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Coding and information

@ source of information: random variable X with values in a
finite alphabet 2l generating a sequence of symbols

e 2* all finite sequences (arbitrary length) in the alphabet 2
o AN all sequences of length N

@ Problem: store the information contained in a given sequence
x € AN in the most compact way

@ source coding: a source code for the random variable X with
a reference alphabet (say {0,1} case of a binary code)

E-aN — {0,1}* x~— E(x) codewords

@ stream of outputs of random variable X: break into blocks in
2AN and apply encoding E to blocks, get sequence of
codewords

XoX1Xp Xp = E(xo) E(x1)E(xp) -+ E(xp) -
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decoding

@ usually more than one way of parsing this concatenation into
codewords: ambiguities

@ need code that avoids problem: any concatenation of
codewords can be parsed unambiguously

@ uniquely decodable code

o requirement: for any x,x’ € AV, the codeword E(x) is not a
prefix of E(x’): called instantaneous codes
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Example of instantaneous source code: each codeword assigned to
a node in a binary tree so that none is an ancestor of another
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average length of encoding

@ how good is a source code used to store information from a
source X7

@ (p(x) length of the string E(x)

@ average length

L(E) := Z p(x) Ce(x)

xeAN

@ p(x) probability that the random variable X' produces the
string x

@ measure of efficiency of code: a code can achieve a shorter
average length by assigning shorter codewords E(x) to strings
x that occur more frequently (higher probability) and longer
code words to sequences occurring more rarely

@ can this be optimized?
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optimal average length

@ random variable X’ with Shannon entropy
ZIP’ x) log P(X = x)

@ Ly shortest average length achieved by instantaneous codes
e for all N > 1 and Xy with x € AN outputs

S(Xn) < Ly <S(Xn) +1

o if source has finite entropy rate

im W) _
N—oco N
then also
lim Lw
— =0
N—oo N
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Shannon codes
@ in an automatic binary code can always represent code words
as leaves of a binary tree
e Kraft inequality follows

Z 2—Le(x) <1

xeAN

(erase all descendants as cannot be other codewords in
automatic code: total number of erased descendants < total
number of descendants)
@ any set of lengths {/(x)} satisfying Kraft inequality is set of
lengths of an automatic binary code
minimize average length over all {¢(x)} with Kraft inequality
Lagrange multipliers = ¢(x) = — log, p(x)
these minima may not be realizable as some not integers

but give average length equal of Shannon entropy (lower
bound S(Xy))
e realizable ¢'(x) = [— log, p(x)] give upper bound S(Xy) + 1
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Channel coding: information transmission
@ redundancy helps correct some transmission errors

@ level of redundancy related to maximal level of noise tolerated
for error-free transmission

o here encoder is a map E : {0,1} — {0, 1}V with N > M

@ channel C described by a transition probability Pc(y|x) where
y € {0,1}" what is received and x € {0, 1}" what was
transmitted

@ decoder computes from y an estimate x' of the transmitted
message x

@ memoryless channel:
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Mutual information
e random variables X, Y with probabilities p(x) = P(X = x)
and p(y) =P(Y = y)
e mutual information Zx y of two random variables

p(x,y)

IXY—ZPX Y)logzm

X,y

o for a channel apply to y € AN received message and x € AN
transmitted message

p(x,y) = p(x)Pc(y|x)

@ Tx y measures reduction in uncertainty about x by knowledge
of y
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Channel capacity

@ channel capacity:

= max x,y)lo Ply)
C=maxd plxylo 50

@ Example: if output of the channel is pure noise y and x
uncorrelated so C =0

e Example: if y = f(x) deterministic function then
C = max, S(p) =1 (for binary)

@ Example: channel with flip probability p and source with

(g,1 — q) probabilities: mutual info maximized when source
uniform g = 1/2 then C =1 — S(p)

Focus here on properties of codes C : {0,1}" — {0,1}V (and
more general non-binary codes) by studying their parameterizing
space

Matilde Marcolli Codes and Complexity



Error-correcting codes

e Alphabet: finite set A with #A =q > 2.
e Code: subset C C A", length n = n(C) > 1.

e Code words: elements x = (a1,...,a,) € C.

e Code language: W¢ = Um>1 W, m, words w = X1, ..., Xm;
x; € C.

e w-language: Nc, infinite words w = xq, ..., Xm,...; x; € C.

e Special case: A =y, linear codes: C C Fy linear subspace
e in general: unstructured codes
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Code parameters
e k= k(C) :=log, #C and [k] = [k(C)] integer part of k(C)

gl < #C =gk < gIH

e Hamming distance: x = (a;) and y = (b;) in C
d((a,-), (b,)) = #{I S (1, ceey n) ‘ a; # b,'}
e Minimal distance d = d(C) of the code

d(C) :=min{d(a,b)|a,be C,a# b}
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Code parameters
e R = k/n = transmission rate of the code
e 0 = d/n = relative minimum distance of the code

Small R: fewer code words, easier decoding, but longer encoding

signal; small §: too many code words close to received one, more

difficult decoding. Optimization problem: increase R and ¢... how
good are codes?

