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Space

o Classical: sample space Q = {1,..., N} category of (finite)
sets

@ Quantum: complex Hilbert space H of dimension dimH = n:
(finite dimensional) Hilbert spaces

Events

o Classical: set P(Q2) of subsets of 2, Boolean algebra with U,
N and complement (OR, AND, NOT)

@ Quantum: set P(H) of orthogonal projections in H with
operations \/ (max) and A (min), L complement, but

ENFAVF)#(EANFR)V(EANFR)

unless E, F1, F» mutually commute
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Observables (random variables)
o Classical: C(Q) = {f :Q — C} = C**? commutative
C*-algebra; real valued random variables ¥ : 2 — R
e Quantum: B(#H) the noncommutative C*-algebra of bounded
linear operators on a Hilbert space H (all linear operators
since H finite dim: sum of matrix algebras); real valued

random variables are hermitian operators A = A*, which have
Spec(A) C R and

A= Z M\E\

AESpec(A)
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Characteristic functions
o Classical: set E € P(2) and xe(x) =1 if x € E and zero
otherwise; for f : Q — C

FX)= D yXei())

yef(Q)
Xf=1(y) Xf=1(y’) = O, for y 75 y/ and Z Xf*l(y)(x) = 1, Vx € Q
yef(9)
F)" = DY ¥ xrpmx),  and o(f) = > o(y) xr1()(x)
YEF(Q) yef(Q)

forreNand 9 :C—C
@ Quantum: {E\} spectral projections of A

ExEx =0, for A% X, and Z Ey=1
A€Spec(A)

AT=3"NEx  9(A) = @(N\Ex
A A

spectral theorem for A= A* and ¢ : R - R
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Probability distributions and states
o Classical: P:Q — Ry with P = (px)xeq with px > 0 and
Y xecqPx =1, simplex Ag > P

P(E,P)=> p, EcP(Q)

x€E
P(f = \) = P(f1(\), P)

@ Quantum: instead of P = (pyx) have a density matrix p
non-negative and self-adjoint with Tr(p) =1

p:B(H) = C, ¢(A)=Tr(pA)

P(A*A) 20 (asp=n"n=0) ¢(1)=1 (asTr(p)=1)
P(A = \) := Tr(pE)), for A € Spec(A), zero otherwise

Matilde Marcolli Classical and Quantum Information



Expectation values
o Classical: random variable f : Q@ — R (or C)

f)=> f(x)p
xeQ

k-th moment of f = expectation of ¥

Mi(f,P) =Ep(f*)=> f(x)fpe= > NP

x€Q Aef(2)
EP(eitf) _ Z eit)\ P(f_l(k))
AEF(Q)

@ Quantum: expectation of an observable A = A*, state
evaluation

Ey(A) = Tr(pA) = > ATr(pE))
AESpec(A)

Ep(eitA) _ Tr(peitA) — Z eit)‘Tr(pEA)
AESpec(A)
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Variance

o Classical: random variable f : Q@ — R (or C)
Varp(f) = Ep(f — Ep(f))* > 0

zero if all mass distribution of f concentrated at Ep(f)

@ Quantum: observable A = A*
Var,(A) = Tr(p(A — Tr(pA))?) = 0

zero if operator range of p contains in eigenspace of A with
eigenvalue Tr(pA)
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Extreme points
o Classical: simplex Aq has N = #2 extremal points given by
probabilities delta functions

1 x=w
Oulx) = { 0 x#w
@ Quantum: set of all density matrices p is a convex set (and
eigenvalues of p are A > 0)

p=Y_ AE\, with Y AdimE\ =1
AESpec(p) A

one-dimensional projections:
Ex=> Ex,
i

one-dimensional projections cannot be further decomposed
(not convex combinations of other states): extreme points

p=uu"=u)(ul, veH, |u|=1
Tr(uu* A) = Tr(u*Au) = (u, Au)



Variance

@ with respect to pure state p = u u*
Var,(A) = Tr(uu*(A — (u, Au))?) = [|(A = (u, Au))ul|?

zero when u eigenvector of A
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Product spaces
e Classical: (1, P1) and (2, P>)

(Ql X Qz, P1P2), P1 P2(X,y) = Pl(X)Pz(y)
independent systems (Note: not a categorical product)
e Quantum: (Hi, p1) and (Ha, p2)

(H1 ® Ha2, p1 ® p2)
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Dynamics

@ Classical: T : Q — Q invertible transformation, evolve
functions f : Q — C or equivalently evolve states P € Ag

frsfoT, P PoT !

