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Coding and information

source of information: random variable X with values in a
finite alphabet A generating a sequence of symbols

A∗ all finite sequences (arbitrary length) in the alphabet A

AN all sequences of length N

Problem: store the information contained in a given sequence
x ∈ AN in the most compact way

source coding: a source code for the random variable X with
a reference alphabet (say {0, 1} case of a binary code)

E : AN → {0, 1}∗ x 7→ E (x) codewords

stream of outputs of random variable X : break into blocks in
AN and apply encoding E to blocks, get sequence of
codewords

x0x1x2 · · · xn · · · 7→ E (x0)E (x1)E (x2) · · ·E (xn) · · ·
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decoding

usually more than one way of parsing this concatenation into
codewords: ambiguities

need code that avoids problem: any concatenation of
codewords can be parsed unambiguously

uniquely decodable code

requirement: for any x , x ′ ∈ AN , the codeword E (x) is not a
prefix of E (x ′): called instantaneous codes

Matilde Marcolli Codes and Complexity



Example of instantaneous source code: each codeword assigned to
a node in a binary tree so that none is an ancestor of another
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average length of encoding

how good is a source code used to store information from a
source X ?

ℓE (x) length of the string E (x)

average length

L(E ) :=
∑
x∈AN

p(x) ℓE (x)

p(x) probability that the random variable X produces the
string x

measure of efficiency of code: a code can achieve a shorter
average length by assigning shorter codewords E (x) to strings
x that occur more frequently (higher probability) and longer
code words to sequences occurring more rarely

can this be optimized?
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optimal average length

random variable X with Shannon entropy

S(X ) = −
∑
x

P(X = x) logP(X = x)

LN shortest average length achieved by instantaneous codes

for all N ≥ 1 and XN with x ∈ AN outputs

S(XN) ≤ LN ≤ S(XN) + 1

if source has finite entropy rate

lim
N→∞

S(XN)

N
= σ < ∞

then also

lim
N→∞

LN
N

= σ
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Shannon codes

in an automatic binary code can always represent code words
as leaves of a binary tree

Kraft inequality follows∑
x∈AN

2−ℓE (x) ≤ 1

(erase all descendants as cannot be other codewords in
automatic code: total number of erased descendants ≤ total
number of descendants)

any set of lengths {ℓ(x)} satisfying Kraft inequality is set of
lengths of an automatic binary code

minimize average length over all {ℓ(x)} with Kraft inequality

Lagrange multipliers ⇒ ℓ(x) = − log2 p(x)

these minima may not be realizable as some not integers

but give average length equal of Shannon entropy (lower
bound S(XN))

realizable ℓ′(x) = ⌈− log2 p(x)⌉ give upper bound S(XN) + 1
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Channel coding: information transmission

redundancy helps correct some transmission errors

level of redundancy related to maximal level of noise tolerated
for error-free transmission

here encoder is a map E : {0, 1}M → {0, 1}N with N > M

channel C described by a transition probability PC (y |x) where
y ∈ {0, 1}N what is received and x ∈ {0, 1}N what was
transmitted

decoder computes from y an estimate x ′ of the transmitted
message x

memoryless channel:

PC (y |x) =
N∏
i=1

PC (yi |xi )
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Mutual information

random variables X ,Y with probabilities p(x) = P(X = x)
and p(y) = P(Y = y)

mutual information IX ,Y of two random variables

IX ,Y =
∑
x ,y

p(x , y) log2
p(x , y)

p(x)p(y)

for a channel apply to y ∈ AN received message and x ∈ AN

transmitted message

p(x , y) = p(x)PC (y |x)

IX ,Y measures reduction in uncertainty about x by knowledge
of y
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Channel capacity

channel capacity:

C = max
p(x)

∑
x ,y

p(x , y) log2
p(x , y)

p(x)p(y)

Example: if output of the channel is pure noise y and x
uncorrelated so C = 0

Example: if y = f (x) deterministic function then
C = maxp S(p) = 1 (for binary)

Example: channel with flip probability p and source with
(q, 1− q) probabilities: mutual info maximized when source
uniform q = 1/2 then C = 1− S(p)

Focus here on properties of codes C : {0, 1}M ↪→ {0, 1}N (and
more general non-binary codes) by studying their parameterizing
space
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Error-correcting codes

• Alphabet: finite set A with #A = q ≥ 2.
• Code: subset C ⊂ An, length n = n(C ) ≥ 1.
• Code words: elements x = (a1, . . . , an) ∈ C .
• Code language: WC = ∪m≥1WC ,m, words w = x1, . . . , xm;
xi ∈ C .
• ω-language: ΛC , infinite words w = x1, . . . , xm, . . .; xi ∈ C .
• Special case: A = Fq, linear codes: C ⊂ Fn

q linear subspace
• in general: unstructured codes
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Code parameters
• k = k(C ) := logq #C and [k] = [k(C )] integer part of k(C )

q[k] ≤ #C = qk < q[k]+1

• Hamming distance: x = (ai ) and y = (bi ) in C

d((ai ), (bi )) := #{i ∈ (1, . . . , n) | ai ̸= bi}

• Minimal distance d = d(C ) of the code

d(C ) := min {d(a, b) | a, b ∈ C , a ̸= b}
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Code parameters
• R = k/n = transmission rate of the code
• δ = d/n = relative minimum distance of the code

Small R: fewer code words, easier decoding, but longer encoding
signal; small δ: too many code words close to received one, more
difficult decoding. Optimization problem: increase R and δ... how
good are codes?

