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Convexity is the mathematical property that describes the
operation of mixing

notation: En Euclidean space in n-dimensions, An affine space
(usually over C or R), Pn = (An+1 ∖ {0})/Gm projective
space (quotient by multiplicative group C∗ or R∗)

over R: line segment in En

ℓx1,x2 = {x = λ1x1 + λ2x2 |λi ≥ 0, λ1 + λ2 = 1}

convex linear combinations of extremal points x1, x2

barycentric coordinates: simplex

∆x1,...,xN = {x = λ1x1+λ2x2+· · ·+λNxN |λi ≥ 0,
∑
i

λi = 1}

convex set: each point in the set has unobstructed view of all
other points in the set (line segment connecting them is
entirely contained in the set)
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convex hull

set S ⊂ An convex hull H(S) smallest convex set in An

containing S

if S is a finite set of points H(S) is a polytope

if S consists of N + 1 points not all on any N − 1 affine
subspace, H(S) is an N-simplex ∆S (or ∆N(S))

C convex set in some ambient AN : dimension dimC = n if
largest n for which C contains a simplex ∆n

slices C ∩ Ak of convex sets by lower dimensional affine
subspaces Ak ⊂ AN are also convex sets
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Cones

C ⊂ AN convex set, cone Ĉ ⊂ AN+1: take point x ∈ AN+1

not in C and union Ĉ of all half-line from x passing through
points of C (unbounded cone)

cones have a partial ordering x ≤ y in Ĉ iff y − x ∈ Ĉ

cone Ĉ ⊂ EN , dual cone: Ĉ∨ = linear functionals
f ∈ En∨ = Hom(En,R) such that f (x) ≥ 0 for all x ∈ Ĉ

with Euclidean metric identify En ≃ En∨, then cone is
self-dual if Ĉ = Ĉ∨ in this identification
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convex bodies

topologically an n-dimensional convex set is always
homemorphic to an n-ball (move along the rays from an
interior point, center of the ball)

convex body C a compact convex set (while convex cones Ĉ
always non-compact)

convex bodies and convex cones over a convex body always
have extremal points that are not convex combinations of
other points (pure points, pure states)

but not true for other convex cones (eg half-space)

k-dimensional face F ⊂ C of an n-dimensional convex set: if a
point x ∈ C is in F and x = λx1 + (1− λ)x2, for some
0 ≤ λ ≤ 1, then x1, x2 also in F

partial ordering by inclusion of the set of faces of a convex set
(lattice of inclusions)

Matilde Marcolli Convexity, Simplexes, Probabilities



Facts about convex sets

Minkowski: every convex body Y is convex hull Y = C (X ) of
its set X of pure points

Carathéodory: given X ⊂ En (so dimX ≤ n), any x ∈ H(X )
is a convex combination of at most n + 1 points of X

x =
∑
i

λix i
∑
i

λi = 1, λi ≥ 0

Note that here λi , x i depend on x

case of simplex: all points written as a mixture in a unique
way (this property characterizes simplices)

number of k-faces in an n-simplex

#{k−faces} =

(
n + 1

k + 1

)
=

(
n + 1

n − k

)
= #{(n−k−1)−faces }

lattice of faces is self-dual (in fact it is also a Boolean lattice)
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supporting hyperplanes of convex sets: C ⊂ En real
hyperplane H that intersects C and such that all of C lies in
the same half-space cut out by H

regular point of C , point x on ∂C such that there is only one
support hyperplane through x

regular support hyperplane meets C at only one point

regular convex set C all points and all support hyperplanes are
regular

a ball is regular a simplex is not

Hahn–Banach: C ⊂ En convex body and x0 ∈ En ∖ C then
∃f : En → R linear functional such that f (x) > 0 for all x ∈ C
and f (x0) < 0 (think in terms of support hyperplanes)

convex functions f : C → R from C convex body such that

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

∀x , y ∈ C and ∀λ ∈ [0, 1]
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Another way to think of simplices: Simplicial Sets

Simiplicial Sets: intuition

Sets locally described by simplexes appropriately glued together
along faces (subtleties: some simplexes can be degenerate etc.)

