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Shannon Entropy/Information

@ bit memory storage unit = switch with two on/off positions =
digit O or 1

@ A set of switches with N = 2#A positions

@ possible states: write a number m = Z#A 1sk 2% in binary
notation s, € {0,1}

@ need #A = IogN bits to select one particular possible
conflguratlon

@ b =log N measured in log2 units is the bit number

e if have probability p; of an event j in aseti € {1,..., R} such
as a frequency of occurrence
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@ number of bits required to identify a particular configuration
« among all possible is log N

@ to select an « either select among all or first select which set
of N; elements it belongs to and then among these so
b; + log N; = log N hence b; = — log p;

@ Shannon information measure: the average of the b; with
respect to the probabilities p;

R
I(P) = pjlog p;
i=1

@ Shannon Entropy: S(P) = —Z(P) (“negative information”, in
fact positive S(P) > 0)

@ measure of knowledge of the observed about what event to
expect knowing P = (p;) (least knowledge at the uniform
distribution, most knowledge at the delta measures ;)

@ if the events i are dynamical microstates of a physical system
then it is the entropy in the thermodynamic sense
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Khinchin Axioms and Shannon Entropy Zg(p1, - - -, PR)

e Khinchin Axioms
@ continuous function of P = (p1,...,pr)
@ minimum at the uniform distribution (max for entropy):

1 1
Ir(=,...,=) <Zg(P
R(R7 ) R) — R( )
e EXtendab”ity: IR(pla cee 7PR) = IR+1(p17 -+ PR, 0)
Q extensivity (implies additivity on independent subsystems)

Z(P) = Z(P) + Z P Z(Ql1)

for a composite system P = (p;;) with p;j = Q(j|i) p} with
conditional probabilities Q(j|/) of j given i with conditional
information, which will then turn out to be equal to

Z(Qli) = Z Q(jl) log QUI/)

Note: case of independent subsystems p;; = p.p/ gives

J
Z(P) =Z(P)+Z(P")



Axiomatic characterization of the Shannon Entropy

e family of functionals Z = {Zg} satisfying Khinchin axioms agree
with the Shannon information up to a positive constant

I(P)=C- Zp,- log p;, for some C >0

@ at the uniform distribution: p; = Q(j|i) p} with pjj = 1/N and
N =R rwith p; =1/R and Q(j|/) = 1/r obtain for
f(R) :=Zgr(%,..., %) a function with f(Rr) = f(R) + f(r)
and continuous

f(R)=—C -log(R) forsome C € R*

@ also have f(R) > f(R + 1) by second and third axioms, so
c>0

@ then from uniform to non-uniform: take p; and Q(jli) still
uniform but p} arbitrary f(N) =Z(P') + >, pi f(N;)

I(P) = - pr-(f(N;) — f(N)) = CZP? log p}
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Rényi Entropy

e weaken the requirement of extensivity (non-extensive entropies)
and replace only with additivity on statistically independent
subsystems

pij = pip; = Z(P)=ZI(P") +I(P")

e then other solutions (not proportional to Shannon entropy):
Rényi information

1 R
Zs(P) = 51 Iog(z plﬂ)
i=1
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Shannon Entropy as limit of Rényi Entropy
@ Z3(P) defined for § € Ry with 3 # 1
@ limit when 8 — 1: expand ine =45 —1

prHe = Z pi exp(elog p;) ~ pr(l + elog p;)
i i i

=1+ec) pilogp

1

so limit of the Rényi Entropy

e—0

. 1
lim Zy.(P) = eli% - log(1+ EZ pi log pi)

1

= pilogp; = I(P)
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Kullback-Leibler Divergence (Relative Entropy)

@ given known probability distribution P = (p;) modified by
some process to a new Q = (g;) with g; >0

@ want to evaluate the information transfer of this process:
bi(P) — bi(Q) = log(pi/qi)

@ estimate the mean value (in the known distribution)

KL(P|Q) : Zp, log(pi/ i)

@ non-negative because

|0gx21—§ = E piloggzg pi( 1—— E pi— E g =0
. 1 .
1 1

@ minimum value at 0 for P = Q (again because
log x > 1 — x~! except at at x = 1 where equal)

e if uniform distribution g; = 1/R then K(P|Q) = Z(P) + log R



Properties of Rényi Entropy

e monotonically increasing function: Zg(P) < Zg/(P) when
B < B for any P (so upper and lower bounds for Shannon
entropy for 5 > 1 and 8 < 1)

@ check monotonicity:

0Zp(P) _
P; log
B (1- Z
where escort probabilities

P

e}
Zj P;j

Kullback—Leibler Divergence is non-negative so monotonicity

P; =
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@ also another estimate for 8 > 0 and 35’ > 0

1 11
) 2 L )

@ function x¢ convex for ¢ > 1 and concave for 0 < o < 1 so

(Zaj-’) 223}’, Vo >1
O an) <> a7, Wo<o<1

take a; :piﬂ and o = '/
(Zp?)ﬁ,/ﬁzzpiﬁ/ for /> p5>0

O Py e <N p! forp<p <0
e then taking 1/’ power (and then log)
P = (e
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@ monotonicity in § of

W(B) = (1= F)Ts = —log _p/
W( )<w(@) for ' >p
B

because p; > p, and —log ), p —log); p}Bl
@ also have concavity in 8
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Escort probabilities and statistical mechanics
o if write p; = exp(—b;) with Y, pi = 1 (see later box-counting)
@ then associated escort distribution

p;

> P,@
for 8 — oo largest p; dominates, for 5 — —oo smallest

@ analogy with statistical mechanics P; = exp(V — (8b;) with
V(3) = —log Z(3) with partition function

=2 ep(=Bb) =3 p;

@ Helmholtz free energy

F(B) = —; log Z(5) = ;ww)

o directly related to Rényi information

Zs(P) |0gZP, = —f‘u(ﬁ)

P; =
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Entropy and Thermodynamics
@ probabilities p; of microstates of a physical system
@ M; value at state / of a random variable M: expectation value

(M)p = Z Mi; pi

@ max-ent principle: look for p;'s that maximize entropy
@ “unbiased guess” in information theory: minimize information
@ generalized canonical distribution: p; such that

SZ(P) =) (1+logp;)ip; =0

]

with >~ M? ép; = 0 (all observables M) and >, 0p; =0
e multiply these constraints by an arbitrary factor 5, (Lagrange
multipliers)

1

> (logpi — W+ BM7)opi =0
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@ interpret then as probabilities

P; = exp(V — Z BeM7)

by imposing normalization condition >, P; =1
@ normalization condition gives

V= —logZ(B) for Z(5)=3 exp(~)_ M)

e Example: Gibbs distribution mean energy M = E = (E;) of a
system in thermodynamic equilibrium
1

Pi = exp(B(F — E;)) with  F = g“’(ﬁ)

Helmholtz free energy at inverse temperature 5 =1/T
Z(8) = exp(—BF) = > _ exp(~BE)
i

sum of microstates of the system with energies E;
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@ entropy in the thermodynamic sense for such a system is
S=B(E—-F)

@ Shannon entropy agrees with (expectation value of)
thermodynamic entropy

= PilogP; =Y "FEIB(F - E) = (S)
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Box-counting and Rényi entropy

o bounded set £ Cc RN, say E c [0, 1]V

o probability measure y on [0, 1]V with support on E
o divide [0, 1]V in boxes of equal size: cubes of side ¢
o

count number r of boxes that meet E in a subset of positive

J-measure
r<R~ e N

total number of boxes in [0, 1]V
e p; = pi(e€) probability assigned to the i-th box B;
pi = u(EN B;)

crowding index
log pi(e)
aj(e) = Iogle

e it is also function of x point where the box is centered a(x, €)
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@ pointwise dimension a(x) = lime_,0 a(x, €) if limit exists (local
scaling exponent)
@ in terms of “bits numbers’ p; = exp(—b;)

bi = —ai(c) log
o escort distribution
Pj = exp(V — Bb;)
W(B) = ~log > _ exp(~b;) = ~(8 — 1)Zs(P)

