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Convexity is the mathematical property that describes the
operation of mixing

@ notation: E" Euclidean space in n-dimensions, A" affine space
(usually over C or R), P" = (A"*! \ {0})/G,, projective
space (quotient by multiplicative group C* or R*)

@ over R: line segment in E”
b so = {X=dx1 +Aax2 [ A >0, A1+ X2 =1}

convex linear combinations of extremal points x1, xo

@ barycentric coordinates: simplex

Do = 1= Aoxitdoxot Ay [ A >0, YN =1}

1

@ convex set: each point in the set has unobstructed view of all
other points in the set (line segment connecting them is
entirely contained in the set)
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convex hull

set S C A" convex hull H(S) smallest convex set in A"
containing S

if S is a finite set of points H(S) is a polytope

if S consists of N + 1 points not all on any N — 1 affine
subspace, H(S) is an N-simplex Ag (or Ap(S))

C convex set in some ambient AV: dimension dim C = n if
largest n for which C contains a simplex A,

slices C N A of convex sets by lower dimensional affine
subspaces A¥ ¢ AN are also convex sets
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Cones
o C C AN convex set, cone € C ANTL: take point x € AN*t1
not in C and union € of all half-line from x passing through
points of C (unbounded cone)

@ cones have a partial ordering x < y in ¢ iff y —x € ¢

e cone C C EN, dual cone: €V = linear functionals
f € E"Y = Hom(E",R) such that f(x) >0 forall x € C

e with Euclidean metric identify E" ~ E"Y, then cone is
self-dual if C = CV in this identification
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convex bodies

topologically an n-dimensional convex set is always
homemorphic to an n-ball (move along the rays from an
interior point, center of the ball)

A

convex body C a compact convex set (while convex cones C
always non-compact)

convex bodies and convex cones over a convex body always
have extremal points that are not convex combinations of
other points (pure points, pure states)

but not true for other convex cones (eg half-space)

k-dimensional face F C C of an n-dimensional convex set: if a
point x € Cisin F and x = Ax; + (1 — A)x,, for some
0 <\ <1, then xq,x5 also in F

partial ordering by inclusion of the set of faces of a convex set
(lattice of inclusions)
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Facts about convex sets

@ Minkowski: every convex body Y is convex hull Y = C(X) of
its set X of pure points

e Carathéodory: given X C E” (so dim X < n), any x € H(X)
is a convex combination of at most n+ 1 points of X

x=) Nxp Y N=1 A=0

Note that here \;, x; depend on x

@ case of simplex: all points written as a mixture in a unique
way (this property characterizes simplices)

@ number of k-faces in an n-simplex

#lhtacest = (171) = (17)) = #0- k1) faces)

lattice of faces is self-dual (in fact it is also a Boolean lattice)
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supporting hyperplanes of convex sets: C C E” real
hyperplane H that intersects C and such that all of C lies in
the same half-space cut out by H

regular point of C, point x on JC such that there is only one
support hyperplane through x

regular support hyperplane meets C at only one point

regular convex set C all points and all support hyperplanes are
regular

a ball is regular a simplex is not

Hahn-Banach: C C E” convex body and xy € E" \. C then
3f : E" — R linear functional such that f(x) > 0 for all x € C
and f(xg) < 0 (think in terms of support hyperplanes)

convex functions f : C — R from C convex body such that
FAx+ (1= A)y) < M(x) + (1= Nf(y)

Vx,y € C and VA € [0,1]
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Another way to think of simplices: Simplicial Sets
Simiplicial Sets: intuition

Sets locally described by simplexes appropriately glued together
along faces (subtleties: some simplexes can be degenerate etc.)

Idea: these sets locally have “mixing property” of simplexes
(barycentric coordinates) but are not necessarily globally convex
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Categories
e Category: C with objects Obj(C) and morphisms Hom¢(X, Y)
for X, Y € Obj(C) (small categories: Obj(C) and
Hom¢ (X, Y) are sets); composition

