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MODEL AND PREDICTIVE UNCERTAINTY: A FOUNDATION FOR SMOOTH
AMBIGUITY PREFERENCES
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Smooth ambiguity preferences (Klibanoff, Marinacci, and Mukerji (2005)) describe
a decision maker who evaluates each act f according to the twofold expectation

V (f ) =
∫
P
φ

(∫
�

u(f ) dp
)

dμ(p)

defined by a utility function u, an ambiguity index φ, and a belief μ over a set P of
probabilities. We provide an axiomatic foundation for the representation, taking as a
primitive a preference over Anscombe–Aumann acts. We study a special case where
P is a subjective statistical model that is point identified, that is, the decision maker
believes that the true law p ∈ P can be recovered empirically. Our main axiom is a
joint weakening of Savage’s sure-thing principle and Anscombe–Aumann’s mixture in-
dependence. In addition, we show that the parameters of the representation can be
uniquely recovered from preferences, thereby making operational the separation be-
tween ambiguity attitude and perception, a hallmark feature of the smooth ambiguity
representation.

KEYWORDS: Ambiguity, sure-thing principle, identifiability.

1. INTRODUCTION

SMOOTH AMBIGUITY PREFERENCES, introduced by Klibanoff, Marinacci, and Mukerji
(2005), have received great attention in economics and decision theory. Under these pref-
erences, an act f : �→X mapping states of the world to outcomes is ranked according
to the representation

V (f ) =
∫
P
φ

(∫
�

u(f ) dp
)

dμ(p)� (1)

Acts are first evaluated by their expected utility with respect to each probability measure
p in a set P . These expectations are then averaged by means of a belief μ over prob-
abilities and an increasing transformation φ. When the support of μ is not a singleton,
the decision maker entertains multiple probabilistic scenarios. If in addition φ is not lin-
ear, then preferences can express ambiguity aversion or seeking, and can accommodate
behavior that could not otherwise be modeled under subjective expected utility.

Smooth ambiguity preferences have seen a wide range of economic applications. They
have also been the subject of a well-known debate, as attested by the exchange between
Epstein (2010) and Klibanoff, Marinacci, and Mukerji (2012). The debate concerns the
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preferences’ interpretation and behavioral foundations, and has cast doubts on whether
the elements of the representation can be recovered from choice data.

In this paper, we provide an axiomatic foundation for a class of smooth ambiguity pref-
erences that admits an explicit statistical interpretation. Taking as a primitive a preference
relation over Anscombe–Aumann acts, we show that smooth ambiguity preferences can
be characterized by relating two tenets of Bayesian reasoning, the Anscombe–Aumann
independence axiom and Savage’s sure-thing principle; our main axiom is a joint weaken-
ing of these two principles. In addition, we show that the elements of the representation
(1) can be uniquely recovered from preferences.

We can distinguish between two possible interpretations of smooth ambiguity prefer-
ences. In one view, the probability μ measures the agent’s degree of confidence over
different subjective beliefs. The motivating idea is that a person might be unable to deem
an eventA as being more or less likely than another event B, but nevertheless might have
higher confidence in “A being more likely than B” than in “B being more likely than
A.” Such second-order beliefs are problematic, because it is difficult to envision what evi-
dence could be used to elicit them. They also open the door to an infinite regress problem:
there seems to be no clear reason for an agent to entertain second-order beliefs, but not
third- and higher-order beliefs as well (see, e.g., the discussions in Savage (1954, p. 58);
Marschak et al. (1975)).

We adopt an alternative interpretation, already suggested by Klibanoff, Marinacci, and
Mukerji (2005). According to this interpretation, the domain P is a subjective statistical
model adopted by the agent as a guide for making decisions, and each measure p ∈ P
corresponds to a possible law governing the states. The belief μ is a prior over the true
law, by analogy with the framework of Bayesian statistics. Under this view, ambiguity is
generated by uncertainty about the correct law of nature p, rather than by inability to
express decisive first-order beliefs. Eliciting the prior μ amounts to observing the agent’s
bets on what is the true p.

The statistical interpretation of smooth preferences has become standard in applica-
tions and theoretical work (for a survey, see Marinacci (2015)). To formalize it, we adopt
a general formulation introduced by Cerreia-Vioglio, Maccheroni, Marinacci, and Mon-
trucchio (2013). We ask P to satisfy what is perhaps the single most fundamental assump-
tion in statistical modeling, that of being identifiable. We say that a set P of probabilities
over states is identifiable if there is a function k : �→ P , mapping observable states to
probability models, such that, for all p ∈P ,

p
({
ω : k(ω) = p}) = 1�

In the mind of the decision maker, the quantity k will reveal, almost surely, the true law
governing the state.

Beyond analogies with statistical modeling, identifiable smooth preferences formalize
the common view that ambiguity is due to lack of information. Our initial finding is that
they admit the alternative representation

V (f ) =Eπ
[
φ

(
Eπ

[
u(f )|T ])]

� (2)

where T is a sub-σ algebra of events and π is a probability measure over states. In this
representation, the decision maker expresses a single predictive assessment π, but she is
not confident about it. The sub-σ algebra T represents the additional information that
would make her sure about her predictions. Both T and π are purely subjective and make
no reference to any agreed-upon statistical notion of “true” law of nature.
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With different methods, terminologies, and motivations, a number of recent papers
have made important progress in providing foundations for identifiable smooth prefer-
ences. An important special case is one where P consists of the ergodic measures de-
rived from a given transformation of the state space. This is the subject of Al-Najjar and
De Castro (2014), who characterized identifiable smooth preferences in ergodic environ-
ments, as well as more general preferences. Klibanoff, Mukerji, Seo, and Stanca (2022)
considered preferences that are invariant with respect to a permutation of the states, in
the spirit of exchangeability. The question of characterizing general identifiable prefer-
ences was first addressed by Cerreia-Vioglio et al. (2013), who axiomatized identifiable
preferences in an augmented Anscombe–Aumann framework where P is a primitive of
the analysis.

Each of these papers involves nontrivial conceptual and technical innovations. How-
ever, the question of providing a foundation for identifiable smooth preferences that is
purely behavioral—that is, solely in terms of preferences over acts—has remained open.
Here we aim to fill this gap. The key difficulty is inferring the subjective statistical model
P from preferences, rather than assuming that such a structure (or, alternatively, a notion
of symmetry across states) is given from the outset.

The question is important for a number of reasons. A longstanding difficulty with
smooth preferences is to understand how they differ behaviorally from other models of
choice under ambiguity. This point has been raised, for example, by Epstein (2010), who
wrote: “[...] because of its problematic foundations, the behavioral content of the model and
how it differs from multiple priors, for example, are not clear.” The seminal contributions of
Schmeidler (1989) and Gilboa and Schmeidler (1989) characterize Choquet and maxmin
expected utility with precise weakenings of the independence axiom. No equivalent result
is known for smooth preferences.

A more practical challenge concerns the uniqueness of the elements φ, P , and μ of the
representation. In applications, a key reason for adopting smooth preferences is their sep-
aration between ambiguity perception, represented by P and μ, and ambiguity attitude,
which is represented by the function φ and is meant to be a personal trait that is portable
across decision problems. The status of such separation, however, is dubious if the math-
ematical objects are not uniquely pinned down by choice data. A behavioral foundation
is thus necessary to clarify the meaning of the representation.

Finally, providing a behavioral foundation is required in order to give empirical content
to the assumption that the decision maker reasons according to some statistical model P .
In many cases, what constitutes the appropriate model for a phenomenon of interest is
a subjective matter. Indeed, there is no shortage of examples where decision makers and
analysts disagree not only in their beliefs, but also in the scientific or statistical models
they deem relevant. In such situations, an analyst does typically not have access to the
model the decision maker has in mind, and hence a method for eliciting such information
is required.

In this paper, we provide necessary and sufficient conditions for a preference over
Anscombe–Aumann acts to admit an identifiable smooth representation. We also show
that all elements of the representations (1) and (2) are uniquely determined from pref-
erences: in particular, the prior μ and the domain P are unique, up to null events; the
σ-algebra T and the predictive π are also unique, up to null events.

In arriving at these results, the key step is to determine the exact behavioral counterpart
of the missing information generating ambiguity—in the smooth representation, it is the
σ-algebra generated by the identifying kernel k; in the predictive representation, it is the
sub-σ algebra T . We show that these abstract objects are in fact equal to the collection
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of events that satisfy the sure-thing principle, a property defined purely in terms of the
agent’s preferences. This collection of events was introduced by Gul and Pesendorfer
(2014) to study a different class of preferences. A crucial result they discovered, and that
we use in an essential way in this paper, is that under mild assumptions, such a collection
is a σ-algebra.

An additional contribution of our work is to give operational meaning to the subjective
statistical model P . From the decision maker’s preference relation � over acts, we derive
a new subrelation �stp defined by f �stp g if f is preferred to g conditional on every event
that satisfies the sure-thing principle. This preference is incomplete, and we show it char-
acterizes P : given two acts f and g,

∫
�
u(f ) dp≥ ∫

�
u(g) dp holds for every p ∈ P if and

only if f �stp g.
The literature proposes two alternative axiomatic approaches to smooth ambiguity

preferences. Klibanoff, Marinacci, and Mukerji (2005) provided an axiomatic founda-
tion for the smooth ambiguity representation by studying preferences over second-order
acts. These are acts whose outcomes depend on the correct probability p over the states.
In their analysis, the decision maker’s preferences over second-order acts are assumed
to have a subjective expected utility representation. Epstein (2010) highlighted a prob-
lematic aspect of this assumption: intuitively, ambiguity averse behavior should be more
pronounced in the case of second-order acts rather than first-order acts. Our analysis
bypasses these complications: what is ambiguous—and what is not—is completely deter-
mined by the decision maker’s preferences.

An alternative approach was taken in Seo (2009), who considered Anscombe and Au-
mann’s original framework with two stages of objective randomization. An important fea-
ture of Seo’s representation theorem is that it imposes no restrictions on the domain P . At
the same time, in his approach, decision makers can display sensitivity to ambiguity only if
they fail to reduce objective compound lotteries.1 By contrast, the primitive of our analysis
is a preference relation over what are by now standard Anscombe–Aumann acts. This puts
identifiable smooth ambiguity preferences on the same ground of the other main classes
of ambiguity preferences, whose leading characterizations are consistent with reduction
of compound lotteries.

Another related paper is He (2021), who obtained a two-stage representation with an
expected utility evaluation at each stage. The similarity with our paper (and with Gul and
Pesendorfer (2014)) is in the fact that the decomposition between stages is obtained by
looking at events that satisfy the sure-thing principle. Both the axioms and the represen-
tations are, however, quite different. For example, our representation does not satisfy one
of his main axioms (Axiom 12).

Identifiable smooth ambiguity preferences are based on a formal distinction between
uncertainty about events and uncertainty about the odds that govern them. This long-
standing idea is critical in many fields. Wald (1950) distinguished between uncertainty
about the sample realization and uncertainty about the parameter generating the sample.
In robust mechanism design, Bergemann and Morris (2005) made a distinction between
uncertainty about what signals players will observe, and uncertainty about the underly-
ing information structure. In macroeconomics, Hansen and Sargent (2008) distinguished
between uncertainty within a model and about the correct model.

1Related models of second-order expected utility have been studied by Segal (1987), Davis and Pate-Cornell
(1994), Nau (2006), and Ergin and Gul (2009).
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2. PRELIMINARY DEFINITIONS

We consider a set � of states of the world, a σ-algebra S of subsets of � called events,
and a set X of consequences. We assume that X is a convex subset of a Hausdorff topo-
logical vector space, endowed with the Borel σ-algebra. This is the case in the classic
setting of Anscombe and Aumann (1963) where X is the set of simple lotteries on a fixed
set of prizes. We also assume that (��S) is a standard Borel measurable space, that is,
there exists a Polish topology on � such that S is the corresponding Borel σ-algebra, an
assumption that covers most measurable spaces used in applications.

An act is a measurable function f : �→ X . We consider the domain F of acts f for
which there exists a finite set Y ⊆X such that f takes values in the convex hull of Y (i.e.,
the image f (�) is included in a polytope). In particular, F contains all acts whose range
is finite. Our object of study is a binary relation � over F that represents the preferences
of the decision maker. We denote by ∼ and � the symmetric and asymmetric parts of �,
respectively.

We write x for the constant act f such that f (ω) = x for all ω ∈�. Given f�g ∈ F and
α ∈ [0�1], we denote by αf + (1 − α)g the act in F that takes value αf (ω) + (1 − α)g(ω)
in state ω. Given acts f and g and event A, fAg is the act that coincides with f on A
and with g on Ac . An event A is null if fAh∼ gAh for all f�g�h ∈ F. Similarly, two σ-
algebras T1�T2 ⊆ S are equivalent up to null events if, for every A ∈ T1, there is a B ∈ T2

such that A�B is null, and for every B ∈ T2, there is a A ∈ T1 such that A�B is null.
We denote by 
(S), or simply 
, the space of countably additive probability measures

on (��S). Given p ∈ 
, the symbol Ep denotes the corresponding expectation operator.
We endow 
 with the weak* topology and the corresponding Borel σ-algebra.2 This is

the σ-algebra � generated by the functions p 	→ p(A) for A ∈ S . Given a nonempty set
P ⊆ 
, let �P = {B ∩ P : B ∈ �} be the relative σ-algebra. A prior on P is a countably
additive probability measure μ on (�P�P). To each prior μ we associate the predictive
probability πμ ∈ 
 defined by πμ(A) = ∫

P p(A) dμ(p).

3. IDENTIFIABLE SMOOTH REPRESENTATION

We begin with the formal definition of smooth ambiguity representation:3

DEFINITION 1: A tuple (u�φ�P�μ) is a smooth ambiguity representation of a prefer-
ence relation � if u : X → R is a non-constant affine function, φ : u(X) → R a strictly
increasing continuous function, P ⊆ 
 a nonempty set, and μ a non-atomic prior on P ,
such that

f � g ⇐⇒
∫
P
φ

(∫
�

u(f ) dp
)

dμ(p) ≥
∫
P
φ

(∫
�

u(g) dp
)

dμ(p)

for all f�g ∈ F.

We interpret each p ∈ P as a possible law, or probabilistic model, governing the state.
The domain P can then be seen as a subjective statistical model. The agent’s degree of

2In the weak* topology, a net (pα) in 
 converges to p if and only if pα(A) → p(A) for all A ∈ S .
3Klibanoff, Marinacci, and Mukerji (2005) considered a preference relation over Savage acts defined over

�× [0�1], where [0�1] is endowed with the Lebesgue measure and plays the role of a randomization device.
Definition 1 translates their representation to the Anscombe–Aumann setting.
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confidence over different laws is expressed by a prior μ, while the functions u and φ
reflect risk and ambiguity attitudes, respectively. We focus on representations where the
set P is, at least in principle, identifiable from observations:

DEFINITION 2: A nonempty set P ⊆ 
 is identifiable if there exists a measurable func-
tion, or kernel, k : �→P , such that, for all p ∈P ,

p
({
ω : k(ω) = p}) = 1�

A smooth representation (u�φ�P�μ) is identifiable if the set P is identifiable.

