















































































































































































































































































































































































































































Equivariant Seiberg-Witten Floer Homology 595

space M(6p,61) consists of a unique gauge class [A,0]. Thus we have a
diffeomorphism

m: M(61,04) = U6, 0u)

induced by the pre-gluing map. According to Corollary 4.17, since we can
restrict our attention to the case p(6g) — p(61) = —2, we have

ApprCoker (Ez#oT y) & Coker (L) = C.

Consider the bundle & over M(0y1,0,) with fiber
Coker (L) = C,

obtained as pullback of the obstruction bundle £ via the diffeomorphism 7
of the base spaces. There is a section 5 = 7*s, of £ that corresponds to the
canonical section s, of Proposition 6.17. Recall that there is a free U(1)-
action over the moduli space M (01, O,), hence there is a smooth projection
to the quotient

M(81,042)/U(1) = M(8y,d)).

The bundle £ can be regarded as the pullback, under this quotient map, of
a bundle € over M(61,04)/U(1), with fiber

Coker (£;) = C.

The section 5 is the pullback of a corresponding section 5 of £. We are going

to proceed as follows. We show that, for a generic choice of the perturbations

p and P of equations (87) and (88), this section 5 is a generic section of £.
Consider the universal pre-glued space

I;{(Hl,Oa') = {(p> P, x#%y)}

with p a compactly supported form in Al(Y x R), P a perturbation of
P as in Definition 2.10 (with the modified property (1’) specified at the
beginning of Section 6.1). The pre-glued element x#%y is obtained from
z and y, solutions respectively of the equations (87), (88) and (20), (21),
with the perturbations p and P. We can extend the bundle £ to a local
bundle over (1, 0,) with fiber Coker(L;). We can still identify this as
the pullback of a local bundle £ on the quotient /(61,04 )/U(1). There is
an induced section 3 of £ whose pull-back agrees with the section 7*s, for
fixed perturbations (p, P).
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We prove that this section 5 over U(#1,04)/U(1) is transverse to the
zero section, hence the restriction to a generic (p, P) gives a generic section
over U(61,04)/U(1).

The section s is given by
§(p, P, x#g’y) = Igoker (L2) (J\/(p,P,w#%y)E?p,P,w#%y) (,B, £) + f(p,P) (fc#%y)) .

Suppose given a point (p, P,z#%y) in 571(0). Consider a small variation of
the perturbation p + en. The variation of the term f(,4 ey, p)(w#%y) is given
by

n- U#FTs =10 ph 0.

Let ®; and ®2 in Ker (Da—,) be the generators of the 2-dimensional
space Coker (£;). Consider a small open sets U; where ®; and pj 057 are
non-vanishing, and almost constant. There exist 1-forms 7; supported in
small neighborhoods of the open sets U; such that

<q)i’ i - p;\Il2_2T)

is non-zero on U;. Thus, we obtain
/ (®i,mi - pF 5T )dv # 0.
Y xR

Thus, by varying the perturbation p alone, it is possible to achieve sur-
jectivity of the linearization of the section 5 onto Coker (Lg).

There is a free U(1)-action on the space M(61, O ), whereas the element
[z] = [A, 0] in M(0, 01) is fixed by the U(1) action. The section

§=m"s, : M(61,0q) = I3

is invariant under the U(1)-action, being the pullback of 5. We have seen
that, for a generic choice of the perturbation (p, P), the section § is a generic
section. Thus, the approximate solutions in U (6, O,) that can be glued to
actual solutions in M (6, O,) are identified with the co-dimension 2 U(1)-
submanifold

§71(0) € M(61,04).

In other words, we have then proved that the bundle £ over the moduli
spaceM (61,04)/U(1) is a model of the obstruction. O

We have the following consequence of Theorem 6.19 and Lemma 6.18.
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Proposition 6.20. For any compact set
K C M(6o,61) x §71(0),
with §71(0) C M(01,0,:) the zeroes of the obstruction section
§710)/U(1) = 571(0) € M(61,d"),
there is an orientation preserving gluing map
#: K C M(6o,61) x 51(0) = M(6y,04)

that is a smooth embedding. There is a similar gluing map for any compact
set
K C 571(0) x M(69,6,),

with §71(0) C M(O,, 8o) the zeroes of the obstruction section
§710)/U(1) = 571(0) c M(a, bp).

Finally, we have the following result on the singular components in the
ideal boundary of the moduli spaces M(Og, Og).

Theorem 6.21. Assume that p(a) — pu(6o) > 2 and p(61) — u(a’) > 3, then
the contributions of the singular strata

(104) M(00,01) X M(el,Oa/)
and
(105) M(Oq, 00) x M(bo, 61)

to the actual boundary of the compactified moduli spaces
M(600,04,)* and M(Og,601)*

are given by the terms

(106) M(60,61) x 8W (571(0) 0 M(61,0w))

and

(107) 8™ (571(0) N M(Oa, 60)) x M(6p,01),
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respectively, where s are the obstruction sections. Thus, the compactification
of the moduli spaces M(Og, Oy ) has the structure of a smooth manifold with
corners, but in addition to the strata of the form (78), we also have the strata
(106) and (107). Thus, we obtain
(108)

O M(00,00)* = Uralu(0,)>u(0,7(M(00, Op)* X0, M(Oy, Our)")

-

Ubl1u(0)<p(60)3 (M (80, O)* X0, M(Ob, Op)*)
UM (8o, 61) x 8V (571(0) N M(61,04)%)

and
(109)
OIM(0a,01)* = Uia|u(o,)>u(e)yM(Oa, Ou)* x0,, M(Our, 61)*)
Utbl(0)<u(02)} (=M (Oa; Ob)* X0, M(Os,61)*)
ud® (571(0) N M(Oa, o)) x M(8o, 1)

Proof. By the results of Proposition 6.20, we have gluing maps
M(00,91) X §_1(0) - M(eo,a/)

and

5_1(0) x M(6p,61) = M(a,b6,)

that are smooth embeddings. The dimension count then implies that these
gluing maps are diffeomorphisms of 371(0) to a union of connected com-
ponents of M(6p,a’) or M(a,6;). Similarly, we have diffeomorphisms of
U(1)-manifolds between §7'(0) and a union of connected components of
M(6y,0y) or M(O,,6;), induced by the gluing maps

(110) # M(eo,el) X 5_1(0) — M(HO,OQI)
and
(111) #:571(0) x M(6q,601) = M(Oq,61).

Under the gluing maps, the image of
M (0g,00)N57E0) or MP(B,0,)N57L(0)

is a co-dimension 1 submanifold of M(6p, O,/) or M(Og, 61). This subman-
ifold actually lies in the interior of M(fy, Oy ) or M(O,,61), and is not



Equivariant Seiberg-Witten Floer Homology 599

part of its boundary strata. This can be seen from the fact that the glu-
ing maps (110) and (111) provide the collar structure around these smooth
codimension one embedded submanifolds. In other words, this means that
any sequence of solutions in M (6, O,/) or M(O,,0;) that converges to an
element in the ideal boundary components (104) and (105) is in fact already
convergent in the interior (top stratum) of M(fy, Oy) or M(Oq,61). The
only contribution of (104) and (105) to the actual boundary of the compact-
ification then comes from the boundary points of

M(Oq,80) N 51(0)

and

M(81,04) N 51(0).
This gives the formulae (108) and (109). O

Similarly, we can analyze the boundary structure of M¥ (69, 0,), in the
presence of obstructions. We have the following result.

Theorem 6.22. For a generic choice of perturbation, the obstruction sec-
tion ‘

5: M(61,a) = Lo, = M(01,0.) xya) C
defines a codimension 2 submanifold 5~1(0) C M(61,a), which corresponds

to a U(1)-submanifold of co-dimension 2, §~1(0) C M(61,0,), such that the
gluing map

#: K C M(8o,61) x 571(0) = ME_,(60,0,)

is a smooth embedding, for any compact set K C M(8o,0:1) x §71(0). Thus,

the co-dimension one boundary strata of the compactification MF (8y, 04)*

are given by

(112)

OWMP (65,04)* = Uy (M(60,00)* X0, M(Ou,0b)*)

U M(6o,61) x (571(0) N M(61,0,))
Utelu(0a)2aooy (M (60, 0c)* x0. M(Oc, 0)")
Ueu(00)utopy (X100, 00)* x0, MP(Ocy,00)*)

with the orientations given by the gluing theorem.