Hgm(X, Y) x Hgm(Y,Z) — Hgm(X,Z), (¢, 0) — oo

is associative; there is an identity morphism
1x € Hom¢(X, X) for every object X

@ Functors F : C — C’ between two categories, maps objects to
objects F : Obj(C) — Obj(C’) and morphisms to morphisms
F : Hom¢(X, Y) — Home/ (F(X), F(Y)) respecting
composition and identities, F(¢ o) = F(¢$) o F(¢) and
F(1x) = 1rx)
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e Natural transformations of functors: F, G : C — C’ functors,
natural transformation n: F — G
o for all objects X € Obj(C) a morphism nx : F(X) = G(X),
nx € Home/ (F(X), G(X))
e for every morphism ¢ : X — Y, ¢ € Home(X, Y),
compatibility ny o F(¢) = G(¢) o nx
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Another way to think of simplices: Simplex Category (or A
category)

e Simplex Category: objects in Obj(A) are totally ordered sets
[n] = {0,1,..., n}; morphisms in Homa([n], [m]) are
nondecreasing maps f : [n] — [m]

fF(i) <fQ) for i<

@ this category “looks like a simplex”: this can be seen by
showing that the morphisms are generated by a set of faces
and degeneracies morphisms (all morphisms are finite
compositions of those)
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Simplex Category: Faces and Degeneracies
e D; increasing injection [n] — [n + 1] not taking value i; S;
nondecreasing surjection taking value i twice

@ morphisms are generated by maps D; : [n] — [n + 1] and
Si:[n+1] —[n]

Di[0,....,n] =1[0,...,7i,...,n], Si[0,....,n]=1[0,...,0,i,...,n]|

@ in A the D; become face maps d; : [n+ 1] — [n] and S; the
degeneracy maps s; : [n] — [n+ 1]

D, 2 2 d, 2
.
0 1 0 1 0 1 0

2 s,
iﬁ/_&\‘ (\011
— o o—
0 1 0 1 0 1 0 1

image of degeneracy s; degenerate 2-simplex image of collapse map S;
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@ generators in A faces D7 : [n] — [n + 1] and degeneracies
S [n+1] — [n]
o relations

Di*toDr =Dt oD i<

SfoSMtt=5roSM i<
FoSIt i<y

Sfo DI = ¢ 1d, i=jori=j+1
Df oSt j+1<i

@ any nondecreasing maps f : [n] — [m] is a finite composition
of DK's and Sf's

Matilde Marcolli Convexity, Simplexes, Probabilities



Simplicial Sets: rigorous definition

@ Simplicial set: functor X : A°? — S to the category of sets
(contravariant functor from A)

@ this means collection of sets X, = X([n]) images of objcts of

A-category endowed with face and degeneracy maps:
n-skeleta of the simplicial set

Matilde Marcolli Convexity, Simplexes, Probabilities



Realization
@ Realization of a simplex: |A”| the geometric simplex
realization of combinatorial A" = [n]
e Standard simplex |A”"] is simplex A, = Ag, ... ¢, of standard
o.n. basis in E"1
n+1
A" =D, ={x€E"™|x>0and Y x =1}
i=0

@ Realization of X
[ X[ := Un(Xn x [A"]) ) ~

modulo equivalence relation (x, S;(t)) ~ (si(x), t) and
(x, Di(t)) ~ (di(x), t)

@ interpret as recipe for gluing the geometric simplexes |A”|
together according to the combinatorial scheme prescribed by
the X, so that faces and degeneracies match
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glue

0 1 DyA!

\
Y-V A

I3,
0 1
Sip ‘
collapse
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e Nerve: simplicial sets from categories

o category Cat of small categories with functors as morphisms,
nerve functor A/ : Cat — AS to the category of simplicial sets
AS = Func(A°,S)

e for a small category C the nerve N(C) has a 0-simplex
(vertex) for each object of C, a 1-simplex (edge) for each
morphism, a 2-simplex for each composition of two morphishs,
a k-simplex for every chain of k composable morphisms

@ face maps: composition of two adjacent morphisms at the i-th
place of a k-chain d; : Nk(C) — Ni_1(C) and degeneracies are
insertions of the identity morphism at an object in the chain
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e Products: product of simplexes is not a simplex but can be
decomposed as a union of simplexes

Cubes behave better than simplexes with respect to products
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Simplicial and cubical complexes
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e Cubical sets in topology

@ 7 unit interval as combinatorial structure consisting of two
vertices and an edge connecting them

@ |Z| = [0, 1] geometric realization: unit interval as topological
space (subspace of R)