Idea: these sets locally have “mixing property” of simplexes
(barycentric coordinates) but are not necessarily globally convex
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Categories

Category: C with objects Obj(C) and morphisms HomC(X ,Y )
for X ,Y ∈ Obj(C) (small categories: Obj(C) and
HomC(X ,Y ) are sets); composition

Hom
C

(X ,Y )× Hom
C

(Y ,Z ) → Hom
C

(X ,Z ), (ϕ, ψ) 7→ ψ ◦ ϕ

is associative; there is an identity morphism
1X ∈ HomC(X ,X ) for every object X

Functors F : C → C′ between two categories, maps objects to
objects F : Obj(C) → Obj(C′) and morphisms to morphisms
F : HomC(X ,Y ) → HomC′(F (X ),F (Y )) respecting
composition and identities, F (ϕ ◦ ψ) = F (ϕ) ◦ F (ψ) and
F (1X ) = 1F (X )
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Natural transformations of functors: F ,G : C → C′ functors,
natural transformation η : F → G

for all objects X ∈ Obj(C) a morphism ηX : F (X ) → G (X ),
ηX ∈ HomC′(F (X ),G (X ))
for every morphism ϕ : X → Y , ϕ ∈ HomC(X ,Y ),
compatibility ηY ◦ F (ϕ) = G (ϕ) ◦ ηX

F (X )
ηX //

F (ϕ)

��

G (X )

G(ϕ)

��
F (Y )

ηY // G (Y )
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Another way to think of simplices: Simplex Category (or ∆
category)

Simplex Category: objects in Obj(∆) are totally ordered sets
[n] = {0, 1, . . . , n}; morphisms in Hom∆([n], [m]) are
nondecreasing maps f : [n] → [m]

f (i) ≤ f (j) for i ≤ j

this category “looks like a simplex”: this can be seen by
showing that the morphisms are generated by a set of faces
and degeneracies morphisms (all morphisms are finite
compositions of those)
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Simplex Category: Faces and Degeneracies

Di increasing injection [n] → [n + 1] not taking value i ; Si
nondecreasing surjection taking value i twice

morphisms are generated by maps Di : [n] → [n + 1] and
Si : [n + 1] → [n]

Di [0, . . . , n] = [0, . . . , î , . . . , n], Si [0, . . . , n] = [0, . . . , i , i , . . . , n]

in ∆op the Di become face maps di : [n + 1] → [n] and Si the
degeneracy maps si : [n] → [n + 1]

image of degeneracy s1 degenerate 2-simplex image of collapse map S1
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generators in ∆ faces Dn
i : [n] → [n + 1] and degeneracies

Sn
i : [n + 1] → [n]

relations
Dn+1
i ◦ Dn

j = Dn+1
j+1 ◦ Dn

i i ≤ j

Sn
j ◦ Sn+1

i = Sn
i ◦ Sn+1

j+1 i ≤ j

Sn
j ◦ Dn+1

i =


Dn
i ◦ Sn−1

j−1 i < j

Idn i = j or i = j + 1

Dn
i−1 ◦ S

n−1
j j + 1 < i

any nondecreasing maps f : [n] → [m] is a finite composition
of Dk

i ’s and Sℓ
j ’s
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Simplicial Sets: rigorous definition

Simplicial set: functor X : ∆op → S to the category of sets
(contravariant functor from ∆)

this means collection of sets Xn = X ([n]) images of objcts of
∆-category endowed with face and degeneracy maps:
n-skeleta of the simplicial set
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Realization

Realization of a simplex: |∆n| the geometric simplex
realization of combinatorial ∆n = [n]

Standard simplex |∆n| is simplex ∆n = ∆e0,...,en of standard
o.n. basis in En+1

|∆n| = ∆n = {x ∈ En+1 | xi ≥ 0 and
n+1∑
i=0

xi = 1}

Realization of X

|X | := ⊔n(Xn × |∆n|) / ∼

modulo equivalence relation (x , Si (t)) ∼ (si (x), t) and
(x ,Di (t)) ∼ (di (x), t)

interpret as recipe for gluing the geometric simplexes |∆n|
together according to the combinatorial scheme prescribed by
the Xn so that faces and degeneracies match
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• Nerve: simplicial sets from categories

category Cat of small categories with functors as morphisms,
nerve functor N : Cat → ∆S to the category of simplicial sets
∆S = Func(∆op,S)
for a small category C the nerve N (C) has a 0-simplex
(vertex) for each object of C, a 1-simplex (edge) for each
morphism, a 2-simplex for each composition of two morphishs,
a k-simplex for every chain of k composable morphisms

face maps: composition of two adjacent morphisms at the i-th
place of a k-chain di : Nk(C) → Nk−1(C) and degeneracies are
insertions of the identity morphism at an object in the chain
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• Products: product of simplexes is not a simplex but can be
decomposed as a union of simplexes

