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Abstract

Given a preference relation ≿ over Anscombe-Aumann acts, we study the collection of
events for which the preference satisfies Savage’s P2 axiom. We show that this collection is
a σ-algebra whenever ≿ is monotone, suitably continuous, and satisfies the independence
axiom over constant acts. We provide a relatively self-contained proof, which by and large
builds on Gul and Pesendorfer (2014) and Grant, Liu, and Yang (2024).

1 Definitions

We use the same notation and terminology as in Denti and Pomatto (2022). We consider a set
Ω of states of the world, endowed with a σ-algebra S of events, and a set X of consequences.
The latter is assumed to be a convex subset of a Hausdorff topological vector space, endowed
with the Borel σ-algebra. Acts are measurable functions from Ω to X. We restrict attention
to the collection F of acts f for which there exists a finite set Y ⊆ X such that f takes values
in the convex hull of Y . We call a sequence (fn) in F bounded if there exists a finite set Y ⊆ X

such that each fn takes values in the convex hull of Y .
We write x for the constant act f such that f(ω) = x for all ω ∈ Ω. Given f, g ∈ F and

α ∈ [0, 1], we denote by αf + (1 − α)g the act in F that takes value αf(ω) + (1 − α)g(ω) in
each state ω. Given acts f and g and event A, fAg is the act that coincides with f on A and
with g on Ac (note that if f, g ∈ F, then fAg belongs to F as well).

1.1 Preferences

We study a binary relation ≿ over F. We denote by ∼ and ≻ the symmetric and asymmetric
parts of ≿, respectively. An event A is null if fAh ∼ gAh for all f, g, h ∈ F.

∗We thank Raphael Giraud for helpful comments.
†NYU Stern.
‡Caltech.
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1.2 Axioms and the sure-thing principle

We impose the following axioms for ≿.

Axiom 1. The preference ≿ is complete, transitive, and non-trivial.

Axiom 2. For all f, g ∈ F, if f(ω) ≿ g(ω) for all ω, then f ≿ g.

Axiom 3. If (fn) and (gn) are bounded sequences in F that converge pointwise to f and g,
respectively, and fn ≿ gn for every n, then f ≿ g.

An event A satisfies the sure-thing principle if the following conditions hold for all
f, g, h, h′ ∈ F:

(i). If fAh ≿ gAh, then fAh′ ≿ gAh′.

(ii). If hAf ≿ hAg, then h′Af ≿ h′Ag.

In words, an event A satisfies the sure-thing principle if both A and its complement satisfy
Savage’s postulate P2. We denote by Sstp the family of all such events. The properties of the
collection Sstp were originally studied by Gul and Pesendorfer (2014), who referred to such
events as ideal.

The next axiom is the standard independence axiom over constant acts.

Axiom 4. For all x, y, z ∈ X and α ∈ [0, 1], if x ≿ y then αx+ (1 − α)z ≿ αy + (1 − α)z.

Axioms 1–3 correspond to the first three axioms in Denti and Pomatto (2022). If the
fourth axiom from that paper were imposed, then Axiom 4 would be implied by Axioms 1–3.

2 Main Result

We can now state the main result of this note.

Theorem 1. Let ≿ satisfy axioms 1–4. Then Sstp is a σ-algebra.

The result is established by Gul and Pesendorfer (2014) and Grant, Liu, and Yang (2024)
under slightly different hypotheses. Our proof is divided into two steps. The first step shows
that Sstp is an algebra, largely following the approach of Gul and Pesendorfer. However,
we do not assume that ≿ satisfies Savage’s P4 axiom over events that satisfy the sure-thing
principle. Additionally, instead of relying on a theorem by Gorman (1968), we directly use
the results on functional equations that Gorman applies in his paper.

To establish that Sstp is a σ-algebra, we then prove that Sstp is a monotone class, meaning
that if (An) is a sequence in Sstp satisfying An ↑ A or An ↓ A, then A ∈ Sstp. Here the
difference is in our assumption of pointwise continuity, which is more stringent than the
continuity conditions considered by Gul and Pesendorfer (2014) and Grant, Liu, and Yang
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(2024), but simplifies the analysis. Our proof of this step is novel and relies on Debreu’s classic
theorem on additively separable representations (Debreu, 1960).

We also offer a shorter proof that Sstp is a monotone class under a strengthening of Axiom
2. This alternative proof does not rely on Debreu’s theorem.

3 Proof of Theorem 1

3.1 Functional equations

The next theorem is a characterization of generalized bisymmetric functional equations.

Theorem 2 (Maksa, 1999). Let U11, U12, U21, U22 be intervals in R of positive length. Let

F1 : U11 × U12 → R, F2 : U21 × U22 → R, G1 : U11 × U21 → R, G2 : U12 × U22 → R,

be functions that are strictly increasing and continuous in each argument. Let

F1(U11 × U12) = J1, F2(U21 × U22) = J2, G1(U11 × U21) = I1, G2(U12 × U22) = I2,

and suppose F : I1 × I2 → R and G : J1 × J2 → R are functions that are strictly increasing
and continuous in each argument. Then, the functional equation

G(F1(u11, u12), F2(u21, u22)) = F (G1(u11, u21), G2(u12, u22))

holds for all (u11, u12, u21, u22) ∈ U11×U12×U21×U22 if and only if there are strictly increasing
and continuous functions

φ : G(J1 × J2) → R and φij : Uij → R with i, j = 1, 2

such that for all (u11, u12, u21, u22),

φ(G(F1(u11, u12), F2(u21, u22))) = φ11(u11) + φ12(u12) + φ21(u21) + φ22(u22). (1)

The next result characterizes the solution of generalized associative functional equations.