The condition of identifiability makes concrete the interpretation of P as a statistical
model. In statistical terms, Definition 2 amounts to the common assumption of P being
point-identified: there exists a function k of the state that enables the decision maker to
infer the true law p, almost surely.

Our notion of identifiability agrees with mainstream econometric usage in most stan-
dard settings; see Section H of the Supplemental Material (Denti and Pomatto (2022)) for
a formal comparison. The identifiable smooth representation was introduced by Cerreia-
Vioglio et al. (2013) using a different terminology; for further discussion, see Section I of
the Supplemental Material.

By varying the class P , we obtain a number of canonical examples.

EXAMPLE 1: The state space � = S∞ is the product of infinitely many copies of a fi-
nite set S. The statistical model P is the set of i.i.d. probability distributions, represented
as 
(S). By the strong law of large numbers, the collection P is identified by a kernel
k : �→ 
(S), where k(ω�s) is the limiting empirical frequency of the outcome s along
the sequence ω= (ω1�ω2� � � �) of realizations, whenever it is well defined.

The logic in the previous example extends to any environment P for which appropriate
laws of large numbers can be applied to recover the true law from empirical frequencies.
A common example from macroeconomics is an economy where the state of fundamen-
tals, consisting of aggregate and idiosyncratic shocks, follows a stochastic process p that is
stationary and ergodic (e.g., a moving-average process or an autoregressive process with-
out unit root). Another example is a portfolio selection problem with uncertainty about
expected returns, variance, and covariances (see, e.g., Garlappi, Uppal, and Wang (2006)).

Definition 2, however, is not tied to the interpretation of probability models as empiri-
cal frequencies, nor it is limited to environments characterized by repetitions. Next is the
classic Ellsberg thought experiment, in the formulation of Cerreia-Vioglio et al. (2013,
p. 980).

EXAMPLE 2: A ball is drawn from an urn that contains red, blue, and yellow balls.
The composition of the urn is unknown, but is verifiable ex post. A state of the world
ω= (c�γ) specifies the color of the extracted ball c ∈ {r� b� y} and the composition of the
urn γ ∈ 
({r� b� y}). The set of probabilistic laws P = {pγ} is indexed by the composition
γ, and each pγ assigns probability 1 to the event {r� b� y}×{γ}.

Ambiguity is generated by uncertainty about the composition of the urn. The obvious
identifying kernel k : �→ 
 is given by k((c�γ)�ω) = pγ and simply reports the compo-
sition of the urn.



MODEL AND PREDICTIVE UNCERTAINTY 557

As the previous example suggests, the set P is identifiable whenever each p ∈ P can
be seen as the realization of a random variable that is unknown to the agent at the time
of the decision. In the last example, the set P has a simple structure, and the kernel k is
given. In more complex decision problems, there may be no obvious choice of a statistical
model or identifying kernel. We illustrate this point in the context of policy making under
uncertainty:

EXAMPLE 3: A new virus is discovered and a policy maker is pondering whether or
not it will develop into an epidemic. The spread of the virus will depend on a number
of uncertain factors, such as the virus reproduction number, its infectious period, and its
mode of transmission. Epidemiological models aggregate these factors in different ways,
corresponding to different statistical models that the policy maker may adopt to guide
their decision. Given the novelty of the virus, there is substantial disagreement among
epidemiologists, and the adoption of a particular statistical model is a judgment call.4

To represent this problem, we define a state as a tuple ω = (e�x1� � � � � xn), where
e ∈ {0�1} describes whether or not an epidemic will occur, and each xi ∈ R is a poten-
tial factor affecting the spread of the virus. An epidemiological model describes a set of
relevant factors I ⊆{1� � � � � n} and the probability of an epidemic ϕ(xI) ∈ [0�1] as a func-
tion of xI = (xi)i∈I . We can then define a corresponding kernel k, where k(e�x1� � � � � xn)
is the measure in 
(�) that assigns probability ϕ(xI) to the state (1�x1� � � � � xn) and the
remaining probability to the state (0�x1� � � � � xn). The σ-algebra generated by the factors
in I describes the ambiguity perceived by the policy maker.

The literature on model averaging in policy evaluation provides additional examples of
this nature (see, e.g., Brock, Durlauf, and West (2007)).

3.1. Predictive Representation

Identifiable smooth preferences admit an alternative representation which, going be-
yond analogies with statistical modeling, formalizes the common view that ambiguity is
due to lack of information. The alternative representation, which below we show is equiv-
alent to that of Definition 2, is defined as follows:

DEFINITION 3: A tuple (u�φ�T �π) is a predictive representation of a preference rela-
tion � if u : X → R is a non-constant affine function, φ : u(X) → R a strictly increasing
continuous function, T ⊆ S a σ-algebra, and π ∈ 
 a probability measure non-atomic on
T such that

f � g ⇐⇒ Eπ
[
φ

(
Eπ

[
u(f )|T ])] ≥Eπ

[
φ

(
Eπ

[
u(g)|T ])]

for all f�g ∈ F.

In this representation, the agent is able to form a unique probability assessment π, but
is not confident about such a prediction. The sub σ-algebra T represents the additional
information the agent would need in order to arrive at a reliable probability assessment.
Given knowledge of T , acts would be ranked according to their conditional expected
utility Eπ[u(f )|T ]. The idea that ambiguity aversion is a reaction to lack of information

4See, for example, Best and Boice (2021) for COVID-19.
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has been advanced many times in the literature, typically as an informal motivation.5 What
is new, in this representation, is that the information that generates ambiguity is explicitly
part of the model and, in addition, that such information is elicited from preferences.

As shown by the next result, the predictive and the smooth identifiable representations
characterize the same class of preferences.

PROPOSITION 1: (i) If � admits an identifiable representation (u�φ�P�μ), then it admits
a predictive representation (u�φ�σ (k)�πμ) where k is a kernel that identifies P .

(ii) If � admits a predictive representation (u�φ�T �π), then it admits an identifiable rep-
resentation (u�φ�P�μ) where πμ = π and T is equivalent to σ (k) up to null events.

By relating the probability π to the measure πμ induced by the prior μ, the proposition
reinforces the interpretation of π as a predictive probability. The result also ties together
the σ-algebras T and σ (k).

The statistical interpretation of identifiable smooth preferences describes ambiguity as
uncertainty about a true law. Proposition 1 provides a different interpretation for the
same class of preferences: it is the lack of information—that is, the σ-algebra T —that
generates ambiguity. The case where the events in T consist of long-run frequencies or
other “objective” sources of information is a special case, as highlighted in Examples 1–3.
De Finetti (1977) provided another vivid example: an individual may be “perplexed at
having to assess the probability of victory (or defeat, or a draw) of a given team in a given
match by stating a single number” but nevertheless be “willing to give assessments condi-
tional upon certain contingencies (presence of star player, terrain conditions, bonus).”6

Particular instances of the predictive representation have already appeared in the liter-
ature:

EXAMPLE 4: Let (u�φ�T �π) be a predictive representation where S = T . Then

f � g ⇐⇒ Eπ
[
φ

(
u(f )

)] ≥ Eπ
[
φ

(
u(g)

)]
�

This criterion for decision making under ambiguity was introduced by Neilson (2010).
A special case is multiplier preferences of Hansen and Sargent (2001), as shown by Strza-
lecki (2011).

EXAMPLE 5: Two sources of uncertainty a and b are represented by probability spaces
(�a�Sa�πa) and (�b�Sb�πb). A state of the world ω = (ωa�ωb) specifies a realization
for each source, and S = Sa × Sb is the product σ-algebra. Nau (2006) and Ergin and

5An exception is Gajdos, Hayashi, Tallon, and Vergnaud (2008), where information is instead part of the
model.

6De Finetti described the underlying thought process as follows: “Given a situation well-defined as to the
outside aspects which I regard as more significant, I, on the basis of my own more or less great knowledge of
football and of the calibre of the two teams, am willing to express my opinion by assessing the probabilities
of the three possible results. However, as for other contingencies, I feel incompetent and I would not venture
an opinion. As for the prospects of recovery, or suspension, of that player I lack any grounds for an opinion;
likewise, I feel unable to venture weather forecasts for the day of the match or the immediately preceding ones,
lacking any knowledge of meteorology; and I have no crystal ball to fore see whether the rumours about the
promised bonus will be confirmed. Therefore I am willing to assess probabilities Prob(A|Hi) conditional on
the various hypotheses Hi , but as for the Prob(Hi), and hence Prob(A), I cannot commit myself.”
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Gul (2009) studied preferences where acts are evaluated separately along each source.
An important special case of their analysis is the representation

V (f ) =
∫
�b

φ

(∫
�a

u
(
f (ωa�ωb)

)
dπa(ωa)

)
dπb(ωb)�

This corresponds to a predictive representation with product measure π = πa × πb and
sub σ-algebra T ={�a ×B : B ∈ Sb}.

The predictive representation allows to generalize source-dependent preferences along
two natural directions: by dispensing with the assumption of stochastic independence,
and by making the classification between different sources of uncertainty subjective. We
illustrate these features in a simple optimal portfolio problem.

EXAMPLE 6: An investor must choose how to allocate their wealth w across n assets.
Let ri(ω) ∈R be the gross return of asset i= 1� � � � � n in state ω ∈�. After normalizing w
to 1, a portfolio x ∈R

n leads to the monetary payoff (x · r)(ω) = ∑n

i=1 xiri(ω).
We consider an investor who is endowed with a belief π ∈ 
(�) and who sees the re-

turns of the assets in a subset I ⊆{1� � � � � n} as ambiguous. In the corresponding predictive
representation, a portfolio x is evaluated according to

Eπ
[
φ

(
Eπ

[
u(x · r)|T ])]

�

where T is the σ-algebra generated by ambiguous returns (ri)i∈I . Thus, conditional on
the returns of the ambiguous assets, the portfolio is ranked according to its expected
utility Eπ[u(x · r)|T ]. In line with the standard interpretation of smooth preferences, the
function φ describes the investor’s attitude towards uncertainty about the returns of the
ambiguous assets. The representation of Ergin and Gul (2009) can be obtained as the
special case where the set I is exogenous, rather than a feature of the preference, and
where the two vectors of returns (ri)i∈I and (ri)i/∈I are stochastically independent of each
other.

4. AXIOMS

We begin by imposing three elementary assumptions on �. In addition to completeness
and transitivity, we require � to be monotone and to satisfy a standard continuity con-
dition. In what follows, we call a sequence (fn) of acts bounded if there exists a finite set
Y ⊆X such that each fn takes values in the convex hull of Y .

AXIOM 1: The preference � is complete, transitive, and nontrivial.

AXIOM 2: If f (ω) � g(ω) for all ω, then f � g.

AXIOM 3: If (fn) and (gn) are bounded sequences that converge pointwise to f and g,
respectively, and fn � gn for every n, then f � g.

It is a crucial insight due to Ellsberg (1961) that departures from Savage’s sure-thing
principle are key manifestations of ambiguity. We say that an event A satisfies the sure-
thing principle if, for all f�g�h�h′ ∈ F, the following conditions are satisfied:

(i) If fAh� gAh, then fAh′ � gAh′.
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(ii) If hAf � hAg, then h′Af � h′Ag.
In words, an eventA satisfies the sure-thing principle if bothA and its complement satisfy
Savage’s postulate P2. We denote by Sstp the family of all such events. The properties of
Sstp were first studied by Gul and Pesendorfer (2014) under the name of ideal events.

Following Ghirardato, Maccheroni, and Marinacci (2004), we say that an act f is un-
ambiguously preferred to g if f � g and the ranking is preserved across mixtures:

f �∗ g if αf + (1 − α)h� αg+ (1 − α)h for all α ∈ [0�1]�h ∈ F�

The relation �∗ isolates those choices that cannot be reversed by mixing with a common
act h. A key decision-theoretic insight, due to Schmeidler (1989), is that such preference
reversals are characteristic of an agent who perceives ambiguity, as mixing with h may
allow to hedge against the uncertainty connected with f and g.

We can now state our main axiom. For every non-null event A ∈ Sstp, we define the
conditional preference relation �A by f �A g if fAh� gAh for some h. SinceA satisfies
the sure-thing principle, �A is well defined and the choice of h is inessential.

AXIOM 4: If f �A g for all non-null A ∈ Sstp, then f �∗ g.

The axiom relates mixture independence to the sure-thing principle. Recall that under
subjective expected utility, a preference f � g implies the unambiguous ranking f �∗ g.
Axiom 4 is more permissive: the conclusion that f is unambiguously preferred to g is
reached only under the premise that f is preferred to g conditional on every event that
satisfies the sure-thing principle.

The two final axioms correspond to Savage’s postulates P4 and P6, but applied to events
that satisfy the sure-thing principle, as in Gul and Pesendorfer (2014). Because the mean-
ing of these conditions is well understood, we do not elaborate further on them.

AXIOM 5: If A�B ∈ Sstp and x� y� z�w ∈X are such that x� y and w� z, then

xAy � xBy ⇒ wAz �wBz�
AXIOM 6: For all acts f�g�h that are Sstp-measurable, if f � g, then there is a partition

A1� � � � �An of events in Sstp such that hAif � g and f � hAig for all i.

We now discuss more in detail the interpretation of Axiom 4, our main assumption.
The axiom ties hedging opportunities to the collection of events that satisfy the sure-thing
principle. To better see the behavioral content of this assumption, consider a decision
maker who is indifferent between two acts f and g, but who exhibits a preference reversal
f �A g and f ≺Ac g, where A is an event that satisfies the sure-thing principle. Because
the conditional preferences �A and ≺Ac are well defined, the decision maker expresses
an unequivocal preference for f when A happens, and for g when Ac happens.

Under Axiom 4, uncertainty about whether A will or will not occur generates a scope
for hedging. Intuitively, the act 1

2f + 1
2g, being midway between f and g, is less exposed

to uncertainty about the event A. This may result in the ranking 1
2f + 1

2g � g, a violation
of independence, being that f ∼ g.

The axiom can also be interpreted as capturing an elementary form of statistical rea-
soning, even without reference to probabilities or other representations of uncertainty.
A common strategy for simplifying complex decision problems consists in first isolating
a set of relevant hypotheses, and then drawing conclusions by evaluating the available
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options conditional on each hypothesis. For example, the quality of a test is evaluated by
considering the probability of error conditional on each possible hypothesis (e.g., type I
and type II error for binary hypotheses). This type of reasoning hinges on making state-
ments conditional on a hypothesis being true or false. Since the events that satisfy the
sure-thing principle are precisely those events A for which the decision maker’s prefer-
ences conditional onA andAc are well defined, it is suggestive to interpret the collection
Sstp as the set of hypotheses the decision maker has in mind. Under this interpretation,
Axiom 4 states that uncertainty about the correct hypothesis A ∈ Sstp is what generates
ambiguity: if, contingent on every hypothesis, the act f is preferred to g, then, according
to the axiom, the ranking between the two acts is unambiguous.

5. REPRESENTATION THEOREM AND UNIQUENESS

THEOREM 1: A preference relation � satisfies Axioms 1–6 if and only if it admits an iden-
tifiable smooth representation (u�φ�μ�P).

