Learning Context Free Grammars with the
Syntactic Concept Lattice

Alexander Clark

Department of Computer Science
Royal Holloway, University of London
Egham, TW20 0EX

alexc@cs.rhul.ac.uk

Abstract. The Syntactic Concept Lattice is a residuated lattice based
on the distributional structure of a language; the natural representation
based on this is a context sensitive formalism. Here we examine the pos-
sibility of basing a context free grammar (CFG) on the structure of this
lattice; in particular by choosing non-terminals to correspond to con-
cepts in this lattice. We present a learning algorithm for context free
grammars which uses positive data and membership queries, and prove
its correctness under the identification in the limit paradigm. Since the
lattice itself may be infinite, we consider only a polynomially bounded
subset of the set of concepts, in order to get an efficient algorithm. We
compare this on the one hand to learning algorithms for context free
grammars, where the non-terminals correspond to congruence classes,
and on the other hand to the use of context sensitive techniques such as
Binary Feature Grammars and Distributional Lattice Grammars. The
class of CFGs that can be learned in this way includes inherently am-
biguous and thus non-deterministic languages; this approach therefore
breaks through an important barrier in CFG inference.

1 Introduction

In recent years, grammatical inference has started to moved from the learnability
of regular languages onto the study of the inference of context free languages.
The approach developed by Clark and Eyraud [I] is one active research di-
rection: they consider defining context free grammars where the non-terminals
correspond to the congruence classes of the language and are able to demon-
strate a learnability result for the class of substitutable languages. Though this
class is small, the result is significant and has already lead to a number of exten-
sions [2I3/4]. Given a richer source of data, including membership queries, it is
possible to increase the class of languages learned, while maintaining this basic
representational assumption (see [5] in this volume).

The limitations of the pure congruence approach are however quite strict.
Though it includes many standard languages, such as the Dyck language and
so on, there are many simple languages which are not in the class. Consider the
following language [6]

Ly = {a"b"|n > 0} U {a"b*"|n > 0}

J.M. Sempere and P. Garcia (Eds.): ICGI 2010, LNAI 6339, pp. 38, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Learning Context Free Grammars with the Syntactic Concept Lattice 39

This is clearly a context free language. It is easy to show, using a pumping
argument, that any CrG for this language must have a non-terminal that gen-
erates an infinite set of strings of the form {a?*t9"b"|n > 0 A (p + gn) > 0} for
some positive ¢ and some integer value p. None of these strings are congruent
to each other. Moreover, since the language itself is a union of infinitely many
congruence classes, it is immediate that it is not in the class of languages that
we can learn using a pure congruential class. Similarly, the language of all odd
and even length palindromes over {a,b} has the property that no two distinct
strings are congruent, and thus a congruence based approach will also fail.

In related work, [7] extends this work by switching to a more powerful con-
text sensitive representation; [8] bases a more powerful approach in the theory
of residuated lattices. That work is motivated by the problems of linguistics —
context free languages are well known to be inadequate for natural language syn-
tax. However there are other non-linguistic areas where grammatical inference
is relevant, and in those areas, it may be worthwhile restricting the represen-
tations to context free grammars for external reasons — for example one might
have prior knowledge the representations are in fact CFGs. Moreover, there are
problems involved with generating from these context-sensitive representations,
and with making stochastic variants of them, whereas these problems are well
understood in the field of cras [9]. Therefore, even though CFGs may not be
the right representation for natural languages, it is still worth studying their
learnability under various paradigms.

The question is then how can we increase the class of context free languages
that we can learn using the same family of distributional techniques, while still
keeping a CFG as a representation. Alternatively, we can ask whether we really
need to use the context-sensitive grammar formalisms if all we are really inter-
ested in is languages which are in fact context free. The goal of this paper is
to take the lattice-based techniques of [8] and use them to push CFG inference
techniques as far as we can.