M.A. Tsfasman, S.G. Vladut, Algebraic-geometric codes,
Mathematics and its Applications (Soviet Series), Vol. 58,
Kluwer Academic Publishers, 1991.
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The space of code parameters:

• Codesq = set of all codes C on an alphabet #A = q

• function cp : Codesq → [0, 1]2 ∩Q2 to code parameters
cp : C 7→ (R(C ), δ(C ))

• the function C 7→ (R(C ), δ(C )) is a total recursive map
(Turing computable)

• Multiplicity of a code point (R, δ) is #cp−1(R, δ)
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Bounds in the space of code parameters

• singleton bound: R + δ ≤ 1

from singleton bound k ≤ n − d + 1 for n → ∞
code words c1, . . . , cM this bound says M ≤ qn−d+1

for code word ci prefix c ′i of length n − d + 1

for any i ̸= j must have c ′i ̸= c ′j otherwise
dH(ci , cj) ≤ n − (n − d + 1) = d − 1 but d

so M = # prefixes of length n − d + 1, at most qn−d+1

• Gilbert–Varshamov line: R = 1
2(1− Hq(δ))

Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ)

q-ary entropy (for linear codes GV line R = 1− Hq(δ))
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Shannon Random Code Ensemble (SRCE)

study behavior of codes by focusing on ensembles of random
codes

case of binary codes (more general codes analogous)

want to randomize encoding map E : {0, 1}k → {0, 1}n: there
are 2n2

k
such possible encoding maps (specify n bits for each

of the 2k codewords)

in SRCE encoding map is picked uniformly at random from
this set

then encoding of a message: sequence of x i ∈ {0, 1}k and
corresponding sequence of codewords E (x i ) ∈ {0, 1}n
obtained by tossing an unbiased coins N-times, with i-th
result being the i-th coord of E (x i )

random codes are not injective: different words can have same
encoding, but such occurrences are rare in probability
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decoding problem for random codes

probability distribution P(x |y) of x being the channel input if
y is the received message

suppose memoryless channel with PC (y |x)
Bayes rule:

P(x |y) = 1

Z (y)

n∏
i=1

PC (yi |xi )P(x)

with Z (y) determined by imposing normalization condition∑
x P(x |y) = 1 and P(x) a priori probability of x being

produced as message at the source

if source uniform probability P(x) = 2−k
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Geometry of Shannon Random Code Ensemble

code: set C of 2k codewords inside ambient space {0, 1}n

each of these points drawn with uniform probability from
{0, 1}n

how many codewords are near a given codeword?

Hamming distance dH(x , x
′) = #{i : x i ̸= x ′i} number of

differing coordinates
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Hamming enumerator

Hamming distance enumerator Nx(0)(d)

counting number of codewords at distance d from a chosen
one x (0)

average E(Nx(0)(d)) over the code ensemble

since all code words drawn independently with uniform
probability result should not depend on which x (0) used, so
pick x (0) = (0, 0, . . . , 0)

given 2k − 1 points chosen uniformly at random in {0, 1}n
how many are at distance d from (0, 0, . . . , 0) corner?

number of points (2k − 1) times fraction of Hamming volume
at distance d from (0, 0, . . . , 0) (which is 2−n

(n
d

)
), Hamming

“sphere”
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asymptotics of Hamming enumerator

when n → ∞ with d/n → δ and k/n → R finite

E(Nx(0)(d)) = (2k − 1) 2−n

(
n

d

)
∼ 2n(R−1+H2(δ))

H2(δ) = −δ log2 δ − (1− δ) log2(1− δ)

Shannon entropy

similar for q-ary codes, alphabet A with #A = q ≥ 2

E(Nx(0)(d)) = (qk − 1) q−n

(
n

d

)
(q − 1)d ∼ qn(R−1+Hq(δ))

with q-ary entropy
Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ)

Hamming ball volume

Volq(n, d) =
d∑

j=0

(
n

j

)
(q − 1)j
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estimate of Hamming ball volume
upper bound estimate
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estimate of Hamming ball volume
Stirling formula:

then lower bound estimate
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Statistics of codes and the Gilbert–Varshamov bound

Known statistical approach to the GV bound: random codes

Shannon Random Code Ensemble: ω-language with alphabet A;
uniform Bernoulli measure on ΛA; choose code words of C as
independent random variables in this measure

Volume estimate:

q(Hq(δ)−o(1))n ≤ Volq(n, d = nδ) =
d∑

j=0

(
n

j

)
(q − 1)j ≤ qHq(δ)n

Gives probability of parameter δ for SRCE meets the GV bound
with probability exponentially (in n) near 1: expectation

E ∼
(
qk

2

)
Volq(n, d)q

−n ∼ qn(Hq(δ)−1+2R)+o(n)
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code words distribution in random codes

for n >> 1 ball around a code word contains no other code words
when δ < δGV and exponentially many code words for δ > δGV
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random linear codes and the GV bound

for a linear code d = miny∈C ω(y) with ω(y) = #{i : yi ̸= 0}
given a non-zero vector x ∈ Fk

q and a uniformly random
matrix T ∈ Mk×n(Fq), the vector y = Tx is uniformly
distributed over Fn

q

yi =
∑

j Tijxj so for i ̸= i ′ independent yi , yi ′ as depend on
different sets of entries of T (independently randomly chosen)

each yi uniformly distributed over Fq: take an xj ̸= 0, fix other
Tij ′ , varying Tij equiprobable, all values in Fq achieved for yi

