
































































































































































































































































































Equivariant Seiberg-Witten Floer Homology 595 

space A4(9Q,0I) consists of a unique gauge class [A, 0]. Thus we have a 
diffeomorphism 

*:M{9uOa')%U(Oo,Oa>) 

induced by the pre-gluing map. According to Corollary 4.17, since we can 
restrict our attention to the case /i(0o) — M(^I) = ""2, we have 

ApprCoker (JC^O y) £ Coker (Cx) ^ C. 

Consider the bundle £ over M(0i,Oar) with fiber 

Coker (CX)^C, 

obtained as pullback of the obstruction bundle £ via the diffeomorphism TT 

of the base spaces. There is a section s = 7r*5M of £ that corresponds to the 
canonical section s^ of Proposition 6.17. Recall that there is a free U(l)- 
action over the moduli space .M(0i, Oa/), hence there is a smooth projection 
to the quotient 

M(0i,Oa,)/U(l)<*M(0lyq'). 

The bundle-£ can be regarded as the pullback, under this quotient map, of 
a bundle £ over M(0i, Oa>)/U{l), with fiber 

Coker (Cx) £* C. 

The section s is the pullback of a corresponding section s of £. We are going 
to proceed as follows. We show that, for a generic choice of the perturbations 
p and P of equations (87) and (88), this section s is a generic section of £. 

Consider the universal pre-glued space 

U(0uOa.) = {(p,P,xi&y)} 

with p a compactly supported form in Al(Y x E), P a perturbation of 
V as in Definition 2.10 (with the modified property (!') specified at the 
beginning of Section 6.1). The pre-glued element x#j,y is obtained from 
x and y, solutions respectively of the equations (87), (88) and (20), (21), 
with the perturbations p and P. We can extend the bundle £ to a local 
bundle over ZY(#i,Oa/) with fiber Coker(£x). We can still identify this as 
the pullback of a local bundle £ on the quotient U(0i, Oai)/U{l). There is 
an induced section s of £ whose pull-back agrees with the section TT*^ for 
fixed perturbations (p,P). 
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We prove that this section s over U(6i,Oai)/U{l) is transverse to the 
zero section, hence the restriction to a generic (p, P) gives a generic section 
overW(0i,OaOMl). 

The section 5 is given by 

S(P>P>*#TV) = nCoker(Z:,) (^.P^OyJ^P^Jy)^^) + /(p.P)(^#Tl/)) ■ 

Suppose given a point {p^P^xjj^y) in 5-1(0). Consider a small variation of 
the perturbation p + erj. The variation of the term f(p+er} P)(x#Ty) ^s givei1 

by 

Let $1 and $2 in Ker(DA-p) be the generators of the 2-dimensional 
space Coker (Cx). Consider a small open sets Ui where $i and PT^2 

are 

non-vanishing, and almost constant. There exist 1-forms rji supported in 
small neighborhoods of the open sets Ui such that 

is non-zero on Ui. Thus, we obtain 

{Qi^i-p+V^dv^O. / 

Thus, by varying the perturbation p alone, it is possible to achieve sur- 
jectivity of the linearization of the section 5 onto Coker (Cx). 

There is a free J7(l)-action on the space .M(0i, Oa/), whereas the element 
[x] — [A, 0] in M(9Q,9I) is fixed by the U(l) action. The section 

S = 7r*s/x:M(0i,OoO->£ 

is invariant under the C/(l)-action, being the pullback of s. We have seen 
that, for a generic choice of the perturbation (p, P), the section s is a generic 
section. Thus, the approximate solutions in W(#o> Oa7) that can be glued to 
actual solutions in M(9o,Oaf) are identified with the co-dimension 2 t/(l)- 
submanifold 

s-^cMiOuOa,). 

In other words, we have then proved that the bundle £ over the moduli 
space.M(0i, Oai)/U(l) is a model of the obstruction. □ 

We have the following consequence of Theorem 6.19 and Lemma 6.18. 
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Proposition 6.20. For any compact set 

KcM^e^xr1^), 

with 5~1(0) C M(6i,Oa>) the zeroes of the obstruction section 

8-1(0)/U(i) = r1(0)cM(9i,a'), 

there is an orientation preserving gluing map 

#:Kc M(eo, 61) x S-^O) -»• Mtfo, Oa,) 

that is a smooth embedding. There is a similar gluing map for any compact 
set 

ircr-1(o)x.M(0o,0i), 

with 5~1(0) C .M(Oa,0o) the zeroes of the obstruction section 

5-1(0)/U(l) = s-1(0)cM(a,eo). 

Finally, we have the following result on the singular components in the 
ideal boundary of the moduli spaces .M(Oa, Oai). 

Theorem 6.21. Assume that //(a) - /z(0o) > 2 and (ifti) - n{a') > 3, then 
the contributions of the singular strata 

(104) .M(0o,0i)xM(0i,Oa') 

and 

(105) M(Oa,0o)xM{eo,91) 

to the actual boundary of the compactified moduli spaces 

M{e^Oaly    and   MiOaJx)* 

are given by the terms 

(106) M{d0M)^d{1){s-\Q) nM(eltoa,)) 

and 

(107) d^ (5-i(o) n M(Oa, 0O)) x Mtfo, 0!), 
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respectively, where s are the obstruction sections. Thus, the compactification 
of the moduli spaces .M(Oa, Oa/) has the structure of a smooth manifold with 
corners, but in addition to the strata of the form (78), we also have the strata 
(106) and (107).  Thus, we obtain 
(108) 

d^M(eo,Oalr   =   U{aiMO6,)>M(oa0}(-M^'^')*xo(),^(O6SOa0*) 
U{6KO6)<M*o)}(-M0o,C>6)* xo6 M{Ob,Ovy) 

UM(0o,9i) x 0(1) (S-^O) nM(9i,Oa.)*) 

and 
(109) 

d^MiOa^y = {J{a>Moa,)>^)}(M(0">0°'y xoal M(Oa',eiy) 
{J{bMob)<»(oa)}(-MOa,Oby xob M{OM*) 

u^1) (s-^o) r\M{OaM) x M(6Q,9i). 

Proof. By the results of Proposition 6.20, we have gluing maps 

.M(0o,0i)x <r1(O)-->.M(0o,a') 

and 
a-^O) x MtfoJi) -»• M{a, 9i) 

that axe smooth embeddings. The dimension count then implies that these 
gluing maps are diffeomorphisms of s_1(0) to a union of connected com- 
ponents of .M(0O)a') or M.(a, 9i). Similarly, we have diffeomorphisms of 
[/(l)-manifolds between s_1(0) and a union of connected components of 
M.(9Q,Oa>) or M.{Oa, 9i), induced by the gluing maps 

(110) # : M{90,91) x rHO) -»• M{9Q,Oal) 

and 

(111) # : S-^O) x M^o.^i) -»• M(Oo,0i). 

Under the gluing maps, the image of 

A^Oa^nS-^O)   or   M^ieuOa^ns-1^) 

is a co-dimension 1 submanifold of M(9o, Oa>) or M{Oa, 9i). This subman- 
ifold actually lies in the interior of .M(005 0a') or «A4(Oa,fli), and is not 
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part of its boundary strata. This can be seen from the fact that the glu- 
ing maps (110) and (111) provide the collar structure around these smooth 
codimension one embedded submanifolds. In other words, this means that 
any sequence of solutions in M(6o,Oai) or .A4(Oa,0i) that converges to an 
element in the ideal boundary components (104) and (105) is in fact already 
convergent in the interior (top stratum) of MiOo^Oa') or .M(0a,0i). The 
only contribution of (104) and (105) to the actual boundary of the compact- 
ification then comes from the boundary points of 

M(oa,eo)ns-1(o) 

and 
M(0i\oaf)nr

l(o). 

This gives the formulae (108) and (109). □ 

Similarly, we can analyze the boundary structure of Mp(9oi Oa), in the 
presence of obstructions. We have the following result. 

Theorem 6.22. For a generic choice of perturbation, the obstruction sec- 
tion 

s:M(eua)->£o1,a = M(e1,Oa)xu(1)C 

defines a codimension 2 submanifold 5~1(0) C .M(0i,a); which corresponds 
to a U(l)-submanifold of co-dimension 2, 5~1(0) C M,(9i,Oa), such that the 
gluing map 

#:Kc M(Oo,Oi) x f-^O) -> M^=1(eo;Oa) 

is a smooth embedding, for any compact set K C M.(0Q,9I) X 5_1(0). Thus, 
the co-dimension one boundary strata of the compactification Ai   (9o)Oa)* 
are given by 
(112) 

dMMp{d0,Oay =   \Ja,(M(0o,Oa,)* xoal M(,Oa.,Ob)*) 

U-M^o.flOxts-HojnMCfli.Oa)). 
U{CKOC)>M0O)}(^P(0O, ocy xoc M(Oc, oby) 
^{cMo^ieo)}^^ Oc)* xoc M

p(Oc,, Oa)*) 

with the orientations given by the gluing theorem. 