The proof follows from the analysis of the obstruction bundles and sec-
tions, as in the case of Proposition 6.20 and Theorem 6.21.
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6.3. Proof of topological invariance.

We gave an argument for the easy case of theorem 6.1, with maps I, J, and
H as in (76), (79), and (82). This gives us an isomorphism between the
equivariant Floer homologies for any two choices (go, 1) and (g1,71) within
the same chamber. Now we prove the general case

Proof of Theorem 6.1, Part II: the general case. In Section 6.1 and Section
6.2, we analysed the boundary structure of the moduli spaces M(O,, Oy)*
and MP(0,,0p)*, in the case of two metrics and perturbations (go, 1)
and (g1,71) in different chambers, connected by a path (g¢,v¢) satisfying
SF(03;) = —2, and a path (g:,7;), in the opposite direction, satisfying
SF(0}!) = —SF(dJ;) = 2. We assume throughout the discussion that the
metrics (go, ) and (g1,v1) are “close enough”, on the two sides of the wall.
We can assume, similarly, that the paths (g:,1:) and (g¢,7%) are also close
enough.

Recall that we perform a shift of grading in the complex Cky(1)(Y, g1,v1)
by setting u(61) = —SF(87), where SF(85!) is the spectral flow of the Dirac
operator along the path of reducible solutions [, 0].

The analysis of the obstruction bundles in Section 6.2 implies that the
boundary structure of the moduli spaces M(O,,O,4) and MPF(0,,0p) is
modified by the presence of the zeroes of the obstruction sections. This
difference determines suitable correction terms for the maps I and H, so
that the argument of Theorem 6.1 can be adapted to this general case.

Remark 6.23. The moduli space M(6y,6p), as a U(1)-manifold, consists
of a disk, containing the fixed point z; = [A;,0] (the unique solution of
d*A; =0 and d*A; = jit), and with boundary a circle, given either by a
component

M(61,04) x0, M(Oa, o)
with u(O,) — u(6o) = 1, or by a component
M(61,0%4) xor M(OL,60),

with u(0,) — u(6p) = 0. Thus, we have the following identity that counts
the boundary components of the framed monopole moduli space M(61,6p):

(113) D e Tagybo T D Moraigy Mafgyf0 =
a(1) )

The sum is over all O, in MPO(Y, go,v0), and O“{o) in M%(Y,g1,v1) of
(shifted) index 14(Oay,y) — 1(6o) =1 and ”(Oaio)) — u(6o) = 0, respectively.
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In particular, notice that we can derive the observation of Remark 6.23
if we make explicit use here of the information on the local structure of the
moduli space M°(Y, g;, v4) of critical orbits, as the metric (g;,v:) approaches
the wall, This is derived in Section 7.3.

We know that two possibilities arise: either an irreducible orbit O,,
with 4(Os) — (o) = 1, disappears into the reducible as the metric and
perturbation (g, ;) hits the wall, or an irreducible orbit O, with p(O4/) —
w(6p) = 0 arises from the reducible, as (g¢, ;) hits the wall. In the first case,
the disk of Remark 6.23 has boundary the circle

~

M(601,0,) %0, M(Oq,b)
and in the second case it has boundary the circle
M(81,04) X0, M(Oy, o).
The relation (113) then yields the separate identities
(114) #M(61,00) =nga =1 and #M(Oq,00) = nag, = 1,

for O, the unique orbit that hits the reducible, and

D MoragyMags + anh%) Mafgy00 = 0>
ay#a azo)

for u(Oagyy) — (fo) = 1 and p(O,
analogous.

The moduli space M (61, 6p), containing this separate component with a
fixed point, is one of the differences with respect to the picture for metrics
and perturbations within the same chamber. Another essential difference
is, of course, the presence of the singular moduli space M(6y,0;). We have
already seen, in the analysis of the obtructions how this moduli space plays
an essential role. However, what we wish to point out here is that the basic
asymmetry between the moduli spaces M (6, 61) and M (61, 8p) is what calls
for correction terms in the maps I and H, but not in the map J.

In fact, consider first the action of the map J, defined as in (79) on the
generator 2" ® 1y, in the Floer complex for (g1,v1). We have

) — u(fg) = 0. The case of Oy is

o)

J(Q’n ® 101) = Znola(l) Qn ® ]-a(l),

(1)

with the sum over all Oa(l) with ,u(Oa(l)) — u(6o) = 1.
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Notice that the existence of the extra disk component in the boundary
of M(61,6p), as in remark 6.23, does not affect the identity JD — DJ =0,
in fact, even though now the count of boundary terms in M(6p, 61) satisfies
(113), we still do get

Q" ® 1g,,JD — DI(Q" ® 1p,)) = 0.

In fact, the fibrations

M(O ,90) — 90,

%)
M(Oa(l) , 00) — 90,

have 1-dimensional fibers, and the pushforward of a zero-form is trivial. The
identity JD—DJ = 0 at all the other components follows the argument given
in the proof of the easy case of Theorem 6.1, without any modification.

Now, instead, consider the case of the map I acting on 2" ®1y,. The first
difference we notice, with respect to the model case of metrics and perturba-
tions in the same chamber, is that the moduli space M (6o, 1) consisting of
the unique point zy = [Ag, 0] defines a non-trivial “pull-back push-forward”
acting on the zero form 1lg,. To account for this moduli space, we have to
assume the existence here of an extra component of the map I connecting
Q"®1y, to Q"1 ®1y,, where the drop of degree in 2 accounts for the change
of grading of the reducible point, so that the map I can be of degree zero.
Thus, we have a new component

(115) Q1 @1y, I(Q" ® 14,)) = 1.

Notice that the necessity of the additional term (115) in the map I can
be made clear by looking at the following example.

Example. Consider a model case where the moduli space M®(go,v0)
consists solely of the fixed point 8y and of an irreducible orbit O, in degree
one. The Floer complex for (go, ) then has generators 2" ® 1g, in even
degrees p=2n >0, Q" ® 1), in odd degrees p=2n+1>1,and Q"1 ® 1,
in even degrees p = 2n > 2. The boundary operator D has a component

Q" @1 = —O" 1 ® 14 + 10" ® 1g,.

In the wall crossing with u(6p) — u(61) = —2, the orbit O, disappears into
the reducible, and the Floer complex for (g1,1) only has the fixed point as
generator. In this case, we have the equivariant Floer homology

RO ' ®1,] p=2n>2
SwW _ a -
HE, ;71)(Y, (90, 10)) = { 0 otherwise,
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with [2" 71 ® 1,] = [2" ® 1g,] for all n > 1, and [1 ® 1g,] = 0. The Floer
complex for (gi,v1) has Q" ® 1g, as unique generators, and no boundary
components, hence the Floer homology is

RO"®1p] p=2n+2>2
SW _ 6
HFp,U(l)(Y) (91,1)) = { 0 ' otherwise,

after degree shift. The map I that maps 2" ® 15, — Q"1 ® 15, gives
the desired isomorphism. Notice that such examples can in fact be real-
ized geometrically, for instance when considering a metric of positive scalar
curvature on S° as g;. a

It becomes then clear that, if we change the map I with an extra com-
ponent as in (115), to account for the moduli space M(6p,61), we need
to add further correction terms to the original map I on other generators,
so that the identity ID — DI = 0 continues to be satisfied. In assigning
the necessary correction terms, we need to take into account the different
structure of the compactification of the moduli spaces M(O,, Oy/), with the
boundary strata (108) and (109). Studying the boundary information of
M(Go,a'(_z)), we know that there is a contribution of the singular gluing
from the monopoles in

s71(0) N M (6, aé_z)),
which contributes to the expression
(ID - DI)(Q" ® 1g,),

in addition to the ordinary components ngoa/(_l)Q" ® 1a2_1), where Mgoa_,,
effectively counts the monopoles from the zeros of the obstruction section
over M(61, az_l)). This is precisely the correction term which is needed in
order to obtain the identity ID — DI = 0 once we take into account the
presence of the component (115) originates from the presence of the moduli
space M (6o, 61) consisting of the unique point zg = [Ag, 0].

Similarly, we need to introduce correction terms to the map H so that
it continues to be a chain homotopy, satisfying id — JI = DH + HD, with
respect to the modified map I and with the modified structure of the com-
pactification of MF(O,, Op).