Cubes behave better than simplexes with respect to products
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Simplicial and cubical complexes
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• Cubical sets in topology

I unit interval as combinatorial structure consisting of two
vertices and an edge connecting them

|I| = [0, 1] geometric realization: unit interval as topological
space (subspace of R)
In for the n-cube as combinatorial structure and |In| = [0, 1]n

its geometric realization

I0 a single point

face maps δai : In → In+1, for a ∈ {0, 1} and i = 1, . . . , n

δai (t1, . . . , tn) = (t1, . . . , ti−1, a, ti , . . . , tn)

degeneracy maps si : In → In−1

si (t1, . . . , tn) = (t1, . . . , ti−1, ti+1, . . . , tn)

Matilde Marcolli Convexity, Simplexes, Probabilities



cubical relations for i < j

δbj ◦ δai = δai ◦ δbj−1 and si ◦ sj = sj−1 ◦ si

and relations
δai ◦ sj−1 = sj ◦ δai i < j

sj ◦ δai = 1 i = j

δai−1 ◦ sj = sj ◦ δai i > j

Cube category: C has objects In for n ≥ 0 and morphisms
generated by the face and degeneracy maps δai and si

Cubical set: functor C : Cop → S to the category of sets.

notation: Cn := C (In)
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variant of the cube category Cc with additional degeneracy
maps γi : In → In−1 called connections

γi (t1, . . . , tn) = (t1, . . . , ti−1,max{ti , ti+1}, ti+2, . . . , tn)

satisfying relations

γiγj = γjγi+1, i ≤ j ; sjγi =


γi sj+1 i < j
s2i = si si+1 i = j
γi−1sj i > j

γjδ
a
i =


δai γj−1 i < j
1 i = j , j + 1, a = 0
δaj sj i = j , j + 1, a = 1

δai−1γj i > j + 1.

role of degeneracy maps: maps si identify opposite faces of a
cube, additional degeneracies γi identify adjacent faces
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cubical set with connection: functor C : Cop
c → S to the

category of sets

category of cubical sets has these functors as objects and
natural transformations as morphisms

so morphisms given by collection α = (αn) of morphisms
αn : Cn → C ′

n satisfying compatibilities α ◦ δai = δai ◦ α and
α ◦ si = si ◦α (and in the case with connection α ◦ γi = γi ◦α)
cubical nerve NCC of a category C is the cubical set with

(NCC)n = Fun(In, C)

with In the n-cube seen as a category with objects the
vertices and morphisms generated by the 1-faces (edges), and
Fun(In, C) is the set of functors from In to C
when working with cubical sets with connection homotopy
equivalent to simplicial nerve

R. Antolini, Geometric realisations of cubical sets with
connections, and classifying spaces of categories, Appl. Categ.
Structures 10 (2002), no. 5, 481–494.
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Simplexes and Probabiities

X finite set with cardinality N + 1 = #X

Probability measure P on X : to all x ∈ X assign Px ≥ 0 with
normalization

∑
x∈X Px = 1

Set P(X ) of all probability measures on X is a copy of the
simplex ∆N

P(X ) = {(Px)x∈X |,Px ≥ 0 and
∑
x∈X

Px = 1} ≃ ∆N ,

where vertices of simplex ∆N are probabilities P = δ(x) with

δ
(x)
x = 1 and δ

(x)
y = 0 for all y ̸= x

choose a bijection X ≃ {0, . . . ,N} then

P(X ) = ∆N = {x = (xi )
N
i=0 ∈ RN+1

+ |
N∑
i=0

xi = 1}
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Partial ordering

transformations of probability distributions: transformations of
RN+1 preserving positivity and ℓ1-norm of non-negative
vectors

for x ∈ RN+1 let x↓ be the vector obtained from x by a
permutation of coordinates so that in non-increasing order