The basic strategy is to define various sets of strings that we will correspond
to the non-terminals, or more precisely to the set of strings generated by a non-
terminal. We consider a finite set of possibly infinite sets of strings, C. If we
have that PQQ C N for three sets in C, then we can add a rule N — PQ); see
for example [10]. Similarly, if w € N we can add a rule N — w; in particular
we will need rules of the form N — a and N — X\ where a € X. Thus we can
add all rules of the first type, and only a finite number of the second type to
get a context free grammar, and this context free grammar will clearly have
the property that N = w will imply that w € N. Obviously this leaves many
questions unanswered: how to define these sets, and how to compute whether
one is a subset of the other.

In [1], the class C consists of a finite set of congruence classes; these are non-
overlapping sets, which form a congruence: that is to say for any two strings
u,v, we have that [u][v] C [uv]. This makes the inference process quite straight-
forward. Here we will look at using a much larger class C which includes many

40 A. Clark

overlapping sets and has the structure of a lattice. In particular the primitive
elements are defined dually: in terms of finite intersections of sets of strings
which are defined by contexts, not strings. Given a context, or pair of strings,
(I,7), the elementary sets we consider are of the form:

{w|lwr € L}

Whereas the congruence classes are the smallest and most fine-grained sets that
can be distributionally defined, since they are the sets of strings that have iden-
tical distributions, the elementary classes that we define here are in some sense
the largest possible classes that we can define. These are sets of strings that have
only one context in their common distribution, as opposed to sets that have all
their contexts in their common distribution. The languages that can be defined
using these classes are thus rather different in character from those that are
defined using the congruence based approaches.

2 Distributional Lattice

The theoretical base of our approach is the syntactic concept lattice [8], which is a
rich algebraic object which can be thought of as a lattice-theoretic generalisation
of the syntactic monoid.

2.1 Notation

Given a finite non-empty alphabet X', we use X* to refer to the set of all strings
and)\ to refer to the empty string. As usual a language L is any subset of X*.

A context is just an ordered pair of strings that we write (I,7) — [and r refer
to left and right. We can combine a context (I,) with a string v with a wrapping
operation that we write ®: so (I,7) ® u is defined to be lur. We will sometimes
write f for a context (I,r). We will extend this notation to sets of contexts and
strings in the natural way.

Given a formal language L and a given string w we can define the distribution
of that string to be the set of all contexts that it can appear in: Cp(w) =
{{,r)|lwr € L}, equivalently {f|f ® w € L}. There is a special context (A, A):
clearly (A\,\) € Cp(w) iff w € L.

There is a natural equivalence relation on strings defined by equality of dis-
tribution: u =r, v iff Cr(u) = Cp(v); this is called the syntactic congruence. We
write [u] for the congruence class of w.

2.2 Lattice

Distributional learning is learning that exploits or models the distribution of
strings in the language. A sophisticated approach can be based on the Galois
connection between sets of strings and sets of contexts.

Learning Context Free Grammars with the Syntactic Concept Lattice 41

For a given language L we can define two polar maps from sets of strings to
sets of contexts and vice versa. Given a set of strings S we can define a set of
contexts S’ to be the set of contexts that appear with every element of S.

S ={l,r)yeX*xX*:Ywe S lwr € L} (1)

Dually we can define for a set of contexts C' the set of strings C’ that occur with
all of the elements of C'

C'={weX*:vY(,r) e C lwr € L} (2)

We define a syntactic concept to be an ordered pair of a set of strings S and a set
of contexts C, written (S, C'), such that S’ = C and C' = S. An alternative way
of looking at this is that the concepts are the pairs (S, C) such that C ®S C L
and such that these are maximal. For any set of strings S we can define a concept
C(S) = (8",8"). S" is called the closure of the set S; this is a closure operator
as S = S, for any set of strings. We can also form a concept from a set of
contexts C' as C(C) = (C',C").

Importantly, there will be a finite number of concepts in the lattice, if and
only if the language is regular. Each concept represents a natural set of strings
in the language; these form an overlapping hierarchy of all sets of strings that
can be distributionally defined.

We can define a partial order on these concepts where:

(S1,C1) < (S2,C%) iff S; C Ss.

Note that S; C Sy iff C; D Cs.