In order to introduce the correction terms for the maps I and H, we
need a preliminary discussion on some identities derived from the counting
of zeroes of the obstruction sections.
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Consider the case of the 2-dimensional moduli space M(a,8p), with a
an irreducible critical point of index 2 and 6y the unique reducible point.

In Section 5.3, in Lemma 5.7, we described the invariant m,. as the rel-
ative Euler class of the complex line bundle £,. over M(a,c). Consider now
the case of the 2-dimensional moduli space M(a,6p), with O, a free orbit
of index 2 and 6 the fixed point in M°(Y, go,v0). We also introduced the
invariant m,g, in Section 5.3, as as the relative Euler class of the associated
complex line bundle over M(a,6p), according to Lemma 5.9 and Lemma
5.10. As we point out in the following Remark, we can use the obstruction
section to obtain the necessary trivialization and compute the invariant mg,
as relative Euler class of Lqg,-

Remark 6.24. We use the same choice of trivialization sq; over M(a,b),
for all the free orbits O, and O of relative index 1, as determined by the
trivialization ¢ of Lemma 5.7. For M(b, 6p) with u(Op) — p(6) = 1, we set
Sb,0, 7 0 to be the obstruction section

Shgy =S¢ M(b,60) = M(Os,6) Xu() Coker (L) = Lo, -

We then set sq9, over M(a,6p), with p(Oq) — u(fo) > 2 to be the
obstruction section

(116) Sa60 =5 : M(a,60) = M(Oq, 00) Xy (1) Coker (Ls) = Lag,-

This choice satisfies the requirement of the class of sections specified above.
Over a moduli spaces M(a, 6p), with u(Og)—p(6o) > 2, then the obstruction
section

Sag0 = 5 : M(a,bp) = M(Oq,00) xy) Coker (Ly) = Lag,

is homotopic to
* *
T1Sab @ T2 Sb,6y

over all the submanifolds
M(a,b) x M(b,6)
of M(a,6y), where we identify
Lagy = T Lab @ 3L0,60,
with m; and 7 the projections on the two factors in

M(a, b) X M(b, 00),
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with 4(O0,) > u(Op) > p(6o), and section spg, is the obstruction section
over M(b,6p), and the section sq is a transverse section of the line bundle

Lap = M(O4,0p) xy) C
over M(a,b) as discussed in Section 5.3.
In summary, we have obtained the following lemma which claims that

the relative Euler class Ma 300 and Mpyq)_,, Can be calculated by count-

ing the zeros of the obstruction section over M(a(y),60) and M(Bl,a’(_l))
respectively.

Lemma 6.25. For pu(a(y)) — (o) = 2, the relative Euler class Maybo 1
given by
-1
#Sa(z)oo(o)

where Sq, 9, is the obstruction section over M(ay,bo), similarly, for
u(6r) — p,(a’(_l)) = 3, the relative Euler class Moral_,, is given by

H#g

1
0%(~-1)

(0)
where S00a_,, is the obstruction section over M(Gl,a’(_l)).

As a consequence of Remark 6.24 and Lemma 6.25, we have the following
identities.

Lemma 6.26. Let Oa(p) denote a free orbit in the moduli space
MO(Y, go, o), of index #(Oa,y) — 1(00) = p. Let Oa/(q) denote a free or-
bit in the moduli space M°(Y, g1,v1), of (shifted) index /.L(Oazq)) —u(bo) = q.
We have the following properties.

1. Consider the obstruction bundle over M(a(z),60). The counting of the

zeroes of the obstruction, that is, of the flowlines in M(a(s), o) glued
to the singular reducible z = [A°, 0] in M(6g,81), is given by

Ma 580 = #(3—“1(0) n M(a(Z); 90))'
This satisfies

(117) Z Mazya(1)Maqybo — Zn“(s)“(z)ma(z)eo =0.

(1) a(2)
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2. The counting of the zeroes of the obstruction section § of the obstruc-
tion bundle over M (61, az_l)), which counts the gluing of the singular
reducible z = [A9, 0] in M(6y, 01) to flowlines in M (61, a'(_l)), is given
by

Mol = #(EH0)N M(61,a'(_1))).

This satisfies

(118) Z mela( 1) ( 1)@ ( —2) _Z 01(1(0) (0) ( 2)

(1)

Proof. In this case, we know that, for dimensional reasons, we have
57 0)N M(aqy,bo) = 0

Thus, by the previous discussion, and the results of Lemma 5.9, Lemma
5.10, and Remark 6.24, we know that the boundary of the 1-dimensional
manifold (571(0) N M(a(s),00)) consists of the set

U M(ag) a@) x (57(0) N M(agz), o))

a(2)
U U a(g)a(l)(o) N (M(a(z),a(l)) X M(a(l),eo)))
(1)

This implies that we have the identity

D MagyaMagto — Y NagyamMagyso =0

(1) a(2)
with the sign denoting the different orientation. The remaining case is anal-
ogous. a

Now we define the necessary modifications to the maps I and H.

Definition 6.27. We modify the maps I, H on Q" ® 1, and Q"1 ® Lagy
as follows:
1.

I(Qn ® 1.90) = Qr1 ® 1e,
(119) + 20, Mo 1)9 ® Ly,
+ Z 01a(0) " ® na’(o)’
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2.
(120) Q" @ Lagy) = Pagya " ® Lo, )
+2ar,) Magyal, 'O 1y ;
3.
(121) HQ"®1g,) = Yo, Mhoae 2" ® La)

+ 20y Mrag 2" ® Taq) -

In order to show that the relations ID = DI and id — JI = DH +HD
are still satisfied, we only need to check explicitly all the terms that are
directly affected by the presence of the correction terms.

Lemma 6.28. We have
1. ID=DI on Q" ® 1y, and Q"1 ® Lagys
2. ID = DI on Q" ®ag,;
3. ID=DI on Q" ® Nagys

Proof. We prove the claim by direct analysis of the boundary strata of the
various moduli spaces involved. We have

ID(Qn ® 100) = Z n00(z(_2)na(_2)a

G(-2)

"R 10’2

/
(-2) -2)

and
n = — ! ' ' n !
IO ® 1a0) = ,Z ne"“(—x)”“(—x)“(—z)ﬂ ®1“<
%(-1)

n
+ Z "61a,, mazo)“(—z)ﬂ ® 1“2—2) .

%(0)

_2)

The first claim then follows, since we know that the co-dimension one
boundary of M(6y, Oa(_z)) consists of

U (60, 0a_) X0a_yy M(Oa_s), Oai_,))

(=2)
a(-2)
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U |J M(60,0a_,)) X M(Oa(_y), Ou_,)
-1

UM (g, 61) x (571(0) N (M(el,oazo)) X0y, M(O,,
0

w Oain):

In fact, according to Theorem 6.21, we have boundary strata as in (108),
M(60,6,) x 8V (§—1(0) N M(6s, oa,(_z))*) .
Here § is the obstruction section. By Remark 6.24, we have
am (5—1(0) NM(01,04 )*)
= 510N (Ua, M(61,04, )" X0y, M(Oq Oq_,))")

©’
UsO) N (Uyy_, M(61,0q_))" X0, M(Ou_,:0u;_,))")-

-1) a.(
Note that the coefficient Moa_,, effectively counts the monopoles from the

zeros of the obstruction section over M6y, az_l)), so we are left with the
remaining counting,

n
2 Torefy Mty @ B Ly
!
%)

which proves the claim.
In order to prove Claim (2), we compute

ID(Q" ® lq,,) = — Z Ra(1)a(0) a0 afg) Vel

2(0)

1
(0)

and
n _ n n
DI ® Lay)) = — Z:”a(l)“'(nn“h)“'(o)Q ® 19'(0) + a1l 2 @ Lo
%)
Then the claim follows from the boundary structure of M(a(y), a'(o)). The

zeroes of the obstruction section contribute the term

na(l) 6o 'n’ela.'(o)

in the counting of the boundary points.
The argument for Claims (3) and (4) is analogous. a

Now we need to check the effect of the correction terms on the identity
1-JI=HD+ HD.
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Lemma 6.29. We have the identity 1 — JI = DH + HD on Q" ® 1y,.