x↓0 ≥ x↓1 ≥ x↓2 ≥ · · · ≥ x↓N

for x , y ∈ RN+1 let y ⪰ x iff

k∑
i=0

x↓i ≤
k∑

i=0

y↓i , ∀0 ≤ k ≤ N

where for probabilities the last one is

N∑
i=0

x↓i =
N∑
i=0

y↓i = 1
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have x ⪰ x and if x ⪰ y and y ⪰ z then x ⪰ z

don’t have y ⪰ x and x ⪰ y implies y = x (only up to a

permutation), but when written in the form y↓ and x↓ implies
equal

so get partial ordering on these

there are pairs x , y for which neither x ⪰ y nor y ⪰ x

there is a smallest element given by the uniform distribution

x (N+1) = (
1

N + 1
, . . . ,

1

N + 1
)

largest: N + 1 probabilities with one 1 entry and all other
entries 0

Matilde Marcolli Convexity, Simplexes, Probabilities



Shur convex functions x ⪰ y ⇒ f (x) ≥ f (y)

examples: elementary symmetric functions

s0(x) = 1, s1(x) = x1 + · · ·+ xN ,

s2(x) =
∑
i<j

xixj , · · · , sN(x) = x1 · · · xN .

set of vectors majorized by a given one is a convex set

x ⪰ y and x ⪰ z ⇒ x ⪰ λy + (1− λ)z ∀λ ∈ [0, 1]
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convex set of probabilities x inside ∆3 majorized by a given vector:
pure points of the convex set permutations of entries of the vector
(from Ingemar Bengtsson, Karol Zyczkowski “The geometry of
quantum states”, Cambridge 2007)
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examples inside ∆4: probabilities majorized by given vector (from
Ingemar Bengtsson, Karol Zyczkowski “The geometry of quantum
states”, Cambridge 2007)
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Stochastic Matrices

S = (Sij) ∈ MN×N(C) with Sij ≥ 0 and
∑N

i=1 Sij = 1
(columns are probability measures)

Sij ≥ 0: preserves positivity;
∑N

i=1 Sij = 1: preserves ℓ1-norm

bistochastic if
∑N

j=1 Sij = 1 as well

bistochastic matrices also fix the point x (N): they cause
contraction of the probability simplex toward the center

Hardy–Littlewood–Pólya: x ⪰ y ⇒ ∃ S bistochastic with
y = Sx

bistochastic matrices form a semigroup; only ones with a
bistochastic inverse are permutation matrices

Birkhoff theorem: set of N × N bistochastic matrices is a
convex polytope with pure points the N! permutation matrces
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Perron-Frobenius Theorem (strictly positive case)

A = (Aij) with Aij > 0
∃ positive eigenvalue λA = ρ(A) (spectral radius) with all
other eigenvalues |λ| < λA
eigenvalue λA is simple
eigenvector vA = (vA,i ), with A vA = λAvA, entries vA,i > 0
same for transpose Aτ : left eigenvector wA with
wA A = λAvA and with wA,i > 0 and with

w τ
A · vA = 1

these are only eigenvectors with positive entries (up to scalar
multiples)
limit

lim
k→∞

Ak

λkA
= vA · w τ

A.

column sums

min
i

∑
j

Aij ≤ λA ≤ max
i

∑
j

Aij
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Perron-Frobenius Theorem (non-negative case)

A = (Aij) with Aij ≥ 0

assume irreducible: ∀i , j ∃m ≥ 1 with (Am)ij > 0

equivalent: associate to A a graph GA with N vertices and
oriented edge from i to j iff Aij > 0, then A irreducible means
that GA is strongly connected: given any two vertices there is
an oriented path from the first to the second

period hA of A is greatest common divisor of the m such that
(Am)ii > 0 (independent of i if A irreducible)
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Perron-Frobenius: ∃ eigenvalue λA = ρ(A) > 0 simple

∃ left/right eigenvectors wA, vA with positive entries

these are the only eigenvectors that are positive (up to scalar
multiples)

there are hA complex eigenvalues λ with |λ| = λA, each
λ = λAζ (ζ root of 1) and simple

column sums

min
i

∑
j

Aij ≤ λA ≤ max
i

∑
j

Aij
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Stochastic matrices

S stochastic matrix, columns sum estimate of
Perron-Frobenius theorem shows λS = 1