The proof follows from the analysis of the obstruction bundles and sec- 
tions, as in the case of Proposition 6.20 and Theorem 6.21. 
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6.3. Proof of topological invariance. 

We gave an argument for the easy case of theorem 6.1, with maps 7, J, and 
H as in (76), (79), and (82). This gives us an isomorphism between the 
equivariant Floer homologies for any two choices (go^o) and (gi,vi) within 
the same chamber. Now we prove the general case 

Proof of Theorem 6.1, Part II: the general case. In Section 6.1 and Section 
6.2, we analysed the boundary structure of the moduli spaces .A4(Oa,Oa/)* 
and Mp(Oa,Oby, in the case of two metrics and perturbations (tftb^o) 
and (51,^1) in different chambers, connected by a path (gt^t) satisfying 
SF(d?,l) = -2, and a path (gt^t), in the opposite direction, satisfying 
SFid^) = -SFffil) = 2. We assume throughout the discussion that the 
metrics (go, VQ) and (pi, ^1) are "close enough", on the two sides of the wall. 
We can assume, similarly, that the paths (gt^t) and (gt^t) are also close 
enough. 

Recall that we perform a shift of grading in the complex Cku(i) (^ QiiVi) 
by setting fi(9i) = —SF(dltt), where SF(dlt

t) is the spectral flow of the Dirac 
operator along the path of reducible solutions [^,0]. 

The analysis of the obstruction bundles in Section 6.2 implies that the 
boundary structure of the moduli spaces M{Oa,Oai) and Mp(Oa,Ob) is 
modified by the presence of the zeroes of the obstruction sections. This 
difference determines suitable correction terms for the maps I and H, so 
that the argument of Theorem 6.1 can be adapted to this general case. 

Remark 6.23. The moduli space .M(0I,0O)J as a [/(l)-manifold, consists 
of a disk, containing the fixed point xi = [Ai,0] (the unique solution of 
d * Ai =0 and d+Ai = /}$), and with boundary a circle, given either by a 
component 

M(OuOa)xoaM(Oa,Oo) 

with /i(Oa) - M(0O) — 1? or by a component 

with fJi(Of
a) - /i(#o) = 0. Thus, we have the following identity that counts 

the boundary components of the framed monopole moduli space M(9i, 0Q): 

(113) ]C"0ia(1)rca(1)0o + Sn*i«{o)%)'° === ^ 
a(i) a,(o) 

The sum is over all Oa(1) in M0(Y,go,uo), and O0/ in M0(Y,guui) of 

(shifted) index n(Oa{1)) - ntfo) = 1 and KOa'{0)) - M(eo) = 0, respectively. 
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In particular, notice that we can derive the observation of Remark 6.23 
if we make explicit use here of the information on the local structure of the 
moduli space A40(Y, gt, Vt) of critical orbits, as the metric (gt>Vt) approaches 
the wall, This is derived in Section 7.3. 

We know that two possibilities arise: either an irreducible orbit Oa, 
with /i(Oa) — /i(0o) = 1? disappears into the reducible as the metric and 
perturbation (gt^t) hits the wall, or an irreducible orbit Oa/ with /i(Oa/) — 
^(0O) = 0 arises from the reducible, as (gt, vt) hits the wall. In the first case, 
the disk of Remark 6.23 has boundary the circle 

M(euoa)xoaM(Oa,eo) 

and in the second case it has boundary the circle 

MieuO'Jxo^MiO^eo). 

The relation (113) then yields the separate identities 

(114) #M(6i,Oa) = n$ia = l    and    #M(Oa,Oo) = nag0 = 1, 

for Oa the unique orbit that hits the reducible, and 

for /i(Oa(1)) - /i(0o) — 1 and M(0O/ ) — M(0O) = 0. The case of Oat is 
analogous. 

The moduli space .M(0i, 0o)> containing this separate component with a 
fixed point, is one of the differences with respect to the picture for metrics 
and perturbations within the same chamber. Another essential difference 
is, of course, the presence of the singular moduli space M(9o,6i). We have 
already seen, in the analysis of the obtructions how this moduli space plays 
an essential role. However, what we wish to point out here is that the basic 
asymmetry between the moduli spaces .M(0o> 0i) and M.(9i,6o) is what calls 
for correction terms in the maps / and i?, but not in the map J. 

In fact, consider first the action of the map J, defined as in (79) on the 
generator fin <8> !#! in the Floer complex for (gi, z/i). We have 

j(nn ® I0J - ]£n01O(1)n
n ® ia(1), 

a(i) 

with the sum over all Oa(1) with /i(Oa(1)) — /i(0o) — !• 
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Notice that the existence of the extra disk component in the boundary 
of M(9i, 0o)> as in remark 6.23, does not affect the identity JD — DJ = 0, 
in fact, even though now the count of boundary terms in M^Q^ 0I) satisfies 
(113), we still do get 

(Qn ® 10O, JD - DJ(nn ® 1^)) = 0. 

In fact, the fibrations 
M(Oa[o),eo)^9o, 

M(Oa(1),6o)->e0, 

have 1-dimensional fibers, and the pushforward of a zero-form is trivial. The 
identity JD—DJ = 0 at all the other components follows the argument given 
in the proof of the easy case of Theorem 6.1, without any modification. 

Now, instead, consider the case of the map I acting on fin®l0o. The first 
difference we notice, with respect to the model case of metrics and perturba- 
tions in the same chamber, is that the moduli space M.(9o, Oi) consisting of 
the unique point #0 = [AQ , 0] defines a non-trivial "pull-back push-forward" 
acting on the zero form IQQ. TO account for this moduli space, we have to 
assume the existence here of an extra component of the map / connecting 
Qn ® le0 to fi71-1 ® 1(91, where the drop of degree in ft accounts for the change 
of grading of the reducible point, so that the map I can be of degree zero. 
Thus, we have a new component 

(115) (nn-1®i*,i(nn®i*o)> = i. 

Notice that the necessity of the additional term (115) in the map / can 
be made clear by looking at the following example. 

Example. Consider a model case where the moduli space M0(go,i/o) 
consists solely of the fixed point 0o and of an irreducible orbit Oa in degree 
one. The Floer complex for (go^o) then has generators On ® le0 in even 
degrees p = 2n> 0, On ® r]a in odd degrees p = 2n + 1 > 1, and ft71"1 ®. 10 

in even degrees p = 2n > 2. The boundary operator D has a component 

ft71 ® Va »-> -W1 ® la + naonn ® lo0. 

In the wall crossing with /i(0o) - M#i) = -2? the orbit Oa disappears into 
the reducible, and the Floer complex for (gi,vi) only has the fixed point as 
generator. In this case, we have the equivariant Floer homology 

HFp%1)(Y,(g(hvo)) = { 
^OlJ   P = 2n>2 

0 otherwise, 
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with [nn-1 ® la} = [Q71 ® l9o] for all n > 1, and [1 ® 1^0] = 0. The Floer 
complex for (51,1/1) has fin ® l01 as unique generators, and no boundary- 
components, hence the Floer homology is 

HFSW   lv (n   ^ _ / mn ®.l«i]   P = 2n + 2 > 2 
pSKl)(^ (01, "0) = { 0 otherwise, 

after degree shift. The map / that maps fin ® l6>0 -> Q71-1 ® l^j gives 
the desired isomorphism. Notice that such examples can in fact be real- 
ized geometrically, for instance when considering a metric of positive scalar 
curvature on S'3 as gi. □ 

It becomes then clear that, if we change the map / with an extra com- 
ponent as in (115), to account for the moduli space M(6Q,6I), we need 
to add further correction terms to the original map / on other generators, 
so that the identity ID — DI = 0 continues to be satisfied. In assigning 
the necessary correction terms, we need to take into account the different 
structure of the compactification of the moduli spaces A^(Oa, Oa/), with the 
boundary strata (108) and (109). Studying the boundary information of 
«M(^05af_2))) we know that there is a contribution of the singular gluing 
from the monopoles in 

s-l{o)nM{ex,a'{_2)), 

which contributes to the expression 

(JZ>-.DJ)(fin®lfl0), 

in addition to the ordinary components n^oa/ On ® la/ , where n^oa/ 

effectively counts the monopoles from the zeros of the obstruction section 
over MiOiiO,1,^). This is precisely the correction term which is needed in 
order to obtain the identity ID — DI = 0 once we take into account the 
presence of the component (115) originates from the presence of the moduli 
space M{6o,6i) consisting of the unique point XQ = [Ao,0]. 