The theorem provides a behavioral foundation for the identifiable smooth repre-
sentation. By Proposition 1, the preference � admits an identifiable representation
(u�φ�μ�P) if and only if it admits a predictive representation (u�φ�T �π). Thus, Axioms
1–6 characterize both representations. Next, we describe their uniqueness properties.

THEOREM 2: Two identifiable representations (u1�φ1�P1�μ1) and (u2�φ2�P2�μ2) of the
same preference � are related by the following conditions:

(i) There are a� c > 0 and b�d ∈ R such that u2(x) = au1(x) +b andφ2(t) = cφ1( t−b
a

) +
d for all x ∈X and t ∈ u2(X).

(ii) πμ1 = πμ2 and, provided that φ1 is not affine, μ1(P1 ∩ S) = μ2(P2 ∩ S) for all S ∈ �.
If (u1�φ1�T1�π1) and (u2�φ2�T2�π2) are two predictive representations of �, then (i) above
holds, π1 = π2, and, provided that φ1 is not affine, T1 and T2 are equivalent up to null events.

The agent’s risk attitude, ambiguity attitude, and ambiguity perception are uniquely
determined from their preferences: the utility function u and the ambiguity index φ are
determined up to positive affine transformations, and the prior μ is unique. An obvious
exception is the case in which φ is affine. If the agent is ambiguity-neutral, then their
perception of ambiguity is inessential and their behavior can reveal only the predictive
probability πμ. In this case, the relation � reduces to a subjective expected utility prefer-
ence and the uniqueness of πμ follows from Savage’s theorem.

Analogous uniqueness properties hold for the predictive representation. The predictive
measure π is unique and, provided that φ is not affine, the σ-algebra T is unique up to
null events.

6. MODEL AND PREDICTIVE UNCERTAINTY

A key step in our analysis is the study of a new relation over acts derived from the
agent’s preferences. We define a relation �stp over acts by

f �stp g if f �A g for all non-null A ∈ Sstp�

In words, f �stp g if f is preferred to g conditional on each event that satisfies the sure-
thing principle. Following the discussion in Section 4, this reflects the idea that f is pre-
ferred to g conditional on each hypothesis A ∈ Sstp entertained by the decision maker
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about the states of the world. The next result is a representation theorem for the relation
�stp.

PROPOSITION 2: Let � admit identifiable representation (u�φ�P�μ) and predictive rep-
resentation (u�φ�T �π). If φ is not affine, then the following are equivalent:

(i) f �stp g,
(ii)

∫
�
u(f ) dp≥ ∫

�
u(g) dp for μ-almost all p ∈P ,

(iii) Eπ[u(f )|T ] ≥Eπ[u(g)|T ].

The preference relation �stp describes a robust ranking over acts that is based on the set
of probabilistic models p the agent considers plausible. The equivalence between (i) and
(ii) shows that f �stp g holds exactly when model uncertainty does not affect the ranking
of the two acts, since f is deemed better than g under each probabilistic model p ∈ P ,
almost surely. The equivalence between (i) and (iii) is the natural counterpart for the
predictive representation: the preference f �stp g holds when the information T does not
affect the ranking of the two acts.7

The next proposition shows that Sstp can be interpreted as the missing information that
generates ambiguity. In this context, we recall a result of Gul and Pesendorfer (2014):
under broad conditions on � that are satisfied in this paper, the collection of events Sstp

is a σ-algebra.8

PROPOSITION 3: Let � admit identifiable representation (u�φ�P�μ) and predictive rep-
resentation (u�φ�T �π). If φ is not affine and k is a kernel that identifies P , then the σ-
algebras Sstp, σ (k), and T are all equivalent up to null events.

For an identifiable smooth representation, the collection of events that satisfy the sure-
thing principle coincides, up to null events, with the σ-algebra generated by a kernel
k that identifies P . In the representation, knowledge of the value taken by k resolves
the decision maker’s uncertainty about the correct law p ∈ P governing the state. The
proposition shows that Sstp stands for the behavioral counterpart of this information. An
analogous result holds for the predictive representation where Sstp and T are equivalent
up to null events.

As is well known, the unambiguous preference relation �∗ admits the representation

f �∗ g ⇐⇒
∫
�

u(f ) dπ ≥
∫
�

u(g) dπ for all π ∈ C∗�

where u is an affine utility function, and C∗ is a set of probabilities over (��S).9 When
the set C∗ is not a singleton, the agent formulates a range of probabilistic assessments π
under which to evaluate acts according to expected utility. We call predictive uncertainty
the indeterminacy described by the multiplicity of probabilities in C∗.

7Proposition 2 assumes that φ is not affine. Otherwise, the agent is ambiguity-neutral, � reduces to a
subjective expected utility preference, all events satisfy the sure-thing principle, and f �stp g if and only if
f (ω) � g(ω) for all ω ∈�, up to a null event.

8See Lemma 9 in the Appendix for a precise statement of this result.
9See Bewley (2002), Ghirardato, Maccheroni, and Marinacci (2004), and Ghirardato and Siniscalchi (2012).

In this paper, the von Neumann–Morgenstern independence axiom for constant acts is an immediate implica-
tion of Axioms 1–4.



MODEL AND PREDICTIVE UNCERTAINTY 563

We can rephrase Axiom 4 as follows:

f �stp g =⇒ f �∗ g�

In view of Proposition 2, the axiom illustrates the following principle: if model uncertainty
does not affect the ranking of f and g, then predictive uncertainty should not either.

6.1. Perceived Ambiguity and Ambiguity Attitude

The separation between the ambiguity perceived by the decision maker, represented
by P and μ, and their attitude towards ambiguity, represented by φ, is a central feature
of the smooth ambiguity representation. This separation mimics the distinction of tastes
from beliefs in Subjective Expected Utility, one of the most appealing features of Savage’s
theory. Such clear distinction is absent in many other classes of preferences.

In this section, we characterize how the identifiable smooth representation captures
changes in perceived ambiguity or in ambiguity aversion. We model comparisons in am-
biguity perception in the following way. Let �1 and �2 be two preferences that admit
identifiable smooth representations (u1�φ1�P1�μ1) and (u2�φ2�P2�μ2), respectively. We
say the relation �1 perceives more ambiguity than �2 if

f �1
stp g =⇒ f �2

stp g�

According to this definition, if the first decision maker prefers f to g conditional on every
event that satisfies the sure-thing principle, then the same is true for the second decision
maker. As already discussed, the relation �stp is a robust ranking that singles out those
pairs of acts that are ranked conditional on every hypothesis entertained by the decision
maker. Thus, the decision maker who perceives more ambiguity formulates a richer set of
hypotheses, and as a consequence, fewer acts can be ranked in a robust way.

The next proposition characterizes this comparative notion:

PROPOSITION 4: Assume φ1 and φ2 are not affine. The following conditions are equiva-
lent:

(i) �1 perceives more ambiguity than �2.
(ii) u2 is a positive affine transformation of u1 and there exists a measurable function

M : P1 → 
(P2) such that, for every event A ∈ S and μ2-almost every p2 ∈P2,

p2(A) =
∫
P1

p1(A) dM(p1|p2)�

Both conditions imply σ (k2) ⊆ σ (k1), πμ2 -almost surely.10

An increase in ambiguity perception translates into a contraction of the set of proba-
bility models: if agent 1 perceives more ambiguity than agent 2, then each probability law
p2 ∈P2 can be obtained by a weighted average across laws in the set P1.

A simple instance of this is when P2 is a subset of P1, that is, when the first decision
maker has in mind a larger set of probability models. The proposition extends this intu-
ition by allowing each p2 to be a mixture of models in P1. For example, this allows for
the possibility that for some law p ∈ P2, the first decision maker considers a richer set of

10That is, for every A2 ∈ σ (k2) there exists A1 ∈ σ (k1) such that πμ2 (A1�A2) = 0.
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distributions p(·|H1)� � � � �p(·|Hn), where H1� � � � �Hn are conditional events that the first
decision maker, unlike the second, deems relevant for resolving uncertainty. This natu-
rally arises if, in the predictive representations of their preferences, the two decision mak-
ers share the same predictive probability π = π1 = π2, but more information is needed to
resolve the ambiguity of the first decision maker, that is, T2 ⊆ T1. More generally, Proposi-
tion 4 also shows that an increase in the ambiguity perceived by the decision maker always
translates into a larger σ-algebra σ (ki) of events that resolve ambiguity. In particular, up
to null events, it implies a larger collection of events that satisfy the sure-thing principle.

For modeling an increase in ambiguity aversion, we employ the standard notion of com-
parative ambiguity aversion introduced by Ghirardato and Marinacci (2002), according to
which �1 is more ambiguity averse than �2 if

f �1 x =⇒ f �2 x�

Intuitively, the evaluation of constant acts is unambiguous because the outcome is inde-
pendent of the state. Thus, decision makers who are more ambiguity averse should choose
constant acts more often.

The next proposition characterizes the agents’ degree of ambiguity aversion in terms of
the relative concavity of φ1 and φ2. As it is well known, if �1 is more ambiguity averse
than �2, then the decision makers have the same risk preferences, that is, u1 is a positive
affine transformation of u2.11 To simplify the exposition, for the next result we assume that
u1 = u2. To state the result, let S i

stp be the collection of events that satisfy the sure-thing
principle according to agent i.

PROPOSITION 5: Let φ1 and φ2 be continuously differentiable and not affine, and let u1 =
u2. If S1

stp = S2
stp, then the following conditions are equivalent:

(i) The preference �1 is more ambiguity averse than �2.
(ii) The function φ1 ◦φ−1

2 is concave and πμ1 = πμ2 .

Klibanoff, Marinacci, and Mukerji (2005) derived an analogous characterization for
general smooth preferences (Klibanoff, Marinacci, and Mukerji (2005, Theorem 2)), but
under the stronger hypothesis that μ1 = μ2, and hence that P1 = P2. This implies that,
in their analysis, agents are comparable in their ambiguity attitude only if they share the
same ambiguity attitude.

In contrast, focusing on identifiable smooth preferences, we show the same conclusion
holds under the hypothesis that the agents agree on the events that satisfy the sure-thing
principle. By Proposition 3, this is equivalent to saying that the decision makers agree
on what information can resolve ambiguity. This assumption is fully behavioral and dis-
tinctive of smooth identifiable preferences. In addition, as we show in Example 7 in the
Supplemental Material, it cannot be further weakened.

7. DISCUSSION

7.1. On the Behavioral Foundations of Smooth Ambiguity

Our analysis contributes to the recent debate on the behavioral foundations of smooth
ambiguity preferences. Much of the debate has centered around the role played by
second-order acts in the axiomatization of Klibanoff, Marinacci, and Mukerji (2005).

11See, for example, Ghirardato, Maccheroni, and Marinacci (2004, Corollary B.3).
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These are acts of the form f 2 : P →X , whose outcome x = f 2(p) depends on the true
probability distribution p ∈P . Their setup takes choices over second-order acts as part of
the primitives.

In his critique to their approach, Epstein (2010) presented a variation on Ellsberg’s
(1961) thought experiment where the decision maker is asked to bet both on the color
extracted from an urn and its composition. Both variables are ambiguous, and it is intu-
itive that a decision maker could exhibit Ellsberg-like behavior with respect to both bets.
However, whether or not smooth preferences can accommodate this behavior depends on
how the problem is formalized. In Epstein’s formulation, a bet on the composition of the
urn is a second-order act, and hence ambiguity aversion is not possible. To the contrary,
Klibanoff, Marinacci, and Mukerji (2012) argued that the state space should be richer,
and should be taken to contain all information that is relevant for the decision maker,
including the composition of the urn. Unlike Epstein’s formulation, this approach makes
a bet on the composition a first-order act.

Our axiomatization can help to clarify some aspects of this debate. Epstein’s critique
starts from the observation that smooth preferences are ambiguity neutral over second-
order acts. This may seem counterintuitive: how can an agent who finds it difficult to assess
the likelihood of an event have no difficulties in assessing the probability of a second-
order event?

In our analysis, the object that is closest to a second-order act is an act that is measur-
able with respect to the σ-algebra Sstp. Over such acts, the decision maker is ambiguity
neutral in the sense of being consistent with Savage’s axioms. But since it is up to the
decision maker to decide which events belong to Sstp, this assumption seems less extreme
than the assumption of ambiguity neutrality over second-order acts that was critiqued by
Epstein (2010).

One can draw an analogy with the interpretation of maxmin preferences. In a maxmin
representation where the set C of probabilities is exogenously given, a common criticism
of the minmax criterion is its excessive pessimism. On the contrary, Gilboa and Schmei-
dler (1989) showed that when C is elicited from preferences, minmax preferences do not
express any obvious form of extreme pessimism. In a similar way, once we allow for P to
be endogenous, our axiomatization shows that smooth preferences do not presume any
obvious or extreme form of ambiguity neutrality.

7.2. Scope of Identifiable Smooth Preferences

The literature has introduced several alternative models for decision making under
ambiguity. A natural question, then, is what criteria can we use to select among models?
The question is particularly relevant for the smooth model, given the difficulties in its
interpretation and problematic foundations. Our analysis contributes to this question by
providing an axiomatic foundation for the (identifiable) smooth model that is cast within
the same Anscombe–Aumann framework shared by the other classic axiomatizations of
Choquet and Maxmin expected utility, and other models.

Our axiomatic analysis helps understanding some potential limitations of (identifiable)
smooth preferences, and the contexts where they can be more appropriate. As highlighted
by Gilboa and Marinacci (2013), “smooth preferences have the disadvantage of imposing
non-trivial epistemological demands on the decision maker” since “the smooth model
requires the specification of a prior over probability models.” Our main axiom trans-
lates this observation in the concrete realm of preferences over acts. To satisfy Axiom 4,
the decision maker first needs to identify a number of contingencies that would resolve
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ambiguity (i.e., the sure-thing events), then check the ranking over acts contingency-
by-contingency, and finally, in the case of a unanimous ranking, be sure not violate the
Anscombe–Aumann independence axiom.

It is not difficult to imagine situations where this cognitive task can be difficult, if not
impossible. For example, a policy maker asked to make a decision on an unfamiliar, and
complex, issue, such as climate change, may have simply no idea of what facts could be
useful for understanding the phenomenon in such a way as to resolve their perceived
ambiguity. In contexts such as these, other models, such as max-min or Choquet expected
utility, may be less cognitively demanding.

An interesting question concerns identifiability for general ambiguity preferences; we
discuss some of the issues involved in Section J of the Supplemental Material.

7.3. Proof Sketch

We now describe, rather informally, the main arguments used in the proof of Theo-
rem 1. Sufficiency of the axioms is established according to the following steps.

Step 1. Consider a relation � that satisfies Axioms 1–6. The first four axioms imply that
when restricted over X , the relation � satisfies the von Neumann–Morgenstern indepen-
dence axiom. By standard arguments, there exists an affine utility function u : X → R rep-
resenting � on X , and any two acts satisfy f ∼ g whenever u(f ) = u(g). For expositional
simplicity, we assume here thatX = R and u is the identity. We can therefore identify the
set of acts with the set B(S) of real-valued, bounded, and S-measurable functions.