Theorem 3 (Maksa, 2005). Let U1, U2, U3 be intervals in R of positive length. Let

G : U1 × U2 → R, K : U2 × U3 → R, F : G(U1, U2) × U3 → R, H : U1 ×K(U2, U3) → R

be functions that are strictly increasing and continuous in each argument. Then, the functional
equation

F (G(u1, u2), u3) = H(u1,K(u2, u3))

holds for all (u1, u2, u3) ∈ U1 × U2 × U3 if and only if there exist strictly increasing and
continuous functions

φ : F (G(U1, U2) × U3) → R and φi : Ui → R with i = 1, 2, 3

such that for all (u1, u2, u3),

φ(F (G(u1, u2), u3)) = φ1(u1) + φ2(u2) + φ3(u3). (2)

The implications (1) and (2) will play a key role in the proof that Sstp is an algebra.
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3.2 Debreu’s theorem

Let U ⊆ R be an interval and I a finite index set. We denote by U I the set of functions
from I to U . Given ξ, ζ ∈ U I and E ⊆ I, we denote by ξEζ the element of U I defined as
(ξEζ)(i) = ξ(i) if i ∈ E, and (ξEζ)(i) = ζ(i) if i /∈ E.

Let ≿I be a binary relation on U I . It is continuous if for every ζ ∈ U I , the sets
{ξ ∈ U I : ξ ≿I ζ} and {ξ ∈ U I : ζ ≿I ξ} are closed relative to U I . It is separable if for
every ξ, ζ, ψ, χ ∈ U I and E ⊆ I, ξEψ ≿I ζEψ implies ξEχ ≿I ζEχ. An index i is null if
a{i}ξ ∼I b{i}ξ for all a, b ∈ U and ξ ∈ U I .

Theorem 4 (Debreu, 1960). Let ≿I be a binary relation on U I , and assume at least 3 indexes
are non-null. Then the following statements are equivalent:

(i) The binary relation ≿I is complete, transitive, continuous, and separable;

(ii) For every i ∈ I there is a continuous function Wi : U → R such that ≿I is represented
by

W (ξ) =
∑
i∈I

Wi(ξ(i)).

Moreover, if W and W̃ are two such representations, then there are α > 0 and βi for every
i ∈ I such that W̃i = αW + βi for every i ∈ I.

Debreu’s theorem will be crucial to show that Sstp is a monotone class.

3.3 Preliminary results

From now on we denote by ≿ a binary relation over F that satisfies Axioms 1-4. The next
result is similar to Lemma 6 in Denti and Pomatto (2022). For completeness, we include a
proof.

Lemma 1. The following conditions hold:

(i) For all acts f, g, h in F the sets {α ∈ [0, 1] : αf + (1 − α)g ≿ h} and {α ∈ [0, 1] : h ≿

αf + (1 − α)g} are closed.

(ii) There exists an affine function u : X → R representing ≿ on X.

Proof. (i). Let (αn) be a sequence in [0, 1] converging to α. Let fn = αnf + (1 − αn)g. The
sequence (fn) is bounded and converges to αf + (1 − α)g. The result follows from Axiom 3.

(ii). The claim is an application of the mixture space theorem (Herstein and Milnor, 1953),
together with (i) and Axioms 1 and 4.

The next result appears as Lemma 7 in Denti and Pomatto (2022). Given a nonempty
set U ⊆ R and σ-algebra T ⊆ S, we denote by B(T , U) the space of T -measurable bounded
functions ξ : Ω → R that satisfy ξ(Ω) ⊆ U . We denote by Bb(T , U) the set of all ξ ∈ B(T , U)
for which there exist a, b ∈ U that satisfy a ≥ ξ ≥ b.
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Lemma 2. For every σ-algebra T ⊆ S and affine function u : X → R,

Bb(T , u(X)) = {u(f) : f ∈ F and f is T -measurable}.

Proof. Let f ∈ F be T -measurable and let Y ⊆ X be a polytope such that f(Ω) ⊆ Y . Since
u is affine, it is continuous on Y and min u(Y ) ≤ u(f) ≤ max u(Y ). Moreover, the function
u(f) is T -measurable.1 It follows that u(f) belongs to Bb(T , u(X)). In the opposite direction,
let ξ ∈ Bb(T , u(X)) and u(x) ≥ ξ ≥ u(y) for some x, y ∈ X. If u(x) = u(y), take f = x. If
instead u(x) > u(y), take ζ = ξ−u(y)

u(x)−u(y) and f = ζx+ (1 − ζ)y. The function f takes values in
the convex hull of x and y, is T -measurable, and satisfies u(f) = ξ.

Using Lemma 1(ii), we fix a non-constant affine function u representing ≿ on X, and
define U = u(X). Since u is affine, U is an interval. We assume [0, 1] ∈ U , without loss of
generality.

An immediate implication of Lemma 2 is that for every f ∈ F there exist x, y ∈ X such
that x ≿ f(ω) ≿ y for every ω; by Lemma 1, we can find α ∈ [0, 1] such that αx+(1−α)y ∼ f .
For every act f we fix a consequence c(f) ∈ X that satisfies f ∼ c(f). Without loss of
generality, c(x) = x for all x ∈ X.

The next result is similar to Lemma 8 in Denti and Pomatto (2022).

Lemma 3. The following conditions hold:

(i) If a sequence (fn) is bounded and fn → f pointwise, then u(c(fn)) → u(c(f)).

(ii) If a sequence (fn) is such that u(x) ≥ supn u(fn) and infn u(fn) ≥ u(y) for some
x, y ∈ X, and u(fn) → u(f) pointwise, then u(c(fn)) → u(c(f)).