Similarly, we need to introduce correction terms to the map H so that 
it continues to be a chain homotopy, satisfying id — JI = DH + HD, with 
respect to the modified map / and with the modified structure of the com- 
pactification of A/lp(Oa, Ob). 

In order to introduce the correction terms for the maps / and i?, we 
need a preliminary discussion on some identities derived from the counting 
of zeroes of the obstruction sections. 
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Consider the case of the 2-dimensional moduli space .M(a,0o)> with a 
an irreducible critical point of index 2 and #o the unique reducible point. 

In Section 5.3, in Lemma 5.7, we described the invariant mac as the rel- 
ative Euler class of the complex line bundle £ac over .M(a, c). Consider now 
the case of the 2-dimensional moduli space .M(a,0o)> with Oa a free orbit 
of index 2 and 0o the fixed point in .M0(Y", po^o)- We also introduced the 
invariant mao0 in Section 5.3, as as the relative Euler class of the associated 
complex line bundle over M(a,9o), according to Lemma 5.9 and Lemma 
5.10. As we point out in the following Remark, we can use the obstruction 
section to obtain the necessary trivialization and compute the invariant mae0 

as relative Euler class of Cag0. 

Remark 6.24. We use the same choice of trivialization sa& over .M(a, 6), 
for all the free orbits Oa and Ob of relative index 1, as determined by the 
trivialization cp of Lemma 5.7. For M(b, 9Q) with ^(C^) — /i(0o) = 1? we set 
sbeQ r^ 0 to be the obstruction section 

8bf0o = 8 : .M(Mo) -> M(Oh,Oo) xC/(i) Coker (£,) £ £be0. 

We then set sa^Q over .M(a,0o)> with K^a) - AK^O) > 2 to be the 
obstruction section 

(116) sai0o = s : M(a, OQ) -> M(Oa) OQ) XU{1) Coker (Cx) ^ Cae0. 

This choice satisfies the requirement of the class of sections specified above. 
Over a moduli spaces .M(a, OQ), with /i(Oa) -/i(0o) > 2, then the obstruction 
section 

Safio = s : M(a, 0Q) -> M(Oa, OQ) xu(i) Coker (Cx) ^ >Ca0o 

is homotopic to 

over all the submanifolds 

M(a,b) xM(b,eo) 

of M(a, 0O)J where we identify 

£a,0o = ^l^afe ® ^Cbfio, 

with TTI and 7r2 the projections on the two factors in 

M(a,6) xA^(6,0o), 
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with /i(Oa) > lJ,(Ob) > /i(0o)> and section Sbfio is the obstruction section 
over ^(6,0o)> and the section 5ab is a transverse section of the line bundle 

Cab = M(Oa,Ob)xu{1)C 

over M(a, b) as discussed in Section 5.3. 

In summary, we have obtained the following lemma which claims that 
the relative Euler class ma,2)0o and meiat can be calculated by count- 

ing the zeros of the obstruction section over .M(a(2),#o) aiul Al(^i,a/_1N) 
respectively. 

Lemma 6.25. For ^(a^)) ~ M(^O) — 2, the relative Euler class rna,2)Q0 is 
given by 

#<2)eo(0) 

where sa   Q0   is  the  obstruction section over jM(a(2),^o);   similarly,  for 
M^i) — ^{.a'(-i)) — 3; the relative Euler class mQiai      is given by 

where SQQa>      is the obstruction section over .M^ija'/^). 

As a consequence of Remark 6.24 and Lemma 6.25, we have the following 
identities. 

Lemma 6.26. Let   Oa, )    denote   a   free   orbit   in   the   moduli   space 

M0(Y^gQ1UQ)f of index /i(Oa, J — ^(#0) = P>   Let Oa'     denote a free or- 
KP) (q) 

bit in the moduli space M0(Y, pi, vi), of (shifted) index /x(Oa/   ) — /x(0o) = Q- 
(q) 

We have the following properties. 

1. Consider the obstruction bundle over .M(a(2),0o)- The counting of the 
zeroes of the obstruction, that is, of the flowlines in M(a^2)^o) glued 
to the singular reducible x = [A0,0] in M(0oj0i), is given by 

ma{2)eo=#(s-1(0)nM(a{2),e0)). 

This satisfies 

(117) / jma(3)a(i)na'(i)0o ~ / jna(3)a(2)ma>(2)0o == ^, 

a(i) a(2) 
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2. The counting of the zeroes of the obstruction section s of the obstruc- 
tion bundle over M^iid',^), which counts the gluing of the singular 

reducible x = [A0,0] in M(9o, 6i) to flowlines in .M(0i, aC^), is given 
by 

"M-D =#{s-1(0)nM(61,a{_l))). 

This satisfies 

(118) ^ me^na'^a'^ ' E ^iaj0)^(0)a'(.a) = 0. 
al-i) a{o) 

Proof In this case, we know that, for dimensional reasons, we have 

s-1{o)nM(a(1),eo) = t 
Thus, by the previous discussion, and the results of Lemma 5.9, Lemma 
5.10, and Remark 6.24, we know that the boundary of the 1-dimensional 
manifold (5_1(0) fl A^a^flo)) consists of the set 

[JM(ais),ai2)) x (5-1(0)nyW(a(2),^o)) 
a(2) 

u UH"(Ui)(0) n (M(am>aw)x ^(a(i)^o))). 
a(i) 

This implies that we have the identity 

2_-,ma(3)cl(i)na(1)0o " / .na(3)a>(2)ma'(2)0o = ^j 
a(i) a(2) 

with the sign denoting the different orientation. The remaining case is anal- 
ogous. □ 

Now we define the necessary modifications to the maps / and H. 

Definition 6.27. We modify the maps /, H on Qn ® le0 and O71-1 ® la(1) 

as follows: 

(119) +^a[_1)neoa[_in
n®K[_1) 

+ Saio)^iaj0)n
n®%); 
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2. 

(120) 

3. 

(121) 

+ E.'1n-(1K1)n
n-1®i.;1); 

i?(O"®l,0)=     Ea(0) <a(0^
n ® la(0) 

+ Y,am
neiawnn®Va(1). 

In order to show that the relations ID — DI and id — JI = DH + HD 
are still satisfied, we only need to check explicitly all the terms that are 
directly affected by the presence of the correction terms. 

Lemma 6.28.   We have 

1. ID = DI on nn ® l0o and O71-1 ® 10(1); 

2. ID = DI onnn<g>rta(3); 

3. ID = DI onfin®7?a(1); 

Proof. We prove the claim by direct analysis of the boundary strata of the 
various moduli spaces involved. We have 

ID(nn ® le0) = 2 ^oa(_2)na(_2)a^2)fin ® l0i(_a) 
a(-2) 

and 

i?/(nn ® 1,0) = - 2 nOoa^na'^a'^n71 ® la'(_2) 

a(-i) 

Z—/     ^"(O)      a(0)a(-2) a(-2) 
a(0) 

The first claim then follows, since we know that the co-dimension one 
'00 > Oai     ) consists of 

(—2) 

U M(eo,Oai_2)) xoa(_2) M(Oa{_2)JOa[_2)) 
2(-2) 

boundary of M(9oJ Oa'     ) consists of 
(—2) 
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U (J M(eo>Oa/(_i))xJM(0„(_1),Oa{_2)) 
a(-i) 

UA4(0o,0i) x (s-Ho) n (^(ei,Oajo)) xo .   M(Oa,m,Oa,{_2))). 

In fact, according to Theorem 6.21, we have boundary strata as in (108), 

MWM x dW (5-1(0) nM(0i,oa/_a))*). 

Here s is the obstruction section. By Remark 6.24, we have 

^(s-^nA^.O^)*) 
=   SrH0)n ([Ja[o)M(Oi,Oa[o)y xoa,o) M(OaWOa[_2)r) 

us-^niij^MeuO^r xoaU) M{oaU),oa[_2)y). 

