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We study the merging and the testing of opinions in the context of
a prediction model. In the absence of incentive problems, opinions can
be tested and rejected, regardless of whether or not data produces
consensus among Bayesian agents. In contrast, in the presence of
incentive problems, opinions can only be tested and rejected when
data produces consensus among Bayesian agents. These results show
a strong connection between the testing and the merging of opinions.
They also relate the literature on Bayesian learning and the literature
on testing strategic experts.

1. Introduction. Data can produce consensus among Bayesian agents
who initially disagree. It can also test and reject opinions. We relate these
two critical uses of data in a model where agents may strategically misrep-
resent what they know.

In each period, either 0 or 1 is observed. Let P and Q be two probability
measures on {0,1}∞ such that Q is absolutely continuous with respect to
P . If P and Q are σ-additive then, as shown by Blackwell and Dubins
(1962), the conditional probabilities of P and Q merge, in the sense that
the two posteriors become uniformly close as the amount of observations
increases (Q-almost surely). So, repeated applications of Bayes’ rule lead to
consensus among Bayesian agents, provided that their opinions were initially
compatible.

Now consider Savage’s axiomatization of subjective probability. He pro-
posed postulates that characterize a preference relation over bets in terms of
a nonatomic finitely additive probability P . Call such P , for short, an opin-

ion. Savage’s framework allows for finitely additive probabilities that are
not σ-additive. In particular, the conclusions of the Blackwell and Dubins
theorem hold for some, but not all, opinions. This flexibility makes Savage’s
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framework an ideal candidate to study the connection between the merging
and the testing of opinions.

We say that an opinion P satisfies the Blackwell–Dubins property if when-
ever Q is an opinion absolutely continuous with respect to P , the two con-
ditional probabilities merge. By definition, in this subframework, sufficient
data produces agreement among Bayesian agents who have compatible initial
opinions. Outside this subframework, Bayesian agents may satisfy Savage’s
axioms, have compatible initial opinions and yet persistently disagree. See
the Appendix for an example.

Any opinion, whether or not it satisfies the Blackwell and Dubins prop-
erty, can be tested and rejected. To reject an opinion P , it suffices to find an
event that has low probability according to P and then reject it if this event
is observed. Thus, if opinions are honestly reported then the connection
between merging and testing opinions is weak. In the absence of incentive
problems, subjective probabilities can be tested and rejected whether or not
data produces consensus.

Now consider the case in which a self-proclaimed expert, named Bob, may
strategically misrepresent what he knows. Let Alice be a tester who wants to
determine whether Bob is an informed expert who honestly reports what he
believes or he is an uninformed, but strategic, expert who has reputational
concerns and wants to pass Alice’s test. Alice faces an adverse selection
problem and uses data to screen the two types of experts.

A test is likely to control for type I error if an informed expert expects
to pass the test by truthfully reporting what he believes. A test can be
manipulated if even completely uninformed experts are likely to pass the test,
no matter how the data unfolds in the future. The word “likely” refers to a
possible randomization by the strategic expert to manipulate the test. Only
nonmanipulable tests that control for type I error pass informed experts and
may fail uninformed ones.

Our main results are: In the presence of incentive problems, if opinions
must satisfy the Blackwell–Dubins property then there exists a test that
controls for type I error and cannot be manipulated. If, instead, any opinion
is allowed then every test that controls for type I error can be manipu-
lated. Thus, in Savage’s framework strategic experts cannot be discredited.
However, strategic experts can be discredited if opinions are restricted to a
subframework where data produces consensus among Bayesian agents with
initially compatible views. These results show a strong connection between
the merging and the testing of opinions but only under incentive problems.

The Blackwell–Dubins theorem has an additional interpretation. In this
interpretation, Q is referred to as the data generating process and P is
an agent’s belief initially compatible with Q. When the conclusions of the
Blackwell–Dubins theorem hold, then P and Q merge and so, the agent’s
predictions are eventually accurate. Thus, multiple repetitions of Bayes’ rule
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transforms the available evidence into a near perfect guide to the future. It
follows that our main results also have an additional interpretation. Under
incentive problems, strategic experts can only be discredited if they are
restricted to a subframework where opinions that are compatible with the
data generating process are eventually accurate.