Claim: for k = (1− Hq(δ)− ϵ)n (slightly below GV curve)
there is some T ∈ Mk×n(Fq) such that for all x ∈ Fk

q ∖ {0}
the ω(Tx) ≥ d

using equidistribution of images and

P(ω(Tx) < d) = q−nVolq(n, d − 1) ≤ qn(Hq(δ)−1)
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then have

P(∃x : ω(Tx) < d) ≤ qkqn(Hq(δ)−1) = q(1−Hq(δ)−ϵ)n+n(Hq(δ)−1) = q−ϵn

for large n this probability very small so Claim follows

also T has full rank: with high probability ω(y) > d for all
codewords, so since linear min of Hamming distances also
> d , hence C : Fk

q ↪→ Fn
q injective

this shows that random linear codes with high probability lie
on the GV-curve for n → ∞
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probability distribution of code words given received ouput y
of channel

µy (x) =
1

Z (y)

∏
i

PC (yi |xi )µ0(x)

for memoryless channel (Bayes rule)

for a binary code and a channel that randomly flips bits with
0 < p < 1 probability

µy (x) =
1

Z (y)
pdH(x ,y)(1− p)n−dH(x ,y)

some (other) normalization Z (y)

with B = 1
2 log

(
1−p
p

)
partition function counts contribution

of correct codeword x0 and of all other codewords x

Z = e−2BdH(x0,y) +
n∑

d=0

N̂y (d) e
−2Bd

number N̂y (d) of incorrect code words at distance d from y
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for large n (law of large numbers) dH(x0, y) ∼ np so first term
Zcorr = e−2BdH(x0,y) ∼ e−2nBp

distance enumerator N̂y (d) as before exponentially large for
δGV (R) < δ < 1− δGV (R) and vanishes with high probability
outside that interval

also for δGV (R) < δ < 1− δGV (R) concentrated at the mean
value

E(N̂y (d)) ∼ 2n(R−1+H2(δ))

then summation over d by saddle point

Zerr =
n∑

d=0

N̂y (d) e
−2Bd ∼ n

∫ 1−δGV

δGV
en((R−1) log 2+S(δ)−2Bδ) ∼ enφerr

φerr = max
δ∈[δGV ,1−δGV ]

((R − 1) log 2 + H(δ)− 2Bδ)
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since B = 1
2 log

(
1−p
p

)
max φerr = φerr (p) (assume p < 1/2)

when max inside interval (δGV , 1− δGV ) it occurs where
H ′(δ) = 2B

otherwise max at lower end δ = δGV (since B > 0)

φerr (p) =

{
−δGV (R) log

(
1−p
p

)
p < δGV

(R − 1) log 2− log(1− p) otherwise

for low noise level (small p) term Zerr exponentially small

for high noise (past the δGV threshold) Zerr dominates
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Statistical physics: finite temperature decoding

introduce a temperature parameter β = 1/T

probability distribution of code words given received ouput y
of channel

µβ,y (x) =
1

Zy (β)
e−2βBdH(y ,x) with Zy (β) =

∑
x

e−2βBdH(y ,x)

this shows a phase transition diagram
1 completely ordered crystal phase: low noise p < δGV and low

temperature (large enough β) good decoding distribution
µβ,y (x) dominated by correct code word

2 glassy phase: higher noise p > δGV still low temperature (large
β) correct code word has small weight and µβ,y (x) dominated
by other code words closest to y (not correct one)

3 entropy dominated high temperature paramagnetic gas phase:
high temperature (small β) with µβ,y (x) dominated by code
word at distance d = nδ∗ larger than min distance with

δ∗ =
pβ

pβ + (1− p)β
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phase transition diagram

Matilde Marcolli Codes and Complexity



Spoiling operations on codes: C an [n, k, d ]q code

• C1 := C ∗i f ⊂ An+1

(a1, . . . , an+1) ∈ C1 iff (a1, . . . , ai−1, ai+1, . . . , an+1) ∈ C ,

and ai = f (a1, . . . , ai−1, ai+1 . . . , an+1)
C1 an [n + 1, k , d ]q code (f constant function)

• C2 := C∗i ⊂ An−1

(a1, . . . , an−1) ∈ C2 iff ∃b ∈ A, (a1, . . . , ai−1, b, ai+1, . . . , an−1) ∈ C .

C2 an [n − 1, k , d ]q code

• C3 := C (a, i) ⊂ C ⊂ An

(a1, . . . , an) ∈ C3 iff ai = a.

C3 an [n − 1, k − 1 ≤ k ′ < k , d ′ ≥ d ]q code
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Asymptotic bound

Yu.I.Manin, What is the maximum number of points on a
curve over F2? J. Fac. Sci. Tokyo, IA, Vol. 28 (1981),
715–720.