Perron-Frobenius eigenvector is an invariant measure
SvS = vS

stochastic matrices as linear maps = Markov maps

Markov chain = sequence of Markov maps

Note: can also consider stochastic N ×M matrices with Sij ≥ 0

and
∑M

j=1 Sij = 1 for i = 1, . . . ,N
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Categories of finite probabilities

Category of finite probability spaces with stochastic matrices
FP
objects Obj(FP) are pairs (X ,P) of a finite set X with a
probability measure P

morphisms S ∈ HomFP((X ,P), (Y ,Q)) are stochastic
(#Y ×#X )-matrices S with

Syx ≥ 0, for all x ∈ X , y ∈ Y∑
y∈Y Syx = 1 for all x ∈ X

the probability measures are related by Q = S P

Note: objects (X ,P) of FP can be thought of as fuzzy sets,
with Px value at x ∈ X of the membership function of the
fuzzy set
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Category of stochastic maps FinStoch (Baez–Fritz)

objects in Obj(FinStoch) are finite sets X

morphisms HomFinStoch(X ,Y ) are stochastic maps (assign a
probability on Y to each point in X ): stochastic matrices

S = (Syx) Syx ≥ 0,
∑
y∈Y

Syx = 1, ∀x ∈ X .
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Under Category

category C and object A ∈ Obj(C)
under category A ↓ C (also denoted A/C):

objects Obj(A ↓ C) are morphisms ϕ : A → B of C with source
A
morphisms F ∈ HomA↓C(ϕ : A → B, ψ : A → C ) are
commuting triangles

A

ϕ�� ψ ��
B

F
// C
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Categories FP and FinStoch

FP is the under category 1 ↓ FinStoch
stochastic maps P : 1 → X are probability distributions on X

so objects of 1 ↓ FinStoch are pairs (X ,P)

triangles
1

P�� Q ��
X

S
// Y

are stochastic matrices S with SP = Q
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Category of finite probability measures FinProb

objects in Obj(FinProb) are pairs (X ,P) of a finite set with
a probability measure

morphisms f ∈ HomFinProb((X ,P), (Y ,Q)) are functions
f : X → Y that are measure preserving

Qy =
∑

x∈f −1(y)

Px .

relation between FinProb and FP: subcategory FinProb

where for each x there is a unique y = y(x) such that
Syx > 0: then stochastic matrix must have Syx = 1, so S is a
(single valued) function f : X → Y that is measure preserving
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Pointed Sets and FP
category FS∗ of finite pointed sets: objects (X , x0) finite sets
with a base point; morphisms f : (X , x0) → (Y , y0) functions
between sets f : X → Y that preserve base points, f (x0) = y0

FS∗ as subcategory of FP: objects (X , δx0) and morphisms
stochastic maps S : (X , δx0) → (Y , δy0) with
Syx = χf −1(y)(x), with χ the indicator function,

δy0,y =
∑
x

Syxδx0,x =
∑

x∈f −1(y)

δx0,x

Category S∗ of pointed sets (not necessarily finite) similarly defined

Note: can think of finite probability (X ,P) as a formal convex
combination of pointed sets

(X ,P) =
∑
x∈X

Px (X , x)
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Category of probabilistic pointed sets PS∗

objects in Obj(PS∗) are convex combinations of pointed sets

ΛX =
∑
i

λi (Xi , xi ),

where Λ = (λi ) wtih λi ≥ 0 and
∑

i λi = 1 and
X = {(Xi , xi )} a finite collection of pointed sets

morphisms Φ ∈ MorPS∗(ΛX ,Λ
′X ′) are pairs Φ = (S ,F )

1 S is a stochastic map with SΛ = Λ′

2 F = (Fji ) is a collection of probabilistic pointed maps
Fji : (Xi , xi ) → (X ′

j , x
′
j )

probabilistic pointed map Fji is a finite set {Fji ,a} of pointed
maps Fji ,a : (Xi , xi ) → (X ′

j , x
′
j ) together with a set of

probabilities µ
(ji)
a with

∑
a µ

(ji)
a = Sji
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composition of morphisms Φ = (S ,F ) : ΛX → Λ′X ′ and
Φ′ = (S ′,F ′) : Λ′X ′ → ΣY given by

Φ′ ◦ Φ = (S ′ ◦ S ,F ′ ◦ F )