We can see that C(L) = C({(A, A\)}), and clearly w € Liff C({w}) < C({(A\, N)}).
We will drop brackets from time to time to improve legibility. This poset in fact
forms a complete lattice with a top element T which will normally be (X*,0),
though there may be some contexts shared by every string, for example in the
language X*, and similarly a bottom element L, (), X* x X*), though again there
may be some strings in the bottom element. Indeed if L = X* then the lattice has
only one element and T = L =C(L) = (X*, X* x X*). If L = Y*aX™*, then the
lattice has two elements: the top element is (X*, L x X*UX* x L), and the bottom
element is (L, X* x X*).

The relation to the synactic monoid is crucial; C({u}) = C([u]) but there may
be other strings in the concept that are not congruent to u. In particularly the
set of strings in the concept of u will be the union of all of the congruence classes
whose distribution contains the distribution of w. i.e. if Cp(u) C Cp(v) then v
and indeed [v] will be in the concept C(u). More formally C({u}) will have the
set of strings {v|Cr(v) 2 CL(u)} whereas [u] = {v|CL(v) = CL(u)}.

We define a concatenation operation on these as follows; somewhat similar to
the concatenation in the syntactic monoid.

Definition 1. (S,,Cy) o (Sy, Cy) = ((SzS5y)", (Sz5y)")

We refer the reader to [§] for a more detailed derivation of the properties of this
lattice; and a proof that it is a residuated lattice.

42 A. Clark

3 Grammar

We will use CFGs, which we define standardly as a tuple (X, V, P, S); where X
is a non-empty finite set, the alphabet; V' is a finite set of non-terminals disjoint
from X', S is a distinguished element of V', the start symbol, and P is a finite set
of productions of the form V x (XU V)*; we will write these as V — a. We will
consider CFCs in Chomsky Normal Form, where all of the productions are either
of the form N — a, N — A or N — RS. We write the standard derivation as
BN~y =¢q fay, when N — o € P and the transitive reflexive closure as =¢.

Given a lattice B(L) and a finite set of concepts V' C B(L), which includes
the concept C(L), we can define a CFG as follows. The set of non-terminals will
be equal to this set of concepts; either a set of symbols that are in bijection with
the concepts or alternatively the concepts themselves. The start symbol will be
the concept C(L). We define the set of productions P as follows: If N = (S, C)
and a € X U{A} and a € S, then we add a rule N — a. If Ao B < N then we
add a rule N — AB. We will call this grammar G(L, V).

Lemma 1. For all L and for all V C B(L), if N = (Sy,Cn) and N S¢ w
then w € Sn.

Proof. By induction on the length of the derivation. Suppose N — w is the
complete derivation; then by construction w € Sy. Suppose it is true for all
derivations of length at most k, and let N =¢ w be a derivation of length k+ 1.
Suppose the first step of the derivation is N — PQ =¢ uv = w, and P =g u
and Q =¢ v; by the inductive hypothesis u € Sp and v € Sg; (using the obvious
notation for the sets of strings in the concepts P and Q). By the definition of
P o () we have that uv € Spog, and since P o () is less than N we have that
uv € Sy.

Of course this result assumes that we can correctly identify both the concepts
and the concatenation operation; we now address this point.

3.1 Partial Lattice

Given a finite set of strings K, and a finite set of contexts F we can produce a
partial lattice. We consider a set D which is a sufficiently large subset of L; in
particular we take D = LN (F ® KK). We then define the lattice B(K, D, F) to
be the set of all ordered pairs (S,C) where SC K and C C Fand C =S5 NF,
and S = C'N K. We can compute this lattice using only the finite sets K, D and
F. We use two subroutines defined as GetK and GetF; if C is a set of contexts,
GetK(C) will return €, and GetF(S) will return S’.

We therefore define the following algorithm which uses a membership ora-
cle, and takes as input a finite set of strings K and a finite set of contexts F'.
We assume that (A, \) € F. Algorithm [[lwill generate a CFG in Chomsky normal

Learning Context Free Grammars with the Syntactic Concept Lattice 43

form given the finite sets K, D and F', and an integer bound f which is at least
1. We discuss f further below.