Proof. (i). Choose x, y ∈ X such that x ≿ fn(ω) ≿ y for all n and ω. By Axiom 3 this implies
x ≿ f ≿ y as well. By Lemma 1(i) we can choose αn ∈ [0, 1] such that fn ∼ αnx+ (1 − αn)y.
Possibly passing to a subsequence, we can assume that αn → α for some α ∈ [0, 1]. It follows
from Axiom 3 that f ∼ αx+ (1 − α)y, i.e., u(c(f)) = αu(x) + (1 − α)u(y). Thus

u(c(fn)) = αnu(x) + (1 − αn)u(y) → αu(x) + (1 − α)u(y) = u(c(f)).

The computations used the affinity of u.
(ii). If u(x) = u(y), then Axiom 2 implies fn ∼ x ∼ f for every n. So suppose u(x) > u(y).

Since u(fn) → u(f) pointwise, and x ≿ fn(ω) ≿ y for all n and all ω, then Axiom 3 implies
x ≿ f(ω) ≿ y for all ω as well. As in the proof of Lemma 2, take ξn ∈ Bb(S, [0, 1]) and

1Denote by B(X) the Borel σ-algebra on X, and denote by B(Y ) the Borel σ-algebra on Y generated by
the Euclidean topology (being Y a polytope). Theorem 5.21 and Lemma 4.20 in Aliprantis and Border (2006)
imply B(Y ) = B(X) ∩ Y . Let E = {x ∈ Y : u(x) ≥ t}. Then {ω ∈ Ω : u(f(ω)) ≥ t} = f−1(E). Since u is
affine, it is continuous on Y . Hence E ∈ B(Y ). The set Y is a closed subset of X (Aliprantis and Border, 2006,
Corollary 5.22) and thus Y ∈ B(X). It follows that E ∈ B(X), and thus f−1(E) ∈ T . Since t is arbitrary, it
follows that u(f) is T -measurable.
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ξ ∈ Bb(S, [0, 1]) such that u(fn) = ξnu(x) + (1 − ξn)u(y) and u(f) = ξu(x) + (1 − ξ)u(y).
Define gn = ξnx + (1 − ξn)y and g = ξx + (1 − ξ)y. Observe that u(fn) = u(gn) and
u(f) = u(g): it follows from Axiom 2 that u(c(fn)) = u(c(gn)) and u(c(f)) = u(c(g)). In
addition, u(fn) → u(f) pointwise implies gn → g pointwise. The sequence (gn) is bounded.
The desired result then follows from (i) above.

One more definition is necessary. Let S l
stp be the collection of events A ∈ S such that for

all f, g, h and h′ in F, fAh ≿ gAh implies fAh′ ≿ gAh′. Gul and Pesendorfer (2014) call S l
stp

the collection of left ideals. Observe that A ∈ Sstp if and only if A ∈ S l
stp and Ac ∈ S l

stp. For
every non-null event A ∈ S l

stp, let ≿A be the binary relation on F defined as

f ≿A g if fAh ≿ gAh for some h ∈ F.

Because A ∈ S l
stp, the choice of h is irrelevant and the relation ≿A is well defined. We denote

by ∼A and ≻A the symmetric and asymmetric parts of ≿A, respectively. Observe that f ∼A g

if and only if fAh ∼ gAh for some h, and f ≻A g if and only if fAh ≻ gAh for some h.

Lemma 4. For every f ∈ F and A ∈ S l
stp, there is x ∈ X such that x ∼A f .

Proof. By Lemma 2 there exist x, y ∈ X such that x ≿ f(ω) ≿ y for all ω. By Axiom 2,
xAh ≿ fAh ≿ yAh, and by Lemma 1(i) there exists α ∈ [0, 1] such that (αx+ (1 − α)y)Ah =
α(xAh) + (1 − α)(yAh) ∼ fAh. Thus, αx+ (1 − α)y satisfies αx+ (1 − α)y ∼A f .

Thanks to Lemma 4, for every f ∈ F and A ∈ S l
stp, we can fix a consequence c(f |A) ∈ X

that satisfies f ∼A c(f |A). Without loss of generality, c(f |Ω) = c(f).
The next lemma collects a few known properties of null events. Given a pair of events A

and B, let A△B = (A ∩Bc) ∪ (Ac ∩B) be their symmetric difference.

Lemma 5. For all A,B ∈ S, the following properties holds:

(i). If A is null and B ⊆ A, then B is null.

(ii). If A and B are null, then A ∪B is null.

(iii). If A△B is null, then fAg ∼ fBg for all f, g ∈ F.

Proof. (i). Assume A is null. For all f, g, h ∈ F, we obtain

fBh = (fBh)Ah ∼ (gBh)Ah = gBh.

Thus, B is also null.
(ii). Assume A and B are null. For all f, g, h ∈ F, we obtain

f(A ∪B)h = fA(fBh) ∼ gA(fBh) = (gAf)B(gAh) ∼ gB(gAh) = g(A ∪B)h.

Thus, A ∪B is also null.
(iii). Assume A△B is null. For all f, g ∈ F, we obtain

fAg = (fAg)(A△B)(f(A ∩B)g) ∼ (gAf)(A△B)(f(A ∩B)g) = fBg.

Thus, fAg ∼ fBg.
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3.4 Sstp is an algebra

Lemma 6. If A ∈ Sstp, then Ac ∈ Sstp. If A ∈ Sstp and A△B is null, then B ∈ Sstp.

Proof. The first implication is trivial. To prove the second implication, suppose A ∈ Sstp
and A△B is null. Let f, g, h in F be such that fBh ≿ gBh. Being A△B null, we have
fBh ∼ fAh, gBh ∼ gAh, fBh′ ∼ fAh′, and gBh′ ∼ gAh′ (Lemma 5). Thus fBh ≿ gBh

implies fAh ≿ gAh, which implies fAh′ ≿ gAh′ (being A ∈ Sstp), which in turn implies
fBh′ ≿ gBh′. Since A△B = Ac△Bc and Ac ∈ Sstp, we conclude that B ∈ Sstp.