@ 71" for the n-cube as combinatorial structure and |Z"| = [0, 1]"
its geometric realization

e 79 a single point
o face maps 67 : I" — I, fora€ {0,1} and i =1,...,n

0 (tr, ... tn) = (t1, ..., tic1,8, Eiy ..oy th)
@ degeneracy maps s; : " — "1

S,'(tl, ceey tn) = (tl, oy tic, tig1, .., tn)
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@ cubical relations for i < j
6}’ 067 =670 5}’_1 and sjosi=s;_105;

and relations
5?05',',1251'0(5,? 1<y
a PR . a ; ;
07 1085 =s57007 >

@ Cube category: € has objects Z” for n > 0 and morphisms
generated by the face and degeneracy maps 67 and s;

o Cubical set: functor C : €% — § to the category of sets.
@ notation: C, := C(Z")
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@ variant of the cube category €. with additional degeneracy
maps 7; : " — I"! called connections

Yilte, ..oy tn) = (t1, ..., ticg, max{t;, tiz1}, tivo, ..., tn)

satisfying relations

ViSj+1 1<j
Vi =Vis1, 1 <0 spi=4 SE=sisip1 =]
Yi-15j I1>J
0fvj-1 1 <J
)1 i=jj+1,a=0
WOEN et i=jj+1a=1

0f vy i>j+1

@ role of degeneracy maps: maps s; identify opposite faces of a
cube, additional degeneracies ~; identify adjacent faces
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cubical set with connection: functor C : ¢2° — S to the
category of sets

category of cubical sets has these functors as objects and
natural transformations as morphisms

so morphisms given by collection o = () of morphisms

ap @ G, — (] satisfying compatibilities a0 67 = 67 o v and
aos; = s;oa (and in the case with connection ao~; = y;0 )
cubical nerve NVgC of a category C is the cubical set with

(NeC)n = Fun(Z",C)

with Z" the n-cube seen as a category with objects the
vertices and morphisms generated by the 1-faces (edges), and
Fun(Z",C) is the set of functors from Z" to C

when working with cubical sets with connection homotopy
equivalent to simplicial nerve

R. Antolini, Geometric realisations of cubical sets with
connections, and classifying spaces of categories, Appl. Categ.
Structures 10 (2002), no. 5, 481-494.
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Simplexes and Probabiities
@ X finite set with cardinality N +1 = #X

@ Probability measure P on X: to all x € X assign Py > 0 with
normalization >y P, =1

@ Set P(X) of all probability measures on X is a copy of the
simplex Ay

P(X) = {(P)xex|,Px >0 and > P, =1} ~ Ay,
xeX

where vertices of simplex Ay are probabilities P = 6 with
58 =1 and 69 = 0 for all y # x
@ choose a bijection X ~ {0,..., N} then

N
PX)=An ={x= () e R Y x=1}
i=0
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Partial ordering

@ transformations of probability distributions: transformations of
RN+1 preserving positivity and £1-norm of non-negative
vectors

o for x € RN*! et xt be the vector obtained from x by a
permutation of coordinates so that in non-increasing order

52X 2 2 2y
o for x,y € RNt let y = x iff

k k

doxr <>yt V0<k<N

i=0 i=0

where for probabilities the last one is

N N
ST T
i=0 i=0
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have x = x and if x = y and y = z then x = z

don’t have y = x and x = y implies y = x (only up to a
permutation), but when written in the form Xi and x* implies
equal

so get partial ordering on these

there are pairs x, y for which neither x = y nor y = x

there is a smallest element given by the uniform distribution

. _ 1 1 )
SN AN 1T N4

largest: N + 1 probabilities with one 1 entry and all other
entries 0
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@ Shur convex functions x = y = f(x) > f(y)

@ examples: elementary symmetric functions
so(x) =1, si(x)=x1+-+xu,
(x) = Zx,-XJ, ey osy(Xx) = x1c X
@ set of vectors majorized by a given one is a convex set

x>yandx=z = x=Ay+(1-A)zVAe[0,1]
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convex set of probabilities x inside A3 majorized by a given vector:
pure points of the convex set permutations of entries of the vector
(from Ingemar Bengtsson, Karol Zyczkowski “The geometry of
quantum states”, Cambridge 2007)
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examples inside Ay4: probabilities majorized by given vector (from
Ingemar Bengtsson, Karol Zyczkowski “The geometry of quantum
states”, Cambridge 2007)
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Stochastic Matrices

o S=(S;) € Myxn(C) with S; >0and SNV, S; =1
(columns are probability measures)

