# Sharkovsky's Ordering and Chaos Introduction to Fractal Geometry and Chaos

Matilde Marcolli

MAT1845HS Winter 2020, University of Toronto M 1-2 and T 10-12 BA6180

#### References for this lecture:

- K. Burns and B. Hasselblatt, The Sharkovsky theorem: a natural direct proof, Amer. Math. Monthly 118 (2011), no. 3, 229–244
- T.Y.Li and A.Yorke, Period three implies chaos, The American Mathematical Monthly, Vol. 82, No. 10. (Dec., 1975) 985–992
- O.M. Sharkovsky, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Z. 16 (1964) 61–71
- B. Luque, L. Lacasa, F.J. Ballesteros, A. Robledo, Feigenbaum Graphs: A Complex Network Perspective of Chaos, PLoS ONE 6(9): e2241
- L. Alsedà, J. Llibre, M. Misiurewicz, *Combinatorial dynamics* and entropy in dimension one, World Scientific, 2000



#### Period 3 implies Chaos

- T.Y.Li and A.Yorke, *Period three implies chaos*, The American Mathematical Monthly, Vol. 82, No. 10. (Dec., 1975) 985–992
  - considered the historical origin of Chaos Theory
  - if a continuous function  $f: \mathcal{I} \to \mathcal{I}$  of an interval  $\mathcal{I} \subset \mathbb{R}$  has a periodic point of period 3, then it has periodic points of any order  $n \in \mathbb{N}$
  - ullet there is also an uncountable subset of  ${\mathcal I}$  of points that are not even "asymptotically periodic"
  - this is a typical situation of chaotic dynamics
  - chaos = sensitive dependence on the initial conditions (starting points that are very close have very different behavior under iterates of the function)

#### Sharkovsky's theorem

- in fact the result of Li and Yorke is a special case of a previous much more general theorem of Sharkovsky
- Oleksandr M. Sharkovsky, *Co-existence of cycles of a continuous mapping of the line into itself*, Ukrainian Math. J. 16 (1964) 61–71
  - Sharkovsky ordering: there is an ordering of the natural numbers, different from usual ordering such that if a continuous function  $f: \mathcal{I} \to \mathcal{I}$  has a periodic point of period n, then it has also periodic points of period k for all natural numbers k that follow n in the Sharkovsky ordering
  - the Sharkovsky ordering starts with 3 (hence Li-Yorke follows)

#### Sharkovsky Ordering

$$3 \triangleright 5 \triangleright 7 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright \cdots \triangleright 2^2 \cdot 3 \triangleright 2^2 \cdot 5 \triangleright 2^2 \cdot 7 \triangleright \cdots \triangleright 2^3 \triangleright 2^2 \triangleright 2 \triangleright 1$$

- first all odd numbers in ascending order
- then all numbers  $2 \cdot n$  with n odd in ascending order
- then all  $2^2 \cdot n$  with n odd
- etc. for increasing powers  $2^N \cdot n$  with ascending odd n
- then all powers of 2 in descending order
- last in the ordering is 1

$$odds, 2 \cdot odds, 2^{\overline{2}} \cdot odds, 2^{\underline{3}} \cdot odds, \dots, 2^{\overline{3}} \cdot 1, 2^{\overline{2}} \cdot 1, 2 \cdot 1, 1.$$



#### Some notation

- an interval  $\mathcal I$  covers an interval  $\mathcal J$  (notation  $\mathcal I \to \mathcal J$ ) with respect to continuous map f if  $\mathcal J \subset f(\mathcal I)$
- by intermediate value theorem  $\mathcal{I} \to \mathcal{J}$  when f maps endpoints of  $\mathcal{I}$  to opposite sides of  $\mathcal{J}$
- notation  $\mathcal{I} \rightarrowtail \mathcal{J}$  if  $\mathcal{J} = f(\mathcal{I})$
- $\mathcal{O}$ -interval: interval  $\mathcal{I}$  whose endpoints are part of a cycle (periodic orbit)  $\mathcal{O}$  of f
- basic O-interval: O-interval containing no other point of cycle
   O besides endpoints (endpoints called adjacent in this case)
- knowing a cycle  $\mathcal{O}$  of f says how  $\mathcal{O}$ -intervals moved by the map (intermediate value theorem)
- in turn knowing how intervals are mapped gives other information about cycles