(opposite transformations: change of variable in integration)
@ Quantum: unitary linear operator U : H — H
@ Heisenberg picture: evolve observables/operators

A= U"AU
@ Schrédinger picture: evolve states
p—UpU*

compatible via trace Tr(pU*AU) = Tr(UpU*A)
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Pure and mixed states

@ pure states: nonzero vectors 1) in H = C"*1, only up to scale
AeCr

1
(W) </\¢\>\¢>

@ so pure states = points in P"(C) = (C™1 \ {0})/C*
@ mixed states: convex combinations p = " pi|1);)(1);| density
matrices

p= ) (| = [AP) (M|

@ Schrodinger equation:
ihath@ =H W))
ihp=[H, p]

@ in projective coordinates ¥ is (zp : ... : z,) with

ihZa =Y Hapzy
8
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Projections and probabilities: (quantum logic)

(closed) subspaces of Hilbert space H and their projections P

partially ordered by inclusions

A intersection of subspaces, V join (span of union)

not distributive

H1 C H has co-many complementary H, N Hy = {0} but

only one orthogonal Hi- with P1P{- = P{-P; = 0 and

H="HdH

@ only commuting observable are simultaneously measurable in
quantum mechanics, but pairs of projections typically do not
commute P1P, # PP,

@ Gleason theorem: any probability measure u : B(H) — [0, 1]

that satisfies ;1(®;P;) = >_; 11(P;) on mutually orthogonal

projections is of the form p(P) = Tr(pP) for some density

matrix

@ states on a finite dimensional C*-algebra are of the form
©(A) = Tr(pA) for some density matrix
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Qbit: Bloch sphere

@ single particle of spin 1/2: spin up or spin down
state space H = C? spanned by | 1), | })
single qgbit space
pure states P1(C) ~ S2, Bloch sphere
mixed states: 3-dim ball B with 9B = 52 (convex
combinations of points of 52)
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@ Pauli matrices

0 1 0 —i 1 0
=>=10) =T o) BT 0 1

@ 2 x 2 hermitian density matrix can always be written as

1 .
s+z x—1ly 1
= 2 - — .
P <z+iy ;—z> 21d+T &

T = (x,¥,2) (Bloch vector) and ¢ = (0, 0y,0;)

@ positivity p > 0 (iff nonnegative eigenvalues) iff

2 4+y?+22<

Bl

Bloch ball coordinates
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Fubini-Study metric

e C™1 with standard hermitian metric (flat Euclidean metric on
R2"+2)

ds® = Z dz; @ dz:
i=0

e not C*-invariant but U(1)-invariant

@ restriction of ds? to the unit sphere $2"*1 c C"*! induced
the round metric dsgz,, 11

e realize P"(C) as quotient P"(C) = S2™+1/S': Hopf fibration
St — §2M 5 P"(C)

e by U(1)-invariance ds2,,., descends to a metric on P"(C)
(Fubini-Study metric)
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@ projective coordinates (Zy : - -+ : Z,) in P"(C), affine chart C"
with affine coordinates (1, zi, ..., z,)

(1+ zz")dzjdZ — 7/ zjdzjdZ'
(14 z2z)?

dsgs =
(sum over repeated indices)
o Kihler potential K = log(1 + zz')

62
0z10z K

dsfs = gifdzid2j7 8ij =
@ projective coordinates (Zy : -+ : Zp,)

22(,dZ5Z1*d 2"
(ZaZ2)?

dsps =
with Zj, Wy = $(Z.Wjs — ZgW,,) skew part of tensor
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o for Zy =(2Zo:--:2Zy) and W, = (W : ... : W,) points in
P"(C) representing pure states |¢) (10| and |¢)(¢| geodesic
distance in FS metric

| Z,We WgZb
distgs(v, ¢) = arccos W = arccos ZaZO‘—W;VT/B

e on PY(C) = $3/S! = S? Fubini-Study metric is round metric
of radius 1/2 (Bloch sphere)