@ 5 > 0: preserves positivity; vazl Sjj = 1: preserves {1-norm

@ bistochastic if EJNZI Sjj =1 as well

@ bistochastic matrices also fix the point X(n): they cause
contraction of the probability simplex toward the center

e Hardy-Littlewood—-Pdlya: x = y = 3 S bistochastic with
y =35x

@ bistochastic matrices form a semigroup; only ones with a
bistochastic inverse are permutation matrices

@ Birkhoff theorem: set of N x N bistochastic matrices is a
convex polytope with pure points the N! permutation matrces
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Perron-Frobenius Theorem (strictly positive case)

o A= (Aj) with A; >0

e I positive eigenvalue A4 = p(A) (spectral radius) with all
other eigenvalues |A| < Ap

@ eigenvalue A4 is simple

@ eigenvector v = (va ), with A vy = Aavy, entries va; >0

@ same for transpose A”: left eigenvector w, with
wa A= Aavy and with wy ; > 0 and with

wp-va=1
@ these are only eigenvectors with positive entries (up to scalar
multiples)
o limit
Ak
lim — = v, wh.
k—o00 )\ﬁ A=A

@ column sums

min Aii < Aa < max Aji
; Z j="NA = : Z ij
J J
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Perron-Frobenius Theorem (non-negative case)
o A= (Aj) with A; >0
@ assume irreducible: Vi,j 3m > 1 with (A™); >0
@ equivalent: associate to A a graph G, with N vertices and
oriented edge from i to j iff Aj > 0, then A irreducible means

that Gg is strongly connected: given any two vertices there is
an oriented path from the first to the second

@ period hy of A is greatest common divisor of the m such that
(A™);i > 0 (independent of i if A irreducible)
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Perron-Frobenius: 3 eigenvalue Ag = p(A) > 0 simple

3 left/right eigenvectors w,, v4 with positive entries

o these are the only eigenvectors that are positive (up to scalar
multiples)

@ there are hy complex eigenvalues A with |\| = A4, each
A = AaC (¢ root of 1) and simple

column sums

min Aii < Aa < max A;i
; Z j =" = : Z ij
Jj J
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Stochastic matrices

@ S stochastic matrix, columns sum estimate of
Perron-Frobenius theorem shows Ag = 1

@ Perron-Frobenius eigenvector is an invariant measure
Svs = Vs
@ stochastic matrices as linear maps = Markov maps

@ Markov chain = sequence of Markov maps

Note: can also consider stochastic N x M matrices with S;; > 0
and Zj’\iIS,-jzl fori=1,...,N
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Categories of finite probabilities

@ Category of finite probability spaces with stochastic matrices
FP

@ objects Obj(FP) are pairs (X, P) of a finite set X with a
probability measure P

e morphisms S € Homzp((X, P), (Y, Q)) are stochastic
(#Y x #X)-matrices S with

© 5,>0 forallxe X, yeVY
° Zyeysyx =1forallxe X
e the probability measures are related by @ = S P

Note: objects (X, P) of FP can be thought of as fuzzy sets,
with Py value at x € X of the membership function of the
fuzzy set
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e Category of stochastic maps FinStoch (Baez—Fritz)
@ objects in Obj(FinStoch) are finite sets X

@ morphisms Homrinstocn(X, Y) are stochastic maps (assign a
probability on Y to each point in X): stochastic matrices

S=(Sx) Sx>=0, > Su=1VYxeX.
yey
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Under Category

@ category C and object A € Obj(C)
@ under category A | C (also denoted A/C):

o objects Obj(A | C) are morphisms ¢ : A — B of C with source
A

o morphisms F € Homaic(¢p: A— B, : A— C) are

commuting triangles
A
/N
B——C
F
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Categories FP and FinStoch
@ FP is the under category 1 | FinStoch
@ stochastic maps P : 1 — X are probability distributions on X
@ so objects of 1 | FinStoch are pairs (X, P)

@ triangles

are stochastic matrices S with SP = @

Matilde Marcolli Convexity, Simplexes, Probabilities



Category of finite probability measures FinProb
@ objects in Obj(FinProb) are pairs (X, P) of a finite set with
a probability measure

e morphisms f € Homginpron ((X, P), (Y, Q)) are functions
f : X — Y that are measure preserving