S ′ ◦ S product of stochastic matrices

F ′ ◦ F = {(F ′ ◦ F )ki} with set (F ′ ◦ F )ki = {F ′
kj ,a ◦ Fji ,b} and

probabilities µ
(kj)
a µ

(ji)
b

with
∑

a,b,j µ
(kj)
a µ

(ji)
b =

∑
j S

′
kjSji = (S ′ ◦ S)ki

probability associated to set (F ′ ◦ F )ki in F ′ ◦ F is (S ′ ◦ S)ki
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Embedding of category FP in PS∗

mapping Λ = (λi ) to the set Λ⋆ =
∑

i λi ({⋆i}, ⋆i )
morphisms SΛ = Λ′ to Φ = (S , 1) with 1 = {1ji} with
probabilities Sji

• forgetful functor from PS∗ to FP maps ΛX to finite probability
Λ and morphism Φ = (S ,F ) to stochastic matrix S
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Probabilistic categories PC
from pointed sets S∗ to probabilistic pointed sets PS∗

more general similar procedure starting from a category C
PC category with objects in Obj(PC) given by formal finite
convex combinations

ΛC =
∑
i

λiCi ,

with Λ = (λi ) with
∑

i λi = 1 and Ci ∈ Obj(C)
morphisms Φ : ΛC → Λ′C ′, Φ ∈ HomPC(ΛC ,Λ

′C ′) given by
pairs Φ = (S ,F )

S a stochastic matrix with SΛ = Λ′

F = {Fab,r} finite collection of morphisms Fab,r : Cb → C ′
a

with assigned probabilities µab
r

probabilities satisfy
∑

r µ
ab
r = Sab

interpret F as mapping of Ca to C ′
b by choosing randomly in the

set {Fab,r} with probability µabr of choosing Fab,r
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Wreath product interpretation

construction of PC from C can be seen as a wreath product
FP ≀ C of the category C with the category FP of finite
probabilities

it has the effect of rendering the category C probabilistic
(objects are a mixture of objects and morphisms are randomly
chosen with a stochastic map of the mixtures)
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Zero Object

Zero object 0 ∈ Obj(C): for all X ∈ Obj(C) there is a unique
morphism 0 → X and a unique morphism X → 0

Zero objects are unique up to unique isomorphism

points ⋆ are zero objects in the category S∗ of pointed sets

singletons (⋆, 1) are zero objects in the category FP
unique morphism Q̂ : ({x}, 1) → (Y ,Q) given by Q̂yx = Qy

unique morphism 1̂ : (Y ,Q) → ({x}, 1) given by 1̂xy = 1 for
all y ∈ Y

1 =
∑
y∈Y

Qy =
∑
y∈Y

1̂xyQy
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singletons X = ({x}, x) with Λ = 1 are zero objects in PS∗
unique morphism Φ = (S ,F ) : ({x}, x) →

∑
i λi (Xi , xi ) with

S = Λ̂ (unique morphism in FP from ({x}, 1) to Λ) and
F = (Fi ) with Fi : x 7→ xi with probability λi
unique morphism Φ = (S ,F ) : ΛX → ({x}, x) where S = 1̂Λ
(unique morphism in FP from Λ to ({x}, 1)) and F = (Fi )
with Fi : (Xi , xi ) → ({x}, x) the constant function with
probability 1

same argument: if C has a zero object then PC has a zero
object given by the zero object of C with Λ = 1

Matilde Marcolli Convexity, Simplexes, Probabilities



Categorical Sum (Coproduct)

category of pointed sets S∗: coproduct of (X , x) and (X ′, x ′)

(X , x) ∨ (X ′, x ′) := (X ⊔ X ′/x ∼ x ′)

universal property of coproduct: ∃ morphisms ιX , ιX ′ such
that for any given morphisms f : (X , x) → (Y , y) and
f ′ : (X ′, x ′) → (Y , y)

(Y , y)

(X , x)

f
77

ιX // (X , x) ∨ (X ′, x ′)

∃! f ∨f ′
OO

(X ′, x ′)
ιX ′oo

f ′
gg
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category of probabilistic pointed sets PS∗: coproduct of
ΛX =

∑N
i=1 λi (Xi , xi ) and Λ′X ′ =

∑M
j=1 λ

′
j(X

′
j , x

′
j )