A result due to Gul and Pesendorfer (2014) guarantees that the collection Sstp is a σ-
algebra. Savage’s postulates are satisfied on Sstp-measurable acts, and there exist therefore
a strictly increasing function φ : R → R and a non-atomic probability measure q : Sstp →
[0�1] such that

f � g ⇐⇒
∫
�

φ(f ) dq≥
∫
�

φ(g) dq (3)

for all Sstp-measurable acts f and g.
Step 2. We next show that, for every act f ∈ B(S), there exists a Sstp-measurable act f̂

that satisfies f ∼stp f̂ . To this end, define V : B(S) → R as V (f ) =φ(c(f )), where c(f ) is
the certainty equivalent of f . The functional V represents �.

Now, given an act f , fix x such that f (ω) � x for every state ω, and consider the set
function qf : Sstp → R given by qf (A) = V (fAx) − V (x). The crucial observation is that
qf is a positive measure, absolutely continuous with respect to q. By applying the Radon–
Nikodym theorem, we can find a Sstp-measurable act f̂ such that f̂ ∼stp f . See Lemma 12
in the Appendix for more details.

Step 3. Two acts f̂ and f̂ ′ that are Sstp-measurable and satisfy f ∼stp f̂ ∼stp f̂
′ are equal

q-almost surely. We can thus define an operator

T : B(S) →L∞(Sstp� q)

mapping each act f to the set T (f ) of Sstp-measurable acts f̂ that satisfy f ∼stp f̂ . This set
forms an equivalence class in the L∞ space defined by q. Moreover, the functional

V (f ) =
∫
�

φ
(
T (f )

)
dq

represents �.
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Step 4. We establish a number of properties for the operator T . We show T is mono-
tone, normalized (i.e., T (x) = x for every constant x), and is decomposable, that is,
T (1Af ) = 1AT (f ) for every f and every event A in Sstp. In addition, it represents �stp,
in the sense that f �stp g if and only if T (f ) ≥ T (g) almost surely. Decomposable oper-
ators are discussed in Section B in the Appendix. Related classes of operators, and their
representations, play an important role in the theory of dynamic risk measures Föllmer
and Schied (2011, Chapter 11).

Step 5. In the last step, we study the implications of Axiom 4. Given the previous steps,
we show that Axiom 4 holds if and only if the operator T is affine. Affinity of the operator
implies, as we establish, the existence of a probability measure π extending q from Sstp to
the original σ-algebra S , such that

T (f ) =Eπ[f |Sstp]�

This leads to the predictive representation V (f ) = Eπ[φ(Eπ[f |Sstp])]. By Proposition 1,
we conclude that � admits an identifiable smooth representation.

We conclude by noting that establishing the necessity of the axioms is not entirely
straightforward. It requires to first characterize the collection Sstp induced by the rep-
resentation. We solve this problem in the proof of Propositions 3. In the proof, we show
that every event that satisfies the sure-thing principle defines an appropriate Pexider func-
tional equation. The characterization of Sstp is then made possible by applying a result due
to Aczél (2005). See in particular Lemma 16 in the Appendix.

APPENDIX

The appendix is organized as follows. In Section A, we set up the necessary notation
and preliminary results. Section B introduces the notion of decomposable operator, which
is then used in Section C to provide a representation for a preference relation that satis-
fies Axioms 1–3 and 5–6. Starting from this baseline representation, in Section D we show
that a preference relation that satisfies Axioms 1–6 admits a predictive representation, as
defined in the main text. We study the uniqueness properties of the predictive represen-
tation as well as provide characterizations for Sstp and �stp. The analysis in Section D is
applied in Sections E–G to prove the results stated in the main text. Proposition 1 follows
from standard arguments on regular conditional probabilities; for completeness, a formal
proof is in the Supplemental Material.

APPENDIX A: PRELIMINARIES

Notation. For every σ-algebra T ⊆ S and nonempty interval U ⊆ R, we denote by
B(T �U) the space of T -measurable bounded functions ξ : � → R taking values in
U . As usual, we identify a ∈ U with the constant function taking value a. We denote
by B0(T �U) ⊆ B(T �U) the subspace of functions taking finitely many values, and let
Bb(T �U) ⊆ B(T �U) be the set of all ξ ∈ B(T �U) for which there exist a�b ∈ U that
satisfy a≥ ξ ≥ b. A sequence (ξn) in Bb(T �U) is bounded if there are a�b ∈U such that
a≥ ξn ≥ b for all n.

Let q ∈ 
(T ) be a probability measure. We denote by L∞(T � q) the space of equiva-
lence classes of real-valued, T -measurable, and almost-surely bounded functions. Given
ξ ∈ Bb(T ), we denote by [ξ] ∈L∞(T � q) the corresponding equivalence class. We refer to
an element ζ ∈ [ξ] of the equivalence class as a representative of [ξ]. We denote by

L∞(T � q�U) = {
[ξ] : ξ ∈ Bb(T �U)

}
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the set of equivalence classes induced from functions in Bb(T �U). For an increas-
ing function φ : U → R and ξ ∈ Bb(T �U), we denote by φ([ξ]) the equivalence class
[φ(ξ)] ∈L∞(T � q).

Given a probability measure π ∈ 
 that agrees with q on T , we denote by

Eπ[ξ|T ] ∈L∞(T � q�U)

the conditional expectation of ξ ∈ Bb(S�U) with respect to T .

Equivalent σ-Algebras. Let π ∈ 
(S) be a probability measure on S . Two events
A�B ∈ S are π-equivalent if π(A�B) = 0. Two σ-algebras T1�T2 ⊆ S are π-equivalent
if every A ∈ T1 has a π-equivalent B ∈ T2, and vice versa, every B ∈ T2 has a π-equivalent
A ∈ T1. Two functions ξ�ζ ∈ Bb(S�U) are π-equivalent if they are equal π-almost surely.
The next lemma describes some basic properties of equivalent σ-algebras. We omit the
simple proof.

LEMMA 1: If T1 and T2 are π-equivalent, then the following conditions are satisfied:
(i) For every ξ ∈ Bb(T1�U), there is a π-equivalent ζ ∈ Bb(T2�U).

(ii) For each ξ ∈ Bb(S�U), every ζ ∈Eπ[ξ|T1] has a π-equivalent ψ ∈Eπ[ξ|T2].

Pexider Functional Equation. Let I� J ⊆R be nonempty open intervals of the real line.
Let I+J ={s+ t : s ∈ I� t ∈ J}. Letφ : I+J →R be a measurable function that is not con-
stant on every sub-interval of positive length. The following result on the Pexider equation
is due to Aczél (2005, Theorem 2 and its corollary).

LEMMA 2: Suppose there are α : I → R, β : I →R, and γ : J →R such that

φ(s+ t) = α(s) +β(s)γ(t) ∀s ∈ I� t ∈ J�
Then φ is either affine or exponential, that is, only two cases can arise:

(i) There are α�β ∈ R with β �= 0 such that φ(t) = α+βt for all t ∈ I + J.
(ii) There are α�β�γ ∈ R with βγ �= 0 such that φ(t) = α+βeγt for all t ∈ I + J.

APPENDIX B: DECOMPOSABLE OPERATORS

Throughout this section, U ⊆ R is an interval of positive length, T ⊆ S a σ-algebra,
and q a measure in 
(T ).

DEFINITION 4: An operator T : Bb(S�U) →L∞(T � q�U) is:
• monotone if ξ≥ ζ implies Tξ≥ Tζ,
• decomposable if, for all ξ ∈ Bb(S�U), A ∈ T , and a ∈U ,

T (ξ · 1A + a · 1Ac) = T (ξ) · [1A] + T (a) · [1Ac ]�

• normalized if T (a) = [a] for all a ∈U ,
• σ-order continuous if ξn ↓ ξ implies Tξn ↓ Tξ and ξn ↑ ξ implies Tξn ↑ Tξ,
• projective if T (ξ) = [ξ] for all ξ ∈ Bb(T �U).

The next technical results derive some basic properties of decomposable operators
(proofs in the Supplemental Material).
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LEMMA 3: If T is decomposable, then for every partition A1� � � � �An of � in events that
are T -measurable, and every ξ1� � � � � ξn in Bb(S�U),

T

(
n∑
i=1

ξi · 1Ai

)
=

n∑
i=1

T (ξi) · [1Ai ]� (4)

LEMMA 4: Assume T is monotone and σ-order continuous. If (ξn) is a bounded sequence
such that ξn → ξ pointwise, then q-almost surely Tξn → Tξ.

LEMMA 5: If T is monotone, decomposable, normalized, and σ-order continuous, then it
is projective.

An operator T : Bb(S�U) → L∞(T � q�U) is affine if, for all α ∈ [0�1] and ξ�ζ ∈
Bb(S�U), it satisfies T (αξ+ (1 − α)ζ) = αT (ξ) + (1 − α)T (ζ).

THEOREM 3: An operator T : Bb(S�U) → L∞(T � q�U) is monotone, decomposable,
normalized, σ-order continuous, and affine if and only if there is a probability measure
π ∈ 
(S) that extends q and satisfies, for all ξ ∈ Bb(S�U),

Tξ=Eπ[ξ|T ]� (5)

APPENDIX C: BASELINE REPRESENTATION UNDER AXIOMS 1–3 AND 5–6

We begin by studying some preliminary implications of our basic axioms. For the mo-
ment, we consider binary relations that satisfy Axioms 1–3, as well as the von Neumann–
Morgenstern independence axiom on X:

AXIOM 7: For all x� y� z ∈X and α ∈ [0�1], if x� y , then x+ (1 − α)z � αy + (1 −α)z.

The next lemmas follows from standard arguments; for completeness, a formal proof is
in the Supplemental Material.

LEMMA 6: If � satisfies Axioms 1–3, then the following conditions hold:
(i) If f (ω) � g(ω) for all ω, then f � g.

(ii) For all acts f�g�h, the sets {α ∈ [0�1] : αf + (1 − α)g � h} and {α ∈ [0�1] : h �
αf + (1 − α)g} are closed.

(iii) If in addition � satisfies Axiom 7, then there exists a non-constant affine function
u : X → R representing � on X .

LEMMA 7: For every σ-algebra T ⊆ S and affine function u : X → R,

Bb
(
T �u(X)

) = {
u(f ) : f ∈ F and f is T -measurable

}
�

For a preference relation � that satisfies Axioms 1–3 and 7, Lemma 6(i) and 6(ii) im-
ply that, for every A ∈ Sstp and f ∈ F, there exists an outcome c(f |A) ∈ X such that
c(f |A) ∼A f . If A=�, we simply write c(f ) instead of c(f |�).

LEMMA 8: Assume Axioms 1–3 and 7 are satisfied. For every affine function u : X → R

representing � on X , the following conditions hold:
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(i) If (fn) is bounded and fn → f pointwise, then u(c(fn)) → u(c(f )).
(ii) If (fn) is bounded and u(fn) → u(f ) pointwise, then u(c(fn)) → u(c(f )).
(iii) If Axiom 5 holds and A ∈ Sstp is not null, then x� y implies x�A y .

The next lemma is due to Gul and Pesendorfer (2014, Lemma B2).

LEMMA 9: If Axioms 1–3, 5, and 7 are satisfied, then Sstp is a σ-algebra.

Up to minor details, the result follows by replicating the proof in Gul and Pesendorfer
(2014). A self-contained proof is available from the authors upon request.

The next theorem introduces a representation of the agent’s preferences in terms of
decomposable operators.

THEOREM 4: If Axioms 1–3, 5–6, and 7 are satisfied, then there are
(i) a non-constant affine function u : X → R,

(ii) a non-atomic probability measure q ∈ 
(Sstp),
(iii) a continuous strictly increasing function φ : u(X) → R, and
(iv) a monotone, normalized, decomposable, σ-order continuous operator

T : Bb
(
S�u(X)

) →L∞
(
Sstp� q�u(X)

)
�

such that, for all f�g ∈ F,

f � g ⇐⇒
∫
�

φ
(
Tu(f )

)
dq≥

∫
�

φ
(
Tu(g)

)
dq�

f �stp g ⇐⇒ Tu(f ) ≥ Tu(g)�

C.1. Proof of Theorem 4

The proof of the result is divided in lemmas. For the remainder of this section, we
assume that Axioms 1–3, 5–6, and 7 are satisfied. By Lemma 9, the collection of events
Sstp is a σ-algebra.

LEMMA 10: There exist a non-atomic probability measure q ∈ 
(Sstp) and a continuous
strictly increasing function φ : u(X) → R such that, for all Sstp-measurable acts f and g,

f � g ⇐⇒
∫
�

φ
(
u(f )

)
dq≥

∫
�

φ
(
u(g)

)
dq� (6)

PROOF: First, we show that (6) holds for simple acts. Let �0 be the restriction of �
to the acts that are simple and Sstp-measurable. Observe that �0 satisfy Savage’s P1–
P6: Axiom 1 implies P1 and P5; P2 holds by definition of Sstp; P3 follows from Lem-
mas 6(i) and 8(iii); Axiom 5 is P4; Axiom 6 is P6.12 In addition, �0 satisfies risk in-
dependence (Axiom 7), mixture continuity (Lemma 6(ii)), and monotone continuity is
implied by Lemma 8(i). By Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio
(2012, Proposition 3), there exist a non-atomic probability measure q ∈ 
(Sstp) and a con-
tinuous strictly increasing function φ : u(X) → R such that (6) holds for all f and g that
are Sstp-measurable and simple.

12See, for example, Gilboa (2009, Section 10) for a textbook reference on Savage’s theorem.
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Now we extend the result to acts that are not simple. Let f be a Sstp-measurable act.
From Lemma 7, we have u(f ) ∈ Bb(Sstp�u(X)). Thus, we can find a sequence (ξn) in
B0(Sstp�u(X)) that converges uniformly to u(f ). Applying Lemma 7 again, we can find
a sequence (fn) of simple Sstp-measurable acts such that u(fn) = ξn for all n. It follows
from Lemma 8(ii) and continuity of φ that φ(u(c(fn))) → φ(u(c(f ))). In addition, by
the continuity of φ,

lim
n

∫
�

φ
(
u(fn)

)
dq=

∫
�

φ
(
u(f )

)
dq�

Because (6) holds for all simple acts,
∫
�
φ(u(fn)) dq = φ(u(c(fn))) for all n. We deduce

that
∫
�
φ(u(f )) dq = φ(u(c(f ))). It follows that (6) holds for all Sstp-measurable acts.

Q.E.D.

We define the functional V : F→ R by

V (f ) =φ(
u
(
c(f )

))
�

Lemma 10 shows that V represents � on F. Moreover, V (f ) = ∫
�
φ(u(f )) dq for all Sstp-

measurable acts f . The next lemmas establish key properties of �stp.

LEMMA 11: For all f�g ∈ F, the following conditions are satisfied:
(i) f �stp g if and only if fAh�stp gAh for all A ∈ Sstp and h ∈ F.

(ii) u(f ) ≥ u(g) implies f �stp g.
(iii) If f and g are Sstp-measurable, f �stp g if and only if q-almost surely u(f ) ≥ u(g).