1
O+ 20042 1 dg?)

d - 7
BT 122 4

affine chart coordinates z = x + iy € C and x = rcos 9,
y = rsinf with (¢,0) coordinates on S? related via
stereographic projection
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o cell decomposition
P"(C) = A"(C)UA"}(C)u: - -UAH(C)UA’(C) = A"(C)UP"*(C)

case of P1(C) = A}(C) U A’(C) = C U {oc} ~ S? one point
compactification

o linear subspaces PK(C) C P"(C) systems of linear equations
> o PaZs = 0 in the projective coordinates
Zo=(2o: 1 2Zp)

@ general subvarieties (or schemes): systems of homogeneous
polynomial equations in the Z,

@ space parameterizing linear subspaces of dimension k in
P"(C): Grassmannian Gr(k, n)

o lilnes and hyperplanes duality Gr(n — 1, n) ~ Gr(1, n) and
more generally projective duality Gr(k, V) ~ Gr(n— k, V*)
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@ projective group: GL,(C) acts as linear transformations on
C" so
SLA(C)/(Z/nZ)

acts on P11
e case of P1(C) projective group

PSL,(C) = SLy(C)/(Z/2Z)

@ action by Mobius transformations

a b\ (2)\ (aZy+ bz
c d 4 o cZo + dZq

in an affine chart (z,1) with z = Zy/ 23
a b ,_ ¥ +b
c d)° cz+d
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Segre embeddings
e tensor product V @ W = C"1 @ CM*1 ~ Cr1(m+1) \ith
(v®@w)j = viw;
@ product of projective spaces P" x P is not a projective space
but it embeds via Segre embedding

]P)n % Pm N P(n-i—l)(m-‘rl)—l

induced by the tensor product of vector spaces
Zo =Ly = XYy
o image is the subvariety of P("t1)(m+1)~1 defined by the
equations
ZywZyy = 2y Zyy
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o Example: Segre quadric P! x P! ¢ P3 equation
ZoZ3 - 2122 =0 (where Zo = ZoWop, Zl = ZoWwq, Zg = Z1W,
Z3 = z1wy)

P! x P!

@ ruled surface: two rulings

o=\ Z, = \Z,
ZQ = /\Z3 Z3 - )\Zl

each pair of linear equations a line P! in P3, each P! factor in
P! x P! goes to a family of lines
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pure states and projective spaces
@ pure states in P}(C): single gbit
@ pure states in P"(C) in terms of gbits?
e vector ¥ = (2, ..., Z,) € C"*! = polynomial

Py(t) = Zot" + Z1t" t o+ Zo gt + Z,
@ vector up to scaling by C* (affine chart where Zy # 0) =
monic polynomial
Py(t) =t"+z1t" 1o zy 1t + 2,

can be identified uniquely with (unordered) set of roots
e points in P"(C) < unordered sets of n points in P1(C)
@ identification as symmetric product

S"(X)=Xx---xX/S, P"C)=S"(PC
(X) =X x X /Sn (C) = 5"(P(C))
n—times
@ in general symmetric products of a smooth variety are

singular, but not for complex curves (Riemann surfaces):
S"(Xg) are smooth
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e Wigner's theorem: all isometries of P"(C) arise from unitary
or anti-unitary transformations of C"*1

SU(n+1)/(Z/(n+1)Z), for n=1: SU(2)/(Z/2Z) = SO(3)

e infinitesimal isometries generators of Lie(SU(n + 1))
hermitian matrices H

e corresponding flow iZ® = HgZﬂ (Schrédinger)
@ pure and mixed states: P"(C) < Hermitian
(n+ 1) x (n+ 1)-matrices

1
ds® = ETr(dp dp)
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Space of density matrices

@ density matrices
M™M= {p € Myn(C) | p* = p, p >0, Tr(p) =1}

e positivity (1, py) >0, all » € CV; p = a*a; spectrum
Spec(p) C R4

@ pure states are one-dimensional projections p = |¢) (1| hence
idempotent p? = p

@ seen that pure states form a PN=1(C) embedded as set of
extremal points of MV)

e Hilbert-Schmidt inner product (A, B) = Tr(A*B)
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e Herm(N) real vector space of hermitian matrices
N2-dimensional

