n,m}: K_n \to L_m$  such that  $h_{n,m} \circ f_n = \ell_m \circ h$  for  $f_n: K \to K_n$  and  $\ell_m: L \to L_m$  projections, with  $h_{n,m}$  connected epimorphism of finite graphs so  $h: K \to L$  is connected epimorphism of topological graphs

- conversely all connected and locally-connected topological graphs with connected epimorphisms are obtained as projective limits and morphisms of projective limits of finite graphs
- K has topology with a basis of connected clopen sets; can extract from this a sequence  $\mathcal{U}_n$  of finite coverings with  $\mathcal{U}_n$  a refinement of  $\mathcal{U}_{n-1}$  such that different  $U,V\in\mathcal{U}_n$  have  $U\cap V=\emptyset$  and  $\cup_n\mathcal{U}_n$  separates vertices of K
- give to  $\mathcal{U}_n$  a graph structure by putting an edge between U and V iff  $\exists x, y$  with  $x \in U$  and  $y \in V$  such that  $(x, y) \in \mathcal{R}_K$
- then have projection maps between these graphs  $f_{n,m}:\mathcal{U}_n \to \mathcal{U}_m$  that are connected epimorphisms and  $K = \varinjlim_n \mathcal{U}_n$  proj limit ot graphs

- connected epimorphism  $h: K \to L$  of connected and locally-connected topological graphs: know  $K = \varprojlim_n K_n$  and  $L = \varprojlim_m L_m$  with projections  $f_n: K \to K_n$  and  $\ell_m: L \to L_m$ , so need to show for all m there is n and  $h_{n,m}: K_n \to L_m$  with  $\ell_m \circ h = h_{n,m} \circ f_n$
- for given m pick n large enough that  $f_n^{-1}(K_n)$  is a refinement of  $(\ell_m \circ h)^{-1}(L_m)$ , then there is a map  $h_{n,m}: K_n \to L_m$  that is defined through this inclusion so that  $\ell_m \circ h = h_{n,m} \circ f_n$
- because  $\ell_m$ , h,  $f_n$  are connected epimorphisms  $h_{n,m}$  also is
- category of projective limits of finite graphs is same as category of connected and locally-connected topological graphs with connected epimorphisms

- Topological graphs and Peano continua
  - Peano continuum: locally-connected compact metrizable space
  - prespace: connected and locally-connected topological graph K where the edge relation  $\mathcal{R}_K$  is transitive (hence an equivalence relation)
  - any equivalence relation on a finite set gives a graph on that set of vertices that consists of a disjoint union of cliques (complete graphs) so for finite connected graphs just cliques
  - realization |K| of a prespace K: topological space given by quotient  $K/\mathcal{R}_K$
  - Claim: X Peano continuum iff X = |K| for some prespace K
- A. Panagiotopoulos, S. Solecki, *A combinatorial model for the Menger curve*, arXiv:1803.02516



## Projective Fraïsse class

- any sub-collection of pairwise non-isomorphic objects is countable
- identity maps in the class and maps in the class closed under composition (ok if morphisms of a category)
- for any objects B, C in the class there is an object D with morphisms  $f: D \to B$  and  $g: D \to C$
- for every morphisms  $f': B \to A$  and  $g': C \to A$  there are morphisms  $f: D \to B$  and  $g: D \to C$  with  $f' \circ f = g' \circ g$  (projective amalgamation property)
- finite connected graphs with connected epimorphisms are a projective Fraïsse class



## • Menger Prespace

- ullet given a projective Fraïsse class (here the one of finite graphs) there is an object  $\mathbb M$  (projective limit of a "generic sequence" of objects in the class) such that
  - for each object A in the class there is a morphism  $f: \mathbb{M} \to A$  (morphism in the category of projective limits)
  - for any A,B in the class and morphisms  $f:\mathbb{M}\to A$  and  $g:B\to A$  there is a morphism  $f:\mathbb{M}\to B$  with  $f=g\circ h$  (projective extension property)
- this M is the Menger prespace

- generic sequence
  - by first property of Fraïsse class have countable  $A_n$  and  $e_n: C_n \to B_n$  containing all isomorphism types of objects and morphisms
  - inductive construction of projective system:  $L_0 = A_0$  and assume have  $L_n$  with maps  $t_{n,i}: L_n \to L_i$  for i < n
  - by third property of Fraïsse class find H with maps  $f: H \to L_n$  and  $g: H \to A_{n+1}$  and with a finite number  $s_1, \ldots, s_k$  of morphisms (up to isoms)  $s_i: H \to B_{n+1}$
  - use k times projective amalgamation to obtain H' with maps  $f': H' \to H$  and  $d_j: H' \to C_{n+1}$  with  $s_j \circ f' = e_{n+1} \circ d_j$  for all  $j \leq k$
  - take  $L_{n+1} = H'$  with  $t_{n+1,i} = t_{n,i} \circ f \circ f'$
  - the way  $(L_n, t_{n,i})$  constructed gives the two properties above of  $\mathbb{M}$
- Menger Prespace and Menger Curve: realization  $|\mathbb{M}|$  is a topologically one-dimensional Peano continuum without locally separating points, hence it is the Menger curve