@ and partition function

=2 .p = Zexp(—ﬁb;)

Z5(P) = 5 ! IogZ( IogZp,
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Rényi (box-counting) dimensions

@ the partition function Z(3) for p; = pi(e) diverges for ¢ — 0

@ but it satisfies a power law with exponent that gives an
associated dimension

@ Rényi dimension

D(8) = tim 2P _ i 1 7 log Y P’

e—0 |Og€ e—0 |0g6 5

Z(B) ~esg €B1PB)
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Meaning of Rényi Dimensions
e at 3 =0 have Zp(P) = — log r(€) with r(e) = min number of
boxes of size € covering set E so D(0) is box-counting
dimension (with grid)

D(0) Iog r(e)
e—>0 |Og €

@ Shannon entropy dimension: at 5 = 1 limit of Rényi entropies
is Shannon entropy Sh(P) = —Z(P) = — ), pi log pi

d Sh(P,)
ba) _ell—rﬂ)log Zp, )log pi(e __ell% log e
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@ D(2) is called correlation dimension: it estimates effects of
propagation of errors in iterates of a chaotic dynamical
system; shown by Yorke, Grebogi, Ott that for certain classes
of chaotic dynamical systems average period length
~ A=DP@)/2 (where A is a measure of precision)

e limit § — oo of D() measures scaling properties of region of
E where measure i most concentrated

e limit 3 — —oo of D(f) regions where least concentrated

e Note: these Rényi dimensions D(3) = D, () depend also on the
measure u used to compute p; = u(E N B;) for the boxes B;
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Properties of Rényi Dimensions
@ positivity D(5) >0
e monotonicity D(5") < D(B) for 8’ > 3
@ other relation: for 3 > 3 and 83" >0
Br—1_ o B-1
——D(B) = ——D(p

@ limiting cases

D(B) < ﬁ‘ilD(oo) for B>1
D(B) > —2—D(—oc) for B<0
> 5

All of these properties follow from the corresponding properties of
the Rényi entropy

Matilde Marcolli Entropy and Information



Thermodynamic relations when box size € — 0
@ take V = —logeso V —
@ dynamically homogeneous system if for large V quantities like
entropy S or observables M? become proportional to V
@ especially so that for 3 fixed and V — oo ratios S/V or
M? [V remain finite

@ continuum limit: formally replace summations by integrals

V= —log /amax exp(—faV)y(a) da

@ density of states «y(«) da number of boxes with crowding
index between o and o + do

@ expect asymptotic scaling behavior () = e~ (@) for some
function f ()

o if y(a) ~ e f(®

V= —log /amax exp((f(a) — Ba)V) da

min
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e Saddle point approximation method

@ if integrand has only one maximum in interval then as
V' — oo integral concentrated near the maximum

@ in general: want to evaluate
7= /exp(F(x)V)dx

for V' — oo, with some smooth function F(x) with single max
at x = xp (e.g. F(x) = —(x—x0)?)
e with F/(xo) =0 and F"(xp) <0

T~ [ ea(Flx) + 5x~ x0)2F"(0)) V) s

- 1/2
= <VF2”(X0)> exp(F(xo)V)

@ so have —logZ ~ —F(xo)V



e Entropy Density
e take F(a) = f(a) — fa
@ b:= aV mean value of bit number ). b;jp; with
b,‘ = —Qj |Og6

with saddle point approximation
YV~ (fa—f(a))V=b-S

@ a mean crowding index is like a mean energy density so
V=0F=0E-S=paV -5

so function f(«) is entropy density

interpret f(a) as an estimate of the fractal dimension of a set
of boxes of average pointwise dimension «

e f(a) = spectrum of local dimensions (multifractal)
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e Legendre transform
e density 7(f)

@ by previous relation of W to Rényi entropy: function of Rényi
dimension

7(8) = (8—1) D(B)

@ Legedre transforms

. dv ds
S(b) =pb—W(B) with a8 = b, 75 _y
f(a) = fa—7(B) with Z; = q, % —

e convex differentiable function F(x) Legendre transform

F*(w) := sgp(wx — F(x))

Matilde Marcolli Entropy and Information



f(x)-wx tangent envelope

value of Legendre transform F*(w) is the negative of the
y-intercept of the tangent line to the graph of F that has slope w
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o take «(/3) to be the value a where fa — f(«) takes minimum
e from 7(8) = (8 — 1)D(3) and Legendre transform get

a(B) = D(8) + (8 - 1)D'(B)

f(e(B)) = D(B) + B(B —1)D'(B)
o for 3 =0 and 8 =1 this gives

f((0)) = D(0) = a(0) + D'(0)
with D(0) box-counting dimension
f(a(1)) = D(1) = (1)

entropy dimension
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Tsallis Entropy
@ Tsallis deformation of the Shannon entropy

1
Sq(P) = p—] (1—2137)
q i
@ g — 1 limit recovers the Shannon entropy

I|m Sq(P) = Zp, log pi

@ For Shannon entropy have

@ Tsallis entropy same property with respect to g-derivative

Sq(P) = — lim Dg Y _ pf

g-derivative
_ fgx) — f(x)
Dqf(x) = ax — x
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g-analogs and Tsallis entropy

o g-derivative Dgx" = 11:‘§'x"_1 = [n]gx"t
1—q"
[n]q - 1— q

g-analogs of the integers: limg_,1[n]qg = n
@ Tsallis entropy S4(P) is a g-analog of Shannon entropy

@ non-extensive thermodynamics: X, Y independent
P(X,Y) =P(X)P(Y)

Sq(X, Y) = 5q(X) + 54(Y) + (1 = q)54(X)Sq(Y)

lack of linearity over independent systems measured by 1 — g
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Tsallis deformation of KL divergence

@ one-parameter deformation of the Kullback—Leibler divergence

KL,(Pl|@) = - P ((gre-1).

@ recovers KL divergence in the limit o — 1

Pi
KLa(P||Q) a1 KL(P|Q) =) P; log(g)
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g-analogs and geometry of the Tsallis entropy
@ J.P. Vigneaux, Information theory with finite vector spaces,
arXiv:1807.05152

@ combinatorial meaning of the Shannon entropy: asymptotics
of multinomial coefficients

N
_ n
lim_log (kl,...,k/v> :_;Pibgpi (pi = ki/n)

n
2 <k1,...,kN>“:fl"'U/kVN_(U1+"'+UN)"

ki+---+ky=n

with (kl,..ri,k,\,) = kllnilk,\,l
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meaning of Shannon entropy and multinomial coefficients
@ sequence of length n with symbols in an alphabet
A ={z,...,zn} with probabilities P = (P;)
@ sequences generated by memoryless Bernoulli process with
probabilities P
e cardinality of set of sequences of a certain type in P (eg ratio
of zeros and ones)

<P(Z1)n, : ” , P(ZN)n> ~ exp(nS(P))

P(z;) is fraction of z; entries in length n string, P(zj)n = k;
number of z; entries in message
@ each with probability approximately

[1 P(2)""®) ~ exp(—nS(P))
zeA

@ Shannon’s principle: “it is possible for most purposes to treat
the long sequences as though there were just 2"° of them,
each with a probability 2="°"
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g-analog of multinomial coefficients

@ g-analog of the integers [n], = 11%‘2" —14q+---+q"t

e g-factorial [n]q! = [n]g[n — 1]g---[1]q
@ g-multinomial coefficients

n . [n]q! &
[ ki, ... ky L': [kilq! - [knlq! ;k":”