Note that the coefficient n^0O/ effectively counts the monopoles from the 

zeros of the obstruction section over MiO^a'^^), so we are left with the 
remaining counting, 

^ia(0)       a(0)a(-2) (-2)' 
a(o) 

'(0) 

which proves the claim. 
In order to prove Claim (2), we compute 

ID(Qn ® la(1)) = -E^D-CONO)^)"" ® Mo) 
a(o) 

and 

DI{nn ® la(1)) = - E n«(i)«{i)%)-io)nn ® ^(O) + ^(D^^^n11 ® la 
a(i) 

Then the claim follows from the boundary structure of M(a^i^a'^). The 
zeroes of the obstruction section contribute the term 

™a(1)0on0ia'(o) 

in the counting of the boundary points. 
The argument for Claims (3) and (4) is analogous. □ 

Now we need to check the effect of the correction terms on the identity 

1-JI = HD + HD. 
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Lemma 6.29.   We have the identity 1 - JI = DH + HD on Qn ® 10O. 

Proof. By direct calculation, we obtain 

(1 - JI)(Qn ® 1,0) 

=  nn ® i^ - Jin™-1 ® iei + E^^ n^a^^fi" ® i,,.^ 

+ Ea'(0)%1a'(0)^
n®%)) 

=     ^Olflb-Ea^^iad)"""1 »!«(!) 

"(!)»'(_,, ^a^,,^.,,^.,, + Ea'(0) ^lajo^a^at.,))^ ® VD 

" Ea'(0) 
n»i«'(0)%)«(0)fin ® ^(0, - Ea'(0) ne^Ua'^n- ® 1,0 

We also get 

(i>£r + fri>)((nn®iflb) 

=     £(Ea(0) <a(0^
n ® 1«(0) + Ea(1) ^a^ ® ^J 

+tf(Ea(_2)^a(_2)ttn®la(_2)) 

-     Eat.!) vEa(1) ^lojij^ijoj.!) - Ea(0) 
neoa(o)na(0)«(-l) 

- Ea(_2) "«o«(-a,«?_,,«(_!,)"" ® ^(-l) 

+ Ea(1))a(0) "«!»(!,"-(Da^Ji" ® »7a(0) " Ea(1) ^ia(1)ftn_1 ® la(1) 

+ Ea(1)
n01a(1)«a(1)0ofin®1eo- 

Let us first check the coefficient of Cln ® lg0. Equating the coefficients of 
fjn ® lg0 in the two expressions above yields the identity 

am o'(1) 

This identity is satisfied, since it is exactly the counting of (113). 
We then check the coefficient of 0,n ® ?7a,0). We need to prove the identity 

En^«(i)n«(i)«(o)+ErMo)%)«(o) =0- 
aW a'(0) 

This follows from the boundary structure of M.(9i,Oa(0))*, given by 

\jM(0uOawr x0a(i) A4(O«(1)>Oa(0))* 
a(i) 
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UU^'%)*X%)^(%)'^(0))*- 
a(o) 

In order to compare the coefficients of fin ® la(-i)) we need to prove the 
identity 

(122) -     Z-/a(_2) 
n^oa(-2)na(_2)a(_1) 

+     Ea'(0) 
n^ia'(0)ma(0)o(-i) + ^(D n^a(i)ma(i)a(-i) = 0 

Among these terms we can isolate a contribution 

Z-, n0Oa[-i)na{-i)a{-i) "~Z^n0oa(o)na(o)a(-i) -  2^ n^oa(-2)na(-2)0(-i)J 

a^^ a(0) a(-2) 

which is the contribution of the boundary terms in Mp(0o, Oa^^)* obtained 
by gluing co-dimension one boundary strata along irreducible critical orbits. 
The term 

counts the contribution of the special gluing 

.M(0o,0i) x Miei.a^) x Mia'^^a^)), 

where the coefficient 
nfloa^1)=#5"1(0) 

counts the zeroes of the obstruction section in A/I(0i,a|_1j). 
According to Theorem 6.22, the counting of the remaining boundary 

components for .Mp(0o,a(-i)) is given by the gluing 

with 

Recall that, in this case, 5~1(0) is zero-dimensional. 
We claim that the zeroes of this obstruction section are counted precisely 

by the expression 

XNi^o)™^-!)+Y,n0^(i)rria(i)a(-i)' 
alo) aM 
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In fact, we can describe the obstruction bundle as the line bundle 

over A^(^i5«(_!))*, with x = [Ao,0] the singular reducible in .M(0o>0i)) 
and Coker (Cx) = C. With the choice of trivilizations, the zeros of the 
obstruction section are localized in some compact set in 

\jM(ei,a[Q)) x Mia'^ya^)) 
alo) 

U (J M(eua{1)) x .M(a(i),«(_!)). 
a(i) 

Thus, counting the zeros of this obstruction section, which gives the 
relative Euler class of the associated complex line bundle over .M(0i,a(i)), 
contributes 

#--1(0)=       Eafonft^"^.^, 

Then the vanishing condition of (122) follows from #(dM.p(0O) &(-i))) = 
0. Thus, we have completed the proof of the identity 1 — JI = DH + HD 
on the generator ft71 ®lo0. □ 

We proceed to check the remaining identities. 

Lemma 6.30.  We have the identity 1 — JI = DH + HD on Qn ® la(1). 

Proof. We compute 

(l-J/)(^®la(1)) 

= n» ® ifl(1) - J^^ft^-1 ® h, + Ea'(1) na{1)a[i)w-1 ® ifli(i)) 

=     nn ® la(1) - Ea(1) (Ea'(1) 
na(i)fl(i)na(i)a(i) + ^(D'o^ifia))^ ® ^(x) 

(DH + HD)(nn®la{1)) 

=     (Ea(2) 
na(1)a(2)

na(2)a(1) + Ea(0) 
n«(i)«(o)na(0)a(1))

fin ® ^(i) • 

If we compare the coefficient of each term in DH + HD — 1 + J/, we see 
that the coefficient of Ctn ® la(1) is given by 

Z^na(i)«(2)na(2)a(i) + Z^na(i)a(o)na(o)a(i) 
a(2) ^(O) 
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a(i) 

Notice that the sum 

2^ na(1)a(2)
na(2)a(1) + /^ n°>(i)a(o)na(0)a{1) + /^ ^(i)^!)77^!)^!)       1 

a
(2) a(0) • a'(1) 

is the algebraic counting of the boundary points in A4jP(a(1),a(1))* that 
correspond to boundary components of the form 

U Mp(a{1),a{2)) x -M(a(2),a(i)) U (J A^(a(1),a(o)) x A^p(a(o),a(1)) 
0(2) a(0) 

u|jA4(a(1),a
,
(1)) x A4(a/

(1),a(1))U{-a}. 
a,(i) 

Similarly, for d^ ^ a(1), the coefficient of Q71 ® la(1) is given by 

/ vnan^a^na(2)Q(i) + 2^ n«(i)a(o)na(o)a(i) 

a(2) a(o) 

+ Z)n«(i)0(i)nfl(i)a(i) + ND^^iad)' 
a'(i) 

Again, notice that the sum 

a(2) O(o) a'^j 

is the algebraic counting of the boundary points of Xp(a(1),a(1))* which 
correspond to boundary components of the form 

U MP(a{1),ai2)) x .M(a(2),a(1)) U (J .M(a(1),a(o)) x Mp(a{0),a{1)) 
0(2) a(0) 

UJjMCa^),^!)) x^Ca^Ofi)). 
a,(l) 

We only need to prove that the counting of the remaining boundary 
components of Mp(a^1),d^) is given by 

na(i)0on0ia(i)> 
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which counts the contribution of the zeros of the obstruction section, that 
is, of those monopoles of Mp(a^)d^1)) which are obtained by gluing the 
singular reducible x e M(9o,9i) with 

M(a{1)l0o)xU{l)xM(0ua{1)). 

Recall that the non-equivariant gluing 

# : ff-^O) C .M(a(1),0o) x J7(l) x M(Ol9a(1)j-> MP(a(1),a(1)) 

corresponds to the equivariant gluing in the framed moduli spaces 

# : S-^O) C M(Oa(lveo) x M(euOa{1)) -> Mp(Oa{lvOa{1)). 

The pull-back and push-forward map 

(ea(1))*(e«(i))*Ki)) 

defines the relative Euler characteristic number on the associated line bundle 
of 

£a<i).a(i) = (.M(Oa(1),0o) x -M(fli,Oa(1))) x^(1) C. 

This gives 

Consider the obstruction bundle 

(M(Oaw,e0) x M(6o,ei) x MiOuO^)) xm Coker(Cx) 

over the space 

M(a(1),0o)xM(0ua(1))xU(l), 

with CokerOC,.) = C, for x € M(Oo,9i) the singular point x = [AQ.O]. 