• Vq ⊂ [0, 1]2: all code points (R, δ) = cp(C ), C ∈ Codesq
• Uq: set of limit points of Vq

• Asymptotic bound: Uq all points below graph of a function

Uq = {(R, δ) ∈ [0, 1]2 |R ≤ αq(δ)}

• Isolated code points: Vq ∖ (Vq ∩ Uq)
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Method: controlling quadrangles

1δ

R

1

R = αq(δ) continuous decreasing function with αq(0) = 1 and
αq(δ) = 0 for δ ∈ [q−1

q , 1]; has inverse function on [0, (q − 1)/q];
Uq union of all lower cones of points in Γq = {R = αq(δ)}

Matilde Marcolli Codes and Complexity



Characterization of the asymptotic bound

• Code points and multiplicities

• Set of code points of infinite multiplicity
Uq ∩ Vq = {(R, δ) ∈ [0, 1]2 ∩Q2 |R ≤ αq(δ)} below the
asymptotic bound

• Code points of finite multiplicity all above the asymptotic bound
Vq ∖ (Uq ∩ Vq) and isolated (open neighborhood containing (R, δ)
as unique code point)

Questions:
• Is there a characterization of the isolated good codes on or above
the asymptotic bound?
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Estimates on the asymptotic bound

• Plotkin bound:

αq(δ) = 0, δ ≥ q − 1

q

• singleton bound:
αq(δ) ≤ 1− δ

• Hamming bound:

αq(δ) ≤ 1− Hq(
δ

2
)

• Gilbert–Varshamov bound:

αq(δ) ≥ 1− Hq(δ)
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Computability question

• Note: only the asymptotic bound marks a significant change of
behavior of codes across the curve (isolated and finite
multiplicity/accumulation points and infinite multiplicity)

• in this sense it is very different from all the other bounds in the
space of code parameters

• .... but no explicit expression for the curve R = αq(δ)

• ... is the function R = αq(δ) computable?
• ... a priori no good statistical description of the asymptotic
bound: is there something replacing Shannon entropy
characterizing Gilbert–Varshamov curve?

Yu.I. Manin, A computability challenge: asymptotic bounds
and isolated error-correcting codes, arXiv:1107.4246

Matilde Marcolli Codes and Complexity



The asymptotic bound and Kolmogorov complexity

• while random codes are related to Shannon entropy (through the
GV-bound) good codes and the asymptotic bound are related to
Kolmogorov complexity

• the asymptotoc bound R = αq(δ) becomes computable given an
oracle that can list codes by increasing Kolmogorov complexity

• given such an oracle: iterative (algorithmic) procedure for
constructing the asymptotic bound

• ... it is at worst as “non-computable” as Kolmogorov complexity

• asymptotic bound can be realized as phase transition curve of a
statistical mechanical system based on Kolmogorov complexity

Yu.I. Manin, M. Marcolli, Kolmogorov complexity and the
asymptotic bound for error-correcting codes, Journal of
Differential Geometry, Vol.97 (2014) 91–108
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Complexity

• How does one measure complexity of a physical system?

• Kolmogorov complexity: measures length of a minimal
algorithmic description

... but ... gives very high complexity to completely random things

• Shannon entropy: measures average number of bits, for objects
drawn from a statistical ensemble

• There are other proposals for complexity, but more difficult for
formulate

• Gell-Mann complexity: complexity is high in an intermediate
region between total order and complete randomness
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Kolmogorov complexity

• Let TU be a universal Turing machine (a Turing machine that
can simulate any other arbitrary Turing machine: reads on tape
both the input and the description of the Turing machine it should
simulate)

• Given a string w in an alphabet A, the Kolmogorov complexity

KTU (w) = min
P:TU (P)=w

ℓ(P),

minimal length of a program that outputs w

• universality: given any other Turing machine T

KT (w) = KTU (w) + cT

shift by a bounded constant, independent of w ; cT is the
Kolmogorov complexity of the program needed to describe T for
TU to simulate it
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• any program that produces a description of w is an upper bound
on Kolmogorov complexity KTU (w)

• think of Kolmogorov complexity in terms of data compression

• shortest description of w is also its most compressed form

• can obtain upper bounds on Kolmogorov complexity using data
compression algorithms

• finding upper bounds is easy... but NOT lower bounds
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Main problem
Kolmogorov complexity is NOT a computable function

• suppose list programs Pk (increasing lengths) and run through
TU : if machine halts on Pk with output w then ℓ(Pk) is an upper
bound on KTU (w)

• but... there can be an earlier Pj in the list such that TU has not
yet halted on Pj

• if eventually halts and outputs w then ℓ(Pj) is a better
approximation to KTU (w)

• would be able to compute KTU (w) if can tell exactly on which
programs Pk the machine TU halts

• but... halting problem is unsolvable
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with m(x) = miny≥x K(y)
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Kolmogorov complexity
X = infinite constructive world: have structural numbering
computable bijections ν : Z+ → X principal homogeneous space
over group of total recursive permutations Z+ → Z+

• Ordering: x ∈ X is generated at the ν−1(x)-th step

Optimal partial recursive enumeration u : Z+ → X
(Kolmogorov and Schnorr)

Ku(x) := min{k ∈ Z+ | u(k) = x}

Kolmogorov complexity
• changing u : Z+ → X changes Ku(x) up to bounded
(multiplicative) constants c1Kv (x) ≤ Ku(x) ≤ c2Kv (x)
• min length of program generating x (by Turing machine)
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Main Idea:

• use characterization of asymptotic bound as separating code
points with finite multiplicity from code points with infinite
multiplicity

• given the function from codes to code parameter, want an
algorithmic procedure that inductively constructs preimage sets
with finite/infinite multiplicity

• choose an ordering of code points: at step m list code points in
order up to some growing size Nm

• initialize A1: a set of a preimage for each code point up to N1;
initialize B1 = ∅

• want to increase at each step Am and Bm so that the first set
only contains code points with multiplicity m
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• going from step m to step m + 1: new code points listed
between Nm and Nm+1 are added to Am, and then points
(previously in Am or added) that do not have an m+ 1-st preimage
are moved to Bm+1

• as m → ∞ the sets Am converge to set of code points of infinite
multiplicity and the Bm converge to set of code points of finite
multiplicity

• key problem: need to search for the m + 1-st preimage to detect
if a code point stays in Am+1 or is moved to Bm+1

• ordinarily this would involve an infinite search...