The important point of this algorithm is the schema we use for generating the
branching productions of the grammar. If we have three non-terminals N, P, Q
which correspond to (Sy,Cn), (Sp,Cp), (Sq,Cq), then we have rules of the
form N — PQ if and only if ((SpSg) NF) N K C Sn.

Let us consider this condition for a moment. SpSq is a subset of K K this
may not contain any elements of K at all; but we take the set of all strings of
K that have all of the contexts that are shared by all of the elements of SpSq,
and compare this to Sy.

It could be that ((SpSg)’ N F) N K is empty; then for every non-terminal
N we will have a rule N — PQ); or it could be that N = T in which case
for every non-terminals P, @, we will have N — PQ. We can remove these
excessive productions and redundant non-terminals using standard techniques.
An alternative condition would be ((SpSq)’ N F) D Ci; but this does not have
quite the right properties.

Ezxample 1. Consider the Dyck language over a,b, that consists of strings like
{\, ab, abab, aabb, ...}. Let K = {\ a,b,ab} and F = {(\, \), (a,), (b,\)}. D =
LN(FoKK) = {\,ab,aabb, abab}. There are therefore 5 concepts in the lattice
B(K,D, F)

The top element T' = (K, ()

— The bottom element N = (f), F)
S = ({A ab}, {(AN)})

A= ({a},{(\0)})

- B =({bt},{(a,; M)}

The grammar therefore has 5 non-terminals, labelled S, A, B,T and N. We will
have lexical rules; T' — a,A — a and T — b and B — b. We will have \-
rules S — X and T — A. Since there are 5 concepts, there are 125 possible
branching rules. We have a large number of vacuous rules with N on the right
hand side —there are 45 such rules N — NN, A — BN and so on. We then
have a large number of vacuous rules with 7" on the left — there are 25 of these:
T — AA, T — AN etc. 16 of these are not duplicated with the 45 previous rules.

Stripping out all of these we are left with the following rules S — S5, S — AB,
A— AS;A— SA,B— BS,B— SBand S — A\, A — a, B — b. This grammar
clearly generates the Dyck language.

For a fixed value of f, Algorithm [will produce a polynomial sized grammar
and will always run in polynomial time. Note that if we did not bound the set
of concepts in some way, and used the whole lattice B(K, D, F') we might have
exponentially large grammars.

Ezample 2. Suppose X = {a1,...a,} and L = {ay|lz,y € Xz #y} U K =X
and F = {(\,z)|z € X} then B(K, L, F) will have 2" elements;

44 A. Clark

Algorithm 1. MakeGrammar
Data: A finite set of strings K, a finite set of contexts F', a finite set of strings
D, a non-empty finite set X', a bound f
Result: A context-free grammar G
S=C{(AN});
for ACF, |A|l< fdo
V—VU{CA)};
P—0;
for each a € X U{\} do
for each N eV , N=(Sy,Cn) do
if a € Sy then
P— PU{N —a};

for each A,B €V do
J =854858 ;
Sx < GetK(GetF(J)) ;
for each N € V do
lf SX g SN then
P—PU{N — AB};

return G = (X, V, P, S);

4 Inference

Given a suitable source of information we can then consider the search process
for a suitable set of strings K and set of contexts F'. We will now establish two
monotonicity lemmas just as in [8]. We first change our notation slightly. We
assume that L is fixed and that D = L N (F © KK). We therefore will write
B(K, L, F') as a shorthand for B(K, LN(F ® KK), F), and similarly G(K, L, F)
for the grammar generated from this. In what follows we will consider the bounds
k and f to be fixed.

The first lemma states that if we increase the set of contexts we use, then
the language will increase. We take a language L, and two sets of contexts
Fy) C F, and a set of strings K. Let G; be the grammar formed from K, L, F; and
G2 = G(K, L, F3). For a concept (S, C) in B(K, L, F1) note that there is a corre-
sponding concept (S, S' N Fy) in B(K, L, F»). We will write f*: B(K, L, F}) —
B(K, L, Fy) for the function f*((S,C)) = (5,5 N F2).