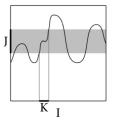
#### Intervals and Cycles

- if  $[a_1, a_2] \rightarrow [a_1, a_2]$  (that is,  $[a_1, a_2] \subseteq f([a_1, a_2])$  then f has a fixed point in  $[a_1, a_2]$ 
  - since  $[a_1, a_2] \rightarrow [a_1, a_2]$  there are  $b_1, b_2 \in [a_1, a_2]$  with  $f(b_1) = a_1$  and  $f(b_2) = a_2$
  - so  $f(b_1) b_1 \le 0 \le f(b_2) b_2$
  - intermediate value theorem: f(x) x = 0 is satisfied somewhere between  $b_1$  and  $b_2$
- points that follow a loop
  - ullet a loop of intervals  $\mathcal{J}_k$  for  $k=0,\ldots,n-1$  with  $\mathcal{J}_k o\mathcal{J}_{k+1}$  and  $\mathcal{J}_{n-1} o\mathcal{J}_0$
  - a point x follows the loop if  $f^n(x) = x$  and  $f^k(x) \in \mathcal{J}_k$  for all  $k = 0, \dots, n-1$



$$J_0 \rightleftharpoons \cdots \rightharpoonup J_{n-1}$$

- existence of points that follow loops: every loop has a point that follows it
  - ullet if  $\mathcal{I} o \mathcal{J}$  there is a subinterval  $\mathcal{K} \subseteq \mathcal{I}$  with  $\mathcal{K} \rightarrowtail \mathcal{J}$



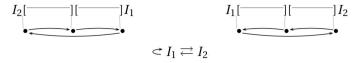
- ullet thus have  $\mathcal{K}_0 \rightarrowtail \mathcal{K}_1 \rightarrowtail \cdots \mathcal{K}_{n-1} \rightarrowtail \mathcal{J}_0$  with  $\mathcal{K}_k \subseteq \mathcal{J}_k$
- $f^{\circ n}$  maps  $\mathcal{K}_0 \subseteq \mathcal{J}_0$  to  $\mathcal{J}_0 = f^{\circ n}(\mathcal{K}_0)$ , so by previous fixed point statement there is  $x \in \mathcal{K}_0$  with  $f^{\circ n}(x) = x$
- this point x follows the loop



- elementary loop of n intervals: every point that follows it has period n (not a divisor of n)
- ullet in particular existence of an elementary loop implies existence of a period n point
- what ensures existence of an elementary loop?
  - suppose loop is made of  $\mathcal{O}$ -intervals, when is it elementary?
  - points that follow loop are not in the cycle  $\mathcal{O}$  and the interior of  $\mathcal{J}_0$  is disjoint from the other intervals  $\mathcal{J}_1, \ldots, \mathcal{J}_{n-1}$
  - there is a point x that follows the cycle, but it is not in  $\mathcal{O}$  so it must me in the interior of  $\mathcal{J}_0$ , but then  $f^{\circ k}(x) \in \mathcal{J}_k$  must be  $f^{\circ k}(x) \neq x$  because the interior of  $\mathcal{J}_0$  disjoint from  $\mathcal{J}_k$  so period cannot be shorter than n