An implication of Lemma 6 is that null events satisfy the sure-thing principle. To see this,
suppose A is null. Since Ω ∈ Sstp and A = Ω△Ac, then Ac ∈ Sstp, which implies A ∈ Sstp.

Lemma 7. If A,B ∈ S l
stp then A ∩B ∈ S l

stp.

Proof. We follow Gul and Pesendorfer (2014). Suppose f(A ∩ B)h ≿ g(A ∩ B)h, that is
(fAh)Bh ≿ (gAh)Bh. Because B ∈ S l

stp, then

(fAh)Bh′ ≿ (gAh)Bh′. (3)

Note that (fAh)Bh′ = (fBh′)A(hBh′) and (gAh)Bh′ = (gBh′)A(hBh′). Since A ∈ S l
stp, we

obtain from (3) that (fBh′)Ah′ ≿ (gBh′)Ah′. Equivalently, f(A ∩B)h′ ≿ g(A ∩B)h′. This
concludes the proof that A ∩B ∈ S l

stp.

Let x0 satisfy u(x0) = 0. For every A ∈ S l
stp, we define the set

UA = {u(c(fAx0)) : f ∈ F}.

Lemma 8. For every A ∈ S l
stp, the set UA satisfies the following properties:

(i) UA = {u(c(xAx0)) : x ∈ X}.

(ii) UA is an interval.

(iii) If A is null, then UA = {0}.

(iv) If A is not null, then UA has positive length.

Proof. (i). For every f ∈ F, u(c(fAx0)) = u(c(xAx0)) for x = c(f |A). Thus, UA =
{u(c(xAx0)) : x ∈ X}.

(ii). Let (xn) and (yn) be sequences such that u(xn) ↑ supU , u(yn) ↓ inf U , and u(y1) ≤
u(x1). If supU = maxU , we choose (xn) such that u(xn) = maxU for all n. If inf U = minU ,
we choose (yn) such that u(yn) = minU for all n. For every n and α ∈ [0, 1], let ϕn(α) =
u(c((αxn+(1−α)yn)Ax0)). Lemma 3(i) implies that the function ϕn : [0, 1] → UA is continuous.
Since ϕn is continuous, then ϕn([0, 1]) is an interval. We claim that ϕn([0, 1]) ⊆ ϕn+1([0, 1])
for all n. To see this, note that

xn+1 ≿ αxn + (1 − α)yn ≿ yn+1
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because u(xn+1) ≥ u(x), u(yn+1) ≤ u(y), and u is affine. Then, Axiom 2 implies that

xn+1Ax
0 ≿ (αxn + (1 − α)yn)Ax0 ≿ yn+1Ax

0.

By Lemma 1(i), there exists β ∈ [0, 1] such that

(βxn+1 + (1 − β)yn+1)Ax0 ∼ (αxn + (1 − α)yn)Ax0.

Thus, ϕn(α) = ϕn+1(β). This shows that ϕn([0, 1]) ⊆ ϕn+1([0, 1]). It follows that the set
VA =

⋃
n ϕn([0, 1]) is a union of an increasing sequence of intervals, and therefore it is an

interval.
We claim that VA = UA. Clearly, VA ⊆ UA. Now take any x ∈ X. Then there exists n

sufficiently large such that xn ≿ x ≿ yn. Reasoning as above, there exists α ∈ [0, 1] such that

(αxn + (1 − α)yn)Ax0 ∼ xAx0.

We deduce that ϕn(α) = u(c(xAx0)). This demonstrates that VA ⊆ UA. Hence, UA = VA,
and so UA is an interval.

(iii). If A is null, then for every f ∈ F we have fAx0 ∼ x0 and therefore UA = {0}.
(iv). Being A not null, there are acts f, g, h in F such that fAh ≻ gAh, which implies

fAx0 ≻ gAx0 (being A ∈ S l
stp). Thus UA contains at least two distinct elements.

For every A ∈ Sstp, we define the function ΨA : UA × UAc → U by

ΨA(u(c(fAx0)), u(c(x0Ag))) = u(c(fAg)).

To see that ΨA is well defined, suppose f, f ′, g, g′ in F are so that u(c(fAx0)) = u(c(f ′Ax0))
and u(c(x0Ag)) = u(c(x0Ag′)). Then fAx0 ∼ f ′Ax0 and x0Ag ∼ x0Ag′. Since A ∈ Sstp, we
obtain fAg ∼ f ′Ag and f ′Ag ∼ f ′Ag′. Thus, c(fAg) ∼ c(f ′Ag′), and hence u(c(fAg)) =
u(c(f ′Ag′)).

Lemma 9. The function ΨA is strictly increasing and continuous in each argument. Moreover,
it satisfies ΨA(0, b) = b for all b ∈ UAc.

Proof. We show that ΨA is continuous and strictly increasing in the first argument: the proof
for the second argument is analogous. Towards this goal, we fix an arbitrary value for the
second argument, say u(c(x0Ag)).

Let f, f ′ ∈ F be such that u(c(fAx0)) > u(c(f ′Ax0)). Thus, fAx0 ≻ f ′Ax0. Since
A ∈ Sstp, we deduce that fAg ≻ f ′Ag—that is, u(c(fAg)) > u(c(f ′Ag)). We conclude that
ΦA is strictly increasing in the first argument.