@ when g = p" some prime p these count points over field Fq

n

_ n—1 _
o= #E).| "] =
Fi,n variety of flags V1 C Vo C -+ C Viy = Fg with

dim V, = S, k;, flags of type k = (ki,. .., kn)
@ g-binomial coefficient

n n o )
[k]q::[k,n—k]q:#{vcm‘q, dimV = k}
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g-analog of Bernoulli generated sequences
@ statistical model where length n message is a flag of vector
spaces Vi C Vb C --- C Wy = IE‘Z with dim V, . V,_1 = k¢
e choice of a flag in Fg replaces “a configuration of n-particles”
o for configuration of particles total energy depends on type k
N
(E) = mean internal energy = Z F’E,-
i=1
with E; energy associated to spin state z; €

o foraflag Vi C Vo C--- C Viy = Fj energy

ZN: ko ZN: dim(Vi) 2

i=1 i=1

s|x

with dim Vj = Efle ki and E; satisfying identity (V;-energy)
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max-entropy principle

@ equations

N oy N
(E) :Z;E; and Zk, =n
i=1 i=1
do not determine uniquely k = (k1, ..., kn)

@ max-entropy: among all solutions k of the equations select
the one that corresponds to the largest number of
configurations of the system

@ here it means maximizing the g-deformed multinomial

coefficient
[ ’ }
ki,-kn |
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Limiting behavior of g-multinomial coefficients
@ Pochhammer symbol

n—1

(a;x)n = H(l —axk), (a3x)p=1

k=0

@ g-Gamma function [4(n+ 1) = [n],!

M) = (0 g ) (g 1) 5 9
g 5a Nwa? (g ;(q o),

@ g-multinomial coefficients

{ n } B Fg(n+1)
ki,..., kn q_ rq(kl—}—l)-”rq(k/\/-f-l)

@ quadratic Tsallis entropy Tsy(p1,...,pn) =1— vazl p?

N (K _
n _ (qfl.qfl)lqunszz(%l ,,,, fuy/2 [Ii=:(q (ki 1); g 1)
kl,...7k/\[ q ' o0 (q—("+1);q_1)oo
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binary Bernoulli process and g-analog (2 = {0,1})
@ binary string produced by a Bernoulli process (p,1 — p)
@ Y, sum of the first n outputs
@ probability of Y,, = k is (Z)pk(l — p)"~k (sequences with k
ones each with probablity p*(1 — p)"=*)
@ g-binomial formula

(x+y)g = (xty)(xtay) - (x+¢"1y) = [Z] gl2) yhxnk

@ get probability distribution

(5) ok
: q\2) y*x
Bing(k|n, x,y) := { n } ——
/ ki, (x+y)n
k

. q(:) o

Bing(k|n,0) := [ n } ——, forf=y/x>0
k q (=0:q)n

@ variable Y, with this distribution can be written as sum of n
independent variables X; taking values in {0,1} with

et X qul
probabilities ——-— and -
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vector space valued stochastic processes

@ Grassmannian Gr(k, n) of k-dim subspaces in Fy and
Gr(n) = Uk Gr(k, n) total Grassmannian

o fixed embeddings Fg — ]Fg+1 relate Gr(n) & Gr(n+1)

e V= {0} trivial vector space, V,+1 random variable with
values in Gr(n+1)
e for W € Gr(n) (not in Gr(n — 1)) dilation

Dil,1 (W) ={V € Gr(n+1)|W C V, V & Gr(n), dim V—dim W =1}
@ probability distribution
P(Vig1 = V|Va = W, Xp11 =0) = dv.w

_ XDil1(W) (V)
#Dil, 1 (W)

normalized characteristic function of set Dil, 1 (W)

P(Vopr = V|V = W, Xpq = 1)
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o from this distribution get for dim V = k
gk gk(k=1)/2

P(V,=V)= 7(—9; D
. N okgkk-1)2
P(dim V, = k) = [ P ]q 7(_0; o

e show inductively for V € Gr(n+1) and V ¢ FFg

P(Vn+1 = V) = Z P(V,,+1]V,,,X,,+1)P(Y = W)P(Xn+1 = 1)
WeGr(n)
9k_1q(k;1) 0q"

3 1
WeEGr(k—1,m),WCV #Dilp 1 (W) (=0:q)n 1+0q"

ghgl3)e
~ #Dil, (VN Fo)(—0;q)n

where last uses W C Visin V ﬂIFZ and same dim so
W=Vn IE‘g
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asymptotics
o fixed d and n — ¢

q_%(d_(%_k’gq 9))24’%(%_'0&7 H)Z(q_(d"'l); q_l)oo

(@75 g o070 )

@ and sum over all d > 0 of rhs equal to 1 (asymptotic
probability distribution)

@ analogous processes for multinomial case with alphabet
#A=N>2

@ Question: are there other combinatorial quantities
generalizing g-multinomial coefficients with asymptotics

P(V, € Gr(n—d,n)) ~

~ exp( Tsa(pla s ’pn)na + o(na))

for a # 1,27
@ Fontené-Ward generalized multinomial coefficients

e J.P. Vigneaux, A homological characterization of generalized
multinomial coefficients related to the entropic chain rule,
arXiv:2003.02021
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Summary of g-deformed information

(binary case 2 = {0,1})

Concept

Shannon case

q-case

Message at time n

Word w € {0,1}"

Vector subspace

(n-message) v C Fq”
Type Number of ones Dimension
Number of

n-messages of type k

()

i,

Probability of a
n-message of type k

grL—on*

grgh(k—1)/2
(=6;0)n
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What is the “field with one element”? (Manin, Soulé, etc.)
Finite geometries (g = pX, p prime)

#(A"(Fg)~ {0}) _q"—1
#Gm(Fq) g—1

#Gr(n, j)(Fq) = #{P/(Fq) C P"(Fq)}
B [n]q! _(n
a [lq![n —Jlq! <.j>q
[nlg! = [nlgln —1]g---[1]g, [0lg! =1

The origin of F{-geometry: Jacques Tits observed if take g =1

#P 1( q) = = [n]q

P"1(F;) := finite set of cardinality n

Gr(n,j)(F1) := set of subsets of cardinality j

Is there an algebraic geometry over 17?7
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Extensions [F1» (Kapranov-Smirnov)

Monoid {0} U p, (n-th roots of unity)

- Vector space over Fin: pointed set (V, v) with free action of p,
on V~ {v}

- Linear maps: permutations compatible with the action

Fin @5, Z := Z[t, t 1] /(t" — 1)
Counting of points: for geometries X over Z, reductions mod p
Ng(X) = #X(Fq), a=p"

Polynomially countable if Ng(X) = Px(q) polynomial in g.
Counting of “points over the field with one element and its

extensions”
Px(m+ 1) = #X(F1m)

General question: can reformulate combinatorial interpretation of
Shannon and Tsallis entropies in terms of F1-geometry?
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Shannon and Rényi Entropy and Functional Equation
e Rényi entropy Rg(P) = —Z3(P) = ﬁ log(D; plﬂ)
e limg_,; Rg(P) = S(P) = —Z(P) Shannon entropy

e Functional equation of Shannon entropy (extensivity)

HG) + (L= X)H(T7) = HOy) = (L= ) H(7=,) =0
e equivalently for ab=xand y =1 — a
S(ab) + (1 — ab)S(ail__aZ)) = S(a) + aS(b)
@ More general functional equation
HG) + (L= ) HEZ ) = HEy) = (1= )P H( =) =0

Gy.Maksa, The general solution of a functional equation
related to the mixed theory of information, Aequationes
Mathematicae, Vol. 22 (1981), 90-96

Matilde Marcolli Entropy and Information



Functional equations and polylogarithms over finite fields

e P. Elbaz-Vincent, H. Gangl, On poly(ana)logs. |. Compositio
Math. 130 (2002), no. 2, 161-210.