Counting the zeros of the obstruction section 

#{s-1(O)n(M(a(1),9o)xM(01,a{1))xU(l))) 

gives another computation of the same relative Euler class above, that is, 

#(5-1(0) n (.M(a(1),0o) x JW(0i,a(1)) x C/(l))) 

Thus, the components of the boundary of Mp(a^,d^)* which come 
from the gluing with the singular x £ M{6o,9i) contribute a term 

na(l)0on0ia(i) 
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to the counting of the boundary points. This completes the proof of the 
Lemma. □ 

Finally, we have to check the following. 

Lemma 6.31.   We have the identity 1 — JI = DH + HD on fin ® r]a{1). 

Proof. Direct calculation of the terms (1 — JI)(ftn ® Va^) and (DH + 
HD)(Ql

n ® Varu) shows that the conditions required in order to have the 
same coefficients on all the generators are precisely the conditions already 
verified in the case of Lemma 6.30. □ 

Notice how clearly this argument of topological invariance breaks down 
for the non-equivariant Floer homology. The invariance within the same 
chamber is still verified: in fact, no substantial changes are necessary in that 
first part of the proof, in order to adapt it to the case of the non-equivariant 
Floer homology. However, as wee see clearly from the structure of this 
second part of the proof, the general argument for the proof of Theorem 6.1, 
for metrics and perturbations in two different chambers, relies essentially 
on the contribution of the reducible points, in order to construct the chain 
map / and chain homotopy J?, as discussed in Definition 6.27, Lemma 6.28, 
Lemma 6.29, Lemma 6.30, and Lemma 6.31. The example presented at the 
beginning of Section 6.3 also clarifies why the argument cannot be adapted 
to the non-equivariant Floer homology. 

7. Wall crossing formula for the Casson-type invariant. 

We want to compare the equivariant Floer homology with the ordinary Floer 
homology in the cases where the latter is defined, i.e. when 61(lr) is non- 
trivial [38] or when Y is a homology sphere, [13]. 

In the case when &1(lr) is non-trivial, we expect to find that the equiv- 
ariant Floer homology, which is computed by considering framed moduli 
spaces, is isomorphic to the ordinary Floer homology computed in the un- 
framed space. In fact this is the analogue of the well known result for equiv- 
ariant cohomology of a finite dimensional manifold, where, if the action of 
the group is free, then the equivariant cohomology is just the ordinary coho- 
mology of the quotient, iI£(M;R) ^ H*(M/G',R) as if*(BG;R)-modules. 

In the case of a homology sphere, instead, we expect to find an exact 
sequence that connects the equivariant Floer homology with the ordinary 
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Floer homology and an extra copy of M.[ft] that corresponds to the unique 
reducible solution that has been removed in the computation of the non- 
equivariant Floer homology. 

Recall that we have the explicit description of the boundary operator 
in the equivariant Floer complex, as analyzed in Section 5, Proposition 5.3, 
which gives the formula (72), 

nn®ia ^ -nabn
n®ib 

nn®rja   f->   (nabn
n ® 7ib) e {macn

n <g> lc) 
e(-on-1 ® ia) 

with the extra components in the case of the generator 0. 

7.1. Comparison with the non-equivariant Floer Homology. 

Now we can define a chain homomorphism that maps the equivariant to the 
non-equivariant complex. 

Let us first work in the case with no reducible solution (i.e. with ^(Y) > 
0). In this case for each Oa that appears in the equivariant complex we have 
a generator Ma that appears in the non-equivariant complex (coefficients in 
R). 

Now we define the chain map 

ik:Ck>u(1)(X)^Ck(Y)t 

so that it satisfies dkik — ^fc-i-Ofe- Let i^ act on the generators as follows 

(123) ik:     0    %,(i)(0o)-»-    Y,    Ma' 
lJ>{a)+j=k iJ,(Oa)=k 

^(On®la) = 0, 

for all values of n and /i(0a)> 

ik(l ® ria) = a, 

if /i(Oa) = fc, and in all other cases 

ik(nn®Va) = 0. 

This means that the map ik kills all the generators in degree k that are 
not the generator of the equivariant homology of some orbit Oa of degree k. 

With this definition it is clear that i* is a chain map. Thus it defines a 
sub-complex of C^u^i^Y) given by Q* = Ker (i*) with the restriction of the 
boundary operator D. 
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Theorem 7.1. If there are no reducible solutions (i.e., ^(Y) > 0) the map 
i* defined in (123) induces an isomorphism in cohomology, 

HF^(l){Y) = HF^w{Y). 

Proof. The complexes C^JJ^, Qk, and Ck all have a filtration by index. For 
Ck,u(i) the filtration is given by 

(124) CktUW(n)= 0 fi^djCOa). 
lJ>(Oa)+j=k,lJL(Oa)<n 

The complex Q* is written as 

(125) Qk=     0    njm)(oa). 
fJ'(0')+3=k,j>l 

It has a filtration by index of the form 

(126) Qk(n)= 0 <V(i)(Oa). 

On the other hand also the non-equivariant complex has a filtration by 
index of the form 

(127) Ck(n)=     0    Ra. 
fj,(a)=k<n 

Thus we can look at the spectral sequences associated to the filtrations 
and prove that i induces a map of spectral sequences and an isomorphism of 
the E^-terms of the spectral sequences associated to the filtration of C#jj/(i) 
and of C*. Thus we get the resulting isomorphism of the E00 terms, i.e. of 
the homology of C^uii) aild of C*- 

Lemma 7.2. Let Eu^, EQ, and E be the spectral sequences associated to 
the filtration of the complexes CJJ^, Q and C respectively. The chain map i* 
induces a map of spectral sequences. Moreover, in the case whenb1(Y) > 0 
the map i* induces an isomorphism of the E1-terms 
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Proof. Consider the filtration of C*^^). The E^ terms of the spectral 
sequence are given by 

EkUU{l) = Ck+l,U(\){k)lCk+l,U{l){k - l)' 

Prom (124) we get 

Ekim)=  © nwi)(Oa), 
tl(Oa)=k 

and the differentials E^ y,^ —> E®^ JJ,^ are just given by the differential 

of the equivariant complex on each fixed orbit Oa. Thus the £,1-term of this 
spectral sequence is given by 

Ekl,U(l) = Hk+i(Ek*,u(i))> 

Ekl,U(l) =      0     Hk+l,U(l)(Oa)> 
^{Oa)=k 

But since the Oa are irreducible orbits, with a free U(l) action, the equiv- 
ariant homology is concentrated in degree zero, 

^o,^(i) =    ©    Ma' 
fi(Oa)=k 

Ekl,u{i) = 0 

for I ^ 0. 
Now let us consider the filtration of the non-equivariant complex C*. 

Prom (127) we get 
E0

k0=    ©    Ma 
V(Oa)=k 

and EM = 0 for I ^ 0. Thus in this case the only terms that survive in the 
E1 is in degree I = 0 and is 

^o=    ©    Ha- 
fi(Oa)=k 

D 

Thus the map i* induces an isomorphism on the i^-terms of the two 
spectral sequences, hence on the i^-terms, namely on the homology 

H*(Cmi)(Y),Dk) * H*(Ck(Y),dk). 
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This completes the proof of Theorem 7.1. D 

Now let us consider the case when the manifold Y is a rational homology 
sphere. In this case there are also terms in the equivariant complex that 
come from the reducible solution 8 = [^, 0]. We assume that 9 has index 
zero, /i(0) = 0. 

Theorem 7.3. Let Y be a rational homology sphere. Then there is an exact 
sequence 

• ■ ■ -► Bkmi)(0) -► HF™(1){Y) A HF£W{Y) A Hk_w{1){e) ■... 

In the equivariant complex in degree k we have an extra generator f2fc®0. 
The boundary maps that come from the equivariant complex associated to 
the degenerate orbit u with the trivial action of 17(1) are trivial: in fact the 
equivariant homology of a point is 

H^U{1)(8) = M[0] = H*(BU(1),R). 

However, there are non-trivial boundary maps that hit the generators fin(g>0. 
These can be described as follows. Suppose Oa is the orbit of an irreducible 
solution with index /i(Oa) = 1. Then we have a moduli space M(Oaj 6) that 
is 1-dimensional and that fibers over 0 with a 1-dimensional fiber. Thus the 
pullback-pushforward map acts as 

% ^ (e^)*(e+)*7/0 = maQ, 

where mae is the integration along the 1-dimensional fiber of the 1-form 
(ea )*r7a- Th^ gives rise to a component of the boundary map of the form 

1® r)a i-> mael® 6. 

Moreover, there is a non-trivial boundary map that comes from the moduli 
spaces that connect the reducible to generators with the orbits with /i(Oa) = 
-2. 

Now the map ik is defined as before with the additional condition that 
it kills the extra generator Ofc ® 6. 