Lemma 2. If N — PQ is a production in G1 then f*(N) — f*(P)f*(Q) is a
production in Gg.

Proof. First of all, since N — PQ is a production in G it follows that ((Sp.Sg)'N
F)Y NK C Sy. Clearly, since G 2 F, ((SpSg) NG) 2 ((SpSg)’' N F) and so
((SpSg)' N G) C ((SpSg)' N F)', therefore ((SpSg) NG)' N K C Sy; which
means that there is a rule f*(N) — f*(P)f*(Q) in G2. Note that if N, P,Q lie

Learning Context Free Grammars with the Syntactic Concept Lattice 45

in the bounded subset of concepts defined by f, f*(V), f*(P) and f*(Q) will
also lie in the bounded set in the larger lattice.

Lemma 3. If (S,C) =¢, w then (S,5') Z¢, w.

Proof. Suppose (S,C) = N =, w. We proceed by induction on length of
the derivation. It is obviously true for a derivation of length 1 by construction.
Suppose true for all derivations of length at least k; We must have N — PQ =¢,
uv = w; where P ¢, u and Q =¢, v. By the inductive hypothesis we have
that f*(P) =¢, u and f*(Q) =g, v. Since f*(N) — f*(P)f*(Q) will be a
production in Gg, by the previous lemma, the result holds by induction.

Clearly this means that as we increase the set of contexts the language defined
can only increase. Conversely we have that if we increase the set of strings in the
kernel, the language will decrease. Suppose J C K; and define the map between
B(K,L,F) (which defines a grammar Gp) and B(J, L, F') which defines the
grammar Go as g((S,C)) = (SN J, (SN J)).

Lemma 4. If (S,C) =¢, w then g((S,C)) =g, w

Proof. If we have a rule N — PQ in Gy; then this means that ((SpSg) NE) N
K C Sy. Now (Spﬁj)(SQﬁJ) - (SPSQ) And so (((SPHJ)(SQQJ)IQF)/HK -
Sy And so (((SpNJ)(SgNnJ) NF) NJCSyNJ which means there is a rule
in G2 g(N) — g(P)g(Q), and the result follows by induction as before.

Lemma 5. For any language L, and set of contexts F', there is a set of strings
K, such that L(G(K,L,F)) C L

Proof. As we increase K the number of concepts in B(K, L, F') may increase,
but is obviously bounded by 2/F!. We start by assuming that K is large enough
that we have a maximal number of concepts. Given two concepts X, Y, define
D = (C,C;) NF. This is the set of contexts shared in the infinite data limit. For
each element (I,7) € F\ D we take a pair of strings u € C% and v € C4, such
luvr & L; if have all such pairs in K, then we can easily see that (S, C) S
implies that w € C".

This means that for any set of contexts, as we increase K the language will
decrease until finally it will be a subset of the target language.

For a given L and F define the limit language as (- s;. L(G(K, L, F)), where
the intersection is limited to all finite K. This limit will be attained for some
finite K.

Definition 2. Given a language L, a finite set of contexts F' is adequate, iff
for every finite set of strings K that includes X U {\}, L(G(K,L,F)) D L.

Clearly by the previous definitions, any superset of an adequate set of contexts
is also adequate. If a language has an adequate finite set of contexts F', then for
sufficiently large K, the grammar will define the right language.

46 A. Clark

We say that a CFG in CNF has the finite context property if every non-terminal
can be defined by a finite set of contexts. Defining L(G, N) = {w|N =g w}, this
property requires that for all non-terminals IV, there is a finite set of contexts
Fx such that L(G,N) = F},.

For a given CFG with the FCP we can define f(G) to be the maximum car-
dinality of F'y over the non-terminals in G, and we will define f(L) to be the
minimum of k(G) over all grammars G such that L(G) = L. We will now show
that the algorithm will learn all context free languages with a bound on f(L).

5 Learning Model

Before we present an algorithm we will describe the learning model that we
will use. We use the same approach as in [7] and other papers. We assume that
we have a sequence of positive examples, and that we can query examples for
membership. See [I1] for arguments that this is a plausible model.