@ M.Kontsevich, The lé-logarithm, Appendix to previous paper,
Compos. Math. 130 (2002) N.2, 211- 214.

o P. Elbaz-Vincent, H. Gangl, Finite polylogarithms, their
multiple analogues and the Shannon entropy, Geometric
science of information, 277-285, Lecture Notes in Comp. Sci.,
9389, Springer, 2015.
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Finite Logarithm
o finite logarithm: finite field Fg, char p

p—1 4
(p) X"
k
k=1
compare with usual —log(1 —x) =>", -4 %
@ Kontsevich observed: the finite logarithm is a solution to the

general functional equation for 8 = p

b

1—3):0

Pa) ~ £0(b) + 202 + (1 - aPLP(;
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Functional equation

@ the functional equation
—b

H1-apLP(—D) =0

o)~ £ (b) + PLLC) + —

is a specialization to (00,0, 1, a, b) of the 5-terms relation

5
' % ) L3P er(xa, .. %, x6)),s

Z(—l)’é(xl, e Riy X5

i=1
a—cb—d
b,c,d) = —(3— _
Cr(a7 € ) afdb—c’ 5(37 b) <G d) (a d)(b C)
@ 5-terms relation is in fact equivalent to functional equation
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Cohomological interpretation of the functional equation

e function ¢ : F, x Fp, — Fp, zero if x4+ y = 0 and

pley) = (ot H( ) ifxcty £0

(where H satisfies functional equation, H(x) = H(1 — x) and
H(0) = 0) is a 2-cocycle

(b, c) —¢p(a+b,c)+p(a,b+c)—p(a,b) =0

@ to see use H(x) = H(1 — x) and set X = X+;+Z and
oy . .
Y = iz in functional equation

@ ¢ = dn coboundary if p(x,y) = —n(x + y) + n(x) + n(y)
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@  is homogeneous so if coboundary
p(Ax, Ay) = =An(x +y) + An(x) + An(y)

@ obtain additive morphism 5 (x) = n(Ax) — An(x), determined
by ¥(1)

@ check that satisfies 11, (1) = ¢\(x) and
Yau(1) = ¥a(p) + Au(1) so

Pam(1) = mA™ ey (1)

o [F} generated by a primitive root w with wP™l =1 and

0=11(1)=(p—1wPP,(1) = ¥,(1)=0

e this gives n(Ax) = An(x) then n additive map so dn =0 so
@ # 0 cannot be a coboundary

@ Kontsevich: solutions of general functional equation give
non-zero 2-cocycles in H*(Z/pZ,7./pZ) ~ 7./ pZ.

@ so functional equation has 1-dim space of solutions,
determines Egp) up to a constant factor
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Finite Polylogarithms

@ Finite polylogs:
p—1 4

L(P) L

Properties of Finite Polylogs
@ satisfy differential relation
dﬁg,p)(x) = L’Sfi)l d log(x)
and periodicity relation (Frobenius action x — xP)

555213—1 = i)

@ inversion relation
£ (x) = (-1)"xPLY(1/x)

o if the field Fy; contains m-th roots of 1 also relation
(duplication for m = 2)

E(P) — - 14; — CP p ((’x)
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Functional equations for Egp) for p >3

e for Egp) functional equation together with inversion and

duplication relation identify £{") uniquely

e functional equation for Egp) (3-term relation)
XPE(1 - %) R+ F1—x) =0
@ this equation has a space of solutions of dimension at least
1+ 272
i p(x) = x'(1 = x) (xP3 +(-1)"), i=0,...,(p—1)/3

give independent solutions
e additional equations for L’gp) (duplication)
2(1 4+ xP)F(x) +2(1 — xP)F(—x) — F(x*) =0
)

@ with functional equation above these characterize Cgp
constant factor
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Information Loss: categorical formulation (Baez—Fritz—Leinster)
@ revisiting Khinchin axioms characterizing Shannon entropy in
categorical terms
@ category FinProb of probabilities (X, P) and morphisms
f : X = Y measure preserving functions

Q= > P

xef~1(y)

@ information loss F : Morginpron — Ry
@ axioms of information loss
@ functoriality: F(f o g) = F(f) + F(g) on composable
morphisms
@ convex linearity: F(Af ® (1 — X)g) = F(f)+ (1 —N)F(g)
where \f @ (1 — \)g induced on (XU Y, AP @ (1 —N)Q)
© continuity. F(f) continuous function of f

Matilde Marcolli Entropy and Information



e If F satisfies axioms above then F(f) = c(S(P) — S(Q)) for
some ¢ > 0 and with S(P) = — ). p;log p; the Shannon
entropy

e first note that S(P) — S(Q) satisfies axioms: key fact
qf (i
S(P)—S(Q) =~ pilogpi+Y qilogg = pilog "
i j iex Pi
a conditional entropy

@ to show that any F with info-loss axioms is proportional to
S(P) — S(Q) use Faddeev reformulation of Khinchin axioms
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Faddeev formulation of Khinchin axioms
@ 7 mapping probability measures on finite sets to R satisfying

@ 7 invariant under bijections
@ 7 continuous
Q for P=(p1,...,pn)and 0 <t <1

I(tplv (1 - t)p17p27 .. 'apn) = I(p17 s 7pn) + p].I(tv 1- t)

@ then Z must be a constant non-negative multiple of the
Shannon entropy S(P)

@ key is equivalence between last condition and extensivity of
the Shannon entropy

S(P") = S(P)+ Z P:S(Q|i)  for P' = (P;Q(j|i))
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Baez-Fritz-Leinster information loss characterization

@ unique morphism 1p : (X, P) — ({x},1) in FinProb (losing
all information about (X, P) by collapsing it to a single point)

e lp=1gofforall f:(X,P)—(Y,Q)

o F(1p) = F(1Q) + F(f) so F(f) = F(1p) — F(1q)

e set Z(P) = F(1p) and show this entropy function is indeed
Shannon entropy by showing it satisfies Faddeev
characterization
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Characterization of Tsallis entropy (Baez-Fritz-Leinster)

o Tsallis information loss Fy : MorFinpron — Ry
@ axioms of information loss
@ functoriality. Fo(f o g) = Fo(f) + Fu(g) on composable

morphisms
@ convex linearity: Fo(Af @ (1 —X)g) = AF(F)+ (1 —X)*F(g)
where Af @ (1 — \)g induced on (X U Y AP (1-X2)Q)

© continuity. F(f) continuous function of f
@ then F,(f) = c(Tsa(P) — Tsa(Q)) Tsallis entropy

@ similar argument but replacing extensivilty property of
Shannon entropy with nonextensive version of Tsallis

e version of Faddeev characterization for Ts,(P)

Ia(tpl) (1 - t)PlaP27 s ')pn) = I(pla © 'aPn) + P?I(ta 1- t)
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Kullback—Leibler divergence and Fisher—Rao metric
o Kullback-Leibler divergence KL(P|Q) = >, pilog(pi/qi) is
not a metric
@ ...but up to first order approximation it defines a metric

KL(P|P + dP) = _ p;log( )

Pi
pi + dp;

@ expansion

Zp, og( =—Zpllog 1+6*)

p,+ €q;

pi Piy2 2
= - €— + = ile—)" + ole
> by QZP,( 22+ o(e?)
with >, gi = 0 (since p; + eq; probability) so first term

quadratic
@ Fisher-Rao information metric

2
ds? — Z dp;
S —_— —_
— Pi
1
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Properties of the Fisher—Rao metric
@ with change of coordinates X; = /p; with dX; = 2"’—","),
becomes Euclidean metric

ds® = dX?