Lemma 7.4. Let Y be a homology sphere. Then the homology of the com- 
plex Q* is just the equivariant homology of the point 6, 
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Proof. The complex Q* contains the extra generator VLk ® 6 in degree k and 
this generator appears in all levels of the filtration Qk(n) for any n > 0, 
since 6 is of degree zero. 

Thus if we look at the spectral sequence associated to the filtration of 
the complex Q* we find 

E0ki,Q = Qk+i(k)/Qk+i(k - 1), 

that is, for k > 0 and I > 0, 

Ekia =      (B     ^z+i,£/(i)(06). 
lj,(Ob)=k-l 

This complex is clearly acyclic because the differentials are just the equiv- 
ariant differentials for each orbit and no generator survives in homology 
because we are counting only I + 1 > 1, hence the terms 1 ® % are sup- 
pressed (in fact they are not in Ker (i*)). On the other hand for k = 0 we 
get 

with trivial differentials, so that the £J1-terms are 

Ekl,Q = Hk+i,u(i)(0)' 

This means that the homology of the complex Q* is actually H^^j^{9) — 
E[Q]. ' □ 

Thus if we consider the long exact sequence induced by the short se- 
quence 

0 -> Qk -> Cfc,[/(i) 4 Ck -> 0 

we have 

• • • -> iikm) (9) -»Ff)gr(1)(y) A i7F^(y) ^ • • • 

This proves Theorem 7.3. □ 

Remark. Notice that, in the case where the spectral flow SFc(dut) is 
zero, we obtain an isomorphism HFtW(Y,s,gQ) = HF^w(Y^s)gi) by the 
five-lemma applied to the exact sequence relating equivariant and non- 
equivariant Floer homologies. 

The connecting homomorphism A in the above long exact sequences is 
particularly interesting. 
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Proposition 7.5. Suppose given a representative Y^axaa ^n -^-^ih+iO^)- 
We assume that Y is a homology sphere. Then the connecting homomor- 
phism in the long exact sequence is 

?sw 

where 

(128) 

A,: HF$&1^H2kmi){0) = Mlk, 

A*. ( ^2 Xad J = ^2 Xamacmce • • • ma>ana0ttk ® 9. 

Here the sum is understood over all the repeated indices, that is over all 
critical points with indices /x(Oa) = 2k + 1, /i(Oc) = 2fc — 1, fJ>(Oai) = 3; 

Proof. The map is defined by the standard diagram chase and by adding 
boundary terms in order to find a representative of the form (128), as illus- 
trated in the following diagram. Sums over repeated indices are understood. 

0 -*- Q2k+1 

0-^Q2k 

a 2AH-1,[/(1) 

T 

• C2k,U(l) 

Ak(Xa a) 

-\Xa a 

'C2k 

H xamac 1 ® lc 

For a cycle Ea:/x(Oa)=2fc+i x*a we have Ea:M(a)=2fc+i x^ab = 0 for any b 
with ji{Ob) = 2k. The element Ylaxaa kas a preimage E^al ® Va under 
*2fc+i-  The image of this element under the equivariant boundary is given 

by 
^ xaD(l <g> r/a) = ^T xanabl <g) % + ^ xamacl ® lc, 
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where the first term is zero due to our assumption on Y, xaa- The element 
Ak{xaa) is unchanged if we add to X>al ® % an element in the kernel of 
t2fc+i. Adding the element ^a.c Xamacn ® r)c, which is in the kernel of *, we 
get the following diagram 

0 -*" Q2k+l 

Q2k 

->C« 2fc+l,C/(l) 

Xa 1 ® r/o 
+^a^ac O ® ^c 

T 

-*■ C2k+1 ■>0 

■ a 2ib,t/(l) 

Afe(a:a a)- H Xamacmce Q, ® le 

- n^a a 

-^G 2A; 

where we have 

JD(a;al ® ^ + xamacQ, ® rye) = a;ama lc+ 

Xamac(-l ® 1c + nedft ® 7?d + mCefi ® le) = av™acraCeft ® lc 

with sums over repeated indices. The last equality follows from the identities 
X) ^acncd + na6m6d = 0 and £ xanabmbd = 0. We can iterate the procedure. 
In the following step we add a term X) ^a^ac^ce^2 ® % to the preimage 
of ^ xaa. The corresponding image under the boundary of the equivariant 
complex isJ^Xamacmcemeg^^lg, where fi(Oc)-ii(Oe) = n(Oe)-fj,{Og) = 
2. The procedure can be iterated until the reducible point 0 is hit. Con- 
tributions from other irreducible critical orbits Op with //(Op) - ^(6) = 0 
are killed in finitely many steps, iterating the same procedure, since the 
complex is finitely generated and they eventually hit the lowest index criti- 
cal points. Thus, the resulting image under the connecting homomorphism 
Afc(£a:Ma=2fc+l X"a) iS given ^ 

y^ xamacmce ' • • rnaiamae^l . 

a 
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As in the case of instanton Floer theory [62], one expects Ker(Afc) = 
Imfok+i) to be the part of the Floer homology where the relative invariants 
of four-manifolds with boundary live. 

7.2. Wall-crossing formula: the algebraic picture. 

In this section, we will apply the equivariant Seiberg-Witten-Floer homology 
theory to study the dependence of the metric for the Casson-type invariant 
[12], [13] of a rational homology sphere. In order to define the Casson- 
type invariant, we choose a metric whose ordinary Dirac operator has trivial 
kernel. The metrics whose ordinary Dirac operator has non-trivial kernel 
form a chamber structure as proven in Theorem 2.7 and Theorem 2.8. The 
usual cobordism argument can be adopted to prove that the Casson-type 
invariant is constant in each chamber. The aim of this section is to get a 
wall-crossing formula for a path of metrics and perturbations that crosses 
the wall. 

Denote by A,sw(Y,g, u) the Casson-type invariant for the metric and 
perturbation (g,^): ^sw(Y, 9<>v) is the Euler characteristic of the non- 
equivariant Seiberg-Witten-Floer homology. Recall that this Floer homology 
[13] is defined by removing the reducible critical point, the trivial solution 
9 = [i/,0]. We have 

(129) \sw(Y,g,v) = J](-l)fcdimifF^(y,5,z/). 
k 

In this Section 7.2 we derive the wall crossing formula under the following 
assumption. Fix metrics and perturbations (gcb^o)) (gi^i) in two different 
chambers, with the property that there exists an open set of paths (gt,Vt) 
connecting (go^o) to (51,^1) such that (gt,vt) hits a co-dimension one wall 
only once, transversely. 

This situation is certainly verified if the two points (go^o) and (51,1/1) 
are close enough points on either side of a wall Wi, in the notation of Theo- 
rem 2.8, that is, a wall of metrics and perturbations satisfying Ker (9£) = C. 
We also assume that, along the path (gt^t) we have SF{df,tt) = 2, that is, 
that we have //(0o) — M(^I) — -2 in the notation used in Section 6, which 
determines a global grade shift between the equivariant Floer complexes for 
(50,^0) and for (51,1/1). 

Using the topological invariance of the equivariant Seiberg-Witten-Floer 
homology, we obtain the following isomorphism: 
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In fact, the necessary degree shift is computed as follows: if we set /x(#o) = 0) 
hence /i(#i) = —2, and the map / has degree zero, we obtain that the 
generators fin (g) 1^0 and fi71"**1 0-1^ have the same degree. 

First of all, we express the Casson-type invariant (129) in terms of some 
alternating sum of the equivariant Seiberg-Witten-Floer homology groups. 
We consider the Casson-type invariant for metric an perturbation (^Qj^o)- 
The exact sequences given in Theorem 7.3, relating the equivariant to the 
non-equivariant Seiberg-Witten-Floer homology, and the fact that we have 
H*,U{1){6) — K[fi] give us the following result. 

Proposition 7.6.     (1) For k <0, 

HF^w(Y,g0^o) = HF^frgotUo). 

(2) For k >0, we have the following exact sequences 

"»• HF2
s

k
w

uw(Y,go,vo) -»■ HFik
w(Y,go,vo) -»• 0. 

r/i^5 tte dimensions are related by 

dimHFik
w - dimtfif^ = dimHJFgj;(1) - dimHF™^ - 1. 

This gives the wall-crossing formula for the Casson-type invariant. 