In other words, we have two oracles, one which will generate positive examples
from the language, and the other which will allow us to test whether a given
string in the language. After every time the algorithm receives a positive exam-
ple, the learner must use a polynomial amount of computation, and produce a

hypothesis.
Given a language L a presentation for L is an infinite sequence of strings
w1, ws, ... such that {w;|i > 0} = L. An algorithm receives a sequence 7" and an

oracle, and must produce a hypothesis H at every step, using only a polynomial
number of queries to the membership oracle. It identifies in the limit the language
L iff for every presentation T of L there is a N such that for allmn > N H, = Hy,
and L(Hy) = L. We say it identifies in the limit a class of languages £ iff it
identifies in the limit all L in £. We say that it identifies the class in polynomial
update time iff there is a polynomial p, such that at each step the model uses
an amount of computation (and thus also a number of queries) that is less than
p(n, 1), where n is the number of strings and [is the maximum length of a
string in the observed data. We note that this is slightly too weak. It is possible
to produce vacuous enumerative algorithms that can learn anything by only
processing a logarithmically small prefix of the string [12].

6 Algorithm

Algorithm [2 is the learning algorithm we use. We will present the basic ideas
informally before proving its correctness.

We initialise K and F' to the most basic sets we can: so F will just consist of the
empty context (A, A) and K will be A. We generate a grammar, and then we repeat
the following process. We draw a positive example and if the positive example is
not in our current hypothesis, then we add additional contexts to F'. We want to
keep F' to be very limited and only increase it when we are forced to.

We maintain a large set of all of the substrings that we have seen so far;
this is stored in the variable Ks; we compare the grammar formed with Ks to

Learning Context Free Grammars with the Syntactic Concept Lattice 47

the one formed with K. If they are different then that means that K5 is more
accurate, in that it will eliminate some incorrect rules, and that we have not yet
attained the limit language, and as a result we might overgeneralise, and so we
will increase K to Ks. In general we will add to K as much as we want; it can
only make the grammar more accurate.

We just need to check whether two grammars with the same set of contexts
are identical. This merely requires us to verify that there are the same number of
concepts; and that for every concept in one there is a concept in the other with
the same set of contexts, and that for every triple of concepts X > Y o Z the
same inequality holds between the corresponding elements in the larger lattice.

Algorithm 2. CFG learning algorithm
Data: Input alphabet X', bounds k, f
Result: A sequence of crags G1,Ga, ...
K —XU{\}, K =K
F—{A\MN}L E={};
D=(FOKK)NL;
G =Make(K, D, F.f) ;
repeat
w = GetPositiveExample; if there is some w € E that is not in L(G) then
F — Con(E) ;
K «— K> ;
D=(FOKK)NL;
G =Make(K, D, F.f) ;
else
D2 — (F@KQKQ)HL 3
if (K5, D2, F) not isomorphic to (K, D, F) then
K — Ks ;
D=(FoOKK)NL;
G = Make(K,D,F,f);

Output G}
until ;

6.1 Proof

We will now show that this algorithm is correct for a certain class of languages.
We have a parameter f which we assume is fixed; for each value we have a
learnable class. For a fixed value of f we can learn all context-free languages
L such that f(L) < f. That is to say, all context-free languages that can be
defined by a CFG where each non-terminal can be contextually defined by at
most f contexts. As is now standard in context-free grammatical inference we
cannot define a decidable syntactic property, but rely on defining a class of
languages by reference to the algorithm. We will later try to clarify the class of
languages that lie in each class.

48 A. Clark

Theorem 1. Algorithm [4 identifies in the limit, from positive data and mem-
bership queries the class Lycp(f).

This theorem is an immediate consequence of the following two lemmas.

Lemma 6. There is a point N at which Fy is adequate for L; and for alln > N,
F, = Fy.

Proof. First, once F is adequate the language defined will always include the
target and thus F will never be increased again. Suppose L € Lrcp(f) and let F
be an adequate set of contexts. Let n be the first time that Con(E,) contains F.
Let F),, be the set of contexts at that point. If F}, is adequate we are done; assume
it is not. Therefore there is some set of strings K such that L(G(K, D, Fy)) is
not a subset of L; i.e. there is some w € L\ L(G(K, D, Fy)) Let ny be the first
time that K5 contains K and E contains w; at this point, or some earlier point,
we will increase F' and it will be adequate.