but restricted to locus >, X? =", p; = 1, i.e. metric
induced by ambient Euclidean space on the unit sphere
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@ Hessian Riemannian metrics: with a convex potential ¢
8ij = 8,-8j $
o totally symmetric rank 3 tensor
Ajik = 0;0;0k ®

e Fisher-Rao metric tensor ds®> = >_; 8ij(P)dpidp; is Hessian of
the Shannon entropy

1 1
gi(P) = —,0i0;S(P) = ;0,0 ) pilog pi
k

as —0;S(P) = 1+ log p; and 9;(1 + log p;) = &; p; *
e if T stochastic matrix T >0and > ; T;j =1
T dp)? 2
Z( )i _ Zdﬁ
i Pi

pi

i i
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@ Levi-Civita connection (Christoffel symbols)

1
e = Egp“(aogm/ + Ov8uo — Ou8vo)

convention of summation over repeated indices for tensor
calculus

@ Riemannian curvature R?;,,
P — 14 4 P oA P A
R oy = a,urya - aVrp,o' + ru)\rua - rz/)\r,uU

@ for Hessian metrics

1
ik = 5000 ®

1
Riji = 2(5jikl — Sijkt)
1 0% 1, 0% 9%
Sikl = 57777 — 58 AAA
20;0;0k0; 27 0;0k0r 0;0,0s
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Conjugate connections manifolds
@ conjugate connections manifold (M, g, V,V*)

X(Y,Z) = (VxY,Z)+ (Y, Vi2)

for all X, Y, Z smooth vector fields and (,) pairing via g
e given (M, g, V) unique dual structure (M, g, V*) and

(V) =V
@ parallel transport along the dual connections preserves the
metric

<X7 Y>’y(0) = <|_|,Y(X), nj*(Y»’y(t)

o average V = 3(V + V*) is self dual hence it is the Levi-Civita
connection of g characterized by

X<Y,Z> - <?XY7 Z) + <Y7?XZ>
kg = (Va,0i,0)) + (9i,Va,0))

- 1
['Z. = Z Egkl(a,'g,'/ + 0jgi1 — 01gij)
i
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Statistical manifolds

e statistical manifold (M, g, A) with Amari—Chentsov tensor
AX,Y,Z)=(VxY —-VxY,Z)

A =T =T Ay = A(0:,8;,0¢) = (Vo,0; — V,9;, k)
o totally symmetric cubic tensor

useful fact: if a torsion-free affine connection V has constant
curvature x then its conjugate V* has same constant curvature s

RY(X,Y)Z = r(g(Y,Z2)X —g(X,2)Y)
RY(X,Y)Z :=VxVyZ —VyVxZ—VixyvZ
RY(0;,04)0 =Y Rf; 0

y4

(for details of proof: O.Calin, C.Udriste, Geometric Modeling in
Probability and Statistics, Springer, 2014 [Proposition 8.1.4]
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a-families and deformed connections
e statistical manifold (M, g, A)
o VL€ Levi-Civita connection of the metric g

@ one-parameter families of connections

(6%
=ik — 2Auk7 M =i + 5 Aij

@ gives a conjugate connections manifold
(M, g, V=2,V = (V%))

@ starting from conjugate connections manifold (M, g, V,V*):
a-deformations

1+a l—a_,
ik = 5 Fij + 5 ik

dual flat structures
e (M, g,A)is a-flat if V< is flat
@ R*=—R % soalso V™% (dual) flat
o a = *1: V-flat iff V*-flat



Kullback—Leibler divergence and thermodynamics
@ for probability distribution P, = % with partition function
Z(B) = Tr(e=#") and Spec(H) = {\,} Shannon entropy is
thermodynamic entropy

S= (1—6;5) log Z(3)
S==) PylogPy=> PnlogZ(B)+ B> Pnrn

with 3=, PaA, = 2 log Z(5)
o free energy F = —log Z([3)
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o Q= % with Z(8) = 3°, e #Hx partition function, and

P = given probability distribution
@ Gibbs free energy given by

Px
G(P) = —log Z(B) + Z Py log o
@ Kullback—Leibler divergence

KL(P|Q) = G(P) +log Z(5)

@ free energy is minimization of Gibbs energy over configuration
space: since KL(P|Q) >0

mFi>n G(P) = —log Z(B)
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@ mean field theory when computation of free energy not
directly accessible, consider a trial Hamiltonian H with
probability distribution Py = Z(B)"te PHx and
2(p) = T

@ Helmholtz free energy

—> " Pylog P, =log Z(8) + B({H) = (1 — B~ 0 )log Z(83)

op

Pe _| Z(/f)
zijxlog@— 2(B)+6< A).

e mean field theory assumption (H) = (H) (averages in the
probability Py) then get

3" Pelog o = —log Z(9)+(f) +log Z(3)~5{H) = log 51

Matilde Marcolli Entropy and Information



o l-parameter family of commuting Hamiltonians H(e) analytic
in € with

H(e) = A + eaH

8' _o+ O(€)

@ then have
}:Pf4 }:Pff+e§:P6H

@ generalized force corresponding to variable €

OHx(€) |
de 0

=Y A, o108 Z (8o

Ly=—

where Z.(8) = 3, e #H()
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o for P(e) = Z.(8)*e PH() have
log Py (€) = — log Z.(3) — B(Hy + €L + O(€?))

o Kullback-Leibler divergence ), Py log %(Xe) =

> Pilog Putlog Zi(B)+ 8> Pcfl+eB)  Pel+O(e%) =

B 5 .9
_(1_5%) log Z(8)+log Z.(8)+8 Z Pufltelog Z(8)]e=0

+0(e2) = log é((g)) + e% log Z.(8)]c—o + O()

is completely described in terms of partition functions (up to
higher order)
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Information Geometry

o S. Amari, Differential-Geometrical Methods in Statistics,
Lecture Notes in Statistics, vol. 28. Springer, 1985.

o S. Amari, Information Geometry and Its Applications,
Springer, 2016.

@ S. Amari, H. Nagaoka, Methods of Information Geometry,
American Mathematical Society, 2007

@ S. Amari, A. Chichoki, Information Geometry derived of
divergence functions, Bull. Polish Acad. Sci. Tech. Ser.,
Vol.58 (2010), No. 1, 183-195

o F. Nielsen, An Elementary Introduction to Information
Geometry, Entropy, 2020, 22, 1100, 61 pages
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Fisher—Rao metric and Information Geometry
@ Probability distributions depend on a space of parameters
P = P(y) = (Px(7)) with v = (71, -, )
e Fisher—Rao information metric given by

N

e for commuting Hamiltonians H(vy)

ef/BHX(’Y)
P, = Z(B) = e—BHx(W)’
@ generalized forces
X, a’)/i )

@ then Fisher-Rao metric

.\ _ OlogZ,(B)0log Z,
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Hessian and KL-divergence
@ Fisher—Rao metric is Hessian matrix of Kullback—Leibler
divergence

62
gii(ho) = 970

KL(P(’Y)’P(’YO))H:%

i
@ equivalently

aaPn aan

ab = ZH:P,, 8, log P, dplog P, = ZT

n

== P 0:05l0g Py = 9,0,KL(P|Q)|p=q

Amari-Chentsov tensor
e statistical manifold (M, g, A) manifold with Riemannian
metric and a totally symmetric 3-tensor A (Amari-Chentsov
tensor)

Aabc = A(aaa ab7 ac) = (vaab - V:@b, ac>



Divergence functions and Bregman generators

@ divergence function on manifold M: differentiable,
non-negative real valued function D(x|y), for x,y € M, that
vanishes only when x = y and such that the Hessian in the
x—coordinates evaluated at y = x is positive definite