Q= > P

xe€f~1(y)

o relation between FinProb and FP: subcategory FinProb
where for each x there is a unique y = y(x) such that
Syx > 0: then stochastic matrix must have S, =1, s0 S is a
(single valued) function f : X — Y that is measure preserving
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Pointed Sets and FP

e category FS, of finite pointed sets: objects (X, xg) finite sets
with a base point; morphisms f : (X, x0) — (Y, o) functions
between sets f : X — Y that preserve base points, f(x0) = yo

e FS. as subcategory of FP: objects (X, dx,) and morphisms
stochastic maps S : (X, dx,) — (Y, dy,) with
Syx = Xf-1(y)(x), with x the indicator function,

yo,_y - Z SyX(SXo X Z 5X0,X

xef~1(y)

Category S, of pointed sets (not necessarily finite) similarly defined

Note: can think of finite probability (X, P) as a formal convex
combination of pointed sets

=Y P (X))

xeX
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Category of probabilistic pointed sets PS,

@ objects in Obj(PS.) are convex combinations of pointed sets
AX = Xi(Xi, %),

where A = (A\;) wtih \; > 0 and > ;. A\j =1 and
X = {(Xi, xi)} a finite collection of pointed sets
@ morphisms ® € Morpg, (AX, N X') are pairs & = (S, F)
@ S is a stochastic map with SA = A’
@ F = (Fj) is a collection of probabilistic pointed maps
Fii = (Xi, xi) = (X, )
@ probabilistic pointed map Fj; is a finite set {Fj; ,} of pointed

maps Fji 5 (X, %)) = (X], x;) together with a set of

probabilities ugi) with >, ua.’) =Sji
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@ composition of morphisms ® = (S, F) : AX — A'X’ and
¢ = (S5, F): NX — LY given by

P od= (505 FoF)

@ S’ 0 S product of stochastic matrices

@ FloF ={(F'oF)k} with set (F' o F)y = {F,’(j,a o Fjip} and
probabilities ;{9 %"

o with 32, uSud) = 35155 = (5" 0 S)i

@ probability associated to set (F' o F)y in F' o F is (§' 0 S)
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Embedding of category FP in PS,
e mapping A = (\;) to the set Ax = > \i({*i}, %)
@ morphisms SA = A’ to ® = (5,1) with 1 = {1;;} with
probabilities S;;

o forgetful functor from PS, to FP maps AX to finite probability
A and morphism ® = (S, F) to stochastic matrix S
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Probabilistic categories PC
e from pointed sets S, to probabilistic pointed sets PS,
@ more general similar procedure starting from a category C

@ PC category with objects in Obj(PC) given by formal finite
convex combinations

AC =) NG,

with A = (\;) with >, X\; =1 and C; € Obj(C)
@ morphisms ® : AC — N'C’, & € Hompe(AC, N C') given by
pairs ® = (S, F)
o S a stochastic matrix with SA = N
o F = {F.p,} finite collection of morphisms F, . : Cp — C},
with assigned probabilities 2°
o probabilities satisfy >, u2® = S,

interpret F as mapping of C, to C; by choosing randomly in the
set {F,p r} with probability 12P of choosing Fab.r
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Wreath product interpretation

@ construction of PC from C can be seen as a wreath product
FPC of the category C with the category FP of finite
probabilities

@ it has the effect of rendering the category C probabilistic
(objects are a mixture of objects and morphisms are randomly
chosen with a stochastic map of the mixtures)
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Zero Object

@ Zero object 0 € Obj(C): for all X € Obj(C) there is a unique
morphism 0 — X and a unique morphism X — 0

@ Zero objects are unique up to unique isomorphism

@ points % are zero objects in the category S, of pointed sets
@ singletons (x, 1) are zero objects in the category FP

e unique morphism Q s ({x},1) = (Y, Q) given byA@yX =Q,
o unique morphism 1: (Y, Q) — ({x},1) given by 1,, =1 for

alyeyY
1:ZQy221XyQy

yey yey

Matilde Marcolli Convexity, Simplexes, Probabilities



@ singletons X = ({x}, x) with A =1 are zero objects in PS,

e unique morphism ® = (S5, F) : ({x},x) = > Xi(Xj, x;) with
S = A (unique morphism in FP from ({x},1) to A) and
F = (F;) with F; : x — x; with probability \;

o unique morphism ® = (S, F) : AX — ({x}, x) where S = 1,
(unique morphism in FP from A to ({x},1)) and F = (F;)
with F; @ (Xi, x;) = ({x}, x) the constant function with
probability 1