Finally, our results relate the literatures on Bayesian learning and the lit-
erature on testing strategic experts (see the next section for references). They
show a strong connection between the framework under which Bayesian
learning leads to accurate opinions and the framework under which strate-
gic experts can be discredited.

The paper is organized as follows. Section 2 describes the model. Sec-
tion 3 reviews the Blackwell–Dubins theorem and defines the Blackwell–
Dubins property. Section 4 contains our main results. Section 5 relates our
results and category tests. Section 6 considers the case where the set of per-
period outcome may be infinite. The Appendix contains all proofs and a
formal example of a probability that does not satisfy the Blackwell–Dubins
property.

1.1. Related literature. Blackwell and Dubins’ idea of merging of opin-
ions is central in the theory of Bayesian learning and Bayesian statistics.
In Bayesian nonparametric statistics, see the seminal work of Diaconis and
Freedman (1986), D’Aristotile, Diaconis and Freedman (1988) and the more
recent work by Walker, Lijoi and Pruenster (2005). In the theory of Bayesian
learning, see Schervish and Seidenfeld (1990). We refer to Dawid (1985) for
a connection with the theory of calibration.

In game theory, the Blackwell–Dubins theorem is central in the study of
convergence to Nash equilibrium in repeated games. The main objective is
to understand the conditions under which Bayesian learning leads to a Nash
equilibrium [see, among many contributions, Foster and Young (2001, 2003),
Fudenberg and Kreps (1993), Fudenberg and Levine (1998, 2009), Hart and
Mas-Colell (2013), Jackson, Kalai and Smorodinsky (1999), Kalai and Lehrer
(1993a, 1993b), Lehrer and Smorodinsky (1996a, 1996b), Monderer, Samet
and Sela (1997), Nachbar (1997, 2001, 2005), Sandroni (1998) and Young
(2002, 2004)].

A series of papers investigate whether empirical tests can be manipulated.
In statistics, see Foster and Vohra (1998), Cesa-Bianchi and Lugosi (2006),
Vovk and Shafer (2005) and Olszewski and Sandroni (2009a). In economics,
see among several contributions, Al-Najjar and Weinstein (2008), Al-Najjar
et al. (2010), Babaioff et al. (2011), Dekel and Feinberg (2006), Feinberg and
Lambert (2011), Feinberg and Stewart (2008), Fortnow and Vohra (2009),
Fudenberg and Levine (1999), Gradwohl and Salant (2011), Gradwohl and
Shmaya (2013), Hu and Shmaya (2013), Lehrer (2001), Olszewski and Peski
(2011), Olszewski and Sandroni (2007, 2008, 2009a, 2009b, 2011), Sandroni
(2003), Sandroni, Smorodinsky and Vohra (2003), Shmaya (2008), Stewart
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(2011). For a review, see Foster and Vohra (2011) and Olszewski and Peski
(2011). See also Al-Najjar, Pomatto and Sandroni (2013) for a companion
paper.

2. Setup. In every period an outcome, 0 or 1, is observed (all results
generalize to the case of finitely many outcomes). A path is an infinite se-
quence of outcomes and Ω = {0,1}∞ is the set of all paths. Given a path ω
and a period t, let ωt ⊆Ω be the cylinder of length t with base ω. That is,
ωt is the set of all paths which coincide with ω in the first t periods. The
set of all paths Ω is endowed with a σ-algebra of events Σ containing all
cylinders.

The set Ω is endowed with the product topology. In this topology, a set
is open if and only if it is a countable union of cylinders. We denote by Σ1

the set of all open subsets of Ω and by B the Borel σ-algebra generated by
the topology. Note that Σ1 ⊂B ⊆Σ.