Lemma 7. If F,, is adequate then there is some ny > n at which point
L(G(K,,L,F,))=L.

Proof. Let Ky be a set of strings such that G(K, L, F},) defines exactly the right
language. Furthermore Ky C Sub(L). Let T be a set of strings of L such that
Ky C Sub(T) and let m be a point such that T C E,, and m > n. Either
G(K, L, F,) is correct, in which case we are done, or it is not, in which case
it will differ from G(Sub(E), L, F,,) and thus K will be increased to include Ky,
which means that it will correct at this point.

We will now give some simple examples of languages for varying values of f.
We define Lrep(f) to be the set of languages learnable for a value of f. The
simplest class is the class Lycp(1). First, we note that the regular languages lie
within this class. Given a regular language L consider a deterministic regular
grammar for L, with no unreachable non-terminals. For a given non-terminal
N in this grammar let wy be a string such that S = wN. Since the grammar
is deterministic, we know that if S = wM then N = M. The context (w,\)
therefore contextually defines the non-terminal N.

Consider the language Lypq = {a"b"c™|n,m > 0} U {a™b"c"|n,m > 0}. Lpq
is a classic example of an inherently ambiguous and thus non-deterministic lan-
guage; moreover it is a union of infinitely many congruence classes. This language
also lies within the class Lrcp(1). In Table 1, we give on the left the sets of strings
generated by a natural CFG for this language, and on the right a context that
defines that set of strings. Thus even the very simplest element of this class
contains inherently ambiguous languages.

If we consider the class Lycp(2), then we note that the palindrome languages
and the language Lo defined in the introduction lie in this class. The palindrome
languages require two contexts to define the elementary letters of the alphabet
—so for example {a} can be defined by the two contexts (A, ba) and (A, aa).

Learning Context Free Grammars with the Syntactic Concept Lattice 49

Table 1. Contextually defined grammar for the language L,q = {a"b"c™|n,m >
0} U {a™b"c"|n,m > 0}

L(G,N) Fy

A (aaabb, beee)
a (A, abbeec)
b (aaab, beee)
c (aaabbe, \)
c* (¢, \)

@ (% a)
{a"0"|n >0} (a,b)
{a"b" ' |n > 0} (aa,b)
{b"c"|n >0} (b,c)
{b"c" 1 n > 0} (bb,c)

Lyna (AN

7 Discussion

There is an important point that we will discuss at length: the switch from
context free representations to context sensitive representations. Backing off to
CFGs makes it clear how important the use of Distributional Lattice Grammars
(DLGs) are. With a DLG, we can compactly represent the potentially exponen-
tially large set of concepts and perform the parsing directly. The difference is
this: In the CFG we have to treat each derivation separately. If we have one con-
cept that contains the context f and another that contains the context g and
both of these can generate the same string w; this does not mean that there
is a concept containing f and g that will generate that string, since the two
contexts could come from different sub-derivations. In a DLG however, we can
aggregate information from different derivations — far from making things more
difficult, this actually makes the derivation process simpler since we only need
to keep one concept for each span in the parse table. Thus in this case using a
context-sensitive representation is a solution to a problem, rather than creating
new problems itself.

Suppose we are given the sets of strings generated by each non-terminal of a
CFG in ONF. Then it is easy to write down the rules: for any triple of sets/non-
terminals X,Y,Z we have a rule X — YZ iff X D YZ. We also have rules
of the form X — a iff a € X. Thus the general strategy for CF inference
that we propose is to define a suitable collection of sets of strings, and then to
construct all valid rules. The congruence based approach uses the congruence
classes: since [u][v] C [uv] we have the rule schema [uv] — [u][v]. Here we
have the same approach with concepts: S;S, C (5zSy)”, and so we have a
rule C(X) o C(Y) — C(X),C(Y).