We now prove continuity. Let (fn) be a sequence in F such that u(c(fnAx
0)) → u(c(fAx0))

for some f ∈ F. By Lemma 8(i), it is enough to consider the case where fn = xnAx
0 and

f = xAx0 for a sequence (xn) and a consequence x in X. By way of contradiction, suppose
there exist a subsequence (xnk

) and an ε > 0 such that u(c(xnk
Ag)) ≥ u(c(xAg)) + ε for all k.
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The same argument used in the proof of Lemma 8(ii) yields that the set {u(c(yAg)) : y ∈ X}
is an interval. Hence there exists y ∈ X such that u(c(yAg)) = u(c(xAg)) + ε. We obtain
that for every k,

xnk
Ag ≿ yAg ≻ xAg,

and thus xnk
Ax0 ≿ yAx0 ≻ xAx0 because A ∈ Sstp. It follows that u(c(xnk

Ax0)) ≥
u(c(yAx0)) > u(c(xAx0)) for every k: a contradiction. We deduce: lim supn→∞ u(c(xnAg) ≤
u(c(xAg)). An analogous argument shows that lim infn→∞ u(c(xnAg) ≥ u(c(xAg)). Hence,
u(c(xnAg)) → u(c(xAg)). This concludes the proof of continuity.

It remains to prove the last claim. First note that 0 ∈ UA, since 0 = u(c(x0Ax0)). If
b = u(c(x0Ag)), then

ΨA(0, b) = ΨA(u(c(x0Ax0)), u(c(x0Ag))) = u(c(x0Ag)) = b.

Lemma 10. For all A,B ∈ Sstp, every f ∈ F satisfies u(c(f)) = ΨA(a, b), where

a = ΨB

(
u(c(f(A ∩B)x0)), u(c(f(A ∩Bc)x0))

)
,

b = ΨB

(
u(c(f(Ac ∩B)x0)), u(c(f(Ac ∩Bc)x0))

)
.

Proof. The definition of ΨA yields u(c(f)) = ΨA(u(c(fAx0)), u(c(x0Af))). By applying the
definition of ΨB we obtain

u(c(fAx0)) = ΨB

(
u(c((fAx0)Bx0)), u(c(x0B(fAx0)))

)
= ΨB

(
u(c(f(A ∩B)x0)), u(c(f(A ∩Bc)x0))

)
.

In the same way,

u(c(x0Af)) = ΨB

(
u(c((fAcx0)Bx0)), u(c(x0B(fAcx0)))

)
= ΨB

(
u(c(f(Ac ∩B)x0)), u(c(f(Ac ∩Bc)x0))

)
.

Thus, u(c(f)) = ΨA(a, b) as claimed.

Lemma 11. For every A,B ∈ Sstp, we have the functional equation

ΨA(ΨB(a, b),ΨB(d, e)) = ΨB(ΨA(a, d),ΨA(b, e)))

for all a ∈ UA∩B, b ∈ UA∩Bc, d ∈ UAc∩B, and e ∈ UAc∩Bc.

Note that since A,B ∈ Sstp, then Ac, Bc ∈ Sstp. Lemma 7 implies A ∩B, A ∩Bc, Ac ∩B,
and Ac ∩Bc belong to S l

stp.
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Proof. The sets A∩B, A∩Bc, Ac ∩B, and Ac ∩Bc form a partition of Ω. Therefore, we can
choose f ∈ F such that u(c(f(A∩B)x0)) = a, u(c(f(A∩Bc)x0)) = b, u(c(f(Ac ∩B)x0)) = d,
and u(c(f(Ac ∩Bc)x0)) = e. Lemma 10 implies

u(c(f)) = ΨA(ΨB(a, b),ΨB(d, e)).

Inverting the roles of A and B, we obtain

u(c(f)) = ΨB(ΨA(a, d),ΨA(b, e))),

as desired.

Lemma 12. If A,B ∈ Sstp then A ∪B ∈ Sstp.

Proof. Lemma 6 implies it is without loss of generality to assume that A ∩Bc, Ac ∩B, and
Ac ∩Bc are not null. Since Ac, Bc ∈ Sstp ⊆ S l

stp, then (A∪B)c = Ac ∩Bc ∈ S l
stp by Lemma 7.

It is therefore enough to show that A ∪B ∈ S l
stp. We divide the proof in two cases depending

on A ∩B being null or not.
Case 1: A∩B is not null. From Lemma 11 we obtain the bisymmetry functional equation

ΨA(ΨB(a, b),ΨB(d, e)) = ΨB(ΨA(a, d),ΨA(b, e))).

for all a ∈ UA∩B, b ∈ UA∩Bc , d ∈ UAc∩B, and e ∈ UAc∩Bc . These four sets are intervals of
positive length (Lemma 8). The functions ΨA and ΨB are continuous and strictly increasing
in each argument (Lemma 9). By applying Theorem 2 and Lemma 10 we obtain that
there are strictly increasing functions ψ : U → R, ψA∩B : UA∩B → R, ψA∩Bc : UA∩Bc → R,
ψAc∩B : UAc∩B → R, and ψAc∩Bc : XAc∩Bc → R such that for every act f

ψ(u(c(f))) = ψA∩B(a) + ψA∩Bc(b) + ψAc∩B(d) + ψAc∩Bc(e)

where
a = u(c(f(A ∩B)x0)), b = u(c(f(A ∩Bc)x0)),

d = u(c(f(Ac ∩B)x0)), e = u(c(f(Ac ∩Bc)x0)).

We now show this implies A∪B ∈ S l
stp. Indeed, suppose f(A∪B)h′ ≿ g(A∪B)h′, and define:

f ′ = f(A ∪B)h′, g′ = g(A ∪B)h′, f ′′ = f(A ∪B)h′′, g′′ = g(A ∪B)h′′.