e M.A. Tsfasman, S.G. Vladut, Algebraic-geometric codes,
Mathematics and its Applications (Soviet Series), Vol. 58,
Kluwer Academic Publishers, 1991.
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The space of code parameters:
e Codes, = set of all codes C on an alphabet #A = g

e function cp : Codes; — [0,1]?> N Q? to code parameters
cp: C— (R(C),6(C))

e the function C — (R(C),d(C)) is a total recursive map
(Turing computable)

e Multiplicity of a code point (R, §) is #cp (R, )
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Bounds in the space of code parameters

e singleton bound: R+4§ <1
@ from singleton bound k < n—d+1 forn—
@ code words ci, ..., cpy this bound says M < g"—9+1
e for code word ¢; prefix ¢/ of length n —d +1

o for any i # j must have ¢ # ¢/ otherwise
du(ci, ) <n—(n—d+1)=d—1butd
@ so M = # prefixes of length n — d + 1, at most g"~9+1

e Gilbert—Varshamov line: R = %(1 — Hq(0))
Hq(6) = 0 log,(q — 1) — 6 log, 6 — (1 —6) log,(1 — 0)

g-ary entropy (for linear codes GV line R =1 — Hg(6))
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Shannon Random Code Ensemble (SRCE)

@ study behavior of codes by focusing on ensembles of random
codes

@ case of binary codes (more general codes analogous)

@ want to randomize encoding map E : {0,1}% — {0,1}": there
are 2" such possible encoding maps (specify n bits for each
of the 2% codewords)

@ in SRCE encoding map is picked uniformly at random from
this set

o then encoding of a message: sequence of x; € {0,1}* and
corresponding sequence of codewords E(x;) € {0,1}"
obtained by tossing an unbiased coins N-times, with i-th
result being the i-th coord of E(x;)

@ random codes are not injective: different words can have same
encoding, but such occurrences are rare in probability
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decoding problem for random codes

e probability distribution P(x|y) of x being the channel input if
y is the received message

@ suppose memoryless channel with Pc(y|x)

@ Bayes rule:
P(x|y) = Z(ly) ]__IIPC(Y,'|X/)P(X)

with Z(y) determined by imposing normalization condition
> «P(x|ly) =1 and P(x) a priori probability of x being
produced as message at the source

e if source uniform probability P(x) = 27k

Matilde Marcolli Codes and Complexity



Geometry of Shannon Random Code Ensemble
e code: set C of 2% codewords inside ambient space {0,1}"
@ each of these points drawn with uniform probability from
{0,1}"
@ how many codewords are near a given codeword?

e Hamming distance dy(x,x’) = #{i : x; # x’;} number of
differing coordinates
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Hamming enumerator
e Hamming distance enumerator N, ) (d)
@ counting number of codewords at distance d from a chosen
one x(0)
e average E(N (o) (d)) over the code ensemble

@ since all code words drawn independently with uniform
probability result should not depend on which x(© used, so
pick x(©) = (0,0,...,0)

@ given 2K — 1 points chosen uniformly at random in {0,1}"
how many are at distance d from (0,0,...,0) corner?

o number of points (2K — 1) times fraction of Hamming volume
at distance d from (0,0,...,0) (which is 27"(7])), Hamming
“sphere”
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asymptotics of Hamming enumerator
@ when n — oo with d/n — § and k/n — R finite

E(N,0(d)) = (2K — 1)27" (Z) . on(R-14 ()

Hx(8) = —dlogy 0 — (1 — §) logy(1 — 6)
Shannon entropy
@ similar for g-ary codes, alphabet A with #A=q > 2

E(Nyo(d)) = (¢ — 1) q‘”(Z) (q—1)7 ~ g(R71HHO)

with g-ary entropy
Hq(6) = dlogy(q — 1) — dlog, 0 — (1 — d) log,(1 — 4)
@ Hamming ball volume

Volg(n, d) = Zd: <7> (q— 1)
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estimate of Hamming ball volume
upper bound estimate

1=G+-p)"
-3 (”) pu-pr 3 (3) Fa-pr
zg(?)pi(l—w-i |
:;@ (@—1) (%)l(l—p)ﬂ
:fi@<q-”"“-p>“(<q-1il-p>)
>3 (1) v ()
- (;25) a-pr S (1) -

i=1

> Vol (pn, n)g~":®
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estimate of Hamming ball volume
Stirling formula:

V2mn (S)n (™ < nl <271 (g)n er2(m)

(o) = GG

(n/e)" Ma(m)—Aa(pm) —ra((1—pIn)
> .
(pn/e)Pn((1 - p)n/e)t-pin \/21rp(1 -p)n
£(n)

)
(1= )P

then lower bound estimate

Volomn) > ()= 1

(-1
pr(l—p)i-en
> anq(p)+losq i(n)
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Statistics of codes and the Gilbert—Varshamov bound
Known statistical approach to the GV bound: random codes

Shannon Random Code Ensemble: w-language with alphabet A;
uniform Bernoulli measure on A4; choose code words of C as
independent random variables in this measure

Volume estimate:

d
gHa(®) o0 < Vol (. d = ns) =3 (">(q 1) < gHaom
j=0

Gives probability of parameter § for SRCE meets the GV bound
with probability exponentially (in n) near 1: expectation

k
E ~ <q2 ) Vo/q(n, d)q—n N qn(Hq(5)—1+2R)+o(n)

Matilde Marcolli Codes and Complexity



code words distribution in random codes
L ]

L \
codewords

.