@ divergence function determines a statistical manifold
8ab = axaabe(X‘Y)’y:x

Aabc = (axaaxbayc - axcaYaa}/b)D(X‘y)’y:X

@ this Amari-Chentsov tensor Apc vanishes identically if
divergence D(x|y) is symmetric

@ statistical manifold induced by Bregman generator if there is a
potential ® (locally)

D(x]y) = ®(x) — ®(y) — (VO(y),x — y)
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Statistical manifold of Shannon entropy

@ space of probability distributions on a (finite) set with KL
divergence and Fisher-Rao metric

@ Amari-Chentsov 3-tensor given by

0,P; OpP; O P;

Aabe = Z P; 0;log P; Oplog P; O log P; = Z 2

= (8aabac’ - acaa’ab’)KL(P‘Q)‘PZQ

with a, b, ¢ variation indices for P and &', b, ¢’ for Q

@ Bregman generator is the Shannon information

®(P)=—-S(P)=> PilogPi
KL(P|Q) = ®(P) — #(Q) — (V¥(Q),P - Q)
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Bregman potential and dual coordinates

@ as above divergence with Bregman potential
D(x]y) = &(x) = ®(y) = (VO(y),x — y)
@ dual potential: Legendre transform

V(n) = 5txlp{<x,77> — ®(x)}

@ if ® lower semicontinuous and convex then Legendre
transform W = @V is involutive (¢V)Y = ¢

@ in a dually flat manifold: dual affine coordinate systems
n = V®(x) and x = VV¥(n)
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Linear case

@ Special case: if dependence of P on parameters is linear
0,0p,P =0

@ then the Amari-Chenstov tensor is the tensor of third
derivatives of the Bregman potential

Aabc = 83 8b ac ¢

@ in case of Shannon entropy recover previous case of rank 3
tensor of Fisher-Rao metric

8ab = 8aabq)a Aabc = aa 8b 8c ¢

with potential the Shannon entropy
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Divergence functions, flatness and decomposability
@ given a divergence function D(P|Q) additional requirements

@ invariance under invertible transformations of variables

@ decomposability: D(P|Q) =Y, d(pi, gi) for some function d
(e.g KL(P|Q) = =3, pilog(qi/pi))

© flatness: Riemannian metric g (Hessian) and dual pair of
connections V, V* related by the metric, require these have
vanishing curvature (dually flat structure)

e invariant + decomposable < D(P|Q) = ", pi f(qi/pi) some
differentiable convex function f

@ only divergence satisfying all 3 properties is KL
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Dual connections of a divergence function
e divergence D(P|Q)
@ metric (pos def Hessian: quadratic term in expansion) g(D)

D(P +&|P+n) ZgUD) )¢ '/ + higher order terms

@ cubic term determines a connection
(D) _ ( ) (D)
hijk =0;g er,
e connection V(P) with Christoffel symbols

D D
Mk =ik

dual divergence D*(P|Q) := D(Q|P)

determines same metric g(P") = g(P)

dual connection V(P dual to V(P) under g(P)

duality condition for connections V, V* under metric g: for
any triple of vector fields V, W, Z



Geodesics and Pythagorean relation
e given a triple (g(Pr), V(Pr) V(D7) associated to a divergence
(for some convex function f)

Df(P|Q) = ZP;‘

@ in the space of probabilities P have both V(Df)—geodesics and
V(D) _geodesics
@ paths 7(t) solutions of geodesic equation

£)* + Z r5(v(1) /() (¢) =0,

with Ff-J‘- Christoffel symbols of corresponding connection

e P, Q, R three probability distributions: consider V(P)-geodesic
from P to Q and V(P"-geodesic from Q to R

@ if these meet orthogonally at @, then Pythagorean relation
Dr(P|R) = Dr(P|Q) + Dr(Q|R)



Dually flat structure and projection

@ Pythagorean theorem: if D(P|Q) defines a dually flat
structure then

D(P|R) = D(P|Q) + D(Q|R)
when P, @, R form an orthogonal triangle, namely when

geodesic paths PQ and QR orthogonal

@ dual flat coordinate systems x = (x?) and 1 = (7,) related by
Legendre transform
@ take paths v(t) = (1 — t)x(Q) + tx(R) and
7(t) = (1= t)n(P) + tn(Q)
d d
2= x(R) - e (P
G = x(R) = x(@),  24Y =1(@) ~n(P)

@ the two paths are orthogonal in the metric
(n(Q) =n(P),x(R) —x(Q)) =0

e this gives the Pythagorean relation above (Amari, 2016)
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Projection theorem of Information Geometry (Amari)
o P and submanifold P ¢ M: V(P)-geodesic from P meets M
orthogonally
Q" = argminge \ D(P|Q)
o full space M £ of probabilities (depending on parameters),
submanifold M, satisfying given constraints
@ given P minimization problem for KL divergence

KL(P|Qmin) = Qng}\rlll KL(P|Q)

@ argmin Qmin can be found by orthogonal projection of P onto
M,

@ orthogonal projection: dual geodesic (n-coords) connecting P
and Qnj, orthogonal to any tangent vector in M, at Qnnin

@ if submanifold M, itself flat, for any other point @ € M, and
geodesics PQpmin and Qmin@ = orthogonal triangle so

KL('D|Q) = KL(P|len) + KL(Qmina Q)

with @ = Qmin minimizing lhs
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p(X,Y)

mqin D1 (pllq) /‘
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Y(P.Q) Li " (Q,R)

v*(P,Q) Lr 7(Q,R)

P

'---""-._ )
v ".
-

----- R
Q
D'(P:R)=D'(P:Q)+ D' (Q: R)

Q
DP:R)=D(P:Q)+ D(@Q:R)
dual Pythagorean theorems in a dually flat space

Matilde Marcolli Entropy and Information



Frobenius Manifolds and Information Geometry

@ Yu.l. Manin, Frobenius Manifolds, Quantum Cohomology, and
Moduli Spaces, Colloquium Publications, Vol. 47, American
Mathematical Society, 1999.

@ C. Hertling, Yu.l. Manin, Weak Frobenius manifolds, Int.
Math. Res. Notices 6 (1999), 277-286

e C. Hertling, M. Marcolli (Eds.), Frobenius manifolds.
Quantum cohomology and singularities, Aspects of
Mathematics, E36, Vieweg, 2004.

@ N. Combe, Yu.l. Manin, F-manifolds and geometry of
information, Bull. Lond. Math. Soc. 52 (2020), 777-792

@ N. Combe, Ph. Combe, H. Nencka, Frobenius Statistical
Manifolds and Geometric Invariants, Geometric Science of
Information 2021, Lecture Notes in Computer Science,
Vol.12829, pp. 565-573, Springer, 2021.

@ N. Combe, Yu.l. Manin, M. Marcolli, Geometry of
Information: classical and quantum aspects, arXiv:2107.08006
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Frobenius Manifolds
e Frobenius manifold (M, g, ®) a manifold M with flat metric g
and potential ® so that (in local affine coordinates) tensor
Azpe = 0,050 defines associative, commutative
multiplication with unit

0300 = Z Aab“Oc
c

equivalently g(0; 0 Op, 0c) = Aabe

@ associativity condition for multiplication: WDVV
(Witten—Dijkgraaf-Verlinde-Verlinde) nonlinear differential
equations for potential ¢

f f :
Abcege Afad = Abaege Ade7 with Azpe = 8aabac¢
e first structure connection (\ parameter)

V2,05 =AY Aap e = A3 0 0

@ associativity of product and existence of potential equivalent
to connection V) being flat
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F-manifolds
@ or “weak Frobenius manifold”, introduced by Hertling—Manin

e F-manifold (M, o, e) is a manifold with a commutative and
associative multiplication o on the tangent bundle TM with a
unit vector field e

@ F-manifold is a Frobenius manifold if o induced by a flat
metric g and a potential ¢

@ for both F-manifolds and Frobenius can also include Euler
vector field E =, x20,

o difficulty of upgrading F-manifolds to Frobenius manifolds is
flatness of the metric
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Frobenius and F-manifolds in algebraic geometry
@ notion of Frobenius manifold first introduced by Dubrovin in
the mathematical formulation of TQFT

o B. Dubrovin, Geometry of 2D topological field theories,
Integrable systems and quantum groups, Lecture Notes in
Mathematics 1620, 120-348, Springer 1993.