Theorem 7.7. Suppose given two metrics and perturbations (go, UQ) and 
(flljZ'i) ^n two different chambers and a generic path (gt,vt) that connects 
them and that crosses the wall W once. Assume that the crossing happens 
at a generic point of W, so that the relative Morse index with respect to the 
reducible solution decreases by 2 across the wall, i.e., that we have //(0o) — 
fjb(0i) = 2. Then the Casson-type invariant changes by 

Asw(F,#i,z/i) = \sw(Y,9o,i/o) - 1- 

Proof. We can assume that we are in one of the following two cases for the 
non-equivariant Floer homology group. 

Case 1. There exists an integer N such that HFpW(Y}goii/Q) = 0 for all 
p>2NbntHFi^_1(Y,go,uo)^0. 
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Case 2     Here exists an integer JV such that HF^fY an v \      n f      „ 
P > 2iV + 1 but HF^tY, go, ^0) ^o P ^  o) = 0 ** a11 

^zr^:::i:zi^-0^
otWise tiie -^^^ ^ 

by ProposLn 7.6  TCS from h! ^T^ ^ ^^ ^UPS 

we get e' fr0m the exact sequences in Proposition 7.6, 

•HF$%i)(Y,9o,i*) = l0 P>™, Pi* odd 
{ mm p = 2m>2N. 

_   dim^^2(F,5o,,o) - <limHF™_i(Y>90)„Q) 

= T7Z-2'm(Y,9o,Uo)" dhaHF^-m^^o) -1 
-   d™»FiZmi)(Y,9o,»o) - ^HFSZW){Y^VQ) _ 1 

^HF^{Y,gQ,Vo)^dimHFsW{YigQVQ) 

•For'<0'^^^,o) = i7^1)(r,5o,,o). 

^(y)5o^o)  = Efc(-i)fcdimiyifW(r)PO)J/o) 

=   ^<iv(dim^F2^(1)(y)50)I,o) 

-dim^if^(i)(r)50)l/o))_^ 

FVom the isomorphism HF*%   (y j ^ 
have *,£/(i)\  'yi>  i;      '"^-^(ijl^o^o), we 

^^1)^51,^) = ( 0 ^ > 2iV + 2, p is odd 

type invariant tor metric and perturbation 
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(fl,i)i/i) can be rewritten as 

=   Ek<N+MiraHF2
s

k
w

u{1)(Y,gl,u1) 

-dunHFg^^gu^)) -(N + l) 

=   ^sw(Y,go,uo) - 1 

For case 2, similarly, we have 

cw   , f 0 p>2N, pis odd 
P'  [) { Mtt™ p = 2m>2N + 2 

dimHFi^(Y,go, m) = dimHF^U{1)(Y,go, VQ) - 1 

dimHF$w_2(Y, go, VQ) - dimHFf^Y, go, VQ) 

=   dimHF^_2im(Y,go,u0) - dimFif^^y,^,^) - 1 

dimHF$w_A(Y,go, VQ) - dimHF$w_3(Y,go, VQ) 

=   dimHF^_mi)(Y,go,uo) - ^mHF^^Y^uo) - 1 

dimHF0
SW(Y,go,vo) - d\mHF?w(Y,go,vo) 

=   dimHF^il)(Y,go,uo)-dimHF1
s^1)(Y,go,uo) - 1 

. For k < 0, HFiw{Y,go,vo) = HF^{1)(Y,go,uo). 

Then the Casson-type invariant for (50,^0) is 

)<Sw(Y,go,vo)   =   ^k(-l)kdimHFiw(Y,go^o) 

-dimHFi^ltUil)(Y,go,^o))-N 

+ dimHF$Wu{1)(Y,go,vo)-l. 

From the isomorphism HF^^gu^) = HF^U(1)(Y,go,vo), we 
know that 

HFW   (Yn   u)      1° P>2N + 2, pisodd 
P' K ' I   mnm p = 2m>2N + 2. 
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If we apply the above isomorphisms to the exact sequences in Propo- 
sition 7.6 again, we can see that the Casson-type invariant for metric and 
perturbation (51,^1) is 

^sw(Y,gi,vi) 

- Efc(-l)fcdimFF^(y^1,z,1) 

- E^N+M^HF^^g^) - dimHF^lu{1)(Y}g1^1)) 

-(N + 1) + dimFF2^2.u{1)(Y,gu 1^) - 1 

=   \sw(Y,go,i/Q)-l 

Thus, we have proven the wall-crossing formula: 

*sw(Y,gui>i) = \sw(Y, go.uo) - 1. 

□ 
Now we are interested in generalizing the argument of Theorem 7.7 to 

the case of a path (gt, vt) that crosses the wall structure W at a point which 
lies in a stratum Wn of higher codimension. 

If we know that a stratum Wn of metrics and perturbations satisfying 
Ker (5^) = Cn is obtained as the transverse intersection of n strata Wj1 fl 
• • • fl W^, where every Wj* consists of metrics with Ker (8%) = C, then a 
path (#£, ut) that crosses W at a point in Wn can be deformed to a path that 
crosses each >V|fc once transversely. In this case, the wall crossing formula 
simply follows by applying repeatedly Theorem 7.7. However, we do not 
really need the assumption on the structure of W near a stratum of higher 
codimension. In fact, it is enough to know that the complex spectral flow 
SFc(dul) = ^SFffil) is equal to ±n along the path (gt^t) that crosses a 
point on Wn. In that case, we can follow the same argument in the proof of 
Theorem 7.7, but starting with a grade shift of 2n between the equivariant 
Floer complexes for (go^o) and (#1,^1). We obtain the following result. 

Proposition 7.8. Let (50^0) and (giy^i) be two metrics and perturbations 
in two different chambers. Suppose given a path (gt^t) joining them that 
crosses the wall W once transversely at a point of a stratum Wn of codimen- 
sion 2n — 1. The relative Morse index with respect to the reducible solution 
decreases by 2n across the wall, that is, that we have /i(0o) — M(^I) — 2n. 
Then the Casson-type invariant changes by 

^sw{Y,gi,vi) = Asjy(Y,#o,^o) -n. 
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Since the argument of Theorem 7.7 depends only on the counting of the 
grade shift between the Floer complexes for (go? ^o) aiicl (gi, z/i) given by the 
spectral flow SFipll) r together with the proof of topological invariance of 
the equivariant Floer homology (up to this grade shift), we can formulate 
the result under these more general hypothesis. 

Proposition 7.9. Let (poj^o) and (di^i) be two metrics and perturbations 
in two different chambers. Suppose given a path (gt,vt) joining them that 
crosses the wall W transversely in finitely many points. Then the Casson 
invariant changes by 

(130) \sw{Y,gi,vi) = \sw{Y,gQ,vQ) - SFc(d*), 

where SFcffil) — \SF(dlX) ^ ^e complex spectral flow of the Dirac oper- 
ator along the path of reducible solutions [vt, 0]. 

Proof. If the spectral flow along the path (gt^t) is given by SFffil), the 
topological invariance of the equivariant Floer homology gives 

ffF®i)(r>0o,^o) = #^^ 

We can then follow the steps of the proof of Theorem 7.7 and compare the 
ranks of the Floer groups and the counting of the Euler characteristic. This 
can be done by induction on \SF{dttt)\^ The result is the formula (130).   □ 

The wall crossing formula in the case of J-invariant perturbations con- 
structed by W. Chen [14] can also be derived with the same method. This 
gives rise to the following wall crossing result. 

Corollary 7.10. Consider the invariant Xsw(Yi9i f) where f is the J- 
invariant perturbation of [14] Prop. 2.6. 

Given two metrics and perturbations (<7o>/o) and (<7i>/i) in two differ- 
ent chambers and a generic path (gt,ft) that crosses the wall once with 
Ker(<9?) = EL The relative Morse index with respect to the reducible so- 
lution decreases by 4 across the wall, namely, we have ^(OQ) — M(^I) — 4. 
Then the 

Casson-type invariant changes by 
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Proof. Again the main issue is the change of grading of the equivariant Floer 
homology induced by the spectral flow of the Dirac operator along the path 
(gtift)- This time, since we are using J-invariant perturbations, the Dirac 
operator 5? is quaternion linear, hence, for the chosen path the spectral flow 
satisfies SF(dft) = 4. This implies that there is a degree shift 

HF^{1)(Y,goJo) = HFfZfrm(X,9iJi). 

By applying the previous Proposition 7.9, we obtain the result. □ 

7.3. Wall-crossing formula: the geometric picture. 

In this section we re-derive, in a more geometric way, the wall crossing 
formula for a homology three-sphere Y that we proved algebraically in the 
previous section. We analyze the local structure of the parameterized moduli 
space. A geometric proof of the wall-crossing formula has been also worked 
out by [35]. 