Herm(N) ~ Lie(U(N))

N2—1
A=r1pid + Z Ti O}
i=1

o = basis of Lie(SU(N))

Tr(A 1
To = rlsl ), Ti = ETI‘(J,'A)
® p(n) = %id maximally mixed state, like uniform probability in
classical case: tracial state ¢(A) = Tr(pn)A) = & Tr(A)
@ subspace Lie(SU(N)) of matrices with Tr(A) =0

e P C Herm(N) positive cone p > 0
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@ can write density matrices in the form

_ N2-1
e BH

p:m with H = ;X{O’,‘

o; = basis of Lie(SU(N)) and x; “exponential coordinates”,
with 8 inverse temperature

@ one-parameter unitary group U = el

@ time evolution p = i[p, H] infinitesimal of

eltH e—ltH

or(p) = P

e BH .
® P = T(e—rHy equilibrium state
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e Kadison theorem: ¢ : M) — MN) bijection preserving
convex structure

p(Ap1 + (1= N)p2) = Ap(p1) + (1 — N)g(p2)

is given by p — UpU* with U unitary or anti-unitary

@ preserving convex structure: affine and sends extremal points
to extremal points, hence symmetry of PN=1(C) so from
Wigner theorem implemented by unitary/antiunitary

e adjoint action of unitaries is adjoint action of SU(N) on its
Lie algebra

1 N2—1 1 N2—1
p = UpU* = Nid+ Z TiUo;U* = Nid+ Z 7!l 0
i=1 i=1
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@ rotated Bloch vector

1 1 .
Ti, = ETI'(p’o‘i) = 5 ZT‘I‘(O’,UUJU )7‘1
J

@ the entries of an orthogonal matrix O = (Oj;) since

(00Y);; = d; .
Oy = ETr(a,- Uo;U")

@ this realizes embedding
SU(N)/(Z/NZ) — SO(N? — 1)

@ case of N = 2 have SU(2)/(Z/2Z) = SO(3)
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structure of M(V) as a convex set
e p = p* diagonalizable: eigenvalues \; > 0 with >, \; =1 are
a classical probability distribution

e boundary strata of M(M), where at least one of the
eigenvalues is equal to zero

o copies of M) with k < N in the boundary

@ extremal points (pure states) where all but one are zero
(one-dimensional projections)

e fix a basis: those p € M(N) that are diagonal in that fixed
basis form an (N — 1)-dimensional simplex Ay_; ¢ M(V)
(eigenvalue simplex)

@ one such eigenvalue simplex for each choice of basis; each p is
in an eigenvalue simplex (for basis that diagonalizes it)

Matilde Marcolli Classical and Quantum Information



structure organized by orbits of the unitary group
diagonalization: p = UAU* with U unitary and A diagonal
consider a A and the U(N)-orbit A — UAU*

if B is diagonal and unitary then [A, B] =0 so

UANU* = UBAB*U*

o if diagonal entries of A are all distinct this is the only
ambiguity

o if k entries agree then a further U(k) that commutes with A

@ densities p with nondegenerate spectrum have orbit the flag
manifold

U(N)/U(L) % - x U(L) = Flag{y

o if degeneracies k; with 3", ki = N in the spectrum then
orbit of p flag manifold

N
U(N)/U(kt) x - % Ulkm) = Flagl) - o
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Q ) ,, x‘ﬂ.w

@)

M

Figure 8.5 An attempt to visualise M. We rotate the eigenvalue simplex to
obtain a cone, then we rotate it in another dimension to turn the base of the cone
into a Bloch ball rather than a disc; that is a maximal face of M© . On the right,
we imagine that we have done this to all the three edges of the simplex. In each
maximal face we have placed three equidistant points — it happens that when these
points are placed correctly on all the three spheres, they form a regular simplex
inscribed in M®.

from |.Bengtsson, K.Zyczkowski, “Geometry of quantum states”,
Cambridge University Press, 2017
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e resulting structure of M(V) subdivided into products of
simplices and flag manifolds

@ A diagonal densities is a classical simplex Apn_1
o first divide into N! pieces (different orderings of eigenvalues)

o one of these pieces Ay_1 Weyl chamber: (N — 1)-dimensional
space of U(N) orbits