#### Proof of Li-Yorke period three implies chaos

period three intervals

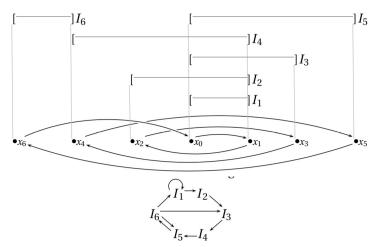


- $I_1 \rightarrow I_1$  implies  $I_1$  contains a fixed point
- by existence of points that follow the cycle there is a point of period 2 (endpoints are period three so they don't follow the cycle and interior of  $I_2$  disjoint from  $I_1$ )
- consider a loop  $I_2 o I_1 o I_1 \cdots o I_1 o I_2$  with  $\ell-1$  copies of  $I_1$  with  $\ell>3$
- because endopoints are order 3 cycle  $\mathcal O$  they cannot stay in  $I_1$  for more than two iterations of f
- ullet so this is an elementary cycle of  $\mathcal O$ -intervals
- so it contains a periodic point of order exactly  $\ell$  (and no divisor of  $\ell$ ) that follows the cycle



# Another example: Period 7 implies periods of all following numbers in the Sharkovsky order

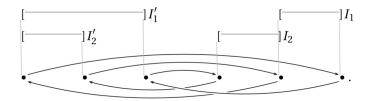
ullet just look at one possibility for  $\mathcal O$ -cycle and  $\mathcal O$ -intervals



- loop  $I_1 \rightarrow I_1$  implies existence of a fixed point
- other loops that are elementary because of previous argument

$$I_6 \rightarrow I_5 \rightarrow I_6$$
,  $I_6 \rightarrow I_3 \rightarrow I_4 \rightarrow I_5 \rightarrow I_6$ ,  $I_6 \rightarrow I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow I_4 \rightarrow I_5 \rightarrow I_6$ ,  $I_6 \rightarrow I_1 \rightarrow I_1 \rightarrow \cdots \rightarrow I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow I_4 \rightarrow I_5 \rightarrow I_6$  with 3 or more copies of  $I_1$ .

 these give existence of points of period 2, 4, 6, and then of any number that follows 7 in the Sharkovsky ordering Another example (slightly different): Period 6 implies periods of all following numbers in Sharkovsky order



- new aspect here: a symmetry that maps the three points on the left to the three points on the right
- $\bullet$  can use this to obtain information on the fixed points of f from the fixed points of  $f^2$

- ullet f<sup>2</sup> has covering relations  $I_1 
  ightarrow I_1$ ,  $I_1 
  ightarrow I_2$  and  $I_2 
  ightarrow I_1$
- $\bullet$  same as period three case, so  $f^2$  has periodic points of all orders
- obtain periodic points for f from those of  $f^2$ 
  - ullet each occurrence of  $I_1 o$  in loops for  $f^2$  replaced by  $I_1 o I_1' o$  for f
  - ullet each occurrence of  $I_2 o$  for  $f^2$  replaced by  $I_2 o I_2' o$  for f
  - so a k-loop for  $f^2$  becomes a 2k-loop for f
  - these 2k loops for f are still elementary if corresponding k-loop for  $f^2$  was, because if a point has period exactly k for  $f^2$  and follows the loop, under f the point keeps alternating between the two sides of figure, so period is 2k
  - obtain that f has all even periods (and a fixed point)
  - these are all numbers following 6 in the Sharkovsky ordering



## Proof of Sharkovsky's Theorem

- assume  $\mathcal{O}$  is a cycle for f of order m
- show that f has periodic points of periods all numbers following m in Sharkovsky ordering
- First Step: points that switch sides
  - given non-trivial cycle  $\mathcal{O}$ , pick rightmost point p of  $\mathcal{O}$  such that f(p) > p; let q be next point of  $\mathcal{O}$  to the right of p, then  $f(p) \geq q$  and  $f(q) \leq p$
  - take  $\mathcal{I}=[p,q]$ , this interval satisfies the covering relation  $\mathcal{I} \to \mathcal{I}$
  - ullet pick a point c in the interior of  ${\mathcal I}$
  - a point x switches sides (with respect to c) if x and f(x) are on opposite sides of c
  - if all points of  $\mathcal{O}$  switch sides then  $\mathcal{O}$  is even (m is even)