PROOF: (i) If f �stp g, then, for all B ∈ Sstp, we have A ∩ B ∈ Sstp and therefore, for
every h ∈ F,

(fAh)Bh= f (A∩B)h� g(A∩B)h= (gAh)Bh�

Now, since B ∈ Sstp, then (fAh)Bh′ � (gAh)Bh′ for every h′ ∈ F, which implies fAh�stp

gAh. The other implication is obvious.
(ii) It follows from Lemma 6(i).
(iii) “If.” Let A ∈ Sstp be the event where g(ω) � f (ω). Because q(A) = 0, it follows

from Lemma 8(iii) that A is null. Thus, fAg ∼stp g. Moreover, f �stp fAg by (ii) above.
We conclude that f �stp g. “Only if.” Fix x ∈ X . For all A ∈ Sstp, we have fAx � gAx,
that is, ∫

A

φ
(
u(f )

)
dq≥

∫
A

φ
(
u(g)

)
dq�

Thus, q-almost surely φ(u(f )) ≥ φ(u(g)) and hence u(f ) ≥ u(g), being φ strictly in-
creasing. Q.E.D.

LEMMA 12: For every f ∈ F, there exists a Sstp-measurable act f̂ such that f ∼stp f̂ .

PROOF: Fix x ∈ X such that f (ω) � x for all ω. Let qf : Sstp → R be defined by
qf (A) = V (fAx) − V (x). The set function qf is a σ-additive measure. Indeed, observe
first that qf (∅) = 0. Second, we have that qf is monotone: A⊆ B implies fBx� fAx by
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Lemma 6(i), which in turn implies qf (A) ≤ qf (B). To see that qf is finitely additive, let A
and B be disjoint element of Sstp. Observe that

f (A∪B)x= fAfBx∼ c(A|f )AfBx∼ c(A|f )Ac(B|f )Bx�

Define g= c(A|f )Ac(B|f )Bx. Then

qf (A∪B) = V (g) − V (x)

=φ(
u
(
c(A|f )

))
q(A) +φ(

u
(
c(B|f )

))
q(B) −φ(

u(x)
)(
q(A) + q(B)

)
= V (

c(A|f )Ax
) − V (x) + V (

c(B|f )Bx
) − V (x) = qf (A) + qf (B)�

Finally, let (An) be a sequence in Sstp such that An ↓ ∅. The sequence (fAnx) is bounded
and converges pointwise to x. By Lemma 8(i), u(c(fAnx)) → u(x). It follows from con-
tinuity of φ that qf (An) → 0. We conclude that qf is a σ-additive measure.

If q(A) = 0, it follows from Lemma 8(iii) that A is null, and therefore qf (A) = 0.
Thus, qf is absolutely continuous with respect to q and we can apply the Radon–Nikodym
theorem to find a Sstp-measurable function ξ : �→ R+ such that for allA ∈ Sstp, qf (A) =∫
A
ξdq. Let y ∈X such that y � f (ω) for all ω. For all A ∈ Sstp, we have by Lemma 6(i)

that yAx� fAx, which means that

φ
(
u(y)

)
q(A) ≥

∫
A

ξ+φ(
u(x)

)
dq�

Thus, q-almost surely φ(u(y)) ≥ ξ + φ(u(x)) ≥ φ(u(x)). Possibly passing to another
version of the Radon–Nikodym derivative, we can assume without loss of generality
that φ(u(y)) ≥ ξ + φ(u(x)) ≥ φ(u(x)) everywhere. Because u(X) is convex, the inter-
val [u(x)�u(y)] is included by u(X). Because φ is continuous and strictly increasing,
φ([u(x)�u(y)]) = [φ(u(x))�φ(u(y))]. In addition, the inverse function φ−1 is measur-
able, being strictly increasing. Thus, we can define ζ =φ−1(ξ+φ(u(x))) ∈ Bb(Sstp�u(X)).
By Lemma 7, there is a Sstp-measurable act f̂ such that u(f̂ ) = ζ. For all A ∈ Sstp,

V (f̂Ax) =
∫
A

ξdq+φ(
u(x)

) = V (fAx)�

We conclude that f̂ ∼stp f . Q.E.D.

We define the operator T : Bb(S�u(X)f ) → L∞(Sstp� q�u(X)) by Tu(f ) = [u(f̂ )],
where f̂ is a Sstp-measurable act that satisfies f̂ ∼stp f . By Lemmas 7, 11(iii), and 12,
the operator is well defined. In addition, f �stp g if and only if Tu(f ) ≥ Tu(g). Moreover,
since f̂ ∼stp f implies f̂ ∼ f , we obtain the representation

V (f ) =
∫
�

φ
(
Tu(f )

)
dq�

The next lemma concludes the proof of Theorem 4.

LEMMA 13: T is monotone, normalized, decomposable, and σ-order continuous.
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PROOF: Monotonicity follows from Lemmas 11(ii) and 11(iii). Normalization is obvi-
ous. Decomposability follows from Lemma 11(i): Given f , let f̂ be Sstp-measurable and
such that f̂ ∼stp f . Lemma 11(i) implies that, for every A ∈ Sstp and x ∈X ,

T
(
u(f )1A + u(x)1Ac

) = T (
u(fAx)

) = [
u(f̂Ax)

] = Tu(f ) · [1A] + [
u(x)

]
[1Ac ]�

It remains to show T is σ-order continuous. Suppose u(fn) = ξn ↑ ξ = u(f ) (a similar
argument applies to ξn ↓ ξ). Lemma 8(ii) and continuity of φ imply that V (fn) → V (f ).
Because T is monotonic and φ is strictly increasing, φ(Tξn) ≤φ(Tξn+1) ≤φ(Tξ) for all
n. Thus, φ(Tξn) →φ(Tξ) in L1(T � q):∫

�

∣∣φ(Tξ) −φ(Tξn)
∣∣dq=

∫
�

φ(Tξ) dq−
∫
�

φ(Tξn) dq= V (f ) − V (fn) → 0�

We can therefore extract a subsequence (ξnm) such that q-almost surely φ(Tξnm) →
φ(Tξ) (Aliprantis and Border (2006), Theorems 13.38 and 13.39). Monotonicity of the
sequence allows us to conclude that φ(Tξn) ↑φ(Tξ). The sequence (Tξn) is monotonic
as well. Because φ is strictly increasing, we conclude that Tξn ↑ Tξ. Q.E.D.

APPENDIX D: PREDICTIVE REPRESENTATION

D.1. Properties of the Representation

We first characterize the collection of events that satisfy the sure-thing principle for a
preference relation that admits a predictive representation.

PROPOSITION 6: If � admits a predictive representation (u�φ�T �π), then T ⊆ Sstp. If, in
addition, φ is not affine, then Sstp and T are π-equivalent.

The proof of the result is divided in lemmas. Assume � admits a predictive representa-
tion (u�φ�T �π). Let q be the restriction of π on T , and let

Tu(f ) =Eπ
[
u(f )|T ]

�

By Lemma 7 and Theorem 3, the operator T : Bb(S�u(X)) →L∞(T � q�u(X)) is mono-
tone, decomposable, normalized, σ-order continuous, and affine. We define

V (f ) =
∫
φ

(
Tu(f )

)
dq�

Without loss of generality, assume that

infu(X) < 0 =φ(0) and supu(X) > 1 =φ(1)� (7)

LEMMA 14: If A ∈ S is π-equivalent to a B ∈ T , then A ∈ Sstp. In particular, T ⊆ Sstp.

PROOF: Let A ∈ S and B ∈ T be π-equivalent. For all acts f and h, we have
Eπ[u(fAh)|T ] =Eπ[u(fBh)|T ], which implies

T
(
u(f ) · 1A + u(h) · 1Ac

) = T (
u(f ) · 1B + u(h) · 1Bc

)
= T (

u(f )
) · [1B] + T (

u(h)
) · [1Bc ]�
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We deduce that fAh� gAh if and only if
∫
B
φ(Tu(f )) dq≥ ∫

B
φ(Tu(g)) dq if and only if

fAh′ � gAh′. The same argument applies also toAc , being π-equivalent to Bc . It follows
that A ∈ Sstp. Q.E.D.

LEMMA 15: Let A ∈ Sstp and B�C ∈ T . If T1A = [1B] and T1Ac = [1C], then A is π-
equivalent to B.

PROOF: From T1A = [1B] it follows that

Eπ[1A · 1Bc ] =Eπ[1B · 1Bc ] = 0�

Since, in addition, T1Ac = [1C], we obtain that

[1Bc ] = 1 − [1B] = 1 − T1A = T1Ac = [1C]�

Thus, we have

Eπ[1Ac · 1B] =Eπ[1C · 1B] =Eπ[1Bc · 1B] = 0�

We conclude that A is π-equivalent to B. Q.E.D.

The next lemma concludes the proof of Proposition 6.

LEMMA 16: If there is A ∈ Sstp such that T1A �= [1B] for all B ∈ T , then φ is affine.

PROOF: Let ρ ∈ Bb(T � [0�1]) be a representative of the equivalence class T1A. Since
[ρ] �= [1B] for all B ∈ T , we have that

q
({
ω : ρ(ω) ∈ (0�1)

})
> 0�

For every t∗� t∗ ∈ (0�1) with t∗ < t∗, we define the event

Gt∗�t∗ = {
ω ∈� : t∗ ≤ ρ(ω) ≤ t∗}�

Because q is σ-additive, we can find t̄ ∈ (0�1) such that, for all t∗� t∗ as above,

t∗ < t̄ < t∗ ⇒ q(Gt∗�t∗) > 0�

Indeed, if not, then, for every t ∈ (0�1), there is an interval It ⊆ (0�1) of positive length
such that t ∈ It and q({ω : ρ(ω) ∈ It}) = 0. But then the equality (0�1) = ⋃

t∈Q∩(0�1) It
implies q({ω : ρ(ω) ∈ (0�1)}) = 0 by σ-additivity of q. A contradiction.

Let t∗� t∗ ∈ (0�1) such that t∗ < t̄ < t∗. Define s∗� s∗ ∈ [−∞�∞] by

s∗ = infu(X) and s∗ = supu(X)�

By (7), s∗ < 0 and s∗ > 1. Let

ψ�ψ′ ∈ Bb
(
T �

(
s∗t∗� s∗t∗

))
and ϕ ∈ Bb

(
T � s∗

(
1 − t∗)� s∗(1 − t∗))�

Then, for all ω ∈Gt∗�t∗ ,

ψ(ω)
ρ(ω)

∈ (
s∗� s∗

)
�

ψ′(ω)
ρ(ω)

∈ (
s∗� s∗

)
� and

ϕ(ω)
1 − ρ(ω)

∈ (
s∗� s∗

)
�
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Hence, ψ= ρξ, ψ′ = ρξ′, and ϕ= (1 − ρ)ζ for some ξ�ξ′� ζ ∈ Bb(T �u(X)). Thus,

T (ξ · 1A + ζ · 1Ac) = [ψ] + [ϕ] and T
(
ξ′ · 1A + ζ · 1Ac

) = [
ψ′] + [ϕ]�

Because A satisfies the sure-thing principle, we obtain that∫
�

φ(ψ) dq(·|Gt∗�t∗) ≥
∫
�

φ
(
ψ′)dq(·|Gt∗�t∗)

⇐⇒ (8)∫
�

φ(ψ+ϕ) dq(·|Gt∗�t∗) ≥
∫
�

φ
(
ψ′ +ϕ)

dq(·|Gt∗�t∗)�

where q(·|Gt∗�t∗) is the conditional probability given the event Gt∗�t∗ . Because q is non-
atomic, q(·|Gt∗�t∗) is non-atomic as well.

Reasoning as in Strzalecki (2011, p. 67), by the uniqueness properties of the expected
utility representation, for all s ∈ (s∗(1 − t∗)� s∗(1 − t∗)) there are α(s) ∈ R and β(s) > 0
such that, for all t ∈ (s∗t∗� s∗t∗),

φ(s+ t) = α(s) +β(s)φ(t)� (9)

Moreover, φ is strictly increasing. Thus, by Lemma 2, φ is either affine or exponential on
the interval (

s∗
(
t∗ + 1 − t∗)� s∗(t∗ + 1 − t∗))�

By taking t∗ and t∗ arbitrarily close to zero and 1, we deduce that φ is either affine or
exponential on the interval (s∗� s∗). By continuity, φ is either affine or exponential on its
whole domain u(X).

It remains to show that φ is not exponential. Pick t∗� t∗ ∈ (0�1) such that t∗ < t̄ < t∗.
Let ε > 0 be small enough so that ε < s∗t∗ and −ε > s∗(1 − t∗). Being q(·|Gt∗�t∗) non-
atomic, we can find ξ ∈ Bb(T � (s∗t∗� s∗t∗)) such that ξ= ε with q(·|Gt∗�t∗)-probability 1

2 and
ξ = 0 with q(·|Gt∗�t∗)-probability 1

2 . Choose ξ′� ζ� ζ ′ such that ξ′ = ε
2 , ζ = 0, and ζ ′ = −ξ.

It follows from (8) that

1
2
φ(ε) + 1

2
φ(0) ≥φ

(
ε

2

)
⇐⇒ φ(0) ≥ 1

2
φ

(
−ε

2

)
+ 1

2
φ

(
ε

2

)
�

Thus, φ is neither strictly convex nor strictly concave, which implies that φ is not expo-
nential. Q.E.D.

Next we obtain a representation result for �stp:

PROPOSITION 7: If � is represented by (u�φ�T �π), then f �stp g implies

Eπ
[
u(f )|T ] ≥ Eπ

[
u(g)|T ]

� (10)

If, in addition, φ is not affine, then f �stp g if and only if (10) holds.
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PROOF: Let q be the restriction of π on T . First observe that f �A g for all A ∈ T is
equivalent to ∫

A

φ
(
Eπ

[
u(f )|T ])

dq≥
∫
A

φ
(
Eπ

[
u(g)|T ])

dq� ∀A ∈ T �

which in turn is equivalent to (10), being φ strictly increasing. By Proposition 6, we have
T ⊆ Sstp. Thus, f �stp g implies (10). If, in addition, φ is not affine, then T and Sstp are
π-equivalent by Proposition 6. If A ∈ Sstp is π-equivalent to B ∈ T , then u(fAh) and
u(fBh) are equal π-almost surely for every third act h, which implies

Eπ
[
u(fAh)|T ] =Eπ

[
u(fBh)|T ]

� ∀h ∈ F�

We deduce that f �stp g if and only if (10) holds. Q.E.D.

We next characterize the null events induced by the representation.

LEMMA 17: Let � admit a predictive representation (u�φ�T �π). An event A ∈ S is null
if and only if π(A) = 0.

PROOF: Let A be null. Take x� y ∈X such that x� y . From xAy ∼ y we obtain

φ
(
u(x)

) =Eπ
[
φ

(
Eπ

[
u(yAx)|T ])] =Eπ

[
φ

(
u(y)π(A|T ) + u(x)π

(
Ac|T ))]

�

Being φ strictly increasing, π(A|T ) = [0], which in turn implies that π(A) = 0.
Conversely, suppose that π(A) = 0. For every pair of acts f and h, we have

Eπ[u(fAh)|T ] =Eπ[u(h)|T ]. Thus, A is null. Q.E.D.