• ordering and complexity: use a relation between ordering and
complexity that shows that only need to search among bounded
complexity codes, so a complexity oracle will render the search
finite
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X , Y infinite constructive worlds, νX , νY structural bijections, u, v
optimal enumerations, Ku and Kv Kolmogorov complexities

• total recursive function f : X → Y ⇒ ∀y ∈ f (X ), ∃x ∈ X ,
y = f (x): ∃ computable c = c(f , u, v , νX , νY ) > 0

Ku(x) ≤ c · ν−1
Y (y)

Kolmogorov ordering
Ku(x) = order X by growing Kolmogorov complexity Ku(x)

c1 Ku(x) ≤ Ku(x) ≤ c2Ku(x)

So... if know how to generate elements of X in Kolmogorov
ordering then can generate all elements of f (X ) ⊂ Y in their
structural ordering

Matilde Marcolli Codes and Complexity



In fact... take F (x) = (f (x), n(x)) with

n(x) = #{x ′ | ν−1
X (x ′) ≤ ν−1

X (x), f (x ′) = f (x)}

total recursive function ⇒ E = F (X ) ⊂ Y × Z+ enumerable

• Xm := {x ∈ X | n(x) = m} and Ym := f (Xm) ⊂ Y enumerable

• for x ∈ X1 and y = f (x): complexity Ku(x) ≤ c · ν−1
Y (y) (using

inequalities for complexity under composition)

Multiplicity: mult(y) := #f −1(y)

Y∞ ⊂ · · · f (Xm+1) ⊂ f (Xm) ⊂ · · · ⊂ f (X1) = f (X )

Y∞ = ∩mf (Xm) and Yfin = f (X )∖ Y∞

Key Step: y ∈ Y∞ and m ≥ 1: ∃ unique xm ∈ X , y = f (xm),
n(xm) = m and c = c(f , u, v , νX , νY ) > 0

Ku(xm) ≤ c · ν−1
Y (y)m log(ν−1

Y (y)m)
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Oracle mediated recursive construction of Y∞ and Yfin

• Choose sequence (Nm,m), m ≥ 1, Nm+1 > Nm

• Step 1: A1 = list y ∈ f (X ) with ν−1
Y (y) ≤ N1; B1 = ∅

• Step m + 1: Given Am and Bm, list y ∈ f (X ) with
ν−1
Y (y) ≤ Nm+1; Am+1 = elements in this list for which ∃ x ∈ X ,
y = f (x), n(x) = m + 1; Bm+1 = remaining elements in the list

• oracle: search for x ∈ X , y = f (x), n(x) = m + 1 only among
those x with complexity bounded by function of ν−1

Y (y) as above

• Am ∪ Bm ⊂ Am+1 ∪ Bm+1, union is all f (X ); Bm ⊂ Bm+1 and
Yfin = ∪mBm, while Y∞ = ∪m≥1(∩n≥0Am+n)

• from Am to Am+1 first add all new y with Nm < ν−1
Y (y) ≤ Nm+1

then subtract those that have no more elements in the fiber
f −1(y): these will be in Bm+1
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Structural numbering for codes

• X = Codesq, Y = [0, 1]2 ∩Q2 and f : X → Y is
cp : C 7→ (R(C ), δ(C )) code parameters map

• A = {0, . . . , q − 1} ordered, An lexicographically; computable
total order νX :
(i) if n1 < n2 all C ⊂ An1 before all C ′ ⊂ An2 ;
(ii) k1 < k2 all [n, k1, d ]q-codes before [n, k2, d

′]q-codes;
(iii) fixed n and qk : lexicographic order of code words,
concatenated into single word w(C ) (determines code):
order all the w(C ) lexicographically

• total recursive map cp : Codesq → [0, 1]2 ∩Q2

• fixed enumeration νY of rational points in [0, 1]2

... inductively building the asymptotic bound using the described
oracle mediated procedure

• Question: is there a statistical view of this procedure?
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Partition function for code complexity

Z (X , β) =
∑
x∈X

Ku(x)
−β

weights elements in constructive world X by inverse complexity;
β = inverse temperature, thermodynamic parameter

Convergence properties

• Kolmogorov complexity and Kolmogorov ordering

c1Ku(x) ≤ Ku(x) ≤ c2Ku(x)

• convergence of Z (X , β) controlled by series∑
x∈X

Ku(x)
−β =

∑
n≥1

n−β = ζ(β)

• Partition function Z (X , β) convergence for β > 1; phase
transition at pole β = 1
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Asymptotic bound as a phase transition
• X ′ ⊂ X infinite decidable subset of a constructive world
• i : X ′ ↪→ X total recursive function; also j : X → X ′ identity on
X ′ constant on complement

Ku(i(x
′)) ≤ c1Kv (x

′) and Kv (j(x)) ≤ c2Ku(x)

• δ = βq(R) inverse of αq(δ) on R ∈ [0, 1− 1/q]

• Fix R ∈ Q ∩ (0, 1) and ∆ ∈ Q ∩ (0, 1)

Z (R,∆;β) =
∑

C :R(C)=R;1−∆≤δ(C)≤1

Ku(C )−β+δ(C)−1

Phase transition at the asymptotic bound
• 1−∆ > βq(R): partition function Z (R,∆;β) real analytic in β
• 1−∆ < βq(R): partition function Z (R,∆;β) real analytic for
β > βq(R) and divergence for β → βq(R)+
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Another view of the asymptotic bound as a phase transition

Yuri I. Manin, Matilde Marcolli, Error-correcting codes and
phase transitions, Mathematics in Computer Science (2011)
5:133–170.