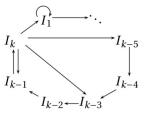
- Second Step: assume that not all points of  $\mathcal O$  switch sides and construct a sequence  $x_0,\ldots,x_k$  of points in  $\mathcal O$  that "spiral out as fast as possible"
  - start with  $x_0, x_1$  the endpoints of  $\mathcal{I}$  with  $f(x_1) \neq x_0$  (possible since  $\mathcal{O} \neq \{x_0, x_1\}$  other wise all points of  $\mathcal{O}$  switch sides): possibilities

• 
$$\overrightarrow{p} q$$
  $\overrightarrow{q}$  •  $\overrightarrow{p} q$  •  $\overrightarrow{q}$  •  $\overrightarrow{p} q$  •  $\overrightarrow{q}$  •  $x_1 = p$  or  $q$ 

- continue inductively: if all points of  $\mathcal{O}$  in the interval of endpoints  $x_i$  and c switch sides then  $x_{i+1}$  is point of  $\mathcal{O}$  in image of this interval furthest from c; otherwise stop at  $x_i$
- ullet consecutive terms in this sequence on opposite sides of c
- also can see from the construction that  $x_{i+1}$  is further away from c than  $x_i$
- all points in this sequence are distinct and the sequence terminates at some  $x_k$  with k < m (otherwise orbit closes up)



- ullet Third Step: assume that not all points of  $\mathcal O$  switch sides and show in this case all numbers  $\ell$  that follow m in Sharkovsky order are periods Sketch of proof:
  - use the previous sequence of points  $x_0, \ldots, x_k$  to construct a sequence of intervals  $I_1, \ldots, I_k$  satisfying the covering relations



 check also using previous argument that all these loops are elementary

$$I_1 \rightarrow I_1;$$
 $I_k \rightarrow I_{k-(l-1)} \rightarrow I_{k-(l-2)} \rightarrow \cdots \rightarrow I_{k-2} \rightarrow I_{k-1} \rightarrow I_k \text{ for even } l \leq k;$ 
 $I_k \rightarrow I_1 \rightarrow I_1 \rightarrow \cdots \rightarrow I_1 \rightarrow I_2 \rightarrow \cdots \rightarrow I_{k-1} \rightarrow I_k \text{ with } j \text{ occurrences of } I_1.$ 

- ullet the elementary loop  $I_1 
  ightarrow I_1$  implies existence of a fixed point
- the second family of elementary loops implies the existence of periodic points of all *even* orders  $\ell \leq k$
- third family of elementary loops imply existence of periodic points of order any  $\ell \geq k$  (except possibly m)
- note that these are all the numbers that follow m in the Sharkovsky ordering

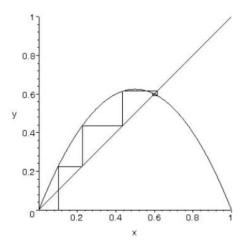
- ullet Fourth Step: the case where all points of  ${\mathcal O}$  switch sides
  - ullet use an induction argument on the length m of  ${\mathcal O}$
  - suppose proved for all numbers less than m (in the usual ordering of  $\mathbb{N}$ )
  - consider an m-cycle  $\mathcal{O}$ : if there is a point that does not switch sides then result established by previous argument
  - if all points switch sides then case similar to the period 6
    examples seen earlier: all points switch sides and m has to be
    even
  - the second iterate  $f^2$  has an m/2-cycle for which the result is proved (induction hypothesis)
  - so  $f^2$  has periods all numbers following m/2 in Sharkovsky ordering
  - use the same argument as in the period 6 example to show f then has elementary 2k-loop for each elementary k-loop of  $f^2$  so get result for m