D.2. Representation Theorem and Uniqueness

The next result is a representation theorem for �.

THEOREM 5: A preference � satisfies Axioms 1–6 if and only if it admits a predictive
representation.

PROOF: We first establish the sufficiency of the axioms for the representation. Assume
Axioms 1–6 are satisfied. Note that Axiom 7 is satisfied as well: by Lemma 6(i), if x� y ,
then x �stp y , which in turn implies αx + (1 − α)z � αy + (1 − α)z by Axiom 4. Thus,
we can pick u, φ, q, and T as in Theorem 4. By Theorem 3, to conclude the proof of
sufficiency it is enough to show that T is affine.

To this end, we first show that

f �stp g⇒ αf + (1 − α)h�stp αf + (1 − α)h for all α ∈ [0�1]�h ∈ F� (11)

By Lemma 11(i), we have fAh�stp gAh for all A ∈ Sstp and h ∈ F. By Axiom 4,(
αf + (1 − α)h

)
A

(
αh+ (1 − α)h

)
�

(
αg+ (1 − α)h

)
A

(
αh+ (1 − α)h

);
thus, since A ∈ Sstp, we have (αf + (1 − α)h)Ah′ � (αg + (1 − α)h)Ah′ for all h′ ∈ F.
Hence, (11) follows.
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Now recall that T represents �stp. Hence, for f̂ such that Tu(f ) = [u(f̂ )] and ĝ such
that Tu(g) = [u(ĝ)], (11) implies that, for all α ∈ [0�1],

αf + (1 − α)g∼stp αf̂ + (1 − α)g∼stp αf̂ + (1 − α)ĝ�

Thus, being u affine,

T
(
αu(f ) + (1 − α)u(g)

) = [
αu(f̂ ) + (1 − α)u(ĝ)

] = αTu(f ) + (1 − α)Tu(g)�

It follows from Lemma 7 that T is affine.
We now turn to the proof of necessity. Assume � admits a predictive representation

(u�φ�T �π). Let q be the restriction of π on T , and let

Tu(f ) =Eπ
[
u(f )|T ]

�

By Lemma 7 and Theorem 3, the operator T : Bb(S�u(X)) →L∞(T � q�u(X)) is mono-
tone, decomposable, normalized, σ-order continuous, and affine.

The preference relation � is obviously complete and transitive. Because u is not con-
stant and φ is strictly increasing, it is also nontrivial: Axiom 1 is satisfied.

Assume f (ω) � g(ω) for all ω. Because Eπ[u(f )|T ] > Eπ[u(g)|T ] and φ is strictly
increasing, we deduce that f � g. So, Axiom 2 is satisfied.

Let (fn) and (gn) be bounded sequences such that fn � gn for every n. Suppose
fn → f and gn → g pointwise. If Y ⊆ X is a polytope, then Y is compact and u (be-
ing affine) is continuous on Y (Aliprantis and Border (2006, Theorem 5.21)). Thus, the
sequences (u(fn)) and (u(gn)) are bounded and converge pointwise to u(f ) and u(g), re-
spectively. By Lemma 4 and monotonicity of T , the sequences (Tu(fn)) and (Tu(gn))
are (essentially) bounded and converge q-almost surely to Tu(f ) and Tu(g), respec-
tively. Because φ is continuous and q is σ-additive, Eq[φ(Tu(fn))] →Eq[φ(Tu(f ))] and
Eq[φ(Tu(gn))] →Eq[φ(Tu(g))]. We conclude that f � g: Axiom 3 is satisfied.

Let f �stp g. By Proposition 6, we have Eπ[u(f )|T ] ≥ Eπ[u(g)|T ]. This implies, for all
α ∈ [0�1] and h ∈ F,

Eπ
[
u
(
αf + (1 − α)h

)|T ] = αEπ
[
u(f )|T ] + (1 − α)Eπ

[
u(h)|T ]

≥ αEπ
[
u(g)|T ] + (1 − α)Eπ

[
u(h)|T ]

=Eπ
[
u
(
αg+ (1 − α)h

)|T ]
�

It follows that αf + (1 − α)h� αg+ (1 − α)h. Hence, Axiom 4 holds.
If φ is affine, then

f � g ⇐⇒ Eπ
[
u(f )

] ≥ Eπ
[
u(g)

]
�

which implies that Savage’s P4 holds for all events in S . Suppose now that φ is not affine
and let A�B ∈ Sstp. By Proposition 6, there are events C�D ∈ T such that [1C] = π(A|T )
and [1D] = π(B|T ). Thus, for all x� y ∈X such that x > y ,

xAy � xBy ⇐⇒ q(C) ≥ q(D)�

It follows that Axiom 5 holds.
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Let f�g�h such that f � g. LetA1� � � � �An be a finite partition of T -measurable events.
By Proposition 6, each Ai satisfies the sure-thing principle. Because T is decomposable,
by Lemma 3,

V (hAif ) =
∫
�

φ
(
Tu(hAif )

)
dq=

∫
�

φ
(
Tu(h) · [1Ai ] + Tu(f ) · [1Aci ]

)
dq

=
∫
Ai

φ
(
Tu(h)

)
dq+

∫
Aci

φ
(
Tu(f )

)
dq�

A similar condition holds for V (hAig). Since q is non-atomic, for every ε > 0 we can
choose A1� � � � �An so that maxi |V (hAif ) − V (f )| ≤ ε and maxi |V (hAig) − V (g)| ≤ ε.
It follows that Axiom 6 holds. Q.E.D.

The next results describe the uniqueness properties of the representation.

PROPOSITION 8: If � admits a predictive representation (u�φ�T �π) and U ⊆ S is a σ-
algebra π-equivalent to T , then � admits a predictive representation (u�φ�U�π).

PROOF: It follows from Lemma 1 that

Eπ
[
φ

(
Eπ

[
u(f )|T ])] =Eπ

[
φ

(
Eπ

[
u(f )|U])]

�

It remains to show that π is non-atomic on U . LetA ∈ U such that π(A) > 0. Take B ∈ T
that is π-equivalent to A. Because π is non-atomic on T , there exists B′ ⊆ B such that
0<π(B′) <π(B) = π(A). LetA′ ∈ U be π-equivalent to B′. Then B′ is also π-equivalent
to A ∩A′. Thus, π(A ∩A′) = π(B′) ∈ (0�π(A)). We conclude that π is non-atomic on
U . Q.E.D.

THEOREM 6: Two predictive representations (u1�φ1�T1�π1) and (u2�φ2�T2�π2) of the
same preference � are related by the following conditions:

(i) There are a� c ∈R and b�d > 0 such that u2(x) = au1(x) +b andφ2(t) = cφ1( t−b
a

) +
d for all x ∈X and t ∈ u2(X).

(ii) π1 = π2 and, provided that φ1 is not affine, T1 and T2 are π1-equivalent.

PROOF: Since u1 and u2 both represent � on X , by the uniqueness properties of the
expected utility representation, u2 is a positive affine transformation of u1. For the rest of
the proof, we can assume without loss of generality that u1 = u2 = u.

We first show that if φ1 is affine, then φ2 is affine as well. We prove the contrapositive
statement. Suppose φ2 is not affine. By Proposition 6 and Proposition 8, the preference �
admits a predictive representation (u�φ2�Sstp�π2). Moreover, T1 ⊆ Sstp again by Proposi-
tion 6. Thus, for all acts f and g that are T1-measurable,∫

�

φ1

(
u(f )

)
) dπ1 ≥

∫
�

φ1

(
u(g)

)
) dπ1 ⇐⇒

∫
�

φ2

(
u(f )

)
dπ2 ≥

∫
�

φ2

(
u(g)

)
dπ2�

In particular, for all A�B ∈ T1, π1(A) ≥ π1(B) if and only if π2(A) ≥ π2(B). Because
π1 is non-atomic on T1, then by standard arguments we obtain that π1(A) = π2(A) for
all A ∈ T1. Hence, by the uniqueness properties of the expected utility representation,
φ1 must be a positive affine transformation of φ2. We conclude as desired that φ1 is not
affine.
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We have therefore two cases to consider: either both φ1 and φ2 are affine, or both φ1

and φ2 are not affine. Suppose first that both φ1 and φ2 are affine. Because the two are
also strictly increasing, thenφ2 is an affine transformation ofφ1. In addition, for i ∈{1�2},

f � g ⇐⇒ Eπi
[
φi

(
u(f )

)] ≥Eπi
[
φi

(
u(g)

)]
⇐⇒ Eπi

[
u(f )

] ≥Eπi
[
u(g)

]
�

By the uniqueness properties of the expected utility representation, π1 = π2.
Assume now that bothφ1 andφ2 are not affine. By Proposition 6 and Proposition 8, the

preference � admits the representations (u�φ1�Sstp�π1) and (u�φ2�Sstp�π2). Moreover,
T1 is π1-equivalent to Sstp and T2 is π2-equivalent to Sstp. Let qi be the restriction of πi,
i= 1�2, on Sstp. It is non-atomic. For all acts f and g that are Sstp-measurable,∫

�

φ1

(
u(f )

)
dq1 ≥

∫
�

φ1

(
u(g)

)
dq1 ⇐⇒

∫
�

φ2

(
u(f )

)
dq2 ≥

∫
�

φ2

(
u(g)

)
dq2�

By the uniqueness properties of the subjective expected utility representation, q1 = q2 and
φ2 is a positive affine transformation of φ1. It follows from Proposition 7 that for all acts
f , Eπ1 [u(f )|Sstp] = Eπ2 [u(f )|Sstp]. Since q1 = q2, we obtain that Eπ1 [u(f )] = Eπ2 [u(f )].
By the uniqueness properties of the expected utility representation, π1 = π2. Q.E.D.

APPENDIX E: PROOFS OF THE RESULTS IN SECTIONS 5 AND 6

E.1. Proof of Theorem 1

The result follows immediately from Proposition 1 and Theorem 5.

E.2. Proof of Theorem 2

The uniqueness properties of the predictive representation follow from Theorem 6.
Consider now two identifiable representations (u1�φ1�P1�μ1) and (u2�φ2�P2�μ2). By
Proposition 1, the preference � admits predictive representations (u1�φ1�σ (k1)�πμ1 )
and (u1�φ1�σ (k2)�πμ2). Thus, u2 is a positive affine transformation of u1; normalizing
the utility indexes, φ2 is a positive affine transformation of φ1; πμ1 = πμ2 ; if φ1 is not
affine, then σ (k1) and σ (k2) are πμ1 -equivalent.

It remains to show that, if φ1 is not affine, then μ1(B ∩P1) = μ2(B ∩P2) for all B ∈ �.
By Lemma 24 in the Supplemental Material, for every i ∈{1�2}, the kernel ki is a regular
conditional probability of πμi given σ (ki). Thus, if φ1 is not affine, k1 and k2 are equal
πμ1 -almost surely, being that σ (k1) and σ (k2) are πμ1 -equivalent (see Lemma 1). For all
A ∈ S and t ∈ [0�1], we obtain from the condition of identifiability that

πμi
({
ω : ki(ω�A) ≤ t}) =

∫
P
p

({
ω : ki(ω�A) ≤ t})dμi(p) = μi

({
p ∈P : p(A) ≤ t})�

Since πμ1 = πμ2 , it follows thatμ1(B∩P1) = μ2(B∩P2) for the set B={p ∈ 
 : p(A) ≤ t}.
Since sets of this form generate �, the desired result follows.

E.3. Proof of Proposition 2

The equivalence of (i) and (iii) follows from Proposition 7. Let k witness the identi-
fiability of P . By Lemma 27 in the Supplemental Material, the preference � admits a
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predictive representation (u�φ�TP�πμ). By Lemma 24 in the Supplemental Material,
the kernel k is a regular conditional probability of πμ given TP . Thus, being (i) and (iii)
equivalent,

f �stp g ⇐⇒
∫
�

u(f ) dk(ω) ≥
∫
�

u(g) dk(ω) for πμ-almost all ω�

The eventA={ω : ∫
�
u(f ) −u(g) dk(ω) ≥ 0} belongs to TP . Thus, πμ(A) = 1 if and only

if μ({p : p(A) = 1}) = 1. Because each p satisfies p({ω : k(ω) = p}) = 1, we obtain

f �stp g ⇐⇒
∫
�

u(f ) dp≥
∫
�

u(g) dp for μ-almost all p�

E.4. Proof of Proposition 3

By Proposition 6, the σ-algebras Sstp and T are π-equivalent. By Proposition 1, the
preference � admits a predictive representation (u�φ�σ (k)�πμ). By Theorem 2, we ob-
tain πμ = π and σ (k) is π-equivalent to T . From Lemma 17, it follows that Sstp, σ (k),
and T are all equivalent up to null events.

APPENDIX F: PROOF OF PROPOSITION 4

That (i) follows from (ii) is an immediate consequence of Proposition 2. We now prove
the converse implication. By Lemma 24 in the Supplemental Material, the two prefer-
ences admit predictive representations (u1�φ1�T1�π1) and (u2�φ2�T2�π2), where each
Ti = TPi is the corresponding σ-algebra of zero-one events and πi = πμi is the barycen-
ter of μi. Moreover, by Lemma 26 in the Supplemental Material, each ki is a regular
conditional probability of πi, and Ti and σ (ki) are πi-equivalent.

Assume f �1
stp g implies f �2

stp g. This yields that �1 and �2 agree on X and thus,
without loss of generality, that u1 = u2 = u and (−1�1) ⊆ u(X). Proposition 2 shows (i)
can be rewritten as

Eπ1

[
u(f )|T1

] ≥Eπ1

[
u(g)|T1

] =⇒ Eπ2

[
u(f )|T2

] ≥ Eπ2

[
u(g)|T2

]
� (12)

By the linearity of the conditional expectation operator, (12) is equivalent to the property
that, for all ξ ∈ B(S),

Eπ1 [ξ|T1] ≥ 0 =⇒ Eπ2 [ξ|T2] ≥ 0� (13)

A first implication of this property is that, for allA ∈ S , if π1(A) = 0, then Eπ1 [1A|T1] = 0,
and thus Eπ2 [1A|T2] = 0, which is equivalent to π2(A) = 0. Thus, π2 is absolutely contin-
uous with respect to π1. Given ξ ∈ B(S), Eπ1 [

∫
�
ξdk1 − ξ|T1] = 0 since k1 is a regular

conditional probability for π1. Thus, by (13),

Eπ2 [ξ|T2] =Eπ2

[∫
�

ξdk1|T2

]
�

Taking ξ = 1A, A ∈ S , and using the fact that k2 is a regular conditional probability for
π2, we obtain that, for π2-almost all ω,

k2(ω�A) =
∫
�

k1

(
ω′�A

)
k2

(
ω� dω′)� (14)
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Because π2 = πμ2 = ∫
P2
p2 dμ2(p2) and (14) holds π2-almost surely, then it must hold p2-

almost surely for μ2-almost every p2 ∈P2. But then, the identifiability of P2 yields that for
μ2-almost every p2,

p2(A) =
∫
�

k1(ω�A) dp2(ω)�

Define M : 
(�) → 
(P1) by letting M(p) be the pushforward of p ∈ 
 under k1. It is
routine to prove that M is measurable, and so is its restriction on P2. It follows that for
μ2-almost every p2, p2(A) = ∫

P1
p1(A) dM(p1|p2).