. o -~
yd \‘, .
(X r)G\,!
v § .
3 Y.
\\ ’/"

......... -4 .

for n >> 1 ball around a code word contains no other code words
when § < dgy and exponentially many code words for § > dgy
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random linear codes and the GV bound
o for a linear code d = minyec w(y) with w(y) = #{i : y; # 0}
@ given a non-zero vector x € ]Fg and a uniformly random

matrix T € My(Fg), the vector y = Tx is uniformly
distributed over Fg

oy = Zj Tijxj so for i # i’ independent y;, yi» as depend on
different sets of entries of T (independently randomly chosen)

@ each y; uniformly distributed over Fq: take an x; # 0, fix other
T, varying Tj; equiprobable, all values in Fq achieved for y;

e Claim: for k = (1 — Hq(0) — €)n (slightly below GV curve)
there is some T € My n(Fq) such that for all x € Fz ~ {0}
the w(Tx) > d

@ using equidistribution of images and

P(w(Tx) < d) = g "Volg(n,d — 1) < g"Ha®)=1)
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@ then have
P(3x : w(Tx) < d) < qkqn(Hq(é)—l) — C;,(1—Hq(5) e)n+n(Hq(6)-1) _ =q "

@ for large n this probability very small so Claim follows

@ also T has full rank: with high probability w(y) > d for all
codewords, so since linear min of Hamming distances also
> d, hence C: IF’; — Fyg injective

@ this shows that random linear codes with high probability lie
on the GV-curve for n — oo

Matilde Marcolli Codes and Complexity



@ probability distribution of code words given received ouput y
of channel

iy (x) = Z(ly) [Tecrixual

for memoryless channel (Bayes rule)
e for a binary code and a channel that randomly flips bits with
0 < p < 1 probability
1

) = PO 1 = gy o)

some (other) normalization Z(y)
e with B = %Iog (PTP partition function counts contribution

of correct codeword xg and of all other codewords x
n
7 — e—2BdH(Xo,y) + ZNy(d) e—2Bd
d=0

number /\Afy(d) of incorrect code words at distance d from y
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e for large n (law of large numbers) dy(xo,y) ~ np so first term
Zeorr = ef2BdH(Xo,y) ~ ef2an

o distance enumerator N, (d) as before exponentially large for
dov(R) < 6 <1—dgy(ry and vanishes with high probability
outside that interval

@ also for 6gv(R) < 0 < 1—dgy(r) concentrated at the mean

value
B (d)) ~ 27R-1+H(0)

@ then summation over d by saddle point

n 1-5
Zo = Zj\“/—y(d) o284 n/ Y on(R-1)10g2+5(5)~2B5) _, gnper
d=0 o6V
Perr = max ((R - 1) |0g2 + H((S) - 285)

d€ldgv,1-dgv]
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since B = % log (I_TP) max Yerr = Perr(p) (assume p < 1/2)

@ when max inside interval (dgy,1 — dgv) it occurs where
H'(§) = 2B

otherwise max at lower end 6 = dgy (since B > 0)

Ser(p) = —d6v(R) log (I_Tp) p < dgv
(R—1)log2 —log(1 — p) otherwise

for low noise level (small p) term Z,, exponentially small

for high noise (past the dgy threshold) Z., dominates
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Statistical physics: finite temperature decoding
@ introduce a temperature parameter § =1/T

@ probability distribution of code words given received ouput y
of channel

1

pa,y(x) = me_ZBBdH(%X) with Z,(8) = Z e—2BBdu(y.x)
y x
@ this shows a phase transition diagram
© completely ordered crystal phase: low noise p < dgy and low
temperature (large enough ) good decoding distribution
13,y(x) dominated by correct code word
@ glassy phase: higher noise p > dgy still low temperature (large
3) correct code word has small weight and pg ,(x) dominated
by other code words closest to y (not correct one)
© entropy dominated high temperature paramagnetic gas phase:
high temperature (small 8) with g ,(x) dominated by code
word at distance d = nd, larger than min distance with

R
P’ +(1—p)”
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phase transition

diagram
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paramagnetic
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Spoiling operations on codes: C an [n, k, d]q code
e Ci:=Cxjfc Al

(31,.. .,an+1) e (G iff (31,...,af,1,ai+1,. . .,a,,+1) eC,

and a; = f(al, ey @i—15ai41 -0y a,,+1)
G an [n+ 1, k, d]q code (f constant function)

e G :=Cx; Cc Ar1
(a]_,. . .,a,,_l) € Giffdb € A, (al,. ..,aj_1, b, a,-+1,...,a,,_1) e C.

G an [n—1,k,d]q code
e G3:=C(a,i)CcCCA

(31,...,3,,)6 G iff a; = a.