#### Logistic Map

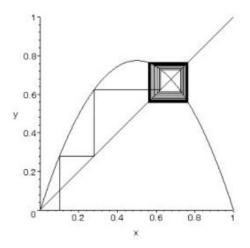
$$f(x) = \mu x(1-x)$$

- orbits  $f(x_0), f(f(x_0)), \dots, f^{\circ n}(x_0), \dots$
- fixed points and periodic points (depending on the value of the parameter  $\mu > 0$ )
- increase in complexity of periodic points structure then transition to chaos
- starts with a period doubling cascade (climbing the Sharkovsky ordering from the end)
- ullet then reach a limit point of the parameter  $\mu$  where transition to chaos (all periods)
- ullet for higher values of  $\mu$  substructures that reproduce the cascade

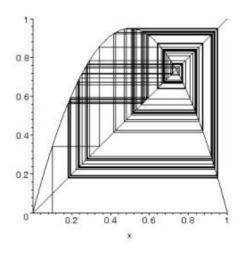




an orbit of the logistic map for  $\mu=$  2.5: attractive fixed point

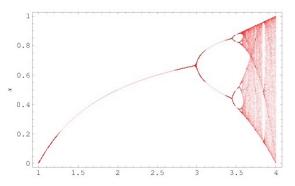


an orbit of the logistic map for  $\mu=$  3.1: structure of attractor set, periodic orbits



an orbit of the logistic map for  $\mu=$  3.8: chaotic dynamics

#### Logistic Equation Bifurcation Diagram



Plot as a function of the parameter  $\mu$  the attractor set of the orbits  $f^{\circ n}(x_0)$ : for small  $\mu$  single fixed point, then period 2 attractor appears, then period 4, ... cascade of period doubling and transition to chaotic region with attractor in bands rather than points and periodic points of all orders; above transition to chaos regions with splitting of bands into  $2^n$  bands and orbits visiting different bands (like periodic orbits)

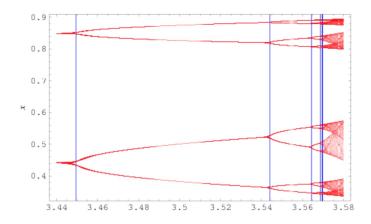
#### Compute where new periodic orbits appear as $\mu$ grows

• Example: f(f(x)) = x gives an equation for the period two points

$$x_{\pm} = \frac{1}{2} \left( (1 + \mu^{-1}) \pm \mu^{-1} \sqrt{(\mu - 3)(\mu + 1)} \right)$$

these  $x_{\pm}$  are real numbers only for  $\mu \geq 3$  so occurrence of a period two orbit only possible for  $\mu > 3$ 

• similarly can see the sequence  $\mu_n$  of values of the parameter where orbits of period  $2^n$  first appear



the sequence  $\mu_n$  where period doubling occurs (blue lines)

#### Occurrence of period three

 to identify where there can be a non-trivial three-cycle (eliminating the trivial case of a fixed point)

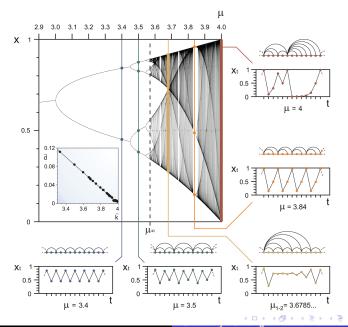
$$\frac{f^{\circ 3}(x) - x}{f(x) - x} = 0$$

- ullet get polynomial equation in x with  $\mu$ -dependent coefficients
- check when solutions are real numbers: for  $\mu \leq \mu_F = 1 + 2\sqrt{2} = 3.828427\dots$  imaginary roots
- ullet for  $\mu=\mu_{\it F}$  two of the roots become real
- $\mu_F$  solution to a discriminant equation  $(\mu^2 5\mu + 7)^2(\mu^2 2\mu 7)^3(1 + \mu + \mu^2)^2 = 0$
- at  $\mu=\mu_F$  two roots coincide that then separate  $\Rightarrow$  three-cycle starts at  $\mu_F$
- a simpler derivation of the three-cycle onset in
   P. Saha, S.H. Strogatz, The Birth of Period Three, Math. Mag. 68 (1995) 42–47