## Statements of some properties of Menger prespace and curve (Panagiotopoulos, Solecki)

## Homogeneity

- K closed subgraph of  $\mathbb M$  "locally non-separating" if for each clopen connected W in  $\mathbb M$  the complement  $W \smallsetminus K$  is connected
- K, L locally non-separating subgraphs of  $\mathbb{M}$ : any isomorphism  $f: K \to L$  extends to an automorphism of  $\mathbb{M}$

## Lifting property

• K locally non-separating subgraph of  $\mathbb{M}$ : given finite graphs A,B and connected epimorphisms  $g:B\to A$  and  $f:\mathbb{M}\to A$ , for any morphism  $p:K\to B$  with  $g\circ p=f|_K$  there is  $h:\mathbb{M}\to B$  with  $g\circ h=f$  and  $h|_K=p$ 

## Universality

• for any Peano continuum X there is a continuous connected surjective map  $f: |\mathbb{M}| \to X$ 

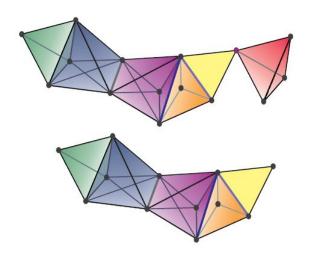
## Higher dimensional analogs

- a more general higher-dimensional theory of inverse limits of *n*-dimensional polyhedra with simplicial finite-to-one projections
  - B.A. Pasynkov, Partial topological products, Trans. Moscow Math. Soc. 13 (1965), 153–271
  - A. Panagiotopoulos, S. Solecki, A combinatorial model for the Menger curve, arXiv:1803.02516
- Menger compacta and inverse limits categories
  - simplicial sets/simplicial complexes (more about them later) k-connected if homotopy groups  $\pi_i$  vanish for  $i \leq k$ ; simplicial map k-connected if preimage of every k-connected subcomplex is k-connected
  - category  $C_n$  of all n-dimensional and (n-1)-connected simplicial complexes with (n-1)-connected simplicial maps
  - generic sequences and projective limit gives n-dimensional prespaces  $\mathbb{M}_n$  with realization (with respect to faces relation) is Menger space  $M_n = M_n^{2n+1}$

Can use Menger compacta as model spaces for fractals? just like simplicial sets or cubical sets?

- Simplicial sets in topology
  - Greg Friedman, An elementary illustrated introduction to simplicial sets, arXiv:0809.4221, Rocky Mountain Journal of Mathematics 42 (2012) 353–424
  - J. Peter May, Simplicial objects in algebraic topology, University of Chicago Press, 1992
- Simplicial set: sequence of sets  $X = \{X_n\}_{n \geq 0}$  with maps (faces and degeneracies)  $d_i: X_n \to X_{n-1}$  and  $s_i: X_n \to X_{n+1}$  for 0 < i < n

$$\begin{split} d_i d_j &= d_{j-1} d_i & \text{ if } i < j, \\ d_i s_j &= s_{j-1} d_i & \text{ if } i < j, \\ d_j s_j &= d_{j+1} s_j = \text{ id}, \\ d_i s_j &= s_j d_{i-1} & \text{ if } i > j+1, \\ s_i s_j &= s_{j+1} s_i & \text{ if } i \leq j. \end{split}$$



## Categorical version of simplicial sets

- $\Delta$  category: objects finite ordered sets  $[n] := \{1, 2, ..., n\}$  and morphisms  $f : [m] \to [n]$  order-preserving functions:  $f(i) \le f(j)$  for  $i \le j$
- ullet morphisms are generated by maps  $D_i:[n] o [n+1]$  and  $S_i:[n+1] o [n]$

$$D_i[0,\ldots,n] = [0,\ldots,\hat{i},\ldots,n], \quad S_i[0,\ldots,n] = [0,\ldots,i,i,\ldots,n]$$

• in  $\Delta^{op}$  the  $D_i$  become face maps  $d_i:[n+1]\to [n]$  and  $S_i$  the degeneracy maps  $s_i:[n]\to [n+1]$ 