Gan[n—1,k—-1<k' <k,d > d]g code
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Asymptotic bound

@ Yu.l.Manin, What is the maximum number of points on a
curve over F»7 J. Fac. Sci. Tokyo, IA, Vol. 28 (1981),
715-720.

e V, C [0,1]2%: all code points (R,d) = cp(C), C € Codes,
e Ug: set of limit points of V
e Asymptotic bound: Uy all points below graph of a function

Ug = {(R,8) € [0,17 | R < ag(6)}

e Isolated code points: V. (Vg N Ug)
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Method: controlling quadrangles

1
N

8 . 1
R = a4(8) continuous decreasing function with a4(0) = 1 and

aq(6) =0ford € [%, 1]; has inverse function on [0, (g — 1)/q];
Ug union of all lower cones of points in g = {R = aq4(d)}

Matilde Marcolli Codes and Complexity



Characterization of the asymptotic bound

e Code points and multiplicities

e Set of code points of infinite multiplicity
UgN Vg ={(R,8) €[0,11°NQ?| R < ag(0)} below the
asymptotic bound

e Code points of finite multiplicity all above the asymptotic bound
Vg~ (Ug N V) and isolated (open neighborhood containing (R, ¢)
as unique code point)

Questions:

e Is there a characterization of the isolated good codes on or above
the asymptotic bound?
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Estimates on the asymptotic bound

e Plotkin bound:

-1
ag(6) =0, &> q7
e singleton bound:
ag(6) <1-9§
e Hamming bound:
)
04(6) < 1 Ho(3)

e Gilbert—Varshamov bound:

aq(8) = 1 — Hg(6)
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Computability question

e Note: only the asymptotic bound marks a significant change of
behavior of codes across the curve (isolated and finite
multiplicity/accumulation points and infinite multiplicity)

e in this sense it is very different from all the other bounds in the
space of code parameters

e .... but no explicit expression for the curve R = a4(6)

e ... is the function R = ag4(d) computable?

e ... a priori no good statistical description of the asymptotic
bound: is there something replacing Shannon entropy
characterizing Gilbert—Varshamov curve?

@ Yu.l. Manin, A computability challenge: asymptotic bounds
and isolated error-correcting codes, arXiv:1107.4246
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The asymptotic bound and Kolmogorov complexity

e while random codes are related to Shannon entropy (through the
GV-bound) good codes and the asymptotic bound are related to
Kolmogorov complexity

e the asymptotoc bound R = a4(d) becomes computable given an
oracle that can list codes by increasing Kolmogorov complexity

e given such an oracle: iterative (algorithmic) procedure for
constructing the asymptotic bound

e ... it is at worst as “non-computable” as Kolmogorov complexity

e asymptotic bound can be realized as phase transition curve of a
statistical mechanical system based on Kolmogorov complexity

@ Yu.l. Manin, M. Marcolli, Kolmogorov complexity and the
asymptotic bound for error-correcting codes, Journal of
Differential Geometry, Vol.97 (2014) 91-108
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Complexity
e How does one measure complexity of a physical system?

e Kolmogorov complexity: measures length of a minimal
algorithmic description

. but ... gives very high complexity to completely random things

e Shannon entropy: measures average number of bits, for objects
drawn from a statistical ensemble

e There are other proposals for complexity, but more difficult for
formulate

e Gell-Mann complexity: complexity is high in an intermediate
region between total order and complete randomness
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Kolmogorov complexity

e Let Ty be a universal Turing machine (a Turing machine that
can simulate any other arbitrary Turing machine: reads on tape
both the input and the description of the Turing machine it should
simulate)

e Given a string w in an alphabet 2, the Kolmogorov complexity

,CTU (W) B P:TzT(ilg)zwg(P),

minimal length of a program that outputs w

e universality: given any other Turing machine T
Kr(w) =Kr,(w)+cr

shift by a bounded constant, independent of w; cr is the
Kolmogorov complexity of the program needed to describe T for
Ty to simulate it
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e any program that produces a description of w is an upper bound
on Kolmogorov complexity K1, (w)

e think of Kolmogorov complexity in terms of data compression
e shortest description of w is also its most compressed form

e can obtain upper bounds on Kolmogorov complexity using data
compression algorithms

e finding upper bounds is easy... but NOT lower bounds
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Main problem
Kolmogorov complexity is NOT a computable function

e suppose list programs Py (increasing lengths) and run through
Tye: if machine halts on Py with output w then ¢(Py) is an upper
bound on Kr,,(w)

e but... there can be an earlier P; in the list such that Ty, has not
yet halted on P;

o if eventually halts and outputs w then £(P;) is a better
approximation to Kr,,(w)

e would be able to compute IC1,,(w) if can tell exactly on which
programs Py the machine T, halts

e but... halting problem is unsolvable
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Kolmogorov complexity

X = infinite constructive world: have structural numbering
computable bijections v : Z* — X principal homogeneous space
over group of total recursive permutations Z* — ZT

e Ordering: x € X is generated at the v~!(x)-th step

Optimal partial recursive enumeration v : ZT — X
(Kolmogorov and Schnorr)

Ku(x) := min{k € Z" | u(k) = x}

Kolmogorov complexity

e changing u : ZT — X changes K,(x) up to bounded
(multiplicative) constants ¢ K, (x) < Ky(x) < 2K, (x)

e min length of program generating x (by Turing machine)