@ applications in singularity theory: Saito’s Frobenius structure
on moduli (unfolding) spaces of germs of isolated singularities
of hypersurfaces

@ Gromov—Witten invariants and quantum cohomology
(Kontsevich—Manin, Barannikov—Kontsevich)
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Frobenius manifolds and Gromov-Witten invariants
e M = H*(X,Z) with (X,w) compact symplectic manifold
o Gromov-Witten invariants Z ,(7a,, - - -, Va,), With
Ya: € HY (X, C), counts genus g pseudoholomorphic curves in
X homological constraints imposed at n points of the curve

@ 7, homogeneous basis of H*(X,C) and t? dual basis

1 a b
g=15 Eb:nabdt dt
a,

nab—/’YaU’Yb

metric from intersection product
@ Frobenius manifold potential

1 X
¢:Zm Z tal"'tanIg,n(’Yap"-’/yan)
n23 ai,..-,an

@ e= a/ Oty
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Cones and characteristic functions (Combe—Manin)

e X finite set, RX real vector space spanned by X, probability
simplex Ax (extremal points basis of RX)

@ union of all oriented half-lines in RX starting at 0: open
convex cone

@ more general convex cones: R fin dim real vector space and
V' C R subset closed under addition and multiplication by
positive reals, Ay simplex in V

@ require that closure of V' does not contain any real linear
subspace of positive dimension

@ characteristic function of convex cone V with dual W c RY

V3oxm—opy(x)= / e ) dvolyy (x')
w

with translation invariant volume form of RV
e metric on V (hence on Ay/) given by
0 i L g
8= 5 o7logpv = 2/:257 0;0j0) log pv
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F-manifolds: flat structure and vector potential

o flat structure: torsionless flat connection V and 7,y C T
with 7,y = KerV flat vector fields

e flat F-manifold (M, o, e, V) flat connection with Ve = 0 and
V + ao flat for all « € C

@ then there is a vector potential F = (F') with
0j0 0k = cj0j,  cjj = O;OkF’
@ equivalently for any X, Y € 7',\; and F vector potential
XoY =[X,[Y,F]]

@ associativity of o quadratic differential constraint on F
“oriented associativity equations”

@ in Frobenius case vector potential comes from derivatives of
scalar potential and metric

@ see Yu.l.Manin, F-manifolds with flat structure and Dubrovin's
duality, Advances in Mathematics 198 (2005) 5-26.
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F-manifold structure on cones and statistical manifolds
o Ay with metric g with potential log
o the WDVV equations for A pe = 0,0p0c log pv

Apce8 Afad = Apacg® Arcd

are trivially satisfied for this choice of potential log ¢

n n

1= 5 < f < oo

i=1 i=1

@ some notation: for dimV =nand / C {1,...n}

@1 ZHﬁpn Pie ZH%'

icl i¢l
Vi = / Yie XYidY; = —0igi, i =[] i
icl
Vi = / Y,-k"e_X"Y"dW, Y1k = Hwi,k,
icl
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@ then have

Dap _ —a Pac _ _%

¥ Pa

O, logp =
@ metric

_ _ ~Ya _ o Va2 Y3
8ab = 020plog p = 0250, = 0an( -
Pa Pa Pa

)

positivity 1,20, > 92 by Cauchy-Schwartz

(/ Y2e—XYdV)(/ e XYdy) > (/ Ye XY dY)?
@ A.pc similarly just

- b 3
Ajii = Vi + 3%1/}2"2 - 21/}*’3
Pi ©; P;

and both sides of WDVV are A2, g?? so F-manifold, not flat
so not Frobenius
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More general statistical manifolds and WDVV equation

e statistical manifold (M, g, A) is a Frobenius manifold if the
Amari—Chentsov tensor satisfies

Abce8 Atad = Abaeg® Atcd

@ equivalent to equation for Bregman potential ®
(0eVO(P),0,05P)g (05 VO(P), D04 P)+
(0:VO(P), 0;05P) g (9:04V ®(P), O P)+
(0,05VO(P), 0. P) g (0 V& (P), 004 P)+
(0205 V ®(P), 0 P) g (0c04V &(P), 0 P) =
(0eVO(P), 0,0.P)g (9 VO(P), 0504 P)+
(0VO(P), 0,0.P)g® (0p04VP(P), 8¢ P)+
(020:VO(P), 0eP) g (0 V®(P), 9504 P)+
(020 V(P ),aeP> 9604V (P), 0 P)

@ give usual WDVV equation for @ in the linear case where

Aabe = 02009



Frobenius manifold structures?

@ can use flat families V* to improve to Frobenius?
(Combe-Combe-Nencka)

@ is there a deformation ¢, of potential log ¢y, that still
satisfies WDVV but nontrivially?

@ proposed version of “statistical Gromov—Witten invariants”
(Combe-Combe-Nencka) related to higher mutual
informations

@ can these provide a ®, as in GW case with flat Frobenius
structure?

@ F-manifold structures on cones (and probability spaces)
similar setting to F-manifold and Frobenius manifold
structures for singularities and unfolding of singularities
(Saito, Hertling, etc)
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Hochschild cohomology
@ A associative algebra over a field K (say C)
@ M an A-bimodule (ie two commuting actions a(mb) = (am)b)
e CO%(A M) = M and C"(A, M) = Hom(A®", M) (tensor over
K)
@ Hochschild coboundary § : C"(A, M) — C"1(A, M)

e n =0 then (dm)(a) = am — ma difference between left and
right action
e n> 0 then

(6f)(ag, .. .,an) = aof(ar,...,an)

+§ alv"~7aiai+17"‘7an)

+(—1) f(ag, .- -,an—1)an

e satisfies 52 = 0 so Hochschild cohomology
HH*(A, M) = H*(C*(A, M), §) = Ker(d)/Im(9)

Matilde Marcolli Entropy and Information



@ note how it generalizes case of groups: for an abelian group
and f : G®" — Z (trivial action on Z)

(6f)(a0,...,an) = f(a1,...,an)+

n—1

Z(il)if(QO) ceey @it aigt, e an) + (71)nf(307 R anfl)
i=1
@ special case M = A* = Hom(A, K), then
Hom(A®", A*) = Hom(A®("+1) K) with
f(a1,...,an)(a0) =: ¢(ap, a1, -..,an) and df = by with

(bgp)(QOa ) an—‘rl) = Z(_l)iSO(aOv sy @idig 1y, an)
i=0

+(_1)n+180(an+1307 aly ...y an)
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o Example: HHY(A,M) = {m € M|am = ma, Va € A} in case
of M = A* traces
HHO(A, A*) = {7 : A — K| 7(ab) = 7(ba), Vab € A}

@ Example: M-valued derivations modulo inner derivations
(coboundaries)

HHY(A, M) = Ker(8)/Im(0)

Ker(8) = {f : A— M| f(ab) = af(b) + f(a)b, Va,b € A}
Im(6) ={f: A— M|f(a) =[m,a] = ma— am}
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Mutual Information and Hochschild cohomology

e P. Baudot, D. Bennequin, The homological nature of entropy,
Entropy 17 (2015) no. 5, 3253- 3318.