Let ξ= 1A withA ∈ T2, and let ζ = k1(A|ω). We have 1A =Eπ2 [ζ|T2]. Because 0 ≤ ζ ≤
1, it follows that E ={ζ = 1}∈ T1 satisfies π2(A�E) = 0. So, T2 ⊆ T1, π2-almost surely. By
Lemma 24, each Ti is πi-equivalent to σ (ki), and the fact that π2 is absolutely continuous
with respect to π1 implies σ (k2) and T2 are π1-equivalent. It follows that σ (k2) ⊆ σ (k1),
π1-almost surely.

APPENDIX G: PROOF OF PROPOSITION 5

Set u= u1 = u2 and Sstp = S1
stp = S2

stp. For each agent i, let ki :�→ 
 be a kernel that
identifies Pi. By Proposition 1, each preference �i admits a predictive representation
(u�φi�σ (ki)�πμi). Being φi not affine, by Proposition 3 the σ-algebra σ (ki) and Sstp are
πμi -equivalent. Thus, �i admits a predictive representation (u�φi�Sstp�πμi). We define

Vi(f ) =Eπμi
[
φi

(
Eπμi

[
u(f )|Sstp

])]
and Wi(f ) =φ−1

i

(
Vi(f )

)
�

Beingφi strictly increasing, f �i g if and only ifWi(f ) ≥Wi(g). In addition,Wi(x) = u(x).
The rest of the proof is organized in lemmas. The first lemma is the standard characteri-
zation of comparative ambiguity aversion in terms of certainty equivalents.

LEMMA 18: Condition (i) holds if and only if W1 ≤W2.

PROOF: “If.” Suppose f �1 x, that is, W1(f ) ≥W1(x) = u(x). From W2 ≥W1, it follows
that W2(f ) ≥W1(f ), thus W2(f ) ≥ u(x) =W2(x). We conclude that f �2 x.

“Only if.” Take f and x such that W1(f ) = W1(x), that is, f ∼1 x. From (i), it follows
that f �2 x, that is, W2(f ) ≥W2(x). Since W1(x) =W2(x), we deduce that W1(f ) ≤W2(f ).

Q.E.D.

To prove the next result, we adapt an argument used in the proof of Klibanoff, Mukerji,
and Seo (2014, Lemma C.1). See also Yaari (1969, Remark 1).

LEMMA 19: If (i) holds, then πμ1 = πμ2 .

PROOF: Let A ∈ S . Take x ∈X such that u(x) is in the interior of u(X). Being u(X)
an interval, for every t ∈R such that u(x) + t ∈ u(X), we can find an outcome yt ∈X such
that u(yt) = u(x) + t. Define ft = ytAx. Observe that

lim
t→0

Wi(ft) −Wi(x)
t

= lim
t→0

φ−1
i

(
Eπμi

[
φi

(
u(x) + tπμi (A|Sstp)

)]) − u(x)

t

= Eπμi
[
φ′
i

(
u(x)

)
πμi (A|Sstp)

]
φ′
i

(
u(x)

) = πμi (A)�
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where φ′
i is the derivative of φi. In addition, by Lemma 18, we have

W1(ft) −W1(x) =W1(ft) − u(x) ≤W2(ft) − u(x) =W2(ft) −W2(x)�

Overall, we obtain

πμ1 (A) = lim
t→0+

W1(ft) −W1(x)
t

≤ lim
t→0+

W2(ft) −W2(x)
t

= πμ2 (A)�

πμ1 (A) = lim
t→0−

W1(ft) −W1(x)
t

≥ lim
t→0−

W2(ft) −W2(x)
t

= πμ2 (A)�

We conclude that πμ1 (A) = πμ2 (A). Q.E.D.

LEMMA 20: If (i) holds, then the function ψ=φ1 ◦φ−1
2 is concave.

PROOF: By Lemma 19, we can set π = πμ1 = πμ2 . Take α ∈ (0�1) and x� y ∈X . Since π
is non-atomic on Sstp, we can find an eventA ∈ Sstp such that πμ(A) = α. Define f = xAy .
It follows from Lemma 18 that

αψ
(
φ2

(
u(x)

)) + (1 − α)ψ
(
φ2

(
u(y)

))
= αφ1

(
u(x)

) + (1 − α)φ1

(
u(y)

) =φ1

(
W1(f )

)
≤φ1

(
W2(f )

) =ψ(
αφ2

(
u(x)

) + (1 − α)φ2

(
u(y)

))
�

We deduce that the function ψ is concave. Q.E.D.

The last two lemmas show that (i) implies (ii). The next result concludes the proof of
Proposition 5.

LEMMA 21: If (ii) holds, then (i) holds.

PROOF: Set π = πμ1 = πμ2 and ψ=φ1 ◦φ−1
2 . Assume f �1 x, that is,

Eπ
[
φ1

(
Eπ

[
u(f )|Sstp

])] ≥φ1

(
u(x)

)
�

We can rewrite the inequality as

Eπ
[
(ψ ◦φ2)

(
Eπ

[
u(f )|Sstp

])] ≥ (
ψ−1 ◦φ2

)(
u(x)

)
�

Being ψ concave, by Jensen’s inequality,

Eπ
[
φ2

(
Eπ

[
u(f )|Sstp

])] ≥φ2

(
u(x)

)
�

that is, f �2 x. Q.E.D.

In Section K in the Supplemental Material, we show that the assumption S1
stp = S2

stp
cannot be weakened.
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APPENDIX H: IDENTIFIABILITY IN STATISTICS AND ECONOMETRICS

OUR DEFINITION OF IDENTIFIABILITY agrees with mainstream statistics and economet-
rics usage in most standard settings. A standard example is random sampling, where the
state space � is a product of infinitely many copies of a measurable set S, and a state
ω = (ω1�ω2� � � �) corresponds to an infinite sample realization. A parameter θ ∈ � deter-
mines the i.i.d. probability distribution pθ ∈ �(�) of the sample. The statistical model is
parameterized and given by P ={pθ : θ ∈ �}.

In the statistics and econometrics tradition (see, e.g., Lehmann and Casella (2006,
p. 24)), a statistical model P = {pθ : θ ∈ �} is identifiable if different parameter values
induce different sample distributions:

if θ �= θ′ then pθ �= pθ′ � (15)

A related property is the existence of a consistent estimator (see, e.g., Lehmann and
Casella (2006, p. 54)). Let Sn ⊆ S be the σ-algebra generated by the first n sample re-
alizations. A statistical model P = {pθ : θ ∈ �} admits a consistent estimator if, for every
n = 1�2� � � �, there is a Fn-measurable function kn : � → � such that, for all θ ∈ � and
ε > 0,

lim
n→∞

pθ

({
ω : ∣∣kn(ω) − θ

∣∣ ≥ ε
}) = 0� (16)

It is easy to see that identifiability is a necessary condition for the existence of a con-
sistent estimator. Under some regularity conditions, identifiability is also a sufficient con-
dition for the existence of a consistent estimator. For example, if S is a finite set and
the statistical model is identifiable, then the sequence (kn) can be constructed using the
sequence of empirical distribution functions (see, e.g., LeCam and Schwartz (1960), for
more general results on the existence of consistent estimators).

In our paper, the state space may not feature obvious symmetries or repetitions, nor
the statistical model have a natural parameterization. Therefore, we find it convenient to
translate (16) rather than (15). In our paper, a statistical model P ⊆ �(�) is identifiable
if there exists a S-measurable function k :� →P such that, for all p ∈P ,

p
({
ω : k(ω) = p

}) = 1� (17)

Essentially, the kernel k is a consistent estimator for the statistical model P .
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Barring technical differences, (15), (16), and (17) all reflect the same idea: there is some
information that allows the decision maker to resolve their uncertainty about the true law
governing the state of the world.

APPENDIX I: IDENTIFIABILITY AND DYNKIN SPACES

In the paper, we follow Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio
(2013) for a general formulation of identifiable smooth preferences. The exposition is
slightly different: to put restrictions on P , they adopt the formalism of Dynkin spaces,
while we use the notion of identifying kernel. In this section, we verify that the two ap-
proaches are equivalent.

Cerreia-Vioglio et al. (2013) provided the following definition of Dynkin space (Dynkin
(1978)).

DEFINITION 5: Let P ⊆ � be a nonempty set. The triple (��S�P) is a Dynkin space
if there are a σ-algebra T ⊆ S , a set W ∈ S , and a measurable function k : � → � such
that

(i) for every p ∈P , the kernel k is a regular conditional probability of p given T ;
(ii) p(W ) = 1 for all p ∈P and k(W ) ⊆P .

Among other results, they studied smooth ambiguity preferences (u�φ�S(P)�μ)
where (��S�P) is a Dynkin space and S(P) is the set of strong extreme points of P .

DEFINITION 6: Let P ⊆ � be a nonempty set. An element p ∈ P is a strong extreme
point of P if, for every prior μ on P , πμ = p implies μ({p}) = 1.

The next result shows that the class of identifiable smooth preferences we study in this
paper coincides with the class of smooth preferences they considered.

PROPOSITION 9: A nonempty set P ⊆ � is identifiable if and only if P is the set of strong
extreme points of a Dynkin space.

The proof of the proposition relies on the following characterization of the strong ex-
treme points of a Dynkin space, which is due to Dynkin (1978) (see also Theorem 17 of
Cerreia-Vioglio et al. (2013)).

LEMMA 22: If (��S�P) is a Dynkin space, then

S(P) = {
p ∈P : p({

ω : k(ω) = p
}) = 1

}
�

PROOF OF PROPOSITION 9: If (��S�P) is a Dynkin space, then, by Lemma 22, the set
S(P) is identifiable. Conversely, suppose that P is identifiable. Let k :� →P be a kernel
that witnesses the identifiability of P . Let T ⊆ S be given by

T = {
A : p(A) ∈{0�1} for all p ∈P

}
�

Define W = �. By Lemma 23, for every p ∈ P , the kernel k is a regular conditional
probability of p given T . Moreover, trivially, p(W ) = 1 for every p ∈ P and k(W ) ⊆ P .
Thus, (��S�P) is Dynkin space. By Lemma 22, we conclude that P = S(P). Q.E.D.
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APPENDIX J: IDENTIFIABILITY FOR GENERAL AMBIGUITY PREFERENCES

An interesting question concerns identifiability for general ambiguity preferences.
Cerreia-Vioglio et al. (2013) and Al-Najjar and De Castro (2014) characterized the iden-
tifiable versions of general ambiguity preferences when the statistical model is objectively
given or is based on exogenous exchangeability assumptions. In our paper, the statisti-
cal model is fully subjective but we focus on smooth ambiguity preferences. A natural
question is how to extend our analysis to more general preferences.

It is our impression that making progress on such a question is challenging, and that it
requires nontrivial technical innovations. What is certain is that some of the results that
we establish for identifiable smooth preferences cannot be obtained for more general
preferences. For example, our uniqueness result, which shows that P and μ can be recov-
ered uniquely from choice behavior, does not hold for maxmin preferences. To illustrate,
consider the identifiable version of maxmin preferences. Following Cerreia-Vioglio et al.
(2013, Section 4.1) and Al-Najjar and De Castro (2014, Section 4.2), in such model an act
f is evaluated according to the criterion

V (f ) = min
μ∈M

∫
P

∫
�

u(f ) dpdμ(p)� (18)

where P ⊆ � is an identifiable set of probability measures, and M ⊆ �(P) is a compact
convex set of priors on P . Suppose that, as in this paper, and unlike Cerreia-Vioglio et al.
(2013) and Al-Najjar and De Castro (2014), the only primitive is a preference relation
over Anscombe–Aumann acts. It is then impossible to uniquely recover P and M.

The underlying intuition is simple. As is well known, the Gilboa–Schmeidler represen-
tation does not distinguish between ambiguity perception and attitude. But at the same
time, the set P is supposed to reflect only ambiguity perception. This tension leads to an
impossibility result: We can rewrite any representation such as (18) as

V (f ) = min
μ∈M

∫
�

u(f ) dπμ�

where πμ = ∫
P pdμ(p) is the predictive probability associated to the prior μ. Thus, (18)

can be rewritten with the alternative parameterization

V (f ) = min
μ∈M′

∫
P ′

∫
�

u(f ) dpdμ(p)� (19)

where P ′ = {δω : ω ∈ �} is the set of the Dirac probability measures over states of the
world, and M′ is obtained by pushing forward the elements of {πμ : μ ∈ M} under the
map ω → δω. While P and P ′ could be very different from each other, both sets are
identifiable and represent the same preference relation. This disappointing conclusion
shows that, once we go beyond smooth preferences, identifiability is no longer a sufficient
assumption for uniquely recovering the components of the representation.1 Some separa-
tion between ambiguity attitude and perception seems an additional necessary ingredient.

APPENDIX K: COMPARATIVE STATICS: AN EXAMPLE

The next example shows that the assumption S1
stp = S2

stp in Proposition 5 cannot be
weakened.

1This observation is quite probably known, but we could not find it anywhere in the literature.
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EXAMPLE 7: Let (ui�φi�Ti�πi) be the predictive representation of �i. Suppose that
u1 = u2 = u, φ1 = φ2 = φ, T2 ⊆ T1, and π1 = π2 = π: the predictive representations of
�1 and �2 are the same except for T2 being a sub-σ-algebra of T1. Thus, the agent corre-
sponding to �1 needs more information to resolve their ambiguity.

If φ is concave, then �1 is more ambiguity averse than �2. This follows from

Eπ

[
φ

(
Eπ

[
u(f )|T2

])] =Eπ

[
φ

(
Eπ

[
Eπ

[
u(f )|T1

]|T2

])] ≥Eπ

[
φ

(
Eπ

[
u(f )|T1

])]
�

Thus, provided that φ is concave, �1 is more ambiguity averse than �2, despite the fact
that φ1 = φ2. If φ is not affine, then T 1 and T 2 are equivalent to S1

stp and S2
stp up to null

events. Therefore, S2
stp is a sub-σ-algebra S1

stp up to null events. If the inclusion is strict,
then the hypothesis of Proposition 5 is not satisfied.

APPENDIX L: OMITTED PROOFS

L.1. Proof of Lemma 3

Let ζ = ∑n

i=1 ξi · 1Ai
. Trivially, T (ζ) = ∑n

i=1 T (ζ) · [1Ai
]. Now fix a ∈ U . Using the fact

that T is decomposable, for every i we obtain

T (ζ) · [1Ai
] + T (a) · [1Ac

i
] = T (ζ · 1Ai

+ a · 1Ac
i
)

= T (ξi · 1Ai
+ a · 1Ac

i
)

= T (ξi) · [1Ai
] + T (a) · [1Ac

i
]�

Summing over i and subtracting T (a) yields (4).