Proof. By direct calculation, we obtain
(1-JI)(Q" ©1,)
— — -1 1 n ’
= Q"Q1lg, — JO" 11, + Eaz_l) Ngoa)_,, " ® Loy

n
+ Zazo) ngl“?o) " ® nazo))
— -1
= Q"® 1y, — Za(l) Tgya0, 2" ® Lo, |
n
_(Ea’(_l) neoaz_l)naz_l)a(_l) + Z“’(O) n01a'(0)ma20)a(_1))9 ® 1a(_1)

— n _ n
Z“'(o) ngl“iO)”“iO)“(O)Q ® Mlago) Z“20) ngl“?O)n"'(O)a"Q ® Lo,

)

We also get
(DH + HD)((2" ® 1p,)
= D(Xay, Moo " @ Lo + Xayy, Mr1a0) 2" ® 7Magyy)
FH (S, 00" © Lay)
= Lay (Zaa) 910y Maqya(-1) ~ Lag ngla(m”a(om—l)
= Daoay Mooy Ma_ya ) X" B La-1)
+ Ly MiemMeaan X" @ Nagy = Lag) M1am @ @ Lag,

+ D0 Mrag e oS © Lo

Let us first check the coefficient of Q" ® 1g,. Equating the coefficients of
2" ® 1y, in the two expressions above yields the identity

> Mragy et + D 14l Malgyf0 = 1
a(1) afy)

This identity is satisfied, since it is exactly the counting of (113).
We then check the coefficient of Q" ®1a o, - We need to prove the identity

> 101y Ma(ryago) T ) M01alg Mty a) = O
'

a(1) %0)

This follows from the boundary structure of M(61, Oa(o))*, given by

U M(el, Oa(l))* Xoa(l) M(Oa(l) ) Oa(o))*

%(1)
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u | mé, Oaty,)” X Outy M(Ogiy) Oag))"

%o)
In order to compare the coefficients of 2" ® 14(_1), we need to prove the
identity

Eaz_l)
. P
(122) - Ea(_z) neoa(_g) na(—Z)a(—l)

+ z:'1'(0) M10(5) Maigya(-1) T D aqy MraayMeqya-1y = 0

_ P
nooa‘l(—l) na'(-l)“(—l) Z:0(0) n9oa(o) Ma)a(-1)

Among these terms we can isolate a contribution

P P
Z Moa(_y1)"a{_1ya-1) T Zneoa(o)"am)a(—l) - Z Moa(—2)Ma(-z)a(-1)’
ai_y) a(0) a(-2)

which is the contribution of the boundary terms in M¥ (6, Oa(_y) )* obtained
by gluing co-dimension one boundary strata along irreducible critical orbits.
The term

Z n90a2—1)na2—1)"'(—1)

1)
counts the contribution of the special gluing
M(eoa 91) X M(elia’/(—l)) X M(a’,(—l)7a(—1))a
where the coefficient
Naoa_,, = #5(0)

counts the zeroes of the obstruction section in M (61, “’(—1))'
According to Theorem 6.22, the counting of the remaining boundary
components for MF (8, a(-1)) is given by the gluing

M(6o,61) x s71(0),

with
8_1(0) C M(Gl,a(_l)).
Recall that, in this case, s~1(0) is zero-dimensional.
We claim that the zeroes of this obstruction section are counted precisely
by the expression

Z M910¢0) Mafgya(-1) T Z M1a(1) Mag)a(-1)*
a.'(o) a(1)
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In fact, we can describe the obstruction bundle as the line bundle
M(01, Oa(_l))* XU(I) Coker (£z);

over M(01,a(—1))*, with & = [Ag,0] the singular reducible in M8y, 61),
and Coker (£;) = C. With the choice of trivilizations, the zeros of the
obstruction section are localized in some compact set in

U M(Ol,a'(o)) x M(GI(O),G(—l))

%0)

U U M(elia(l)) X M(a(l),a(—l))‘
(1)

Thus, counting the zeros of this obstruction section, which gives the
relative Euler class of the associated complex line bundle over M(61,a()),
contributes )

#3‘— (0) = Zazo)
+ za(l) M1a1) Maqya(-1)1

Then the vanishing condition of (122) follows from #(dM?* (6o, a(_1))) =
0. Thus, we have completed the proof of the identity 1 — JI = DH + HD
on the generator 2" ® 1g,. O

6, ’aéo) m"'zo)"'(—l)

We proceed to check the remaining identities.

Lemma 6.30. We have the identity 1 — JI = DH + HD on Q" ® 1

) ”

Proof. We compute
(1 - JI)(Q“ ® la(l))
= 0" lagy — J(na(l)gOQ”"l ® lp + Zah) n“(l)“’(l)ﬂn—1 ® 1“’(1))
= V@ Lag) — Xagy ay, Maqyaly, Papyyiy + a1 )" ® Lag,
(DH + HD)(Q" ® La,,)

— P ~ P n ;
= (B Pepan @iy T Lag Mamen Mawin " O Lig-

If we compare the coefficient of each term in DH + HD — 1+ JI, we see
that the coefficient of 2" ® 1, ,, is given by

aq)
P P
Mayag Ma@aeq) Z Tag)a) Pagaq
ag) a(o)
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+2 Magyalyy Malgyaq ~ 1 T Pagbieq):
!
%)
Notice that the sum

P P
Z Magyae Ma@eq T Z Mag)a) Mayan) T Z Ragyafyy Malyyaa) ~ 1
%2) HON ay)

is the algebraic counting of the boundary points in MP (aq),a(1))* that
correspond to boundary components of the form

U MPF(ay, a9)) x M(agz),aq)) U U M(aqy, ag)) x MF (a), 1))

a(2) 2(0)
U U M(a(l)aal(l)) X M(a'(1),a(1)) U{-a}.
)

Similarly, for @1y # a(1), the coefficient of 0" ® 15, is given by

P ~ P
Z My a@ Ma@da) T Z Maya0) Pagyaq)
a(2) a(o)

+> Maqy el Mafy)aa) T Me)8™rdq-
’
)
Again, notice that the sum

P - P -
Z Ta1yagz) Me@)dq) + Z Ra1yae) Ma)aq) + Z na(l)ah)nah)a(l)
(2) o) a1

is the algebraic counting of the boundary points of MF (a(1), @(1))* which
correspond to boundary components of the form

U MF(aqy,a)) x M(ag, dm)) U | M(ey,a() x MP(a),8(1)

2(2) %(0)

U U M(a’(l)aal(l)) X M(a’l(l)aa'(l))
%)
We only need to prove that the counting of the remaining boundary

components of M¥ (a(1),G(1)) is given by

na(l)eon(h&(l) )
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which counts the contribution of the zeros of the obstruction section, that
is, of those monopoles of MF (a(l),&(l)) which are obtained by gluing the
singular reducible € M(fp, 6;) with

M(aqy,60) x U(1) x M(61,d1)).
Recall that the non-equivariant gluing
#:571(0) € M(aqy, 80) x U(1) x M(61,301)) = MP(ay, dgry)
corresponds to the equivariant gluing in the framed moduli spaces
#:571(0) € M(Oag,y, 60) X M(61,04,)) = MP(Oayyy, sy
The pull-back and push-forward map
(€ () ()

defines the relative Euler characteristic number on the associated line bundle
of
‘Ca(l),ﬁ(l) = (M(Oa(l),eo) X M(64, 0&(1))) XU(1) C

This gives
(€, )+(€asy)" (Magy) = Nagy00m815¢,-
Consider the obstruction bundle

(M(Oa(l),eo) X M(00,01) X M(Bl, 0&(1))) XU(l) Coker (['a:)

over the space

M(a(l),Oo) X M(Gl,&(l)) X U(l),

with Coker (£;) = C, for z € M(fy,0;) the singular point z = [Ag, 0]
Counting the zeros of the obstruction section

#(571(0) N (Maq), b0) x M(61,3)) x U(1)))
gives another computation of the same relative Euler class above, that is,
#(571(0) N (M(aqy,b0) x M(61,d0)) x U(1)))
= Ma)00M614y) -

Thus, the components of the boundary of MP (a(l),d(l))* which come
from the gluing with the singular x € M(6p, 61) contribute a term

Maq)bo™014(,)
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to the counting of the boundary points. This completes the proof of the
Lemma. a

Finally, we have to check the following.