Note that f ′(Ac ∩Bc)x0 = h′(Ac ∩Bc)x0 = g′(Ac ∩Bc)x0. Thus

ψ(u(c(f ′))) − ψ(u(c(g′))) = ψA∩B(u(c(f ′(A ∩B)x0))) − ψA∩B(u(c(g′(A ∩B)x0)))
+ ψA∩Bc(u(c(f ′(A ∩Bc)x0))) − ψA∩Bc(u(c(g′(A ∩Bc)x0)))
+ ψAc∩B(u(c(f ′(Ac ∩B)x0))) − ψAc∩B(u(c(g′(Ac ∩B)x0))).
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Observe that f ′Ex0 = f ′′Ex0 and g′Ex0 = g′′Ex0 for all E ∈ {A ∩ B,A ∩ Bc, Ac ∩ B}. It
follows that

ψ(u(c(f ′))) − ψ(u(c(g′))) = ψ(u(c(f ′′))) − ψ(u(c(g′′))),

and thus f ′′ ≿ g′′, being f ′ ≿ g′ and ψ strictly increasing. Since h′ and h′′ are arbitrary, we
conclude that A ∪B ∈ S l

stp.
Case 2: A ∩ B is null. By Lemma 8 we have UA∩B = {0}. Therefore, by Lemma 9,

ΨB(a, b) = b for all (a, b) ∈ UA∩B × UA∩Bc . Applying this fact to Lemma 11 yields the
associativity functional equation

ΨA(b,ΨB(d, e)) = ΨB(d,ΨA(b, e)))

for all b ∈ UA∩Bc , d ∈ UAc∩B, and e ∈ UAc∩Bc . The sets UA∩Bc , UAc∩B, and UAc∩Bc are
intervals of positive length (Lemma 8). The functions ΨA and ΨB are continuous and
strictly increasing in each argument (Lemma 9). Theorem 3 and Lemma 10 yield that there
are strictly increasing functions ψ : U → R, ψA∩Bc : UA∩Bc → R, ψAc∩B : UAc∩B → R, and
ψAc∩Bc : UAc∩Bc → R such that for every act f

ψ(u(c(f))) = ψA∩Bc(b) + ψAc∩B(d) + ψAc∩Bc(e),

where b = u(c(f(A ∩Bc)x0)), d = u(c(f(Ac ∩B)x0), and e = u(c(f(Ac ∩Bc)x0)). By same
argument used in the first part of the proof we conclude that A ∪B ∈ S l

stp.

Lemmas 6 and 12 imply that Sstp is an algebra.

3.5 Sstp is a monotone class

A finite partition π = {A1, . . . , An} of Ω is essential if n ≥ 3, each Ai belongs to Sstp, and at
least three sets in π are non-null. We divide the proof that Sstp is a monotone class into two
cases, depending on whether an essential partition exists or not.

Lemma 13. Suppose there does not exist an essential partition. For every A,B ∈ Sstp, if
A,Ac, B and Bc are non-null, then A△B or A△Bc are null.

Proof. We show that if A△B is non-null, then A△Bc must be null. So, assume A△B is
non-null. Then, A \B or B \A must be non-null (Lemma 5). Assume A \B is non-null (the
case where B \A is null is analogous, hence omitted). Consider the following partitions of Ω:
{A \ B,A ∩ B,Ac} and {A \ B,B, (A ∪ B)c}. Since A,B ∈ Sstp and Sstp is an algebra, the
cells of these partitions are members of Sstp. Since the sets A \ B, Ac, and B are not null,
it must be that (A ∪B)c and A ∩B are null events; otherwise, an essential partition would
exist. We conclude that A△Bc = (A ∩B) ∪ (A ∪B)c is null (Lemma 5).

The next lemma shows that in the case where an essential partition does not exist, Sstp is
a σ-algebra.
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Lemma 14. Suppose there does not exist an essential partition. If (An) is a sequence in Sstp,
and An ↑ A or An ↓ A, then A ∈ Sstp.

Proof. Suppose there exists a subsequence (Ank
) where each Ank

is null. For all acts f, g, h
we have fAnk

h ∼ gAnk
h. Since the two sequences of acts (fAnk

h) and (gAnk
h) are bounded,

Axiom 3 implies fAh ∼ gAh. We conclude that A is null, and in particular that it belongs
to Sstp (Lemma 6). Now suppose there exists a subsequence (Ank

) where each Ac
nk

is null.
If An ↓ A then Ac

nk
↑ Ac and thus Ac is null. Thus, Ac ∈ Sstp (Lemma 6). Since Sstp is an

algebra, then A ∈ Sstp. The same argument applies to the case where An ↑ A.
We consider the remaining case: there is N such that for all n ≥ N , both An and Ac

n

are non-null. Without loss of generality, suppose N = 1. By Lemma 13, A1△An is null or
A1△Ac

n is null. Since A1 ⊆ An or An ⊇ A1, it must be that A1△An is null. Thus, by Axiom
3, we obtain that A1△A is null. It follows from A1 ∈ Sstp that A ∈ Sstp (Lemma 6).

From now on we assume there exists an essential partition, and denote by Π the collection
of such partitions. In addition, we denote by Aπ the algebra of events generated by π.

Lemma 15. Let π ∈ Π, and let σ be a finite partition of Ω whose cells are in Sstp. Then, the
meet of π and σ belong to Π.

Proof. Let ρ be the meet of π and σ. Since Sstp is an algebra, then ρ ⊆ Sstp. Suppose A ∈ π

is nonnull. Since Aπ ⊆ Aρ, then A is a union of subsets in ρ. At least one of these subsets
must be non-null. This follows from the fact that a finite union of disjoint null sets is null.
Since π contains at least 3 non-null events, we conclude that the same is true for ρ. Therefore,
ρ is an essential partition.

A corollary of this result is that for every A ∈ Sstp, there is ρ ∈ Π such that A ∈ Aρ. For
each π ∈ Π, let Fπ ⊆ F be the set of acts that are measurable with respect to π. To ease
notation, we denote by f(A) the consequence that f ∈ Fπ takes on A ∈ π.