Let .M*((7, v) denote the irreducible part of the moduli space M. for the 
metric and perturbation (5, v). Given a family of metrics and perturbation 
(gtjVt) with (t £ [—1,1]), the moduli spaces M*(g-i,i'-i) and M*(gi,iyi) 
are cobordant as long as the path (gt, vt) does not cross the wall, that is the 
co-dimension one subspace W in the space of metrics and perturbations 

W = {(9,v)\Ker (dD^O}. 

Suppose the path (g*, i/t) crosses the wall W just once at t = 0. Generi- 
cally, Ker (8%%) = C. We want to analyze the local structure of the parame- 
terized moduli space 

M = {M(guVt)x{t}\te[-lA}} 

at the reducible point #0 = (#0,0), where 0o = N),0] is the class of the 
reducible solution of (15) with the metric and perturbation (go^o)- There 
is a family of reducibles fit in M. Let M* be the irreducible set in Al, U 
be a sufficiently small neighborhood of QQ in M, and U* be the irreducible 
part oiU. 

We construct a bundle over neighborhood of $0 in A x [—1,1], together 
with a section q such that 

w* = (r1^) - {(<M)})/a- 
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Lemma 7.11.     (1)  The slice of the Q/U(l)-action at a point (AQ^O) is 
V(j4oi0) = Ker(d*)xri2(S), 

(2) The slice of the Q/U(l)-action at a point (A^ip) is 

V(A,ip) = {(QO^)!^*^) ~ 2ilm((f),ip)is a constant function on Y.} 

(3) For (A,ip) close to (^4OJO) there is an isomorphism 

Proof. Properties (1) and (2) follow by direct computation. For (3), choose 
(a,</>) in V(A^ and define A(^)(a,(/>) to be 

(a - 2df (ai^), ^(a,^)^ + 0) 

where ^(a,^) is the unique solution of the following equations: 

r 2<rdf(affl - d*a 

/ ^)dv = 0 

Direct computation shows that \A,IP) is an isomorphism. D 

The above Lemma shows that we obtain a locally trivial vector bundle 
V over the space of connections and sections A endowed with a £/(l)-action. 

Define the section <; 

<;:Ax [-1,1] -> F 

to be 

<;(A^,t) = \(A,i,)(*gt(FA - dvt) - (r(il>,r/>),dA4>)- 

Near 0o> we know that U = ^~1(0)/^. Therefore, the local structure of 
U* at OQ is given by the Kuranishi model of <;~l(0)/G at 0o- 

Suppose (At,ipt) is an element in U*. Consider a formal expansion at tfo 
of the form 

At = ut + tax + t2a2 H , 

fa = tipi +12V>2 + • • • . 
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The section £ is approximated by 

*<7o d(ut + tai + t2a2 H ) - tgodvt 

- <T(tll)i + t21p2 + ' • •' , tyi + t21p2 + •■•)> 

^(#1 + t27p2 + '••) + (*«1 + *2tt2 + •••)• (t^l + *2V>2 + •••)» 

where we are perturbing in a neighborhood of the wall W just by changing 
the perturbation and fixing the metric go. 

The zero set of the section therefore determines the conditions *dai = 0 
and d*ai = 0, which imply ai = 0 on a homology sphere. Moreover, we 
have d*Q>2 = 0 and 

*da2 = a(^i,^i). 

On the kernel of d* the operator *d is invertible, hence we have 

012 = (*d)~1cr('01,'0l)- 

The Kuranishi model near i9o is given by a t/(l)-equivariant map 

S : R x Ker (0%) -> CoKer (ag), 

where U(l) acts on Ker (flgg) ^ CoKer (^) = C by the natural multiplica- 
tion on C. 

There exists a sufficiently small S > 0 such that, for t G [—5, (5], we have 
that 8$% has exactly one small eigenvalue X(t) with eigenvector ^ and with 
A(0) = 0, that is 

This implies that, if A^O) > 0, then the spectral flow of d^t for (t E 
[-1,1]) is 1 and, if A^O) < 0, the spectral flow of d% for (t G [-1,1]) is -1. 

The map S is given by 

S : R x C -> C, 

Here we assume that 0 is a spinor in Ker (5^) with ||</>||  =  1, so that 
Ker (dv®) = C0. Consider the expression 

{d%<i>,<f>) = z(t). 

Notice that we have ^(O) = A^O), in fact, we write formally X(t) ~ tA^O), 
(f>t ~ (t> + t(j)i and the Dirac operator d^ ~ d^ +tC, where ut ~ uo + tui and 
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C acts as Clifford multiplication by vi. We can write the first order term in 
the relation dj^cfrt = ^(t)4>t as 

*(^J^i^>+*(C,^^>=tA,(0) + A(0). 

Here the term (S^J^i, </)) = (0i, d^cf)) vanishes, and also A(0) = 0. Thus, we 
have the relation 

(C<t>,<P) = \'(0). 

On the other hand, we have 

(C4>,<t>) = z'(o) 

from the expansion of d^cj) — z{t)(j). 
Thus the map S can be rewritten as 

Sit, wcj)) = z(t)w<f> + t2(a2(f)i <f>)w.</> + 0(ts) 

= wcl> (z(t) + t2r2((*drl<j(<f>, (/>), a(0, ((>))) + 0(t3). 

Here we use the fact that the first order term of the Dirac equation gives 
dvQipi = 0, therefore ipi = reie<J) and cr^i^i)■= r2cr(</>, </>). 

The term 
'Y(Y,go,vo) = ((*d)~1a-(^,(/)),(j(0,^)) 

is a constant that only depends on the manifold and on #o- An inductive 
argument shows that, if 7(1^,^0,^0) vanishes, then all the forms a; in the 
formal expansion of At must also vanish identically.  Thus, we can assume 

that 7(y,po,^0) 7^ 0- 
Notice that we have 

R x (Ker (0%) - {0})/J7(l) = R x M+. 

The irreducible part of <;~1(0)/^ is tangent to {0} x R+ as t approaches 0, 
as we see in the following. 

The difference A between the Casson-type invariant at t = ±5 can be 
evaluated by counting the number (with sign) of oriented lines in <;~1(0)/Q, 
with t £ [-S,S], that are tangent to {0} x M4" x {0}. Here we identify U* 
with the set (<S_1(0) — {w = 0})/Z7(l). The sign of the wall crossing term 
is determined by the section <S, as follows. The zero set (<S~1(0) — {w = 
0})/C/(l) is given by the condition 

t-  
A
'
(O

> 
r2lf{Y,go,v0)' 
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Thus, we have one line in W which is counted with the orientation deter- 
mined by the sign of —7(Y,go>^o) and the spectral flow. Suppose that we 
have A^O) > 0, then the spectral flow is SFcid^l) = 1 on the path t E [— 1,1]. 
If we have 7(Y, go, I/Q) > 0, then there is a unique irreducible solution, which 
contributes a +1 to the invariant, that flows into the reducible as t —> 0, with 
t < 0. If we have 7(7", go, vo) < 0, then a unique irreducible that contributes 
a —1 to the invariant approaches the reducible as t —> 0, t > 0. This gives 
the wall crossing term 

\(y,g1) = \(y,g-1)-SFc(.d*). 

This provides a geometric interpretation of the wall-crossing formula that 
we derived algebraically in the previous section from the exact sequences. 

Remark. With the metric dependence of X(Y,s,g) understood, we can 
modify this quantity by introducing a correction term as follows. Choose 
any four manifold X with boundary Y, such that X is endowed with a 
cylindrical-end metric modeled on (Y^g). Choose a Spinc structure Sx on 
X, which over the end is the pullback of s on Y, and choose a connection A 
on (X, sx), which extends the unique reducible 0S on (Y, s). Then we set 

(131) £y(s,5) = InddD*) - ^(sx)2 - a(X)), 

where Indc(D^) is the complex index of the Dirac operator on (X, sx), 
twisted with the chosen Spinc connection A, and cr(X) is the signature of 
X. By the Atiyah-Patodi-Singer index theorem, £y(s,5) is independent of 
the choice of (X, sx) and A. Actually, £Y(S,(7) can be expressed as a com- 
bination of the Atiyah-Patodi-Singer eta invariants for the Dirac operator 
and signature operator on (Y, s). Prom the definition (131), we see that 

Ms^i^i) -Ms,<7-i, iz-i) = SFcid*), 

where {gt^t) is a family of metrics and imaginary-valued 1-forms on Y. 
Then the modified SW invariant 

X{Y,g)-^{B,g) 

is a topological invariant of (Y, s). In [43], we show that the averaged version 
of these modified Seiberg-Witten invariants agrees with the Casson-Walker 
invariant for any rational homology sphere. 
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