@ subdivide the Weyl chamber AN,l into pieces Ky, .k, with
ki + -+ km = N, according to degeneracies of eigenvalues

e structure of MN)

N) (N)
M( ) = U Flagkl,kﬁ-kz,---»zl‘ki x Kkl""’km
K4 km=N
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Figure 8.6 The eigenvalue simplex and the Weyl chamber for N = 2,3 and 4.
The Weyl chamber Ay_1, enlarged on the right-hand side, can be decomposed
according to the degeneracy into 2V~! parts.

from |.Bengtsson, K.Zyczkowski, “Geometry of quantum states”,
Cambridge University Press, 2017
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Entropy for quantum information
@ analog of Shannon entropy S(P) = —) . pilog p;

@ von Neumann entropy for density matrices p € MV)

5(p) = —Tr(plog p)

where use spectral theorem to define log p
e if p diagonal
A1
A2
p= N = S(p) ==Y _Ailog\;
: i

AN

e zero for pure states; log N for maximally mixed p(y) = N~tid
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e disjoint states p; have orthogonal ranges (nontrivial
eigenvectors span orthogonal subspaces)

@ extensivity property: p; disjoint and p =), pip; with
probabilities P = (p;)

N

S(p) = S(P)+Y_ piS(pi)

i=1

follows from Shannon entropy via diagonalization

@ concavity: p=Ap1 + (1 — N)p2
S(p) = AS(pn) + (1 — N)S(p2)

e subadditivity: p on H; ® H, with marginals (partial traces)
p1 = Try,(p) and p2 = Try, (p)

S(p) < S(p1) + S(p2)

@ equality if p = p1 ® pa independent subsystems
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relative entropy in quantum information
@ analog of Kullback—Leibler divergence

5(plo) = Tr(p(log p — log o))

@ can be oo (if o has zero eigevalue) and in general
S(plo) # S(alp)

for diagonal matrices Kullback—Leibler divergence
unitary invariance S(UpU*|UoU*) = S(p|o)
positivity: S(p|o) > 0 and zero for p = o

joint convexity

S(Apat+(1=A)pb|Apc+(1=A)pa) < AS(palpc)+(1=A)S(pblpa)

@ monotonicity under partial trace: p,o on Hi ® Ho with
marginals (partial traces) p1 = Try,(p) and pr = Tryy, (p)
same for o1, 09

S(piloi) < S(plo)

o for maximally mixed state S(p|p(ny) = log N — S(p) von

Neumann
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Kullback—Leibler divergence revisited

@ classical case corresponds to requiring [p, h] = 0 (so diagonal
in same basis)

S(p+ hlp) = (h, 5p™"h) + O()

with (h, 2p~1h) Fisher-Rao metric

Tr((p + h)log(p + h)) — Tr((p + h) log p)
= Te(plog(p(/ + p~*h))) + Tr(hlog(p(! + p~'h))) — Tr(plog p)
= Tr(plog(l + p~*h)) + Tr(hlog(l + p~th))

S(p+ hlp)

L1 L B 1.
S(p+hlp) = Tr(pp~ h)=5Tx(p p~ hp~ h)+Tx(hp™ h)+O(h?) = S Ta(hp™'h)

using log(/ + p~th) = p~th— 2p=thp=*h+ O(h®) and Tr(h) = 0 and
h= h*

1T(h “Ih) = (h 1 ~1h)

Ty —(h =

> P »2:0
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Baker—Campbell-Hausdorff formula

@ quantum case [p, h] # 0 need to replace
log(p(I 4 p~th)) = log(p) + log(I 4 p~th)) with BCH formula
o Baker—Campbell-Hausdorff formula:

log(e¥e") = Z Z > k()X YPXZYE Xy
n>0 i=1 aj+b;>0

e r(a, b) combinatorial coefficients

aj )L
/<c(a, b) _ (Z/( / + bl))

~aplby!---anlby!

o [X1ybixayb2... xanybn] jterated commutators starting
with a; commutators with X, followed by b; commutators
with Y, etc
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@ more explicitly

log(eXe¥) = X+Y 4= [X Y]+ ([x X, Y1+ Y, 1Y, X]])