@ same argument: if C has a zero object then PC has a zero
object given by the zero object of C with A =1
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Categorical Sum (Coproduct)
@ category of pointed sets S.: coproduct of (X, x) and (X', x)

(X, x)V (X', x") = (XUX'/x~X)

@ universal property of coproduct: 3 morphisms ¢x, tx such
that for any given morphisms f : (X,x) — (Y,y) and
(XL X)) = (Y, y)

(Y.,y)

i

(X, x) —% (X, x) V (X, x') Z— (X', x')
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category of probabilistic pointed sets PS,: coproduct of

AX =30 Xi(Xi,xi) and N X" = 3T, N(XI, X))

AXTINX =) " NN (Xi,xi) V (Y, X))
ij

with coproducts (Xj, x;) V (Y], x;) of pointed sets

induces coproduct on FP
(X,P)IL (X', P Y= (X x X',P- P

statistically independent probabilities
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universal property of coproduct in PS,
e morphisms ® = (S, F) : AX - XY and
O = (S, F): NX = XY with TY = 3, o (Vi vi)
@ SA=X and S'N =
° F {fka,} ", with probabllltles >, Mr = Sk, and
= {fiy ,}M_, with probabilities 3", ,ur, ka) St
e construct FV F’ as set {fi,, V f]

Kol r” ,} of pointed maps from

coproducts of pointed sets with probabilities o, 1/¢$ ),uE ) for
ok #0and M~ lu(ka)—i-N 1 ( )forak:O
@ then set (® 11, ¢') = (SHS', Fv F’) with

Ska‘Ska/ O’k?’éo

(STx S )i (a,0) = /
Sk,a + Sk,a’ Ok — O
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@ to see universality holds, need to construct morphisms
V:AX - AXTIANX and V' : N X" — AXTIN X', such that,
for any ®, ' morphisms to XY diagram commutes

XY
Sl
AX Yo AXTINX <Y N X

e take W = (Z,F) and V' = (Z', F') with morphisms
Z € Morzp(A,N-N), Z' € Morzp(N,N- N) given by

(D) bpry,0 = 0ab Ay and  (Z')(p 1), = Oarty Ab-

o these satisfy ZA=A-N and TN =A- N
o probabilistic pointed maps F = (F(p 1,2 = dabFb/b),
F' = (‘7:(/b,b’),a’ = 0y F}y ) inclusions of pointed sets

For Frpr
(vaxb) bb (vaxb) (X[;HX[I)/)v (Xt/)/vxllu’) &; (Xb7Xb) \ (Xt/J’aXI/J/)

respectively chosen with probability A}, and A
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Coproduct in probabilistic categories PC

@ similarly if C has coproduct then probabilistic category PC
also has coproduct

ACTINC => AN Gl Cf
i:j

@ it satisfies universal property: same argument as for PS,
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Statistical independence: product or coproduct?
@ categorical product: an object X; x X3 such that, for all
morphisms f; : X — X1 and £ : X — X, 3! morphism
h: X — Xi x Xo with commuting

X
SN
h
X1JX1 XX2L>X2

o category JFP does not have a universal categorical product

@ ...but tensor category with projections: (C,®) with two
natural transformations 7; : ® — I1; with M1;( X1, X2) = X;
and for any morphisms f; : Y; — X; commuting

Ty, Ty.
Yi=<— V1@ Y ——=Y,

iﬂ lfl@ﬁ J{fz
7T X

X1

X2
X1<=—X1 X —= X
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@ in tensor category with projections two morphisms f; : X — X;
are independent if there exists a morphism h: X — X1 ® X,
such that product diagram commutes

@ in F'P this notion of independence agrees with statistical
independence

(X1, P1) @ (X2, P2) = (X1 x Xo, P1P2)

@ in previous construction of coproduct shown that product of
statistically independent measures can also be interpreted as
coproduct in the category FP
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