Matilde Marcolli Codes and Complexity



Main ldea:

e use characterization of asymptotic bound as separating code
points with finite multiplicity from code points with infinite
multiplicity

e given the function from codes to code parameter, want an
algorithmic procedure that inductively constructs preimage sets
with finite/infinite multiplicity

e choose an ordering of code points: at step m list code points in
order up to some growing size Ny,

e initialize A;: a set of a preimage for each code point up to Ny;
initialize By =0

e want to increase at each step A,, and B,, so that the first set
only contains code points with multiplicity m
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e going from step m to step m+ 1: new code points listed
between N, and Ny, 41 are added to A, and then points
(previously in Ap, or added) that do not have an m + 1-st preimage
are moved to B

e as m — oo the sets A, converge to set of code points of infinite
multiplicity and the B, converge to set of code points of finite
multiplicity

e key problem: need to search for the m + 1-st preimage to detect
if a code point stays in Ap11 or is moved to Bpy1

e ordinarily this would involve an infinite search...

e ordering and complexity: use a relation between ordering and
complexity that shows that only need to search among bounded
complexity codes, so a complexity oracle will render the search
finite
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X, Y infinite constructive worlds, vx, vy structural bijections, u, v
optimal enumerations, K, and K, Kolmogorov complexities

e total recursive function f : X — Y = Vy € f(X), Ix € X,
y = f(x): 3 computable ¢ = ¢(f, u,v,vx,vy) >0

Ku(x) < c vyt (y)

Kolmogorov ordering
K.,(x) = order X by growing Kolmogorov complexity K, (x)

a Ku(x) < Ku(x) < aKu(x)

So... if know how to generate elements of X in Kolmogorov
ordering then can generate all elements of f(X) C Y in their
structural ordering
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In fact... take F(x) = (f(x), n(x)) with
n(x) = #{x' [ (x') < vil(x), F(X) = F(x)}

total recursive function = E = F(X) C Y x Z" enumerable

o X = {x € X|n(x)=m} and Yy, := f(Xn) C Y enumerable
o for x € X1 and y = f(x): complexity K,(x) < c- vy (y) (using
inequalities for complexity under composition)

Multiplicity: mult(y) := #f~1(y)
Yoo C -+ F(Xmg1) C F(Xm) C -+ C f(X1) = F(X)

Yoo = Nimf (Xm) and Yiin = F(X) ~ Yo

Key Step: y € Yo and m > 1: 3 unique xp, € X, y = f(xm),
n(xm) =mand ¢ = c(f,u,v,vx,vy) >0

Ku(xm) < ¢ vy (y) m log(vy ' (y)m)
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Oracle mediated recursive construction of Y and Yg,

e Choose sequence (N, m), m>1, Npy1 > Ny,

o Step 1. Ay = list y € £(X) with vy,'(y) < Ny; By =0

e Step m+ 1: Given A, and By, list y € f(X) with

y;l(y) < Nmi1; Amy1 = elements in this list for which 3 x € X,
y = f(x), n(x) = m+1; Bp,+1 = remaining elements in the list
e oracle: search for x € X, y = f(x), n(x) = m+ 1 only among
those x with complexity bounded by function of vy (y) as above
® AmU B C Apt1 U Bmy1, union is all f(X); By C Bpy1 and
Yéin = UmBm, while Yo = Ule(ﬂnZOAm—i-n)

o from A, to A1 first add all new y with Ny < v (y) < Nyt
then subtract those that have no more elements in the fiber
f~1(y): these will be in Bp1
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Structural numbering for codes

e X = Codesy, Y =[0,1]°NQ? and f: X — Y'is

cp: Cr— (R(C),0(C)) code parameters map

e A={0,...,qg— 1} ordered, A" lexicographically; computable
total order vx:

(i) if 1 < ny all C C A™ before all C' C A™;

(i) ki < ko all [n, ky, d]g-codes before [n, ky, d']4-codes;
(iii) fixed n and g*: lexicographic order of code words,
concatenated into single word w(C) (determines code):
order all the w(C) lexicographically

e total recursive map cp : Codes; — [0, 1]° N Q?

e fixed enumeration vy of rational points in [0,1]?

. inductively building the asymptotic bound using the described
oracle mediated procedure

e Question: is there a statistical view of this procedure?
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Partition function for code complexity
Z(X,ﬁ) = Z Ku(X)_ﬂ
xeX

weights elements in constructive world X by inverse complexity;
B = inverse temperature, thermodynamic parameter
Convergence properties

e Kolmogorov complexity and Kolmogorov ordering

a1 Ky(x) < Ku(x) < e Ky(x)

e convergence of Z(X, ) controlled by series

Y Ku(x)F =D = ()

xeX n>1

e Partition function Z(X, ) convergence for 8 > 1, phase
transition at pole 5 =1
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Asymptotic bound as a phase transition

e X' C X infinite decidable subset of a constructive world

e i : X' — X total recursive function; also j : X — X’ identity on
X’ constant on complement

Ku(i(x) < aK,(X) and K,(j(x)) < caKu(x)
e § = B4(R) inverse of ag(d) on R €[0,1—1/q]
e Fix ReQnN(0,1) and A € QN (0,1)

Z(R,A; B) = Z Ku(C)—B+6(C)—1
C:R(C)=R;1-A<§(C)<1

Phase transition at the asymptotic bound

e 1— A > [3,(R): partition function Z(R, A; 3) real analytic in 3
e 1 — A < f4(R): partition function Z(R, A; 3) real analytic for
B > Bq(R) and divergence for 8 — [4(R)+
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Another view of the asymptotic bound as a phase transition

@ Yuri I. Manin, Matilde Marcolli, Error-correcting codes and
phase transitions, Mathematics in Computer Science (2011)
5:133-170.