[Y X, X, Y]]]—ﬁ([[[[x Y], Y] Yl Y]
+[[[[Y7X],X]7X]7X])
+%([[[[X Y1, YL YL XTI+ (Y, XI, X1, X1, YD) +

@ BCH up to second order terms in Y:

X Y\ __ adxeadx 2
log(e™e )—X—i—eadx_lY—i—O(Y)

where adx Y := [X, Y]
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Second order term in the relative entropy

@ quantum case [p, h] #0

S(p+ hlo) = (h.(F(p) — 3)p™"h) + O(A?)
e F(p) is given by

adjog o g2diog p

F(p) = cadiog, _ 1
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S(p+ hlp) Tr((p + h)log(p + h)) — Tr((p + h) log p)

= Tr(plog(p(! + p~'h))) + Tr(hlog(p(! + p~"h))) — Tr(plog p) — Tr(hlog p)
= Tx(plog ) + Tr(plog(l + p~ ) + 5 Tr(pliog p,log(/ + p~ ")) +

+ Tr(hlogp) + Tr(h(F(p)log(/ + p~*h) + O(h?))) — Tr(plog p) — Tr(hlog p)
up to second order log(/ + p~1h) = p~th — %pflhpfthr O(h3) so get

S(o+hlp) = Te(h) — S Te(ho ')

1 _ 1 L
+5Tx(pllog p, p~ ) = 2 Tr(pllog p, p~ hp ™ h]) + - -

+Tr(hF(p)p~th) + - -

have Tr(h) = 0 and up to second order in h iterated commutators contain at most one

Y = —2p~thp~lh and all other equal to X = log p or at most two Y = p~1h with all
the other X = log p; commute p with the X = log p variables, obtain trace of a
commutator (involving variables X and Y’ = f%hpflh) and trace vanishes on
commutators:

S(p+ hlp) = 5 Tx(ho™ " h) + Te(h(F(p) log(1 + o h)) + O(H?).
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o leading term in Taylor series expansion of (h, (F(p) — )p~1h)
recovers classical Fisher metric (h, 3p~1h)

1. adjog , €2dler 1 -~ 1 1 _
(Flp)=300" = (d_l - 2/) Pt = (51 gadiog - )p

o quadratic form (h, (F(p) — 1)p~1h) contains the quantum

corrections to the classical Fisher metric
e quadratic form (h, (F(p) — 3)p~1h) is positive definite
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positivity
e basis in which p is diagonal p = (A\;),, but h is not
e commutator [log p, h] is given by
[log p, h]jj = (log A\j — log Aj)h;; and
(adfoy ,h)j = (log A — log Aj)*hji

@ using h* =
(log \; — Iog>\
<h?adll:)gpp 1 Zh DV Zh’J ’J
I<J
o coefficients /\I(-f,.) >0
()\,‘ — )\j)(|0g )\,’ — |Og )\j)k if k=20 + 1
v (/\,‘ + )\j)(log A — log /\j)k .
if k=2¢.
A
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@ expression F(p) —1/2 can be expanded as

1 1 1 1 1 1
=+ ~adieg p + —=adZ i 6 8 4

— —ad ——adS — ——ad
272 12 %oz r ~ 7302 %0e s T 30240 Yo 1200600 o8 »
e consider function G(t) even, with G(t) ~ t?/4 and G'(t) >0
fort —0

tet 1 1 et/2( — 1)+ e t/2(L +1)

C)= 75 o(1+tD= =

o after first order term %adbgp only even powers appear in
Taylor series expansion of F(p) — 1/2 of form:

)\,'—i-)\j 1

WY (5 + G(log(A)) — log()))))
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double expansion of relative entropy

o classical case [p, h] = [p,¢] = [h,¢] =0

S(p+ Hlo+0) ~ {(h =0, 507 (h— 1)

same Fisher metric term

@ quantum case with nontrivial commutation of p, h, £
1 _
S(p+hlp+0) ~ {(h=0), 5p™ (h=0)+(h, (F(p)=1)p~ (h=0))
o first term still Fisher metric ((h — ¢), 3p=1(h — ¢£)) > 0 but

remaining term (h, (F(p) — I)p~*(h —£)) no longer necessarily
non-negative
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Completely positive maps
@ evolution of a quantum system:
@ in isolation: p+— UpU™* unitary evolution
@ non-isolated = non-unitary processes H = Hi ® Hy with H;
system and H, environment (ancillary)

prp = Try,(U(p @ o)U¥)