Lemma 6.31. We have the identity 1 — JI = DH + HD on Q" ® Tagy -

Proof. Direct calculation of the terms (1 — JI)(Q" ® 74(,,) and (DH +
HD)(Q" ® 7q,,) shows that the conditions required in order to have the
same coefficients on all the generators are precisely the conditions already
verified in the case of Lemma 6.30. a

Notice how clearly this argument of topological invariance breaks down
for the non-equivariant Floer homology. The invariance within the same
chamber is still verified: in fact, no substantial changes are necessary in that
first part of the proof, in order to adapt it to the case of the non-equivariant
Floer homology. However, as wee see clearly from the structure of this
second part of the proof, the general argument for the proof of Theorem 6.1,
for metrics and perturbations in two different chambers, relies essentially
on the contribution of the reducible points, in order to construct the chain
map I and chain homotopy H, as discussed in Definition 6.27, Lemma, 6.28,
Lemma 6.29, Lemma 6.30, and Lemma 6.31. The example presented at the
beginning of Section 6.3 also clarifies why the argument cannot be adapted
to the non-equivariant Floer homology.

7. Wall crossing formula for the Casson-type invariant.

We want to compare the equivariant Floer homology with the ordinary Floer
homology in the cases where the latter is defined, i.e. when b*(Y") is non-
trivial [38] or when Y is a homology sphere, [13].

In the case when b*(Y) is non-trivial, we expect to find that the equiv-
ariant Floer homology, which is computed by considering framed moduli
spaces, is isomorphic to the ordinary Floer homology computed in the un-
framed space. In fact this is the analogue of the well known result for equiv-
ariant cohomology of a finite dimensional manifold, where, if the action of
the group is free, then the equivariant cohomology is just the ordinary coho-
mology of the quotient, H5(M;R) = H*(M/G;R) as H*(BG; R)-modules.

In the case of a homology sphere, instead, we expect to find an exact
sequence that connects the equivariant Floer homology with the ordinary
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Floer homology and an extra copy of R[(}] that corresponds to the unique
reducible solution that has been removed in the computation of the non-
equivariant Floer homology.

Recall that we have the explicit description of the boundary operator
in the equivariant Floer complex, as analyzed in Section 5, Proposition 5.3,
which gives the formula (72),

"1, — -1l Q 1

D:
O"Qng (nabﬂn ® 77b) @ (macﬂn ® lc)

(-0 1®1,)

with the extra components in the case of the generator 6.
7.1. Comparison with the non-equivariant Floer Homology.

Now we can define a chain homomorphism that maps the equivariant to the
non-equivariant complex.
Let us first work in the case with no reducible solution (i.e. with b*(Y) >
0). In this case for each O, that appears in the equivariant complex we have
a generator Ra that appears in the non-equivariant complex (coefficients in
R).
Now we define the chain map
ik 1 Crya)(Y) = Cp(Y),
so that it satisfies Oxi = ix_1Dy. Let g act on the generators as follows
(123) ir: P %uw0a) = D Ra,
wa)+j=k w(Oa)=k
Zk(Qn ® ]-a) =0,
for all values of n and p(0,),
’Lk(l ® 77a) =a,
if u(Oq) = k, and in all other cases
(2" ®n,) =0.

This means that the map iy kills all the generators in degree k that are
not the generator of the equivariant homology of some orbit O, of degree k.

With this definition it is clear that ¢, is a chain map. Thus it defines a
sub-complex of C, y7(1)(Y) given by Q. = Ker (i.) with the restriction of the
boundary operator D.
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Theorem 7.1. If there are no reducible solutions (i.e., b'(Y) > 0) the map
ix defined in (123) induces an isomorphism in cohomology,

HES .y (Y) = HFSV (v).

Proof. The complexes Cy, 71), Qk, and Cj, all have a filtration by index. For
Ck,y(1) the filtration is given by

(124) Cru@(n) = P 2;,01)(O0a)-
#(Oa)+i=k,p(0a)<n

The complex @, is written as

(125) Qr = @ Q;,0(1)(Oa)-

p(a)+i=k,>1

It has a filtration by index of the form

(126) Qi(n) = P Q; (1) (Oa)-

w(a)+i=k,j>1,u(a)<n

On the other hand also the non-equivariant complex has a filtration by
index of the form

(127) Cr(n) = @ Ra.

n(a)=k<n

Thus we can look at the spectral sequences associated to the filtrations
and prove that 7 induces a map of spectral sequences and an isomorphism of
the E'-terms of the spectral sequences associated to the filtration of Ciu(1)
and of C,. Thus we get the resulting isomorphism of the E* terms, i.e. of
the homology of C, y(1) and of Ci.

Lemma 7.2. Let Ey(y), Eq, and E be the spectral sequences associated to
the filtration of the complezes Cy(1y, Q and C respectively. The chain map ix
induces a map of spectral sequences. Moreover, in the case when b'(Y) > 0
the map iy induces an isomorphism of the E-terms

1 ~ l
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Proof. Consider the filtration of C, y(1). The EY terms of the spectral
sequence are given by

Euua) = Cerua)(®)/Crruy(k — 1).
From (124) we get

Egl,U(1)= @ Ql,U(l)(Oa)>
u(Oa)=Fk

and the differentials Egl vy ~ Elgl—l u@) are just given by the differential
of the equivariant complex on each fixed orbit O,. Thus the El-term of this
spectral sequence is given by

EI}:I,U(l) = Hk+l(Elg*,U(1))’
Eiz,u(l) = @ Hi1,0(1)(0a)-

#(Oa)=k

But since the O, are irreducible orbits, with a free U(1) action, the equiv-
ariant homology is concentrated in degree zero,

El:cl:O,U(l) = @ Ra’y
u(Oa)=k

Eypay =0
for I # 0.
Now let us consider the filtration of the non-equivariant complex Ck.
From (127) we get
: EY = @ Ra
p(Oa)=k

and E, = 0 for [ # 0. Thus ir this case the only terms that survive in the
E'lis in degree [ = 0 and is

E]{.‘O = @ RG,.
p(Oa)=k

O

Thus the map 7, induces an isomorphism on the El-terms of the two
spectral sequences, hence on the E*°-terms, namely on the homology

7

H(Cryq)(Y), Dr) = Hu(Cr(Y), O)-
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This completes the proof of Theorem 7.1. a

Now let us consider the case when the manifold Y is a rational homology
sphere. In this case there are also terms in the equivariant complex that
come from the reducible solution § = [v,0]. We assume that § has index
zero, u(6) = 0.

Theorem 7.3. LetY be a rational homology sphere. Then there is an exact
sequence

i A
s = Hop)(0) = HESG ) (V) = HEFY (Y) S Hi_yumy(9) -

In the equivariant complex in degree k we have an extra generator QF®4.
The boundary maps that come from the equivariant complex associated to
the degenerate orbit v with the trivial action of U(1) are trivial: in fact the
equivariant homology of a point is

H, 1(1)(6) = RI9] = H.(BU(1), R).

However, there are non-trivial boundary maps that hit the generators 2" ®4.
These can be described as follows. Suppose O, is the orbit of an irreducible
solution with index p(Og) = 1. Then we have a moduli space M(Og, 6) that
is 1-dimensional and that fibers over # with a 1-dimensional fiber. Thus the
pullback-pushforward map acts as

Mg (e;)*(e:)*"?a = Myp,

where mgg is the integration along the 1-dimensional fiber of the 1-form
(eF)*n,. This gives rise to a component of the boundary map of the form

1Qmn, — meyl ® 6.

Moreover, there is a non-trivial boundary map that comes from the moduli
spaces that connect the reducible to generators with the orbits with p(0,) =
-2.

Now the map i, is defined as before with the additional condition that
it kills the extra generator QF ® 6.

Lemma 7.4. LetY be a homology sphere. Then the homology of the com-
plex Q, is just the equivariant homology of the point 0,

H.(Q) = H, y1)(6) = R[Q)].
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Proof. The complex @, contains the extra generator QF ® 6 in degree k and
this generator appears in all levels of the filtration Q(n) for any n > 0,
since @ is of degree zero.