e when constructing random codes (Shannon Random Code
Ensemble): choose code words as equally distributed independent
random variables

e imagine passing from classical to quantum systems, where the
code words remain the fundamental degrees of freedom

e the basic quantum system of this kind is a system of independent
harmonic oscillators: creation/annihilation operators associated to
the basic independent degrees of freedom
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Single Code: algebra of creation/annihilation operators
e for a single code C: code words are degrees of freedom

e Algebra of observable of a single code: Toeplitz algebra on code
words
Tec: Ty, x€C, T;Ty=1

T« T mutually orthogonal projectors

e Fock space representation H ¢ spanned by ¢,,, words
W = Xxi,...,Xy in code language W¢

Tiew = 6w
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Quantum Statistical Mechanics of a single code

e algebra of observables 7¢; time evolution o : R — Aut(7¢)
oe(Tx) = Ku(C)" Ty
e Hamiltonian 7(0+(T)) = ¢ n(T)q~ "
Hew = £(w) loggKu(C) .

in Fock representation, ¢(w) length of word (# of code words)

e Partition function

2.0, = Tle ) = SO

_ Z §m(nR=B10g K(C)) _ 1
p 1—qg"RK,(C)-A

e Convergence: 3 > nr/log, K,(C)



QSM system at a code point (R, §)
e Different codes C € cp~!(R,d) as independent subsystems
e Tensor product of Toeplitz algebras T(r 5y = ®cecp-1(r,5)TC

e Shift on single code temperature so that
Z(C,o.n(B =0 +1)) < (1 - Ku(O))7

by singleton bound on codes R+ —1<0
e Fock space H (g 5) = ®@Hc; time evolution o = Qo€

e Partition function (variable temperature)

Z(cp M (R0),0:8)= [ Z(C,on(B-5+1))

Cecp~1(R,5)

e Convergence controlled by [](1 — K,(C)~#)71; in turned
controlled by the classical zeta function

Z(CP_I(R’ 5)5 ﬁ) = ZCecpfl(R,é) Ku(C)_B



first versus second quantization

e Bosonic second quantization: example of primes p and integers
n € N; independent degrees of freedom (primes) quantized by
isometries 7,7, = 1; tensor product of Toeplitz algebras

®pTp = C*(N) semigroup algebra; o4(7,) = p't7p, partition
function ((3) = [[,(1 — p~?)~1 prod of partition functions
individual systems

e Infinite tensor product: second quantization; finite tensor
product: quantum mechanical (finitely many degrees of freedom)
first quantization

° (72,{5),0) is quantum mechanical above the asymptotic bound;
bosonic QFT below asymptotic bound

Asymptotic bound boundary between first and second quantization
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Asymptotic bound as a phase transition (QSM point of view)

e Variable temperature partition function: A = ®scs.As,
g = ®SUS; ﬁ . 5 — R-H Z(Aa U)/B) = Hs Z(AS,O'S,ﬁ(S))
e fix a code point (R, ¢); partition function (variable 3)

Z((R0).0:8) = ] (@@—gfFPneyt

Cecp~1(R,5)

e if (R,0) above bound finite product; if below bound convergence
governed by >~ q(R=B)nc for B> R.

e change of behavior of the system at R = () asymptotic bound

Matilde Marcolli Codes and Complexity



Spherical Codes

@ Yuri I. Manin, Matilde Marcolli, Asymptotic bounds for
spherical codes, arXiv:1801.01552

e spherical code: finite set X of points on unit sphere S"~1 C R”

e spherical code X has minimal angle ¢ if Vx #y € X
(x,y) < cos¢

e A(n,¢) = max number of points on S"~! with minimal angle ¢
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Spherical codes and sphere packings

@ non-overlapping congruent balls in R”

@ density: fraction of space covered by the balls in the packing
e ball BR(x) of radius R centered at x
°

density of packing: limit for R — oo (if exists) of fraction of
BR(x) covered by spheres in the packing, independent of x if
exists

e Ap» maximal packing density (actually achieved by some
packing, Groemer 1963)

@ Kepler conjecture proved by Hales solves sphere packing
problem in 3D

@ Viazovska solved sphere packing in dim 8: unique max
realized by Eg-lattice

@ in dim 24 (Cohn, Kumar, Miller, Radchenko, Viazovska):
unique max realized by Leech lattice

@ these results use an argument based on modular forms and
linear programming bounds for sphere packings

Matilde Marcolli Codes and Complexity



square packing hexagonal packing

In R? two regular lattice packings of spheres, hexagonal one
realizes max density of planar packings (LészI6 Fejes Téth, 1940)

Matilde Marcolli Codes and Complexity



(0 <\
L 4

In R3 Kepler problem optimal sphere packing (Thomas Hales,
1998)
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Examples of lattices involved in best sphere packings in low
dimensions
o lattice A, = {x € Z""1| Y. x; = 0} simplex lattice (zero-sum
hyperplane)
@ checkerboard lattice D, = {x € Z"| >, x; even }
o Eg lattice Eg = DgU(Dg +(3,...,3)
@ E7 orthogonal complement of A; inside Eg, etc

The densest lattices in low dimensions are

ni|1 2 | 3 4 516|718 24
A A1 A2 A3 D4 D5 E6 E7 Eg Leech

e But... densest lattice typically not the max density solution of all
packing: in most dimensions densest packing realized by a
non-lattice packing

e Fg maximality is an actual lattice solution!