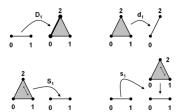


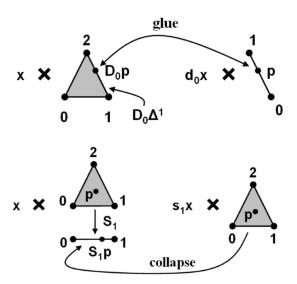
image of degeneracy  $s_1$  degenerate 2-simplex image of collapse map  $S_1$ 

- Simplicial set: functor  $X:\Delta^{op}\to \mathcal{S}$  to the category of sets (contravariant functor from  $\Delta$ )
- Realization:  $|\Delta^n|$  the geometric simplex realization of combinatorial  $\Delta^n = [n]$

$$|X| := \sqcup_n (X_n \times |\Delta^n|) / \sim$$

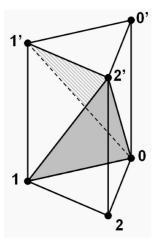
modulo equivalence relation  $(x, S_i(t)) \sim (s_i(x), t)$  and  $(x, D_i(t)) \sim (d_i(x), t)$ 

• interpret as recipe for gluing the geometric simplexes  $|\Delta^n|$  together according to the combinatorial scheme prescribed by the  $X_n$  so that faces and degeneracies match



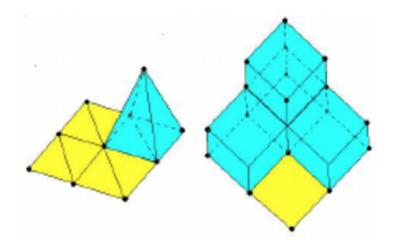
- Nerve: simplicial sets from categories
  - category Cat of small categories with functors as morphisms, nerve functor  $\mathcal{N}: Cat \to \Delta \mathcal{S}$  to the category of simplicial sets  $\Delta \mathcal{S} = \operatorname{Func}(\Delta^{op}, \mathcal{S})$
  - for a small category  $\mathcal C$  the nerve  $\mathcal N(\mathcal C)$  has a 0-simplex (vertex) for each object of  $\mathcal C$ , a 1-simplex (edge) for each morphism, a 2-simplex for each composition of two morphishs, a k-simplex for every chain of k composable morphisms
  - face maps: composition of two adjacent morphisms at the *i*-th place of a *k*-chain  $d_i: \mathcal{N}_k(\mathcal{C}) \to \mathcal{N}_{k-1}(\mathcal{C})$  and degeneracies are insertions of the identity morphism at an object in the chain

• Products: product of simplexes is not a simplex but can be decomposed as a union of simplexes



Cubes behave better than simplexes with respect to products

## Simplicial and cubical complexes



## • Cubical sets in topology

- $\bullet$   $\, \mathcal{I} \,$  unit interval as combinatorial structure consisting of two vertices and an edge connecting them
- $|\mathcal{I}| = [0,1]$  geometric realization: unit interval as topological space (subspace of  $\mathbb{R}$ )
- $\mathcal{I}^n$  for the *n*-cube as combinatorial structure and  $|\mathcal{I}^n| = [0,1]^n$  its geometric realization
- $\mathcal{I}^0$  a single point
- face maps  $\delta_i^a:\mathcal{I}^n \to \mathcal{I}^{n+1}$ , for  $a \in \{0,1\}$  and  $i=1,\ldots,n$

$$\delta_i^a(t_1,\ldots,t_n)=(t_1,\ldots,t_{i-1},a,t_i,\ldots,t_n)$$

• degeneracy maps  $s_i: \mathcal{I}^n \to \mathcal{I}^{n-1}$ 

$$s_i(t_1,\ldots,t_n)=(t_1,\ldots,t_{i-1},t_{i+1},\ldots,t_n)$$



• cubical relations for i < j

$$\delta^b_j \circ \delta^a_i = \delta^a_i \circ \delta^b_{j-1}$$
 and  $s_i \circ s_j = s_{j-1} \circ s_i$ 

and relations

$$egin{aligned} \delta_i^{\mathsf{a}} \circ s_{j-1} &= s_j \circ \delta_i^{\mathsf{a}} & i < j \ \\ s_j \circ \delta_i^{\mathsf{a}} &= 1 & i = j \ \\ \delta_{i-1}^{\mathsf{a}} \circ s_j &= s_j \circ \delta_i^{\mathsf{a}} & i > j \end{aligned}$$

- Cube category:  $\mathfrak C$  has objects  $\mathcal I^n$  for  $n \geq 0$  and morphisms generated by the face and degeneracy maps  $\delta_i^a$  and  $s_i$
- Cubical set: functor  $C: \mathfrak{C}^{op} \to \mathcal{S}$  to the category of sets.
- notation:  $C_n := C(\mathcal{I}^n)$