Thus if we look at the spectral sequence associated to the filtration of
the complex @, we find

E) o = Qi+1(k)/Qrwi(k — 1),

that is, for £ > 0 and [ > 0,

Eyo= P QuumO).
1(Op)=k—1

This complex is clearly acyclic because the differentials are just the equiv-
ariant differentials for each orbit and no generator survives in homology
because we are counting only [ + 1 > 1, hence the terms 1 ® 7, are sup-
pressed (in fact they are not in Ker (i+)). On the other hand for & = 0 we
get

E(())l,Q = R<Ql ® 0)>

with trivial differentials, so that the El-terms are

B0 = Hiyuq)(9)-
This means that the homology of the complex Q. is actually H, y1)(0) =
R[Q)]. d

Thus if we consider the long exact sequence induced by the short se-
quence

0— Qr — Cruq) —-i-)Ck -0

we have
v+ = Hypy(0) = HESH (V) 5 HESW (V) — -
This proves Theorem 7.3. O

Remark. Notice that, in the case where the spectral flow SFg(d5) is
zero, we obtain an isomorphism HF W (Y,s, go) &= HFSW (Y,s,g1) by the
five-lemma applied to the exact sequence relating equivariant and non—
equivariant Floer homologies.

The connecting homomorphism A in the above long exact sequences is
particularly interesting.
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Proposition 7.5. Suppose given a representative Y x.a in H FZS’,;VL(Y)
We assume that Y is a homology sphere. Then the connecting homomor-
phism in the long exact sequence is

Ag: HFZY ) — Hopp1)(0) = RQF,

where

(128) JAVA (Z maa> = Z TaMacMee * - MataNanlE @ 6.
a

Here the sum is understood over all the repeated indices, that is over all
critical points with indices u(0,) = 2k + 1, pu(0:) = 2k — 1, pu(Oy) = 3,
#(0a) = 1.

Proof. The map is defined by the standard diagram chase and by adding
boundary terms in order to find a representative of the form (128), as illus-
trated in the following diagram. Sums over repeated indices are understood.

i | o

0 = Qopt1 —— Carr1,0(1) : Cogp1 —=0
To 1®Ng=<————-ATa @

T
|
|
by

0— Qo Coruq) a Cor 0
|
Y

Ap(zq a)<— = —|= ~ 4TMec 1 ® 1,

For a cycle 3, 0,)=2k+1 Ta@ We have 37, oy op 1 Taigy = 0 for any b
with p(Op) = 2k. The element ), z,a has a preimage ) .1 ® 1, under
igk+1. The image of this element under the equivariant boundary is given
by

Z ma-D(l ® na) = Z ToNapl @ Mp + Z ZTaMacl ® 1,
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where the first term is zero due to our assumption on ) z.a. The element
Ay (zqa) is unchanged if we add to Y 2,1 ® 1 an element in the kernel of
iok+1. Adding the element Za’c ZoMacS) ® e, which is in the kernel of 4, we
get the following diagram

i i |

0 = Qa1 ——— Co1,0(1) Cokt1—=0

T 1®7,

+ZoMae 2 @ e
T

<——d-—-ZgQ

_ -t - — =

0 — Q2 Cor,u(1)

Y
Ak(ma a)< - - == - _‘wamacmce Q® 18

where we have
D(z,1 ® g + TaMac2 ® Ne) = TaMacl @ e+

mamac(_l ®le+ 12 ®@ng + Meef2 ® 1e) = mamacmceQ ®1e

with sums over repeated indices. The last equality follows from the identities
> MgeNed+nNapMid = 0 and > Tanapmpa = 0. We can iterate the procedure.
In the following step we add a term Ewamacmceﬂ2 ® 7ne to the preimage
of 3" z,a. The corresponding image under the boundary of the equivariant
complex is 3 ZaMacMeeMegQ2 ®1g, where p(Oc) —p(Oe) = w(0e)—p(Og) =
2. The procedure can be iterated until the reducible point ¢ is hit. Con-
tributions from other irreducible critical orbits Op with u(0p) — u(f) = 0
are killed in finitely many steps, iterating the same procedure, since the
complex is finitely generated and they eventually hit the lowest index criti-
cal points. Thus, the resulting image under the connecting homomorphism

Ak(z:a,:/.m,=2k+1 xaa) is given by

k
E TaMacMee * * * MalaMad$ -



622 Matilde Marcolli and Bai-Ling Wang

As in the case of instanton Floer theory [62], one expects Ker (Ay) &
Im(igk+1) to be the part of the Floer homology where the relative invariants
of four-manifolds with boundary live.

7.2. Wall-crossing formula: the algebraic picture.

In this section, we will apply the equivariant Seiberg-Witten-Floer homology
theory to study the dependence of the metric for the Casson-type invariant
[12], [13] of a rational homology sphere. In order to define the Casson-
type invariant, we choose a metric whose ordinary Dirac operator has trivial
kernel. The metrics whose ordinary Dirac operator has non-trivial kernel
form a chamber structure as proven in Theorem 2.7 and Theorem 2.8. The
usual cobordism argument can be adopted to prove that the Casson-type
invariant is constant in each chamber. The aim of this section is to get a
wall-crossing formula for a path of metrics and perturbations that crosses
the wall.

Denote by Asw (Y, g,v) the Casson-type invariant for the metric and
perturbation (g,v): Asw(Y,g,v) is the Euler characteristic of the non-
equivariant Seiberg-Witten-Floer homology. Recall that this Floer homology
[13] is defined by removing the reducible critical point, the trivial solution
6 = [v,0]. We have

(129) /\SW(Y,Q,V) = Z(—l)kdlmHFégW(Kg, V)‘
k

In this Section 7.2 we derive the wall crossing formula under the following
assumption. Fix metrics and perturbations (go, 1), (g91,71) in two different
chambers, with the property that there exists an open set of paths (g, ;)
connecting (go, o) to (g1,71) such that (g¢, ) hits a co-dimension one wall
only once, transversely.

This situation is certainly verified if the two points (go, o) and (g1,v1)
are close enough points on either side of a wall Wi, in the notation of Theo-
rem 2.8, that is, a wall of metrics and perturbations satisfying Ker (87) = C.
We also assume that, along the path (g:,11) we have SF(d5) = 2, that is,
that we have u(6p) — u(61) = 2 in the notation used in Section 6, which
determines a global grade shift between the equivariant Floer complexes for
(g0, v0) and for (g1,v1).

Using the topological invariance of the equivariant Seiberg-Witten-Floer
homology, we obtain the following isomorphism:

HFI::S:(VIV(U(K 9o, VO) = HF,CSK,U(I) (Y, g1, 1/1).
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In fact, the necessary degree shift is computed as follows: if we set p(6y) = 0,
hence w(f1) = —2, and the map I has degree zero, we obtain that the
generators (2" ® 1g, and Q"1 ® 15, have the same degree.

First of all, we express the Casson-type invariant (129) in terms of some
alternating sum of the equivariant Seiberg-Witten-Floer homology groups.
We consider the Casson-type invariant for metric an perturbation (go,v0).
The exact sequences given in Theorem 7.3, relating the equivariant to the
non-equivariant Seiberg-Witten-Floer homology, and the fact that we have
H, y1)(0) = R[] give us the following result.

Proposition 7.6. (1) Fork <0,

HFSW(Y 90,10) = HF ()Y, 90, v0)-

(2) For k > 0, we have the following exact sequences

0= HERY, vy (Y g0, v0) = HF51(Y, go, 10) = RQF —

— HF5 [y (Y, 90,10) = HFy' (Y, go,v0) = 0.

Thus the dimensions are related by
dim HF5)V — dim HFYY, = dim HFy5 [y — dim HFRY, 0y — 1
This gives the wall-crossing formula for the Casson-type invariant.

Theorem 7.7. Suppose given two metrics and perturbations (go,vo) and
(g91,11) in two different chambers and a generic path (gi,v¢) that connects
them and that crosses the wall VW once. Assume that the crossing happens
at a generic point of W, so that the relative Morse index with respect to the
reducible solution decreases by 2 across the wall, i.e., that we have u(6p) —
w(01) = 2. Then the Casson-type invariant changes by

Asw (Y, 91,11) = Asw (Y, go, o) — 1.

Proof. We can assume that we are in one of the following two cases for the
non-equivariant Floer homology group.

Case 1. There exists an integer N such that H FSW(Y go,v) = 0 for all
p > 2N but HFSW (Y, go, ) # 0.