• when constructing random codes (Shannon Random Code
Ensemble): choose code words as equally distributed independent
random variables

• imagine passing from classical to quantum systems, where the
code words remain the fundamental degrees of freedom

• the basic quantum system of this kind is a system of independent
harmonic oscillators: creation/annihilation operators associated to
the basic independent degrees of freedom
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Single Code: algebra of creation/annihilation operators

• for a single code C : code words are degrees of freedom

• Algebra of observable of a single code: Toeplitz algebra on code
words

TC : Tx , x ∈ C , T ∗
x Tx = 1

TxT
∗
x mutually orthogonal projectors

• Fock space representation HC spanned by ϵw , words
w = x1, . . . , xN in code language WC

Tx ϵw = ϵxw
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Quantum Statistical Mechanics of a single code

• algebra of observables TC ; time evolution σ : R → Aut(TC )

σt(Tx) = Ku(C )it Tx

• Hamiltonian π(σt(T )) = qitHπ(T )q−itH

H ϵw = ℓ(w) logqKu(C ) ϵw

in Fock representation, ℓ(w) length of word (# of code words)

• Partition function

Z (C , σ, β) = Tr(e−βH) =
∑
m

(#WC ,m)Ku(C )−βm

=
∑
m

qm(nR−β logq Ku(C)) =
1

1− qnRKu(C )−β

• Convergence: β > nr/ logq Ku(C )
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QSM system at a code point (R, δ)

• Different codes C ∈ cp−1(R, δ) as independent subsystems

• Tensor product of Toeplitz algebras T(R,δ) = ⊗C∈cp−1(R,δ)TC
• Shift on single code temperature so that

Z (C , σ, n(β − δ + 1)) ≤ (1− Ku(C )−β)−1

by singleton bound on codes R + δ − 1 ≤ 0

• Fock space H(R,δ) = ⊗HC ; time evolution σ = ⊗σC

• Partition function (variable temperature)

Z (cp−1(R, δ), σ;β) =
∏

C∈cp−1(R,δ)

Z (C , σ, n(β − δ + 1))

• Convergence controlled by
∏

C (1− Ku(C )−β)−1; in turned
controlled by the classical zeta function
Z (cp−1(R, δ), β) =

∑
C∈cp−1(R,δ) Ku(C )−β
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first versus second quantization

• Bosonic second quantization: example of primes p and integers
n ∈ N; independent degrees of freedom (primes) quantized by
isometries τ∗p τp = 1; tensor product of Toeplitz algebras

⊗pTp = C ∗(N) semigroup algebra; σt(τp) = pitτp, partition
function ζ(β) =

∏
p(1− p−β)−1 prod of partition functions

individual systems

• Infinite tensor product: second quantization; finite tensor
product: quantum mechanical (finitely many degrees of freedom)
first quantization

• (T(R,δ), σ) is quantum mechanical above the asymptotic bound;
bosonic QFT below asymptotic bound

Asymptotic bound boundary between first and second quantization
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Asymptotic bound as a phase transition (QSM point of view)

• Variable temperature partition function: A = ⊗s∈SAs ,
σ = ⊗sσs ; β : S → R+; Z (A, σ, β) =

∏
s Z (As , σs , β(s))

• fix a code point (R, δ); partition function (variable β)

Z ((R, δ), σ;β) =
∏

C∈cp−1(R,δ)

(1− q(R−β)nC )−1

• if (R, δ) above bound finite product; if below bound convergence
governed by

∑
C q(R−β)nC , for β > R.

• change of behavior of the system at R = αq(δ) asymptotic bound
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Spherical Codes

Yuri I. Manin, Matilde Marcolli, Asymptotic bounds for
spherical codes, arXiv:1801.01552

• spherical code: finite set X of points on unit sphere Sn−1 ⊂ Rn

• spherical code X has minimal angle ϕ if ∀x ̸= y ∈ X

⟨x , y⟩ ≤ cosϕ

• A(n, ϕ) = max number of points on Sn−1 with minimal angle ϕ
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Spherical codes and sphere packings

non-overlapping congruent balls in Rn

density: fraction of space covered by the balls in the packing

ball Bn
R(x) of radius R centered at x

density of packing: limit for R → ∞ (if exists) of fraction of
Bn
R(x) covered by spheres in the packing, independent of x if

exists

∆Rn maximal packing density (actually achieved by some
packing, Groemer 1963)

Kepler conjecture proved by Hales solves sphere packing
problem in 3D

Viazovska solved sphere packing in dim 8: unique max
realized by E8-lattice

in dim 24 (Cohn, Kumar, Miller, Radchenko, Viazovska):
unique max realized by Leech lattice

these results use an argument based on modular forms and
linear programming bounds for sphere packings
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In R2 two regular lattice packings of spheres, hexagonal one
realizes max density of planar packings (László Fejes Tóth, 1940)
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In R3 Kepler problem optimal sphere packing (Thomas Hales,
1998)
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Examples of lattices involved in best sphere packings in low
dimensions

lattice An = {x ∈ Zn+1 |
∑

i xi = 0} simplex lattice (zero-sum
hyperplane)

checkerboard lattice Dn = {x ∈ Zn |
∑

i xi even }
E8 lattice E8 = D8 ∪ (D8 + (12 , . . . ,

1
2)