U unitary on H
@ case where o = |1) (1| pure state and |¢) o.n. basis of H>

Ay = (8|UIY) € B(#H)
p =T, (U(p @ 0)U*) = Tragy (Up © [9) (4] U)
=D _(BlU)p(W|U*[0) = 3 AspA;
¢ $

S AAs =S WU )Gl UW) = (U ULY) = idy,
¢ ¢
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operator sum representation of completely positive maps

e family of operators {A;} in B(*1), one for each ¢; o.n. basis
of Ho
N AA =1, g =) ApAf

@ measurement postulate: space of all possible measurement

outcomes
(A} D AA=1
i

(completeness relation)

@ quantum measurement performed on p produces new state

e AipA}
P T (A AT)

with probability p; = Tr(A;pA%) where ) . pi =1 by
completeness
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@ projective measurement: case where A; = AT = P; projectors
P? = P; = P¥ and orthogonal P;P; = §;P;

N
p Z PipP;
i=1

@ outcome of projective measurement

PipPi

Pi = Ta(pppy With probability - pi = Te(PipPy) = Tr(Pip)
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@ positive operator valued measures (not necessarily projections)
k
id=Y E, E=E, E>0
i=1

pi = Tr(Eip) = Tr(AipA7) with E; = A7A

@ any positive operator valued measure {E,-}ff:1 defines an affine
map from MM to A,_4

pP=(p)1, pi=Tr(Eip)

o {E;} statistically complete if image P = (p;) determines p
uniquely (need N2 elements)

e {E;} pure if each E; = |¢;){¢;| has rank one

@ can always purify by passing to spectral projections
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Quantum channels

@ what are all possible “good” physical operations
® : MN) 5 MV on the set of quantum states?

@ seen case of p— > AjpAF with ), ATA; =1

@ is this the most general case? analog of stochastic matrices
for classical probabilities

e completely positive maps: positive maps ¢ : B(H) — B(H)
send positive elements to positive elements; completely
positive maps if on all extensions H ® H’ the map ® ® idy is
a positive map

@ quantum channels: trace preserving completely positive maps
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@ quantum channels ® can always be written (non-uniquely) in
Kraus form as

O(p) =D AipA;,  with D ATA =1
i i

@ can also represent completely positive trace preserving maps
with ®(px) = py through associated stochastic Choi matrix
S¢ with

(ov)i = Y (S0)ap (Px)ab

a
a,b y

@ Kraus representations from factorizations Sp = AA*
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Entropy and channel capacity

@ larger entropy when more terms in Kraus decomposition of ®,
so when farther away from unitary (more decoherence)

@ can check this way how much entropy a quantum channel
introduces when acting on an initial pure state

@ entropy exchange of ¢

Co(p) = mgapxz 5(®ai|®p)

over set of all representations of p as a mixed state
& =A{oi.pilp=>_ pioi}
i

@ channel capacity:

C(®) := max Co(p)
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Quantum information and categories

@ probabilistic category PC associated to a category C with zero
object and sum: wreath product of C and the category FP of
finite classical probabilities

@ similar idea for quantum probabilities QC

@ category of quantum probabilities: finite set X = Hilbert
space Hx = ®xecxCx with Cy one-dimensional space at site
xeX

@ can also replace C, with Hilbert space V of fixed dimension:
the internal degrees of freedom at site x € X
@ category FQ of finite quantum probabilities

e objects: pairs (X, px) finite set X and density matrix px on
Hx

e morphisms: Morxo((X, px), (Y, py)) are given by quantum
channels @, completely positive trace preserving maps with
®(px) = py
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quantum probabilistic categories QC
@ a category C with zero object and categorical sum
@ quantum probabilistic version QC

e objects: pC = ((Cy, Cp), pab)ab, With (C,, Cp) finite collection
of pairs of objects in C and p = (pap) density matrix
o morphisms: for pC = ((G, Cp), pap) and p'C" = ((C/, (), pj;),