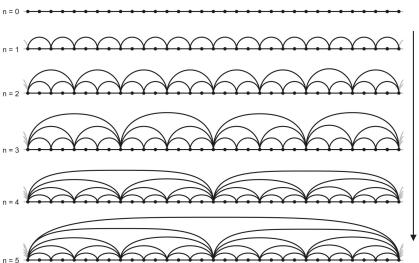
#### Feigenbaum Graphs

- given a sequence  $\{x_k\}$  or a time series  $\{x_t\}$
- one vertex for each datum k
- edge between vertices i and j if  $x_i, x_j > x_n$  for all i < n < j
- $\bullet$  for a fixed value of the parameter  $\mu$  consider iterations of the logistic maps
- initial transient phase then approach the attractor
- form corresponding Feigenbaum graph with successive values of iterates

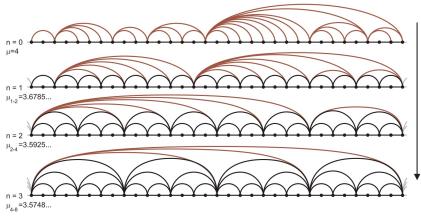
#### Feigenbaum Graphs of the Logistic Map



#### Period Doubling Cascade and Feigenbaum Graphs



#### Aperiodic Feigenbaum Graphs above the Transition to Chaos

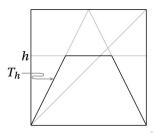


For n > 0 phase space partitioned into  $2^n$  disconnected chaotic bands; the orbit visits each chaotic band in the same order as in the periodic region; order of visits gives structure in the Feigenbaum graphs (black edges) similar to the period-doubling cascade case

#### Tent Map realization of Sharkovsky's Theorem

- Sharkovsky's Realization Theorem: every tail of the Sharkovsky Ordering is the set of periods for a continuous map  $f: \mathcal{I} \to \mathcal{I}$
- L. Alsedà, J. Llibre, M. Misiurewicz, *Combinatorial dynamics and entropy in dimension one*, World Scientific, 2000
  - explicitly exhibiting a family of maps that realizes tails of the Sharkovsky Ordering as set of periods
  - ullet truncated tent maps  $T_h:[0,1] 
    ightarrow [0,1]$

$$T_h(x) = \min\{h, 1 - 2|x - \frac{1}{2}|\}, \quad \text{ for } 0 \le h \le 1$$



## sketch of proof of realization by truncated tent maps

- $T_0$  has a single fixed point at x = 0
- $T_1$  has a 3-cycle  $\{\frac{2}{7}, \frac{4}{7}, \frac{6}{7}\}$  hence all Sharkovsky ordering
- ullet if  $h \leq h'$  a cycle  $\mathcal O$  of  $T_h$  with  $\mathcal O \subset [0,h)$  is a cycle of  $T_{h'}$
- if  $h \leq h'$  a cycle  $\mathcal O$  of  $T_{h'}$  with  $\mathcal O \subset [0,h]$  is a cycle of  $T_h$
- $\max \mathcal{O} = \text{largest } x \text{ in the cycle } \mathcal{O}$

$$h(m) := \min\{\max \mathcal{O} \mid \mathcal{O} \text{ and } m\text{-cycle of } T_1\}$$

- $T_h$  has an  $\ell$ -cycle  $\mathcal{O} \subset [0,h)$  iff  $h(\ell) < h$  (previous property with h'=1)
- orbit of h(m) is an m-cycle for  $T_{h(m)}$  and all other cycles for  $T_{h(m)}$  contained in [0, h(m))
- $T_{h(m)}$  has an  $\ell$ -cycle in [0, h(m)) for every  $\ell$  following m in the Sharkovsky ordering and  $h(\ell) < h(m)$
- $h(\ell) < h(m)$  iff  $\ell$  follows m in Sharkovsky ordering
- for any  $m \in \mathbb{N}$  the set of periods of  $T_{h(m)}$  is the tail of the Sharkovsky ordering starting with m