ΛX ⨿ Λ′X ′ :=
∑
ij

λiλ
′
j (Xi , xi ) ∨ (Yj , x

′
j )

with coproducts (Xi , xi ) ∨ (Yj , x
′
j ) of pointed sets

induces coproduct on FP

(X ,P)⨿ (X ′,P ′) = (X × X ′,P · P ′)

statistically independent probabilities
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universal property of coproduct in PS∗

morphisms Φ = (S ,F ) : ΛX → ΣY and
Φ′ = (S ′,F ′) : Λ′X ′ → ΣY with ΣY =

∑
k σk(Yk , yk)

SΛ = Σ and S ′Λ′ = Σ

F = {fka,r}Nr=1 with probabilities
∑

r µ
(ka)
r = Ska and

F ′ = {f ′ka′,r ′}Mr ′=1 with probabilities
∑

r ′ µ
(ka)
r ′ = S ′

ka

construct F ∨ F ′ as set {fka,r ∨ f ′ka′,r ′} of pointed maps from

coproducts of pointed sets with probabilities σ−1
k µ

(ka)
r µ

(ka′)
r ′ for

σk ̸= 0 and M−1µ
(ka)
r + N−1µ

(ka′)
r ′ for σk = 0

then set (Φ⨿λ Φ′) = (S ⨿ S ′,F ∨ F ′) with

(S ⨿λ S ′)k,(a,a′) =

 σ−1
k · Sk,a · S ′

k,a′ σk ̸= 0

Sk,a + S ′
k,a′ σk = 0.
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to see universality holds, need to construct morphisms
Ψ : ΛX → ΛX ⨿ Λ′X ′ and Ψ′ : Λ′X ′ → ΛX ⨿ Λ′X ′, such that,
for any Φ,Φ′ morphisms to ΣY diagram commutes

ΣY

ΛX

Φ

99

Ψ // ΛX ⨿ Λ′X ′

Φ⨿Φ′

OO

Λ′X ′ .

Φ′
ff

Ψ′
oo

take Ψ = (I,F) and Ψ′ = (I ′,F ′) with morphisms
I ∈ MorFP(Λ,Λ · Λ′), I ′ ∈ MorFP(Λ

′,Λ · Λ′) given by

(I)(b,b′),a = δab λ
′
b′ and (I ′)(b,b′),a′ = δa′b′ λb.

these satisfy IΛ = Λ · Λ′ and I ′Λ′ = Λ · Λ′

probabilistic pointed maps F = (F(b,b′),a = δabFb′b),
F ′ = (F ′

(b,b′),a′ = δa′b′F ′
bb′) inclusions of pointed sets

(Xb, xb)
Fb′b
↪→ (Xb, xb) ∨ (X ′

b′ , x ′b′), (X ′
b′ , x ′b′)

F ′
bb′
↪→ (Xb, xb) ∨ (X ′

b′ , x ′b′)

respectively chosen with probability λ′b′ and λb

Matilde Marcolli Convexity, Simplexes, Probabilities



Coproduct in probabilistic categories PC

similarly if C has coproduct then probabilistic category PC
also has coproduct

ΛC ⨿ Λ′C ′ =
∑
i ,j

λiλ
′
j Ci ⨿C C ′

j

it satisfies universal property: same argument as for PS∗
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Statistical independence: product or coproduct?

categorical product: an object X1 × X2 such that, for all
morphisms f1 : X → X1 and f2 : X → X2 ∃! morphism
h : X → X1 × X2 with commuting

X
f1

zz

f2

$$
h
��

X1 X1 × X2
π1oo π2 // X2

category FP does not have a universal categorical product

...but tensor category with projections: (C,⊗) with two
natural transformations πi : ⊗ → Πi with Πi (X1,X2) = Xi

and for any morphisms fi : Yi → Xi commuting

Y1

f1
��

Y1 ⊗ Y2

πY1oo
πY2 //

f1⊗f2
��

Y2

f2
��

X1 X1 ⊗ X2

πX1oo
πX2 // X2
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in tensor category with projections two morphisms fi : X → Xi

are independent if there exists a morphism h : X → X1 ⊗ X2

such that product diagram commutes

in FP this notion of independence agrees with statistical
independence

(X1,P1)⊗ (X2,P2) = (X1 × X2,P1P2)

in previous construction of coproduct shown that product of
statistically independent measures can also be interpreted as
coproduct in the category FP
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