=((c/.C
morphisms = € Morge(pC, p'C") given by finite collection

== {(¢ai,ra q/}bj,r)}a (S¢,)3Ub}

where Y So, = So Choi matrix of quantum channel ® with
®(p) =p'
@ composition of morphisms =’ o = given by collection
= o= = {(Qbua,r’ o ¢ai,r’ wvb,r’ ° Q/)bj,r)u (S¢,)qb(5¢’,) ij }r,r’
ij ©uv
which satisfies

D (So)apl(Se,) 5 = D (Se)ap(Ser) = (Sorcw)st

T, - ij
ol J
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@ objects pC = ((Ca,, Cp), pab)ab, for a,b=1,..., N include
case N =1 just objects C € Obj(C) with weight p = 1 and
morphisms in C: embedding of category C into its quantum
probability version QC

e off-diagonal terms p;; of density matrix p describe interference
between amplitudes of the j-th and j-th state = a measure of
coherence of the mixed state

@ objects pC of category QC have an assigned amount of
coherence of pairs of objects Cj, C; in C, described by the
coefficients pj; of density matrix
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o if category C has zero object 0 and categorical sum II then
QC also does

@ zero object: pair (0,1) with 0 the zero object of C with p =1

@ coproduct is of the form
pCLp'C" = (Glle C,p®p)
@ satisfies universal property of coproduct

((CLM CS)7 ﬁUS)

((rirtbs) b T Wz)

. C: P . ! N« !
((CH CJ)7 pU)((Ii,Ij)7(1’§I HC Cjap ®p( a,Ib),\Ul)((Ca’ Cb)a pab)
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07 :Ci— Clle Cf from universal property of coproduct in C
@ maps Vp=p®p and V'p/ = p® p’ given by

Voo =6l and W = 8,0k
(i'j"),(ab) (if),(a"b")

@ map pCIlp/C' — ﬁf that makes the diagram commute

% _ a1
®i)oey = Pus (P1)(2)g

when the entry pys # 0 and

iy = (P1)u Gab + (®2)us 0

when matrix entry pys =0
@ coproduct induced on FQ: product of independent systems
pUrgp' =p&p
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decoherence subcategory

@ decoherence subcategory PC of QC (case of mixed states with
diagonal density matrices — in a fixed basis)
e objects given by pairs (C,z) = ((Ci,...,C),(z1: -+ 2n))
with C; € Obj(C) and z = (z1: -+ : z,) € P"7Y(C)
e morphisms given by a morphism ® : P"~1 — P™1 induced by
a linear map ® : C" — C™ up to scalars with ®z = 2z’ and a
collection {(¢ji., : Ci — Cj’,&J,)} with 32, &, = &
e coproduct (C,z) I (C',2") = ((G; I G)ij, anm(z, 2')) where
Qnm P71 x PM1 5 PPM=1 s the Segre embedding
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variant: categories of arrows

@ variant of construction of categories QC by working with
arrows of C instead of pairs of objects in C
@ category C with zero object and sum: category of arrows AC
o objects: ¢c ¢ given by elements of Morc(C, C') for arbitrary
C, C’' € Obj(C)

o morphisms: L € Mor ac(¢c,cr, daa) pairs L = (L1, Ly) with
Ly € Mor¢(C, A) and L, € More(C’, A’) such diagram
commutes:

@ category AC also has zero object and sum
e zero object of AC is identity morphism 1y of zero object of C
o coproduct ¢c ¢’ L ac da 4 given by unique morphism
¢cuacua : Cllc A— C'Ilc A’ determined by the morphisms
@c,cr and ¢a 4 via universal property of coproduct of C
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@ associate to category of arrows AC the category QAC, wreath
product with finite quantum probabilities 7O

o objects: pp = {@jj, pii} given by collections of morphisms
i CG—=CGinC, fori,j=1,...,N, some N € N, together
with an N x N density matrix p = (pj)

e morphisms: Morgac(pg, p'¢’), with ¢ = (¢;) and ¢’ = (¢.,)
are pairs (L, ®) of a quantum channel ®(p) = p/, with Choi
matrix (Se) j and a finite collection

ab

L={(Lj . (5¢,)aijl'))}

ab’

of morphisms
. ’
L’j r d)lj - ¢ab
ab’

in AC with associated So, satisfying

> So, = So
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