Matilde Marcolli Codes and Complexity



- P48q
ROGER’S BOUND
DENSITY /
(SCALED) /’
\ / Aus
0 KLEECH LATTICE Agy / ?
\ /
=1 } \\\ y QB? / //,
% A VAR |
-2 A,;\):\? 1(336 / /A’n
x,q\
3 \
8 12 16 20 24 28 32 36 40 44 48
DIMENSION
plot of densest sphere packings in low dimensions (Sloane)
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Relation to sphere packings and kissing number

example of sphere configuration with kissing number 12
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@ kissing number: how many balls can touch one given ball at
the same time if all the balls have the same size same size

@ in 2D hexagonal planar lattice packing is optimal solution for
(1) the 2D kissing number problem, (2) the lattice packing
problem, (3) the sphere packing problem

o = = =z 9acn
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Dim. Densest packing Highest kissing number

|
1 : Z~ A v 2 |
2 . Ag ~ Ay : o6
3 . As~ D3~ Aj E 12,
4 E Dy~ Ay ; 3 24 3
5 : Dy ~ Aj ! U
6 : Fg~ Ag ! Lo
7 : E7r~ A7 | | 126 |
8 1 Es~As 1 i[200]:
9 By | 272 1(306 from Py,)

336 (500 from PlDb)

_
o
-
I
=
§
oS
=
S
aF

12 Ky 756 (840 from Py2,)
16 BWig ~ Alg 4320
24 Leech ~ Aoy 196560

lattice packing and kissing number solutions in low dim (in
brackets better non-lattice solutions of max sphere packing density)
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Spherical codes

@ T. Ericson, V. Zinoviev, Codes on Euclidean Spheres, North
Holland, 2001.
@ optimization questions (in a given dimension n)
© given M € N find a spherical code with M points such that

minimum distance (min angle) between points of the code is
as large as possible

@ given distance d > 0 (angle ¢) find a spherical code with
largest number M of points with at least this min distance
@ analogs of encoding and decoding optimization questions for
g-ary codes
Examples in 3D (points on S?)

For M = 2,3, 4 (antipodal points, equilateral triangle at the
equator, regular tetrahedron).
For M = 8:
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e for angle separation ¢ = 7/3 can view points of a spherical
code as contact points for an arrangement of touching
non-overlapping equal spheres: kissing number problem
(maximize M given ¢)

@ Henri Cohn, Yufei Zhao, Sphere packing bounds via spherical
codes, Duke Math. J. 163 (2014), no. 10, 1965-2002

@ upper bound for sphere packing densities are obtained from
spherical codes

@ by obtaining asymptotic upper bounds for A(n, ¢) of spherical
codes (for large n) and deducing from these the upper bounds
on the density: for all n>1and for 7/3< ¢ <

Agn < sin"(¢/2) - A(n, $)
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e estimate of sphere packing density: sphere radius R < 2 at
randomly chosen location (not centered on lattice) contains on
average A - R" sphere centers; project these to surface of the
sphere from center; can check they are separated by at least ¢ with
sin(¢p/2) =1/R; so A - R" < A(n, ¢)
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Spherical codes from binary codes
e C binary [n, k, d]2-code

e identifying 7Z /27 = {41}: code words as subset of the vertices
of n-cube centered at origin in R” inscribed in sphere S"~1
(normalization factor)

e binary code C gives spherical code X¢ with parameters

2d d 1—
cosp=1-— & §(C)=—= sin?(¢/2) = %ﬂb
R(C):%

n

with maximum (for fixed n and d)

R(C)max(n, d) = log, A(n’;(b(n, d))

e Question: is there an asymptotic bound for spherical codes?
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Space of code parameters
e binary codes: [0,1]?> N Q coordinates (6, R)
e spherical codes:

@ code rate R = n~llog, #Xc

@ minimum angle ¢ = ¢x, (or cos )

e unbounded: ¢ smaller maximal number of points A(n, ¢) grows,
so R unbounded near ¢ — 0

e space Ry x [0, 7]
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Regions in the space of code parameters

@ code points of some spherical code X
P={P=(R.6)|3X C " : (R.6) = (R(X) = ~ logy #X,6x)}
@ accumulation points of set of code parameters
A={P=(R.9)[3(Ri,¢1) € P : (R, ¢) = lim(R;, &), (Ri, ¢1) # (R, 9)}
@ points surrounded by a 2-ball densely filled by code parameters

U={P=(R,¢)|Fe>0: B(P,e)C A}

e asymptotic bound:

F={(R=a(9),9)|a(¢) =sup{R € Ry : (R, ¢) €U} }
with a(¢) =0if {ReR; : (R,9) €U} =10
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New phenomena with respect to binary codes
e the two regions A and U/ do not coincide
e asymptotic bound is the boundary of the region U/ (not of A)

e the part of the region A that is not in U/ consists of sequences of
horizontal segments not contained in &/ U T

e also the asymptotic bound is only non-trivial in a “small angle
region”

@ small angles region: 0 < ¢ < 7/2

o large angle region: 7/2< ¢ <7
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Large angle region 7w/2< ¢ <
e Rankin bound: for 7/2 < ¢ <7