Similar results to the following two lemmas can be found in Wakker and Zank (1999).

Lemma 16. For every π ∈ Π, the preference relation ≿ admits on Fπ the representation

V π(f) =
∑
A∈π

W π
A(u(f(A)))

where W π
A : U → R is a continuous function for every A ∈ π. Moreover, if V π and Ṽ π are

two such representations, then there are απ > 0 and βπ
A ∈ R for every A ∈ Aπ such that

W̃ π
A = απW π

A + βπ
A for every A ∈ Aπ.

Proof. The proof is an application of Theorem 4. To apply Debreu’s result, we will treat π
as an index set—the cells of the partition are the indexes. We denote by Uπ be the set of
functions from π into U .
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Le ≿π be the preference relation defined on Uπ as ξ ≿π ζ if f ≿ g for any two acts in Fπ

such that u(f(A)) = ξ(A) and u(g(A)) = ζ(A) for every A ∈ π.
The relation ≿π is well defined. To see this, suppose u(f(A)) = u(f ′(A)) = ξ(A) and

u(g(A)) = u(g′(A)) = ζ(A) for every A ∈ π. This implies f(ω) ∼ f ′(ω) and g(ω) ∼ g′(ω) for
every ω, and thus f ∼ f ′ and g ∼ g′ by Axiom 2. Hence, f ≿ g if and only if f ′ ≿ g′. This
demonstrates that ≿π is well defined.

Next we verify ≿π satisfies the conditions of Theorem 4. It is clear that ≿π is complete
and transitive. It is also continuous. Indeed, let ξ, ζ be elements of Uπ and (ξn) be a sequence
in Uπ such that ξn(A) → ξ(A) for every A ∈ π and ξn ≿π ζ for every n. Given A ∈ π, since U
is an interval and the sequence of real numbers (ξn(A)) is convergent, there exist a, b ∈ U such
that a ≥ ξn(A) ≥ b for every n. Since π is finite, there exist a, b ∈ U such that a ≥ ξn ≥ b. Let
(fn) be a sequence of acts in Fπ such that u(fn(A)) = ξn(A) for all n and A ∈ π. Moreover,
let f, g ∈ Fπ such that u(f(A)) = ξ(A) and u(g(A)) = ζ(A) for all A ∈ π. Lemma 3(ii) yields
u(c(fn)) → u(c(f)). In addition, we have fn ≿ g and thus u(c(fn)) ≥ u(c(g)) for all n. It
follows that u(c(f)) ≥ u(c(g)). Thus f ≿ g and ξ ≿π ζ. We conclude that ≿π is continuous.

Now we show that π has at least three non-null indexes. Suppose A ∈ π is a non-null event.
Then fAh ≻ gAh for some acts f, g and h. In other words, f ≻A g. Since c(f |A) ∼A f and
c(g|A) ∼A g, we obtain c(f |A) ≻A c(g|A). Taking any z ∈ X, we get c(f |A)Az ≻ c(g|A)Az.
This shows that the “index” A is not null. Because π is essential, π has at least three non-null
indexes.

The fact that Sstp is an algebra and A ∈ Sstp for all A ∈ π yields that each A ∈ Aπ

satisfies the sure-thing principle, which implies ≿π is separable.
We conclude that ≿π satisfies all the conditions of Theorem 4. Thus, for every A ∈ π

there exists a continuous function W π
A : U → R such that ≿π is represented by

W π(ξ) =
∑
A∈π

W π
A(ξ(A)).

Moreover, if W π and W̃ π are two such representations, then there are απ > 0 and βπ
A ∈ R for

every A ∈ Aπ such that W̃ π
A = απW π

A + βπ
A for every A ∈ Aπ.

We obtain, in particular, that ≿ is represented on Fπ by

V π(f) =
∑
A∈π

W π
A(u(f(A))).

The uniqueness properties of this representation follow from the uniqueness properties of the
representation of ≿π.

From now on, for each π ∈ Π we fix a representation V π as in Lemma 16. Without loss,
the representation is normalized so that W π

A(0) = 0 for every A ∈ π, and
∑

A∈π W
π
A(1) = 1.

For each non-empty A ∈ Aπ, we define W π
A as

W π
A =

∑
B∈π:B⊆A

W π
B.
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If A = ∅, we define W π
A = 0. For every A ∈ Aπ, the function W π

A : U → R is continuous. By
construction we have that if A and B in Aπ are disjoint, then W π

A∪B = W π
A +W π

B.

Lemma 17. If π, σ ∈ Π and A ∈ Aπ ∩ Aσ, then W π
A = W σ

A.

Proof. Let ρ be the meet of σ and π. By Lemma 15, ρ is essential. Since Aπ ⊆ Aρ, then both
V π and V ρ represent ≿ on Fπ. By the uniqueness properties of such representations, there
are απ > 0 and βπ

A ∈ R for every A ∈ π such that W ρ
A = απW π

A + βπ
A for every A ∈ π. Since

W ρ
A(0) = W π

A(0) = 0, then βπ
A = 0. Since

∑
A∈π W

π
A(1) = 1 =

∑
A∈π W

ρ
A(1), then απ = 1. It

follows that W ρ
A = W π

A for all A ∈ π. Thus, W ρ
A = W π

A for all A ∈ Aπ. By applying the same
argument to σ, we obtain W ρ

A = W σ
A for all A ∈ Aσ. We conclude that W π

A = W σ
A for all

A ∈ Aπ ∩ Aσ.

We can therefore drop the superscript and denote each function W π
A as WA. Moreover,

letting FΠ =
⋃

{Fπ : π ∈ Π} we can define V on FΠ as

V (f) =
∑

x∈f(Ω)
Wf−1(x)(u(x)).