The current approach is very heavily influenced by the class of Binary Feature
Grammars BFGs, but they are also very different. In particular, this model is in
some sense a dual representation. In the BFG formalism the primitive elements
are determined by strings, and the contexts are used to restrict the generated

50 A. Clark

rules. Here, dually, the primitive elements are defined by the contexts and the
strings are used to restrict the generated rules. As a result the the monotonicity
lemmas for BFGs go in the opposite direction: for a BFG, if we increase K we
increase the language, and if we increase F' we decrease the language. In the
current construction, the opposite is true.

In general there are two ways of proceeding — we define the sets of non-
terminals in terms of strings; the set of all strings congruent to a given string, or
alternatively in terms of contexts: the set of all strings that can occur in a given
set of contexts. These two approaches give rise to two different sets of algorithms.
Clearly this does not exhaust the approach, as we could combine the two. For
example, if we define [, 7] to be the set of all strings that have the context (I, r),
then the rule schemas [I,r] — [I, zr][z] and [I,7] — [y][ly, r] are also valid.

Since the concepts form a lattice, we suggest as a direction for future research
that a variety of heuristic algorithms could be used, since a lattice is a good
search space, as is known for regular grammatical inference [I3], but we do not
consider such heuristic algorithms here.

8 Conclusion

We have presented an approach to context-free grammatical inference where
the non-terminals correspond to elements of a distributional lattice. Using this
representational assumption we have presented an efficient algorithm for the
inference of a very large set of context free languages, subject to the setting of
certain bounds on the number of non-terminals defined.

Acknowledgments

I am very grateful to the reviewers for identifying several confusing points in
this paper; the paper has been much improved as a result of their comments.

References

1. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8, 1725-1745 (2007)

2. Clark, A.: PAC-learning unambiguous NTS languages. In: Sakakibara, Y.,
Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI),
vol. 4201, pp. 59-71. Springer, Heidelberg (2006)

3. Yoshinaka, R.: Identification in the Limit of k-I-Substitutable Context-Free Lan-
guages. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI),
vol. 5278, pp. 266—-279. Springer, Heidelberg (2008)

4. Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional
substitutability from positive data. In: Gavalda, R., Lugosi, G., Zeugmann, T.,
Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 278-292. Springer, Heidelberg
(2009)

5. Clark, A.: Distributional learning of some context-free languages with a minimally
adequate teacher. In: Proceedings of the ICGI, Valencia, Spain (September 2010)

10.

11.

12.

13.

Learning Context Free Grammars with the Syntactic Concept Lattice 51

. Asveld, P., Nijholt, A.: The inclusion problem for some subclasses of context-free

languages. Theoretical computer science 230(1-2), 247-256 (2000)

. Clark, A., Eyraud, R., Habrard, A.: A polynomial algorithm for the inference of

context free languages. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS
(LNATI), vol. 5278, pp. 29-42. Springer, Heidelberg (2008)

. Clark, A.: A learnable representation for syntax using residuated lattices. In: Pro-

ceedings of the 14th Conference on Formal Grammar, Bordeaux, France (2009)

. Chi, Z., Geman, S.: Estimation of probabilistic context-free grammars. Computa-

tional Linguistics 24(2), 299-305 (1998)

Martinek, P.: On a Construction of Context-free Grammars. Fundamenta Infor-
maticae 44(3), 245-264 (2000)

Clark, A., Lappin, S.: Another look at indirect negative evidence. In: Proceed-
ings of the EACL Workshop on Cognitive Aspects of Computational Language
Acquisition, Athens (March 2009)

Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Jantke, K.P.
(ed.) AIT 1989. LNCS (LNAI), vol. 397, pp. 18-44. Springer, Heidelberg (1989)
Dupont, P., Miclet, L., Vidal, E.: What is the search space of the regular infer-
ence? In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 25-37.
Springer, Heidelberg (1994)

	Learning Context Free Grammars with the Syntactic Concept Lattice
	Introduction
	Distributional Lattice
	Notation
	Lattice

	Grammar
	Partial Lattice

	Inference
	Learning Model
	Algorithm
	Proof

	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