Let P be the set of all finitely additive probabilities on (Ω,Σ). A probabil-
ity P ∈ P is strongly nonatomic, or Savagean, if for every event E and every
α ∈ [0,1] there is an event F ⊆E such that P (F ) = αP (E). The term “Sav-
agean” emphasizes the relation between strongly nonatomic probabilities
and the Savage (1954) representation theorem: a finitely additive probabil-
ity corresponds to a preference relation satisfying Savage’s axioms if and
only if it is strongly nonatomic. To simplify the language, we also refer to a
Savagean probability as an opinion. Let ∆ denotes the set of all opinions.

At time 0, a self-proclaimed expert, named Bob, announces an opinion
P . A tester, named Alice, evaluates his opinion empirically. Alice announces
her test at period 0, before Bob announces his opinion.

Definition 1. A test is a function T :∆→Σ1.

A test specifies an open set T (P ) considered inconsistent with an opinion
P . An expert who announces opinion P is rejected on every path ω belonging
to T (P ). For the next definition, fix ε ∈ [0,1) and a subset Λ of ∆.

Definition 2. A test Λ-controls for type I error with probability 1− ε
if for any P ∈ Λ,

P (T (P ))≤ ε.

If a test Λ-controls for type I error, then an expert (with an opinion in Λ)
expects to pass the test by honestly reporting what he believes.

2.1. Strategic forecasting. We now consider the case where Bob is unin-
formed about the odds of future events, but may produce an opinion strategi-
cally in order to pass the test. We allow strategic experts to select opinions
at random. Let ∆f∆ be the set of probability measures on ∆ with finite
support. We call each ζ ∈∆f∆ a strategy.
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Definition 3. A test can be manipulated with probability q ∈ [0,1] if
there is a strategy ζ such that for every ω ∈Ω,

ζ({P ∈∆:ω /∈ T (P )})≥ q.

If a test is manipulable with high probability, then a uninformed, but
strategic expert is likely to pass the test regardless of how the data unfolds
and how much data is available.

Definition 4. A test is nonmanipulable if for every strategy ζ there is
a cylinder Cζ such that for every path ω ∈Cζ ,

ζ({P ∈∆:ω /∈ T (P )}) = 0.

Nonmanipulable tests can reject uninformed experts. No matter which
strategy Bob employs, there is a finite history that, if observed, discredits
him. These are the only tests that are likely to pass informed experts and
may reject uninformed ones.

3. Merging of opinions. We now review the main concepts behind the
Blackwell–Dubins theorem.

Definition 5. Let P,Q ∈ P. The probability P merges with Q if for
every ε > 0

lim
t→∞

Q
({

ω : sup
E∈Σ

|P (E|ωt)−Q(E|ωt)|> ε
})

= 0.

The expression supE∈Σ |P (E|ωt)−Q(E|ωt)| is the distance between the
forecasts of P and Q, conditional on the evidence available at time t and
along the path ω. The probability P merges with Q if, under Q, this distance
goes to 0 in probability. In particular, if Q accurately describes the data
generating process then the predictions of P are eventually accurate with
high probability.

In this paper, merging is formulated in terms of convergence in probability
rather than almost sure convergence [as in Blackwell and Dubins (1962)]. As
is well known, convergence in probability is particularly convenient in the
context of finitely additive probabilities. See, for instance, the discussion in
Berti and Rigo (2006).

It is clear that for merging to occur, P and Q must be compatible ex-ante.
The notion of absolute continuity formalizes this intuition.

Definition 6. Let P,Q ∈ P. The probability Q is absolutely continuous

with respect to P , that is, Q≪ P , if for every sequence of events (En)
∞
n=1,

if P (En)→ 0 then Q(En)→ 0.
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If P is σ-additive, then the definition is equivalent to requiring that ev-
ery event null under P is also null under Q. Moreover, if P is a Savagean
probability and Q is a probability satisfying Q≪ P , then Q is Savagean as
well.

Absolute continuity is (essentially) necessary for merging.