624 Matilde Marcolli and Bai-Ling Wang

Case 2. Here exists an integer N such that HFfW(K 90,%) = 0 for all
P2 2N + 1 but HESY (Y, o, 1) # 0.

0 P> 2N, pis odd
o HFSW (Y, g0, 1) =
p,U(l)( 90 Vo) { RO™ p=2m>aN

[ J
dim HFéSKz(K 90, v0) — dim HFﬁqAI;Kl (Y, 90, )
= dmHFRY, 0 g0,10) - dim HERY | oy (¥, g0,v0) — 1
dm HELY (Y, 90) — dim HESY (¥, g0, v5)
= dimHFéSIJ\I;‘:I;,U(l) (Y; 90, ) — dim HFEK&U(U(K 90,v0) — 1

dim HFW (Y, go, v0) — dim H FPW (Y, go, )
= dim HF&‘%I)(Y, 90,v) — dim HFf%) (Y, go,10) — 1.

e For k <0, HESW (v, 9o, ) = HF,;S:IVIV(I) (Y, 90, 10).

Given the above information, we can calculate the Casson-type invariant
for the metric and perturbation (gg, 1) as,
Asw (Y, 90,00) = 3,(~1)% dim HEZW (Y, go, vp)
= Ek<N(dim HFzsl;I:I(;(U (Y, go, V)
—dim Hngl;v.rl,U(l) (Y, 90, n)) = N.

From the isomorphism HF,;S:II}V(U(Y,gl,Vl) = HF,;S_I’IZI’U(I) (Y, 90, %), we
have

HEX (Y, 01,0) =

0 P>2N +2, pisodd
P Qm

p=2m > 2N + 2.

If we apply the above isomorphisms to the exact sequences in Proposition
7.6, we can see that the Casson-type invariant for metric and perturbation
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(g1,v1) can be rewritten as
Asw(Yyg1,m1) = Yp(-1)Fdim HFFW(Y, g1, 1)
= Zk<N+1 (dlmH ok U(1)(Y g1, 1)
dlmHFéS;cv_‘,_ll U(l)(Y,gl, v1))— (N +1)
= Asw(Y,g0,0) — 1
For case 2, similarly, we have
0 p> 2N, pis odd
o HESW (Y, g0, 10) =
p,U(l)( 90 0) { RO™ p=2m>2N +2

.
dim HESY (Y, go,v0) = dim HFJ! U(l)(Y, go,v0) — 1
dim HFz'S'AI;V 2(Y, 90, v0) — dim HE3W (Y, go, v0)
= dim HF2N 9 U(l)(Y, 9o, Vg) — dim HF25N 1 U(l)(Y’ g0, v0) — 1
dim HFW (Y, go, v0) — dim HESW (Y, g0, v0)
= dimHFW, U(l)(Y go, vo) — dim HF,W U(l)(Y’ go, 1) — 1

dim HFSW(Y, go, Vo) — dim HFSW (Y 90, v0)

e For k <0, HFESW (Y, go, v0) = HF,f,lV,V(l)(Y, 90, 0).
Then the Casson-type invariant for (go,vg) is
Asw (Y, 90,v0) = Y (-1)Fdim HFSW (Y, go, o)

= D p<n(dim HFzs;cw{j 1) (¥> 90, 0)
—dim l‘IFZSkV_"f1 U(1)(Y7 go,0)) — N

+ dim HF25N U(I)(Y7 9o, o) — 1.
From the isomorphism H kU(l)(Y g1,V1) = HFkS 2U(1)(Y’ 90,%0), We
know that
0 p>2N+2, pisodd

HE U(l)(Ygl,Vl) { RO™ p=2m > 2N +2.
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If we apply the above isomorphisms to the exact sequences in Propo-
sition 7.6 again, we can see that the Casson-type invariant for metric and
perturbation (g1,1) is

Asw (Y, g1,11)
= Ek(—l)k dlmHFSW(Y a1, Vl)

= Ek<N+1 (dlmH ok U(l)(Ya g1,v1) — dim HF2k+1 U(1)(Y’ g1,v1))
= Asw(Y,g0,0) — 1

Thus, we have proven the wall-crossing formula:

Asw (Y, g1,v1) = Asw (Y, go, v0) — 1.
Od

Now we are interested in generalizing the argument of Theorem 7.7 to
the case of a path (g, ) that crosses the wall structure W at a point which
lies in a stratum W, of higher codimension.

If we know that a stratum W, of metrics and perturbations satisfying
Ker (89 ) = C" is obtained as the transverse intersection of n strata Wit

- N Wir | where every Wi* consists of metrics with Ker (89) = C, then a
path (g¢,v¢) that crosses W at a point in W, can be deformed to a path that
crosses each Wi* once transversely. In this case, the wall crossing formula
simply follows by applying repeatedly Theorem 7.7. However, we do not
really need the assumption on the structure of W near a stratum of higher
codimension. In fact, it is enough to know that the complex spectral flow
SFc(83t) = ASF(6%) is equal to £n along the path (g¢,14) that crosses a
point on W,,. In that case, we can follow the same argument in the proof of
Theorem 7.7, but starting with a grade shift of 2n between the equivariant
Floer complexes for (go, ) and (g1,21). We obtain the following result.

Proposition 7.8. Let (go,v0) and (g1,v1) be two metrics and perturbations
in two different chambers. Suppose given a path (gt,v¢) joining them that
crosses the wall W once transversely at a point of a stratum Wi, of codimen-
sion 2n — 1. The relative Morse index with respect to the reducible solution
decreases by 2n across the wall, that is, that we have u(6o) — pu(61) = 2n.
Then the Casson-type invariant changes by

Asw (Y, g1, 1) = Asw (Y, g0, o) — 7.
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Since the argument of Theorem 7.7 depends only on the counting of the
grade shift between the Floer complexes for (go, o) and (g1, v1) given by the
spectral flow SF(9J) , together with the proof of topological invariance of
the equivariant Floer homology (up to this grade shift), we can formulate
the result under these more general hypothesis.

Proposition 7.9. Let (go,v0) and (g1,v1) be two metrics and perturbations
in two different chambers. Suppose given a path (gi, 1) joining them that
crosses the wall W transversely in finitely many points. Then the Casson
invariant changes by

(130) Asw (Y, 91,v1) = Asw (Y, go, vo) — SFc(63),

where SFc(0%) = $SF(0%) is the complez spectrdl flow of the Dirac oper-
ator along the path of reducible solutions [vt,0].

Proof. If the spectral flow along the path (g¢,14) is given by SF(87), the
topological invariance of the equivariant Floer homology gives

SW ~ SW
HFk,U(l)(Y;ngO) = HFk+SF(6§:),U(1)(Y’ g1, Vl)-

We can then follow the steps of the proof of Theorem 7.7 and compare the
ranks of the Floer groups and the counting of the Euler characteristic. This
can be done by induction on |SF(87)|. The result is the formula (130). O

The wall crossing formula in the case of J-invariant perturbations con-
structed by W. Chen [14] can also be derived with the same method. This
gives rise to the following wall crossing result.

Corollary 7.10. Consider the invariant Asw (Y, g, f) where f is the J-
invariant perturbation of [14] Prop. 2.6.

Given two metrics and perturbations (go, fo) and (g1, f1) in two differ-
ent chambers and a generic path (g, fi) that crosses the wall once with
Ker (6?) = H. The relative Morse index with respect to the reducible so-
lution decreases by 4 across the wall, namely, we have u(fy) — p(61) = 4.
Then the

Casson-type invariant changes by

Asw (Y, g1, f1) = Asw (Y, g0, fo) — 2.



628 Matilde Marcolli and Bai-Ling Wang

Proof. Again the main issue is the change of grading of the equivariant Floer
homology induced by the spectral flow of the Dirac operator along the path
(g¢, ft)- This time, since we are using J-invariant perturbations, the Dirac
operator 8? is quaternion linear, hence, for the chosen path the spectral flow
satisfies SF(9%) = 4. This implies that there is a degree shift

HF()(Y, 90, fo) = HFY, 5y (Y, 91, f1)-

By applying the previous Proposition 7.9, we obtain the result. O
7.3. Wall-crossing formula: the geometric picture.

In this section we re-derive, in a more geometric way, the wall crossing
formula for a homology three-sphere Y that we proved algebraically in the
previous section. We analyze the local structure of the parameterized moduli
space. A geometric proof of the wall-crossing formula has been also worked
out by [35].