L.2. Proof of Lemma 4

The operator satisfies

T (ξ) = T
(

lim
n→∞

sup
m≥n

ξm

)
= lim

n→∞
T

(
sup
m≥n

ξm

)
≥ lim sup

n→∞
T (ξn)�

where the second equality follows σ-order continuity, and the inequality follows from
monotonicity. Similarly, T satisfies

T (ξ) = T
(

lim
n→∞

inf
m≥n

ξm

)
= lim

n→∞
T

(
inf
m≥n

ξm

)
≤ lim inf

n→∞
T (ξn)�

The desired result follows.

L.3. Proof of Lemma 5

Let ξ = ∑n

i=1 ai1Ai
, where A1� � � � �An is a T -measurable partition and a1� � � � � an ∈ U .

By applying Lemma 3 and the fact that T is normalized, we obtain

T (ξ) =
n∑

i=1

T (ai) · [1Ai
] =

n∑
i=1

[ai] · [1Ai
] = [ξ]�

The general case where ξ is not simple now follows by Lemma 4 (being B0(S�U) dense
in Bb(S�U) with respect to the supnorm).
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L.4. Proof of Theorem 3

Necessity is easy to verify. Turning to sufficiency, suppose T is monotone, decompos-
able, normalized, σ-order continuous, and affine. Define the functional I : Bb(S�U) → R

by I(ξ) =Eq[Tξ].
It is immediate that I is normalized (i.e., I(c) = c for all c ∈ R), monotone (if ξ ≥ ζ,

then I(ξ) ≥ I(ζ)), and affine. Lemma 4 and the σ-additivity of q imply that I is pointwise
continuous: if (ξn) is a bounded sequence such that ξn → ξ pointwise, then I(ξn) → I(ξ).
By a standard application of the Riesz representation theorem, there exists π ∈ �(S)
such that I(ξ) = Eπ[ξ]. By Lemma 5, the operator T is projective; hence, for every ξ ∈
Bb(T �U), we have Eπ[ξ] = I(ξ) = Eq[Tξ] = Eq[ξ]. This implies π agrees with q on T .
For all A ∈ T ,∫

A

Eπ[ξ|T ] dq+ aq
(
Ac

) = I(ξ · 1A + a · 1Ac) = Eq

[
T (ξ · 1A + a · 1Ac)

]

=
∫
A

Tξdq+ aq
(
Ac

)
�

where the last equality follows from T being decomposable. We conclude that Tξ =
Eπ[ξ|T ], as desired.

L.5. Proof of Lemma 6

(i) Let x 
 y and define fn = 1
n
x + (1 − 1

n
)f and gn = 1

n
y + (1 − 1

n
)g. Axioms 1 and 2

imply fn 
 gn for every n. The two sequences are bounded and converge pointwise to f
and g, respectively. It follows from Axiom 3 that f � g.

(ii) It follows from Axiom 3.
(iii) The claim is an application of the mixture space theorem (Herstein and Milnor

(1953)) together with (ii) and Axioms 1 and 7.

L.6. Proof of Lemma 7

Let f ∈ F be T -measurable and let Y ⊆ X be a polytope such that f (�) ⊆ Y . The
set Y is compact and u (being affine) is continuous on Y (Aliprantis and Border (2006,
Theorem 5.21)). Thus, u(f ) is T -measurable and minu(Y ) ≤ u(f ) ≤ maxu(Y ). It follows
that u(f ) belongs to Bb(T �u(X)). In the opposite direction, let ξ ∈ Bb(T �u(X)) and
u(x) ≥ ξ ≥ u(y) for some x� y ∈ X . If u(x) = u(y), take f = x. If instead u(x) > u(y),
take ζ = ξ−u(y)

u(x)−u(y) and f = ζx+ (1 − ζ)y . The function f belongs to F and u(f ) = ξ.

L.7. Proof of Lemma 8

(i) Choose x� y ∈ X such that x� fn(ω) � y for all n and ω. By Lemma 6(i), we have
x � fn � y for all n. By Axiom 3, this implies that x � f � y as well. If x ∼ y , then
u(c(fn)) = u(x) = u(c(f )) for all n. Assume therefore that x
 y . By Lemma 6(ii), we can
choose αn ∈ [0�1] and α ∈ [0�1] such that fn ∼ αnx + (1 − αn)y and f ∼ αx + (1 − α)y .
Possibly passing to a subsequence, we can assume without loss of generality that αn → β
for some β ∈ [0�1]. It follows from Axiom 3 that f ∼ βx + (1 − β)y , that is, u(c(f )) =
βu(x) + (1 −β)u(y), which in turn implies α= β. Thus,

u
(
c(fn)

) = αnu(x) + (1 − αn)u(y) −→ αu(x) + (1 − α)u(y) = u
(
c(f )

)
�
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(ii) Choose x� y ∈ X such that x� fn(ω) � y for all n and ω. By Axiom 3, this implies
that x� f (ω) � y for all ω as well. Take ξn ∈ Bb(S� [0�1]) and ξ ∈ Bb(S� [0�1]) such that
u(fn) = ξnu(x) + (1 − ξn)u(y) and u(f ) = ξu(x) + (1 − ξ)u(y). Define gn = ξnx + (1 −
ξn)y and g = ξx+ (1 − ξ)y . Observe that u(fn) = u(gn) and u(f ) = u(g): it follows from
Lemma 6(i) that u(c(fn)) = u(c(gn)) and u(c(f )) = u(c(g)). In addition, u(fn) → u(f )
pointwise implies gn → g pointwise. The desired result then follows from (i) above.

(iii) Being A not null, there are f�g such that f 
A g. Take w�z ∈ X such that w� f (ω)
and g(ω) � z for all ω. By Lemma 6(i), we have w 
A z, that is, w 
 zAw. It follows from
Axiom 5 that x
 yAx, that is, x
A y .

L.8. Proof of Proposition 1

The proof of Proposition 1 is divided in lemmas. Given P ⊆ �, we denote by TP the
collection of zero-one events:

TP = {
A ∈ S : p(A) ∈{0�1} for all p ∈P

}
� (20)

By Breiman, LeCam, and Schwartz (1964, Proposition 1), the collection TP is a σ-algebra.
Given a σ-algebra T ⊆ S , we say that a kernel k : � → P witnesses the sufficiency of T
for P if, for every p ∈P , k is a regular conditional probability of p with respect to T .

LEMMA 23: Let P ⊆ �. A kernel k : � → P identifies P if and only if it witnesses the
sufficiency of TP for P .

PROOF: “If.” Being (��S) standard Borel, we can pick a countable algebra of events
A that generates S . Since k is TP -measurable, for every A ∈ S and p ∈ P , the events
{ω : k(ω�A) >p(A)} and {ω : k(ω�A) <p(A)} have p-probability 0 or 1. From p(A) =∫
�
k(ω�A) dp(ω), it follows that p({ω : k(ω�A) = p(A)}) = 1. Since A is countable and

generates S , we obtain p({ω : k(ω) = p}) = 1.
“Only if.” For every A ∈ S , t ∈ R, and p ∈ P , the probability p({ω : k(ω�A) ≥ t})

equals 1 if p(A) ≥ t and 0 otherwise. Hence, {ω : k(ω�A) ≥ t}∈ TP . We deduce that k is
TP -measurable. Moreover, for all A ∈ S and B ∈ TP ,∫

B

k(ω�A) dp(ω) = p(B)
∫
�

p(A) dp(ω) = p(A)p(B) = p(A∩B)�

where the last two equalities follow from p(B) being in {0�1}. We conclude that k is a
common regular conditional probability of all p ∈P with respect to TP . Q.E.D.

Lemma 23 can be used to relate our definition of identifiability to the notion of Dynkin
space (Dynkin (1978), Cerreia-Vioglio et al. (2013)). Some of the results that appear in
this section were already discussed in the original paper by Dyknin and in Cerreia-Vioglio
et al. (2013). See, in particular, their Appendix B.

LEMMA 24: If a kernel k : � → P identifies P ⊆ � and μ is a prior on P , then (i) k is a
regular conditional probability of πμ given TP , and (ii) σ (k) and TP are πμ-equivalent.

PROOF: (i) For all A ∈ S and B ∈ TP ,

πμ(A∩B) =
∫
P
p(A∩B) dμ(p) =

∫
P

(∫
�

1Bk(ω�A) dp(ω)
)
dμ(p)�
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It follows that πμ(A ∩B) = ∫
B
k(ω�A) dπμ(ω). By varying A and B, we conclude that k

is a regular conditional probability of πμ with respect to TP .
(ii) By (i), the kernel k is a regular conditional probability of πμ with respect to TP .

Thus, each A ∈ TP is πμ-equivalent to B = {ω : k(A�ω) = 1} ∈ σ (k). Moreover, σ (k) ⊆
TP . We conclude that σ (k) and TP are πμ-equivalent. Q.E.D.

Let P ⊆ �. For every A ∈ S , we define A� ∈ �P by A� = {p ∈ P : p(A) = 1}. We also
define the collection ��

P = {A� : A ∈ TP} ⊆ �P . It is a σ-algebra, as shown by Breiman,
LeCam, and Schwartz (1964, Proposition 1).

LEMMA 25: If P ⊆ � is identifiable, then (i) �P = ��
P , and (ii) a prior μ on P is non-

atomic if and only if πμ is non-atomic on TP .

PROOF: (i) Let k identify P . For every A ∈ S and t ∈R, we have
{
p ∈P : p(A) ≥ t

} = {
ω : k(ω�A) ≥ t

}�
�

Since k is TP -measurable, we have {p ∈ P : p(A) ≥ t} ∈ ��
P . Since ��

P ⊆ �P , and the sets
of the form {p ∈P : p(A) ≥ t} generate �P , it follows that ��

P = �P .
(ii) Observe that μ(A�) = πμ(A) for every A ∈ TP . If μ is non-atomic, given A ∈ TP

and α ∈ [0�1], by (i) there is B ∈ TP such that B� ⊆ A� and μ(B�) = αμ(A�). Because
B� ∩A� = (A ∩ B)�, then πμ(A ∩ B) = απμ(A). The proof that if πμ is non-atomic then
so is μ follows from an analogous argument. Q.E.D.

LEMMA 26: Let � admit an identifiable representation (u�φ�P�μ). Then it admits a
predictive representation (u�φ�TP�πμ).

PROOF: By Lemma 25, the measure πμ is non-atomic on TP . To conclude the proof, it
remains to show that, for all ξ ∈ Bb(S�u(X)),

∫
P
φ

(∫
�

ξdp
)

dμ(p) = Eπμ

[
φ

(
Eπμ[ξ|TP]

)]
�

Assume first that ξ is TP -measurable. Each p ∈P satisfies

p
({
ω : ξ(ω) =Ep[ξ]

}) = 1�

Hence, Ep[φ(ξ)] = φ(Ep[ξ]) for all p ∈ P , which implies
∫
�
φ(

∫
�
ξdp) dμ(p) =

Eπμ[φ(ξ)].
For an arbitrary S-measurable ξ, Lemma 23 implies

∫
P
φ

(∫
�

ξdp
)

dμ(p) =
∫
P
φ

(∫
�

(∫
�

ξdk(ω)
)

dp(ω)
)

dμ(p)�

where k identifies P . The function ω → ∫
�
ξdk(ω) is TP -measurable and therefore

∫
P
φ

(∫
�

(∫
�

ξdk(ω)
)

dp(ω)
)

dμ(p) =
∫
�

φ

(∫
�

ξdk(ω)
)

dπμ(ω)�

The right-hand side is equal to Eπμ[φ(Eπμ[ξ|TP])], being k a regular conditional proba-
bility for πμ (Lemma 24). Q.E.D.
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LEMMA 27: Let � admit a predictive representation (u�φ�T �π). Then it admits an iden-
tifiable representation (u�φ�P�μ), where πμ = π and TP is π-equivalent to T .

PROOF: Since (��S) is standard Borel, π admits a regular conditional probability k :
� → � with respect to T . We define a prior μ on � as the pushforward of π under k. We
now show that, for each A ∈ S and for μ-almost all p,

p
({
ω : k(ω�A) = p(A)

}) = 1�

Indeed, the functions ω → k(ω�A) and ω → k(ω�A)2 are T -measurable, and therefore,
by definition of regular conditional probability, for π-almost all ω,

∫
�

k
(
ω′�A

)
k
(
ω�dω′) = k(ω�A) and

∫
�

k
(
ω′�A

)2
k
(
ω�dω′) = k(ω�A)2�

Hence, for μ-almost all p,∫
�

k(ω�A)2 dp(ω) +p(A)2 = 2p(A)
∫
�

k(ω�A) dp(ω)�

which is equivalent to
∫
�

(k(ω�A) −p(A))2 dp(ω) = 0. The desired conclusion follows.
Being the state space standard Borel, we can find a countable collection A of events

that generates S . For μ-almost all p,

p
({
ω : k(ω�A) = p(A) for all A ∈A

}) = 1�

which implies that p({ω : k(ω) = p}) = 1. Let P ={p : p({ω : k(ω) = p}) = 1}.
The function k : � → P is (T ��P)-measurable and identifies P . A simple change of

variables shows that

Eπ

[
φ

(
Eπ

[
u(f )|T ])] =

∫
�

φ

(∫
�

u
(
f
(
ω′))k(

ω�dω′))dπ(ω) =
∫
P
φ

(∫
�

u(f ) dp
)

dμ(p)�

By a similar reasoning, for every A ∈ S ,

πμ(A) =
∫
P
p(A) dμ(p) =

∫
�

k(ω�A) dπ(ω) = π(A)�

It remains to show μ is non-atomic. Let A1� � � � �An be a partition of events in S that have
equal π-probability. The sets A�

1� � � � �A
�
n are pairwise disjoint, and satisfy

μ
(
A�

i

) = π
({
ω : k(ω�Ai) = 1

}) = π(Ai) = 1
n
�

It follows that μ is non-atomic. Hence, the tuple (u�φ�P�μ) is an identifiable represen-
tation. It remains to show T and TP are π-equivalent. If A ∈ T , then

μ
({
p : p(A) ∈{0�1}

}) = π
({
ω : k(ω�A) ∈{0�1}

}) = π
({
ω : 1A(ω) ∈{0�1}

}) = 1�

Hence, μ(A�) +μ((Ac)�) = 1, and in particular, μ(A�) = π(A). Lemma 25 shows �P =
��

P . Thus, there exists B ∈ TP such that A� = B�, and hence (A�)c = (B�)c = (Bc)�. Then

π(A) = μ
(
A�

) = μ
(
B�

) = π(B) and π
(
Ac

) = μ
((
Ac

)�) = μ
((
Bc

)�) = π
(
Bc

)
�
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so π(A�B) = 0. Conversely, if A ∈ TP , then k(ω�A) ∈ {0�1} for every ω. This implies
π(A�B) = 0 for B ={ω : k(ω�A) = 1}∈ T . Q.E.D.

For a preference relation � that admits a predictive representation (u�φ�T �π), an
event A ∈ S is null if and only if π(A) = 0 (Lemma 17). Thus, Proposition 1 follows from
Lemmas 26 and 27, given that σ (k) and TP are πμ-equivalent (Lemma 24).
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