A(n, ¢) < (cos¢ — 1)/ cos ¢

e bound realized for —1 < cos ¢ < —1/n while for
—1/n < cos¢ < 0 one has A(n,¢) =n+1

e code points lie below the curve

cosp — 1
cos ¢

)

1
R = —logy(min{n+ 1,
n

e large n — oo behavior

_ log, #X < log, A(n, ¢) N
n - n

R 0, w/2<¢<m

= no interesting asymptotic bound in this region

e still contains code pointsin A~ U and P~ A
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Plots for n=1,...,10

0.1
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Estimates in the small angle region

e Kabatiansky—Levenshtein bound: large n — oo

logo A(n,¢) _ 1+sing 1+sing, 1—sing 1—sing
R < < _
= n = 2ene 25500 T aene 82 gng )
for minimum angle 0 < ¢ < 7/2
e for large n — oo code parameter in the undergraph
S:={(R.6) € Ry x [0,7] : R < H(9)}
1+sing 1-+sing 1—sing 1—sing
H = 7 _
@)= Zans %2 55ns ) ™ 2sne 8 2ang )
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Graph of H(¢):

[SIER

X x 3n
8 4 8

e either cutoff on minimum angle ¢ > ¢q (e.g. case of sphere
packings) or cutoff on R = % logy, #X < T (more natural for
spoiling operations)
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Spoiling operations for spherical codes
O first spoiling operations:
e binary codes: C; = C %; a associates to a word ¢ = (a1, ..., a,)
of C the word cx; a=(a1,...,3i-1,a,3i,...,an)
o spherical codes: take code X¢ C S"~! and inserts S"7! as
hyperplane section of S"
@ second spoiling operation:
e binary codes: G, = Cx;, which is a projection of the code C in
the i-th direction
o spherical codes: cosf = (v, v,) angle between two points of
code X¢: orthogonal projection along x;-axis
L,‘ L,‘
( )

é’ n
COSU = —(V, Vv,
n—1Yk "

= n i 1 (COSG — <Vk’,', V,’,'>)
© third spoiling operation:
o binary codes: G3 = C(a, i) code words with i-th digit a
e spherical codes: line ¢ and orthogonal hyperplane L through
origin of R", with X3 := Xf =XnN 5;;1 intersection with one
of the two hemispheres
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Main differences: continuous parameters in spoiling operations

e first spoiling operation extends with continuous parameters
(choice of a hyperplane H): scaling the sphere S"~! and identifying
it with the section HN S” to embed new code X; = X x H in §"

e parameters: k(X1) = k(X), n(X1) = n(X)+1 and
cos dx, = pfycos dx + (1 — pfy)
pn radius of scaled sphere 5;;—1 =HNS"

e second spoiling operation: L hyperplane through origin in R”
with orthogonal ¢ not containing code points; orthogonal projection
P, : R" — L ~ R"1 and normalize vectors: Xy = Xx; C S"2

e code parameters: k(X2) = k(X) and n(Xz) = n(X) — 1
cospx, = (1 +u)cospx +u, u=(1- 5)2<,L)/§)2<7L
with {x ¢ = dist(X, )



e third spoiling operation also continuous choice of ¢, L with
X3 := Xf =XN Sl[’i one hemisphere

e code parameters: 3¢ with k(X) — 1 < k(X3) < k(X) and
minimum angle ¢(X3) > ¢(X)
controlling cones: starting with X with code parameters
[n, k, cos ¢]
e use spoling operations to obtain code parameters to obtain
Q [n+1,k,Acosp+1— )], forall A €[0,1];
@ [n— 1,k (1+u)coso =+ u] for u=(1—Ex1)?/Ex
© [n—1,k—a,cosg|, for 0 < a< k.
for0 < ¢ <m/2

e consequence: if (R, ¢) code point all line segment
U kcosp = {(7R Acosp+1—A) : Ae[0,1]}

also made of code points: in A not always in I/
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Example of segments in A not in U

e Rankin examples of spherical codes realizing bound (large angles)
R(X) = L log,(=2-1) for —1 < cos¢ < —1/n and

~n cos ¢

R(X) = %Iogz(n—l— 1) for =1/n < cos¢ < 0
e apply first spoiling:

0.5

0.4

03%

Mi
& 9n Sn 1lx 3m 13x Tr 15n hid
2 16 8 16 4 16 8 16
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Existence of the asymptotic bound

e construct controlling regions R (P), Rr.c(P), Ru,c(P).
Rp,c(P) in a cutoff of undergraph of H(¢)

e use these to constrain position of the asymptotic bound: I graph
of continuous decreasing R = a(¢) with a(¢) — oo for ¢ — 0 and
a(r/2) =0.

e set U/ is undergraph of this function
U={(R,9) : R< (o)}

union of all the lower controlling regions R (P) of all points P € I’

e code point P = (R, ¢) ¢ T in region U iff infinite multiplicity and
J sequence X; of spherical codes with (R(Xi), ¢x.) = (R, ¢) and
n;j — oo and #X; — oo.
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Questions

e applications to sphere packings? (maximal density sphere
packings)

e interplay between classical binary (g-ary?) codes and spherical
codes

e asymptotic bound and complexity: spherical codes and
complexity

e classical to quantum codes (for binary and g-ary: CSSR
algorithm): what about spherical codes?
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