E7 orthogonal complement of A1 inside E8, etc

• But... densest lattice typically not the max density solution of all
packing: in most dimensions densest packing realized by a
non-lattice packing
• E8 maximality is an actual lattice solution!
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plot of densest sphere packings in low dimensions (Sloane)
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Relation to sphere packings and kissing number

example of sphere configuration with kissing number 12
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kissing number: how many balls can touch one given ball at
the same time if all the balls have the same size same size

in 2D hexagonal planar lattice packing is optimal solution for
(1) the 2D kissing number problem, (2) the lattice packing
problem, (3) the sphere packing problem
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lattice packing and kissing number solutions in low dim (in
brackets better non-lattice solutions of max sphere packing density)
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Spherical codes

T. Ericson, V. Zinoviev, Codes on Euclidean Spheres, North
Holland, 2001.
optimization questions (in a given dimension n)

1 given M ∈ N find a spherical code with M points such that
minimum distance (min angle) between points of the code is
as large as possible

2 given distance d > 0 (angle ϕ) find a spherical code with
largest number M of points with at least this min distance

analogs of encoding and decoding optimization questions for
q-ary codes

Examples in 3D (points on S2)
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for angle separation ϕ = π/3 can view points of a spherical
code as contact points for an arrangement of touching
non-overlapping equal spheres: kissing number problem
(maximize M given ϕ)

Henri Cohn, Yufei Zhao, Sphere packing bounds via spherical
codes, Duke Math. J. 163 (2014), no. 10, 1965–2002

upper bound for sphere packing densities are obtained from
spherical codes

by obtaining asymptotic upper bounds for A(n, ϕ) of spherical
codes (for large n) and deducing from these the upper bounds
on the density: for all n ≥ 1 and for π/3 ≤ ϕ ≤ π

∆Rn ≤ sinn(ϕ/2) · A(n, ϕ)
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• estimate of sphere packing density: sphere radius R ≤ 2 at
randomly chosen location (not centered on lattice) contains on
average ∆ · Rn sphere centers; project these to surface of the
sphere from center; can check they are separated by at least ϕ with
sin(ϕ/2) = 1/R; so ∆ · Rn ≤ A(n, ϕ)
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Spherical codes from binary codes

• C binary [n, k , d ]2-code

• identifying Z/2Z = {±1}: code words as subset of the vertices
of n-cube centered at origin in Rn inscribed in sphere Sn−1

(normalization factor)

• binary code C gives spherical code XC with parameters

cosϕ = 1− 2d

n
⇔ δ(C ) =

d

n
= sin2(ϕ/2) =

1− cosϕ

2

R(C ) =
log2#XC

n

with maximum (for fixed n and d)

R(C )max(n, d) =
log2 A(n, ϕ(n, d))

n

• Question: is there an asymptotic bound for spherical codes?
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Space of code parameters

• binary codes: [0, 1]2 ∩Q coordinates (δ,R)

• spherical codes:

code rate R = n−1 log2#XC

minimum angle ϕ = ϕXC
(or cosϕ)

• unbounded: ϕ smaller maximal number of points A(n, ϕ) grows,
so R unbounded near ϕ → 0

• space R+ × [0, π]
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Regions in the space of code parameters

code points of some spherical code X

P = {P = (R, ϕ) | ∃X ⊂ Sn−1 : (R, ϕ) = (R(X ) =
1

n
log2 #X , ϕX )}

accumulation points of set of code parameters

A = {P = (R, ϕ) | ∃(Ri , ϕi ) ∈ P : (R, ϕ) = lim
i
(Ri , ϕi ), (Ri , ϕi ) ̸= (R, ϕ)}

points surrounded by a 2-ball densely filled by code parameters

U = {P = (R, ϕ) | ∃ϵ > 0 : B(P, ϵ) ⊂ A}

• asymptotic bound:

Γ = {(R = α(ϕ), ϕ) |α(ϕ) = sup{R ∈ R+ : (R, ϕ) ∈ U} }

with α(ϕ) = 0 if {R ∈ R+ : (R, ϕ) ∈ U} = ∅
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New phenomena with respect to binary codes

• the two regions A and U do not coincide

• asymptotic bound is the boundary of the region U (not of A)

• the part of the region A that is not in U consists of sequences of
horizontal segments not contained in U ∪ Γ

• also the asymptotic bound is only non-trivial in a “small angle
region”

small angles region: 0 ≤ ϕ ≤ π/2

large angle region: π/2 < ϕ ≤ π
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Large angle region π/2 < ϕ ≤ π

• Rankin bound: for π/2 < ϕ ≤ π

A(n, ϕ) ≤ (cosϕ− 1)/ cosϕ

• bound realized for −1 ≤ cosϕ ≤ −1/n while for
−1/n ≤ cosϕ < 0 one has A(n, ϕ) = n + 1

• code points lie below the curve

R =
1

n
log2(min{n + 1,

cosϕ− 1

cosϕ
})

• large n → ∞ behavior

R =
log2#X

n
≤ log2 A(n, ϕ)

n
→ 0, π/2 ≤ ϕ ≤ π

⇒ no interesting asymptotic bound in this region

• still contains code points in A∖ U and P ∖A
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Plots for n = 1, . . . , 10
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Estimates in the small angle region