e mutual information Z(X, Y) = S(X) + S(Y) — S(X, Y) with
Shannon entropy

S(X) = Z P(X = x;) log P(X = x;)

@ for extensivity property use notation
S(X,Y)=S5(X)+ X-5(Y) (think of as coboundary)

@ more generally, random variables X;, probability P, and some
entropy functional F(Xi,..., Xn; P)
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o define (left) action Xp - F (and trivial right action)

XO'F(X]_,.. XN ]P) Z]P) Xl,...,XN‘X():X,')

@ then Hochschild coboundary

(OF)(Xo, ..., XniP) = Xo - F(Xe..., Xn; P)

+YF(Xyo o XX, X P) + (F1)VF(Xo, - X P)

@ also consider version where also left action trivial and
corresponding § Hochschild coboundary as above with first
term just F(X1...,Xn; P)
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Shannon higher mutual informations

e for J C {1,..., N} join X; of the X; random variables with
i € J (composite system)

N
In(Xe .. XwiP) = (1)1 Y S(X5;P)

k=1 #J=k

e then I, = (36---(5:25 (with (m—1) é's and m é's) and
Tom+1 = —009---5S (with m ¢'s and m §'s)

o Tom is a d-cocycle (coboundary) and Zp,41 is a d-cocycle
(coboundary)
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More on cohomological information theory

o J.P. Vigneaux, Generalized information structures and their
cohomology, arXiv:1709.07807

e J.P. Vigneaux, A homological characterization of generalized
multinomial coefficients related to the entropic chain rule,
arXiv:2003.02021

e J.P. Vigneaux, Topology of statistical systems. A
cohomological approach to information theory, PhD Thesis,

Institut de mathématiques de Jussieu, Université de Paris
Diderot, 2019
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Vigneaux's categorical formalism of information structures

e finite information structure: (S, M) pair of a thin category S
(observables) and a functor M : S — F to category of finite
probability spaces

e category S: objects X € Obj(S) random variables values in a
finite probability space; a morphism 7 : X — Y if the random
variable Y is coarser than X (values of Y determined by
values of X)

o if there are morphisms X — Y and X — Zthen YZ =Y ANZ
(random variable given by joint measurement of Y and Z)
also an object of S.

@ category S has a terminal object 1, random variable with
value set {*} a singleton
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Category of finite information structures

e functor M : S — F maps a random variable X to the finite
probability space given by its range of values My

e morphisms 7 : X — Y map to surjections M(7) : Mx — My

@ value set Mx,y is a subset of Mx x My
@ category ZS of finite information structures
o objects pairs (S, M) as above
o morphisms ¢ : (S, M) — (S', M) pairs ¢ = (o, ¢7) of a
functor ¢ : S — S’ and a natural transformation
¢* : M — M’ o ¢y with properties:
o do(1) =1
o Po(XAY) = ¢o(X)Ado(Y) whenever X A Y is an object in S
o for all X the morphism qbﬁ c My — MZ%(X) is a surjection
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products and coproducts
@ category ZS has finite products (S x S’; M x M) with objects
pairs (X, X’) of random variables with value set Mx x M,

@ ZS8 also has finite coproducts (S V S’, M v M’) with objects
Obj(5VS') = Obj(S)VODbj(S') = Obj(S)LIObi(S')/15 ~ 1s
and value set Mx or M}, if X € Obj(S) or X’ € Obj(5’)
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Probability functors
e probability functor Q : (S,M) — A

@ object X mapped to a simplicial set Qx of probabilities on the
set My

e Qx is a subset of the simplex M(Mx) of all probability
distributions on My

@ morphisms 7 : X — Y mapped to morphism 7, : Qx — Qy

with
= > Px

xen—1(y)

@ For each X € Obj(S) there is a semigroup
Sx ={Y € Obj(S)|In: X = Y}

with product Y A Z
e semigroup algebra Ax := R[Sx]
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Functor of measurable functions
e contravariant functors F(Q) : (S, M) — Vect

@ assign to objects X € Obj(S) and probabilities Px € Qx the
vector space of real valued (measurable) functions on
(Mx, Px)

@ assigns to a morphism 7 : X — Y the map
F(Q)(m): fr fom,

@ action o, of the semigroup Sx on F(Qx) by
oa(Y): = Y(f)(Px) = > (YaPx(y)* f(Pxlz-1(y))
YEEy : YuPx(y)#0

for Y € Sx and for some arbitrary a > 0

o Ax-module structure F,(Qx) on F(Qx), determined by the
semigroup action o,
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Modules over sheaves of algebras

@ category A-Mod of modules over the sheaf of algebras
X — Ax

e A-Mod is an abelian category
@ sequence B,(X) of free Ax-modules generated by symbols
[X1]...] Xa] with {Xq,...,X,} C Sx
@ with boundary maps 0, : B,, — B,_1 of Hochschild form
On[X1 |- | Xa]l = X1 [Xa]...| X))

n—1

+ D DX XX || X
k=
+ (—11)"[><1 | [ Xno1]:

e modules B,(X) give a projective bar resolution of the trivial
Ax-module
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Functorial Hochschild cochain complex

e functor C*(F,(Q)) : (S, M) — Ch(R) to category of cochain
complexes

@ objects X € Obj(S) mapped cochain complexes

(C*(Fa(9x)), 9)
C*(Fa(Qx))" = Hom(Ba(X), Fa(Qx))

X

natural transformations of functors B, — F,(Q) compatible
with A-action

@ coboundary § given by Hochschild coboundary
()X - [ Xor1] = Xe(O)[Xa]| ... | Xnt1]

+ Z YFIXL ]| XeXis1 |- -+ | Xnga]

+ ( 1)"+1f[><1 Xl
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Hochschild cohomology and entropy functionals

e complex C*((S, M), Fo(Q)) := (C*(Fa(Qx)), ) with
cohomology

H*((5, M), Fa(Q))
@ zeroth cohomology is R when a = 1 and zero otherwise

@ first cohomology: any non-trivial 1-cocycle is locally a
multiple of the Tsallis entropy

1 [e%
SXIP) = — (1= 3 PO |
xEMx
for a # 1 or of the Shannon entropy for . =1

@ higher cohomologies represent all possible higher mutual
information functionals
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KL divergence

e information structures (S, M) and (5§, M’) and a joint
random variable (X, Y') with values in a finite set
Mxy C Mx x M{, with X € Obj(S) and Y € Obj(5’)

@ pair of probability functors Q : (S, M) x (S, M') — A and
Q' (S, M) x (S, M) — A,

e simplicial sets Q(x,y) and Q’(X’Y) are subsimplicial sets of the
full simplex M(Mxy)

e contravariant functor F?(Q, Q') : (S, M) x (S', M") — Vect

e maps (X, Y) — F®)(X,Y) vector space of real valued
(measurable) functions on simplicial set of probabilities

Q(X,Y) X Q,(X,Y)
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o X € Obj(S), Y € Obj(S'), the semigroup S(x y) acts on
FA(X,Y) by
(X, Y)-£)(P.Q) =
Do PRI Y)TE((P Q)lix, viy=( 1)
(X"sy")EMyrys
(X', Y') € Sx and (P, Q) € Q(x,v) X Q’(ny) with
{(X",Y") = (x',y")} = 771X, y’) under surjection
7 Mx:,yry = M(x,y) determined by morphism
7 (X, Y) = (X,Y)
° f&z)(Q, Q') denotes .F(2)(Q, Q') with A-module structure
o Kullback-Leibler divergence (Tsallis a- deformation) is a
1-cocycle in resulting chain complex (C’(]—"a (Q Q),0)
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