The map V represents ≿ on FΠ.

Lemma 18. For f, h ∈ F and A ∈ Sstp,

V (c(fAh)) = WA(u(c(f |A))) +WAc(u(c(h|Ac))).

Proof. Define g = c(f |A)Ac(h|Ac). SinceA ∈ Sstp, thenA ∈ A(π) for some π ∈ Π (Lemma 15),
and thus g ∈ FΠ. From the fact that c(f |A) ∼A f and c(h|Ac) ∼Ac h we obtain fAh ∼
c(f |A)Ah ∼ g. Thus

V (c(fAh)) = V (g) = WA(u(c(f |A))) +WAc(u(c(h|Ac))).

Recall that x0 is a consequence such that u(x0) = 0.

Lemma 19. Let (An) be a sequence in Sstp with An ↓ A or An ↑ A. Then, for all f, h ∈ F,

V (c(fAh)) = V (c(fAx0)) + V (c(x0Ah)).

Proof. Lemma 3(i) implies u(c(fAnx
0)) → u(c(fAx0)). Thus, by the continuity of WΩ,

V (c(fAx0)) = WΩ(u(c(fAx0))) = lim
n→∞

WΩ(u(c(fAnx
0))) = lim

n→∞
V (c(fAnx

0)).

Lemma 18 yields

V (c(fAnx
0)) = WAn(u(c(f |An))) +WAc

n
(0) = WAn(u(c(f |An))).
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We conclude that
V (c(fAx0)) = lim

n→∞
WAn(u(c(f |An))). (4)

The same argument, applied to Ac and h, implies

V (c(x0Ah)) = lim
n→∞

WAc
n
(u(c(h|Ac

n))). (5)

Lemma 3(i) yields u(c(fAnh)) → u(c(fAh)). Therefore, using the continuity of WΩ,

V (fAh) = WΩ(u(c(fAh))) = lim
n→∞

WΩ(u(c(fAnh))) = lim
n→∞

V (fAnh).

This implies:

V (fAh) = lim
n→∞

V (fAnh)

= lim
n→∞

(
WAn(c(f |An)) +WAc

n
(c(h|Ac

n))
)

= V (c(fAx0)) + V (c(x0Ah)).

where the second equality follows from Lemma 18 and third equality from (4) and (5).

We can now conclude the proof that Sstp is a monotone class. Suppose (An) is a sequence
in Sstp and An ↑ A or An ↓ A. Lemma 19 shows that fAh ≿ gAh holds if and only if
V (c(fAx0)) ≥ V (c(gAx0)), that is if and only if fAx0 ≿ gAx0. Similarly, hAf ≿ hAg if and
only if x0Af ≿ x0Ag. It follows that A satisfies the sure-thing principle.

3.6 Sstp is a monotone class: alternative approach

We consider a strengthening of Axiom 2:

Axiom 5. If f(ω) ≿ g(ω) for all ω, then f ≿ g; if in addition f(ω) ≻ g(ω) for all ω in a
non-null set A, then f ≻ g.

Axiom 5 is satisfied by the smooth identifiable model of Denti and Pomatto (2022). The
axiom has the following implication:

Lemma 20. If f(ω) ≿ g(ω) for all ω outside of a null set A, then f ≿ g; if in addition
f(ω) ≻ g(ω) for all ω in a non-null set B, then f ≻ g.

Proof. Assume that f(ω) ≿ g(ω) for all ω outside of a null set A. Since A is null, f ∼ gAf .
Moreover, gAf ≿ g by Axiom 5. Transitivity implies that f ≿ g. Suppose in addition that
f(ω) ≻ g(ω) for all ω in a non-null set B. Since B is not null and A is null, the set B ∩Ac is
not null. Thus, gAf ≻ g by Axiom 5. Given that f ∼ gAf , we obtain f ≻ g.

Utilizing Axiom 5, we now provide a shorter proof that Sstp is a monotone class. This
proof does not use Debreu’s theorem.
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Let (An) is a sequence in Sstp such that An ↑ A or An ↓ A. We desire to show that
A ∈ Sstp. If A is null, then A ∈ Sstp by Lemma 6; we assume throughout that A is not null.

Take f, g, h, h′ ∈ F with fAh ≿ gAh. Let B and C be the events defined by

B =
{
ω ∈ A : u(f(ω)) < sup

x∈X
u(x)

}
,

C =
{
ω ∈ A : u(g(ω)) > inf

x∈X
u(x)

}
.

To demonstrate that fAh′ ≿ gAh′, we distinguish between two cases based on whether B and
C are null or non-null.

Suppose first that B and C are both null. Then, B ∪ C is null. It follows from Lemma 20
that fAh ≻ gAh, that is, u(c(fAh)) > u(c(gAh)). By Lemma 3(i), u(c(fAnh)) > u(c(gAnh))
for all n sufficiently large. Since each An ∈ Sstp, we deduce that fAnh

′ ≿ gAnh
′ for all n

sufficiently large. It follows from Axiom 3 that fAh′ ≿ gAh′.
Suppose now that B or C is non-null. For short, suppose B is non-null (the case in

which C is non-null is analogous). Take x ∈ X such that u(f(ω)) ≤ u(x) for all ω ∈ A and
u(f(ω)) < u(x) for all ω ∈ B. Given any α ∈ (0, 1), consider the act fα = αf + (1 − α)x.
Notice that for all ω,

u(fα(ω)) = αu(f(ω)) + (1 − α)u(x).

Hence, since B is non-null, fαAh ≻ fAh by Axiom 2. Since in addition fAh ≿ gAh, we have
fαAh ≻ gAh. Reasoning as above, we deduce that fαAh

′ ≿ gAh′. Since this is true for every
α, it follows from Axiom 3 that fAh′ ≿ gAh′.
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