• Kabatiansky–Levenshtein bound: large n → ∞

R ≤ log2 A(n, ϕ)

n
≤ 1 + sinϕ

2 sinϕ
log2(

1 + sinϕ

2 sinϕ
)−1− sinϕ

2 sinϕ
log2(

1− sinϕ

2 sinϕ
)

for minimum angle 0 ≤ ϕ ≤ π/2

• for large n → ∞ code parameter in the undergraph

S := {(R, ϕ) ∈ R+ × [0, π] : R ≤ H(ϕ)}

H(ϕ) =
1 + sinϕ

2 sinϕ
log2(

1 + sinϕ

2 sinϕ
)− 1− sinϕ

2 sinϕ
log2(

1− sinϕ

2 sinϕ
)
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Graph of H(ϕ):

• either cutoff on minimum angle ϕ ≥ ϕ0 (e.g. case of sphere
packings) or cutoff on R = 1

n log2#X ≤ T (more natural for
spoiling operations)
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Spoiling operations for spherical codes
1 first spoiling operations:

binary codes: C1 = C ⋆i a associates to a word c = (a1, . . . , an)
of C the word c ⋆i a = (a1, . . . , ai−1, a, ai , . . . , an)
spherical codes: take code XC ⊂ Sn−1 and inserts Sn−1 as
hyperplane section of Sn

2 second spoiling operation:

binary codes: C2 = C⋆i , which is a projection of the code C in
the i-th direction
spherical codes: cos θ = ⟨vk , vr ⟩ angle between two points of
code XC : orthogonal projection along xi -axis

cos θ̃ =
n

n − 1
⟨v⊥i

k , v⊥i
r ⟩ = n

n − 1
(cos θ − ⟨vk,i , vr ,i ⟩)

3 third spoiling operation:

binary codes: C3 = C (a, i) code words with i-th digit a
spherical codes: line ℓ and orthogonal hyperplane L through
origin of Rn, with X3 := X±

ℓ = X ∩ Sn−1
ℓ,± intersection with one

of the two hemispheres
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Main differences: continuous parameters in spoiling operations

• first spoiling operation extends with continuous parameters
(choice of a hyperplane H): scaling the sphere Sn−1 and identifying
it with the section H ∩ Sn to embed new code X1 = X ⋆ H in Sn

• parameters: k(X1) = k(X ), n(X1) = n(X ) + 1 and

cosϕX1 = ρ2H cosϕX + (1− ρ2H)

ρH radius of scaled sphere Sn−1
ρ = H ∩ Sn

• second spoiling operation: L hyperplane through origin in Rn

with orthogonal ℓ not containing code points; orthogonal projection
PL : Rn → L ≃ Rn−1 and normalize vectors: X2 = X⋆L ⊂ Sn−2

• code parameters: k(X2) = k(X ) and n(X2) = n(X )− 1

cosϕX2 = (1 + u) cosϕX + u, u = (1− ξ2X ,L)/ξ
2
X ,L

with ξX ,ℓ = dist(X , ℓ)
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• third spoiling operation also continuous choice of ℓ, L with
X3 := X±

ℓ = X ∩ Sn−1
ℓ,± one hemisphere

• code parameters: ∃ℓ with k(X )− 1 ≤ k(X3) < k(X ) and
minimum angle ϕ(X3) ≥ ϕ(X )

controlling cones: starting with X with code parameters
[n, k, cosϕ]

• use spoling operations to obtain code parameters to obtain

1 [n + 1, k , λ cosϕ+ 1− λ], for all λ ∈ [0, 1];

2 [n − 1, k , (1 + u) cosϕ± u] for u = (1− ξX ,L)
2/ξ2X ,L;

3 [n − 1, k − a, cosϕ], for 0 < a < k .

for 0 ≤ ϕ ≤ π/2

• consequence: if (R, ϕ) code point all line segment

ℓn,k,cosϕ = {( n

n + 1
R, λ cosϕ+ 1− λ) : λ ∈ [0, 1]}

also made of code points: in A not always in U
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Example of segments in A not in U
• Rankin examples of spherical codes realizing bound (large angles)
R(X ) = 1

n log2(
cosϕ−1
cosϕ ) for −1 ≤ cosϕ ≤ −1/n and

R(X ) = 1
n log2(n + 1) for −1/n ≤ cosϕ < 0

• apply first spoiling:
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Existence of the asymptotic bound

• construct controlling regions RL,c(P), RR,c(P), RU,c(P),
RD,c(P) in a cutoff of undergraph of H(ϕ)

• use these to constrain position of the asymptotic bound: Γ graph
of continuous decreasing R = α(ϕ) with α(ϕ) → ∞ for ϕ → 0 and
α(π/2) = 0.

• set U is undergraph of this function

U = {(R, ϕ) : R ≤ α(ϕ)}

union of all the lower controlling regions RL(P) of all points P ∈ Γ

• code point P = (R, ϕ) /∈ Γ in region U iff infinite multiplicity and
∃ sequence Xi of spherical codes with (R(Xi ), ϕXi

) = (R, ϕ) and
ni → ∞ and #Xi → ∞.
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Questions

• applications to sphere packings? (maximal density sphere
packings)

• interplay between classical binary (q-ary?) codes and spherical
codes

• asymptotic bound and complexity: spherical codes and
complexity

• classical to quantum codes (for binary and q-ary: CSSR
algorithm): what about spherical codes?
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