• variant of the cube category  $\mathfrak{C}_c$  with additional degeneracy maps  $\gamma_i:\mathcal{I}^n \to \mathcal{I}^{n-1}$  called connections

$$\gamma_i(t_1,\ldots,t_n)=(t_1,\ldots,t_{i-1},\max\{t_i,t_{i+1}\},t_{i+2},\ldots,t_n)$$

satisfying relations

$$\gamma_{i}\gamma_{j} = \gamma_{j}\gamma_{i+1}, \ i \leq j; \quad s_{j}\gamma_{i} = \begin{cases} \gamma_{i}s_{j+1} & i < j \\ s_{i}^{2} = s_{i}s_{i+1} & i = j \\ \gamma_{i-1}s_{j} & i > j \end{cases}$$

$$\gamma_{j}\delta_{i}^{a} = \begin{cases} \delta_{i}^{a}\gamma_{j-1} & i < j \\ 1 & i = j, j+1, \ a = 0 \\ \delta_{j}^{a}s_{j} & i = j, j+1, \ a = 1 \\ \delta_{i-1}^{a}\gamma_{j} & i > j+1. \end{cases}$$

• role of degeneracy maps: maps  $s_i$  identify opposite faces of a cube, additional degeneracies  $\gamma_i$  identify adjacent faces

- cubical set with connection: functor  $C: \mathfrak{C}^{op}_c \to \mathcal{S}$  to the category of sets
- category of cubical sets has these functors as objects and natural transformations as morphisms
- so morphisms given by collection  $\alpha = (\alpha_n)$  of morphisms  $\alpha_n : C_n \to C'_n$  satisfying compatibilities  $\alpha \circ \delta^a_i = \delta^a_i \circ \alpha$  and  $\alpha \circ s_i = s_i \circ \alpha$  (and in the case with connection  $\alpha \circ \gamma_i = \gamma_i \circ \alpha$ )
- $\bullet$  cubical nerve  $\mathcal{N}_{\mathfrak{C}}\mathcal{C}$  of a category  $\mathcal{C}$  is the cubical set with

$$(\mathcal{N}_{\mathfrak{C}}\mathcal{C})_n = \operatorname{Fun}(\mathcal{I}^n, \mathcal{C})$$

with  $\mathcal{I}^n$  the *n*-cube seen as a category with objects the vertices and morphisms generated by the 1-faces (edges), and  $\operatorname{Fun}(\mathcal{I}^n,\mathcal{C})$  is the set of functors from  $\mathcal{I}^n$  to  $\mathcal{C}$ 

- when working with cubical sets with connection homotopy equivalent to simplicial nerve
- R. Antolini, Geometric realisations of cubical sets with connections, and classifying spaces of categories, Appl. Categ. Structures 10 (2002), no. 5, 481–494.

## Building an analog of cubical sets using Menger spaces

- Menger spaces  $M_n^m$  are modelled on cubes, so want the same faces and degeneracy maps (and connections) as in the cube category
- additional important data: the self-similarity structure
- the iterated function system  $\{f_1, \ldots, f_N\}$  given by the affine contraction maps that take the cube  $\mathcal{I}^m$  to the N smaller cubes, scaled by a factor  $3^{-m}$ , where N = N(m, n) is the number of those subcubes that intersect the n-faces of  $\mathcal{I}^m$
- Menger category  $\mathfrak{M}$  with objects the  $M_n^m$  (or better their corresponding combinatorial spaces  $\mathbb{M}_n^m$ ) and morphisms generated by the  $\delta_i^a$ ,  $s_i$ ,  $\gamma_i$ , and the IFS maps  $f_k$
- Menger sets: functors  $M:\mathfrak{M}^{op} \to \mathcal{S}$  to the category of sets

- there is a good homology theory for cubical sets (introduced by Serre to study (co)homology of fibrations) see
  - S. Eilenberg, S. MacLane, Acyclic models, Amer. J. Math, 75 (1953) 189–199
  - W. Massey, *Singular homology theory*, Graduate Texts in Mathematics, Vol. 70, Springer 1980.
- it is also known that cubical sets with connections have the same homology theory as ordinary cubical sets (connections do not add any nontrivial cycles in the homology groups)
  - H. Barcelo, C. Greene, A.S. Jarrah, V. Welker, Homology groups of cubical sets with connections, arXiv:1812.07600
- What is the effect on homology of introducing the contraction maps of the IFS for the Menger spaces? directed system of homology groups of cubical sets?
- Similar approach with simplicial sets? (Sierpinski n-simplex instead of Menger space?)

What does this approach lead to?