Let M*(g,v) denote the irreducible part of the moduli space M for the
metric and perturbation (g,v). Given a family of metrics and perturbation
(g¢,v¢) with (¢t € [~1,1]), the moduli spaces M*(g_1,v—1) and M*(g1,11)
are cobordant as long as the path (g¢, +) does not cross the wall, that is the
co-dimension one subspace W in the space of metrics and perturbations

W = {(g,v)|Ker (87) # 0}.

Suppose the path (g, 1) crosses the wall W just once at t = 0. Generi-
cally, Ker (87¢) = C. We want to analyze the local structure of the parame-
terized moduh space

M = {M(ge,ve) x {t}]t € [-1,1]}

at the reducible point 99 = (6o,0), where 6y = [1,0] is the class of the
reducible solution of (15) with the metric and perturbation (go,20). There
is a family of reducibles 9¥; in M. Let M* be the irreducible set in M, U
be a sufficiently small neighborhood of 6y in M, and U* be the irreducible
part of U.

We construct a bundle over ne1ghborhood of 9 in A x [-1, 1], together
with a section ¢ such that

U= (0 - {9, 1)})/9.
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Lemma 7.11. (1) The slice of the G/U(1)-action at a point (Ap,0) is
V(40,0) = Ker (d*) x T'r2(S),

(2) The slice of the G/U(1)-action at a point (A,) is

Viaw) = {(a, 9)|d*(a) — 2iIm(¢, ) is a constant function on Y.}

(3) For (A,v) close to (Ao, 0) there is an isomorphism

Aaw): Viaw) = V(a0

Proof. Properties (1) and (2) follow by direct computation. For (3), choose
(o, ¢) in Vi 44) and define (4 4)(c, @) to be

(o — 2d€(a,¢) (i )V + D)

where §(4,4) is the unique solution of the following equations:

2d* df(a’q;) =d*a

a.s)dv =0
/Yﬁ( )

Direct computation shows that A(4,4) is an isomorphism. O

The above Lemma shows that we obtain a locally trivial vector bundle
V over the space of connections and sections .A endowed with a U(1)-action.
Define the section ¢

s:Ax[-L,1] -V

to be
S(A,9,t) = Aay)(*g.(Fa — dvi) — o (2, ), 04%).
Near 6y, we know that ¢ = ¢71(0)/G. Therefore, the local structure of
U* at ) is given by the Kuranishi model of ¢~1(0)/G at 6.

Suppose (At, ;) is an element in U*. Consider a formal expansion at 9
of the form

A =v; +tay +t2ag+ -,

e =th + 2y + -
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The section ¢ is approximated by

*go A1y + tag + tlag+---) = *go Al
— oty + e + -t + 2 +--),
0L (thy + 2o + -+ ) + (tar + g + -+ - (thr + t2ha + - -),
where we are perturbing in a neighborhood of the wall W just by changing
the perturbation and fixing the metric go.
The zero set of the section therefore determines the conditions *dog = 0
and d*a; = 0, which imply a3 = 0 on a homology sphere. Moreover, we

have d*ag = 0 and

*dag = o(1P1,1).

On the kernel of d* the operator *d is invertible, hence we have
ag = (xd) o (1, 41).
The Kuranishi model near ¥y is given by a U(1)-equivariant map
S : R x Ker (0%2) — CoKer (09),

where U(1) acts on Ker (99;) = CoKer (89;) = C by the natural multiplica-
tion on C.

There exists a sufficiently small § > 0 such that, for ¢ € [-§, §], we have
that 87; has exactly one small eigenvalue \(t) with eigenvector ¢; and with
A(0) = 0, that is

0%t = A(t) s

This implies that, if X'(0) > 0, then the spectral flow of 85, for (¢t €
[-1,1]) is 1 and, if M(0) < 0, the spectral flow of 87, for (¢t € [-1,1]) is —1.

The map § is given by

S:RxC—C,

S(t) w¢) = HKer (829) (aAtw¢)'

Here we assume that ¢ is a spinor in Ker (89) with ||¢|| = 1, so that
Ker (0%0) = C¢. Consider the expression

(0506, 8) = =(t).

Notice that we have 2'(0) = A(0), in fact, we write formally A(¢) ~ ¢tA’(0),
¢t ~ ¢+téy and the Dirac operator 87 ~ 875 +tC, where v, ~ vp+tr; and
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C acts as Clifford multiplication by 1. We can write the first order term in
the relation 87, ¢: = A(t)¢; as

t(0% 41, ) + t{Ch, ¢) = tX'(0) + A(0).

Here the term (870 ¢1, #) = (¢1, 050 ¢) vanishes, and also A(0) = 0. Thus, we
have the relation

(C,¢) = X(0).
On the other hand, we have

(Co,¢) = 2'(0)

from the expansion of 87, ¢ = 2(t)¢.
Thus the map S can be rewritten as

S(t,wg) = 2(t)wp + t*{a2¢, p)ws + O(t°)
= wé (2(t) + t°r?((xd) 0 (8, ¢), (¢, 9))) + O(F°).

Here we use the fact that the first order term of the Dirac equation gives
%41 = 0, therefore 91 = re®¢ and o (1h1,11) = r20(d, $).
The term
7(Y; 90,0) = {(xd) "' (9,4),0(¢, )

is a constant that only depends on the manifold and on 6y. An inductive
argument shows that, if y(Y, go,0) vanishes, then all the forms «; in the
formal expansion of A; must also vanish identically. Thus, we can assume

that v(Y, go, v0) # 0.
Notice that we have

R x (Ker (8%) — {0})/U(1) =R x R.

The irreducible part of ¢71(0)/G is tangent to {0} x RT as ¢ approaches 0,
as we see in the following.

The difference A between the Casson-type invariant at ¢ = +§ can be
evaluated by counting the number (with sign) of oriented lines in ~1(0)/G,
with ¢ € [—4,d], that are tangent to {0} x Rt x {0}. Here we identify U*
with the set (S71(0) — {w = 0})/U(1). The sign of the wall crossing term
is determined by the section S, as follows. The zero set (S71(0) — {w =
0})/U(1) is given by the condition :

X'(0)

AN - -
TZ’Y(Ya 90, VO)
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Thus, we have one line in U* which is counted with the orientation deter-
mined by the sign of —y(Y, go,20) and the spectral flow. Suppose that we
have A’(0) > 0, then the spectral flow is SF¢(87;) = 1 on the path t € [-1,1].
If we have (Y, go, 1) > 0, then there is a unique irreducible solution, which
contributes a +1 to the invariant, that flows into the reducible as ¢ — 0, with
t < 0. If we have (Y, go, o) < 0, then a unique irreducible that contributes
a —1 to the invariant approaches the reducible as ¢t — 0, t > 0. This gives
the wall crossing term

AY,91) = A(Y,g9-1) — SFc(03).

This provides a geometric interpretation of the wall-crossing formula that
we derived algebraically in the previous section from the exact sequences.

Remark. With the metric dependence of A(Y,s, g) understood, we can
modify this quantity by introducing a correction term as follows. Choose
any four manifold X with boundary Y, such that X is endowed with a
cylindrical-end metric modeled on (Y, g). Choose a Spin, structure sx on
X, which over the end is the pullback of s on Y, and choose a connection A
on (X,sx), which extends the unique reducible s on (Y,s). Then we set

(131) 6v(5,9) = Inde(D) - 3 (e1(sx)* = (X)),

where Indc(DX) is the complex index of the Dirac operator on (X,sx),
twisted with the chosen Spin. connection A, and ¢(X) is the signature of
X. By the Atiyah-Patodi-Singer index theorem, £y (s, g) is independent of
the choice of (X,sx) and A. Actually, &y (s,g) can be expressed as a com-
bination of the Atiyah-Patodi-Singer eta invariants for the Dirac operator
and signature operator on (Y,s). From the definition (131), we see that

§Y(S,gl,1/1) - gY(S,g—hV—l) = _SFC(ag: )

where (g¢,¢) is a family of metrics and imaginary-valued 1-forms on Y.
Then the modified SW invariant

’\(K g) - €Y(s)g)

is a topological invariant of (Y,s). In [43], we show that the averaged version
of these modified Seiberg-Witten invariants agrees with the Casson—-Walker
invariant for any rational homology sphere.
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