Proposition 1. Let P,Q ∈ P and P (ωt)> 0 for every cylinder ωt. If P
merges with Q then Q≪ P .

In their seminal paper, Blackwell and Dubins show that when P and Q
are σ-additive then absolute continuity suffices for merging.

Theorem 1 (Blackwell and Dubins). Let P and Q be σ-additive prob-

ability measures on (Ω,B). If Q≪ P , then P merges with Q.

One interpretation of the Blackwell–Dubins theorem is that multiple rep-
etitions of Bayes’ rule lead to an agreement among agents who initially
hold compatible opinions. Another interpretation is that the predictions of
Bayesian learners will eventually be accurate (provided that absolute con-
tinuity holds). However, the Blackwell–Dubins theorem does not extend to
all opinions. This motivates the next definition.

Definition 7. A probability P ∈ P satisfies the Blackwell–Dubins prop-

erty if for every Q ∈ P,

if Q≪ P then P merges with Q.(3.1)

Let ∆BD be the set of all opinions that satisfy the Blackwell–Dubins prop-
erty.

So, an opinion P satisfies the Blackwell–Dubins property if it merges to
any compatible opinion Q. We show in the Appendix that ∆BD is strictly

contained in the set of all opinions. That is, some opinions satisfy the
Blackwell–Dubins property, while others do not. We also show that the set
of probabilities satisfying the Blackwell–Dubins property strictly contains
the set of σ-additive probabilities. We refer the reader to Example 1 and
Theorem 10, respectively.

Any exogenously given (or honestly reported) opinion can be tested and
rejected, whether or not the Blackwell–Dubins property holds. Thus, in the
absence of strategic considerations, the connection between the merging and
the testing of opinions is weak. We now show that this connection is much
stronger when there are incentive problems.
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4. Main results.

Theorem 2. Consider the case where any opinion is allowed. Let T be

a test that ∆-controls for type I errors with probability 1− ε. The test T can

be manipulated with probability 1− ε− δ, for every δ ∈ (0,1− ε].

Theorem 3. Consider the case where opinions must satisfy the Blackwell–

Dubins property. Fix ε ∈ (0,1]. There exists a test T that ∆BD-controls for

type I error with probability 1− ε and is nonmanipulable.

If Bob is free to announce any opinion, then he cannot be meaningfully
tested and discredited. Given any test that controls for type I error, Bob
can design a strategy which prevents rejection. However, if Bob is required
to announce opinions satisfying the Blackwell–Dubins property, then it is
possible to test and discredit him. These results show a strong connection
between the merging and the testing of opinions, but only when there are
incentive problems and agents may misrepresent what they know.

We now illustrate the basic ideas behind the proof of the two results. The
proof of Theorem 3 relies on a characterization of the set of probabilities
that satisfy the Blackwell–Dubins property. This characterization is also
crucial for the proof of Theorem 4 below. We show that P ∈ P satisfies the
Blackwell–Dubins property if and only if it is an extreme point of the set of
probabilities E(P )⊆ P which agree with P on every cylinder.

The proof of necessity in this characterization is simple. Suppose, by con-
tradiction, that P can be written as the convex combination P = αQ+(1−
α)R, where Q and R belong to E(P ). Clearly, both Q and R are absolutely
continuous with respect to P . However, P does not merge to Q or R. The
intuition is that Q and R agree on every finite history and so, the avail-
able data delivers equal support to them. The converse requires a deeper
argument and relies on Plachky’s (1976) theorem, which states that P is an
extreme point of E(P ) if and only if the probability of every event can be
approximated by the probabilities of cylinders.

Given our characterization, the proof of Theorem 3 can be sketched as
follows: Let P be an opinion satisfying the Blackwell–Dubins property. Given
that P is strongly nonatomic, we can divide Ω into a partition {A1, . . . ,An}
of events such that each of them has probability less than ε. This property
is a direct implication of Savage’s postulate P6 and plays an important role
in our result. For general opinions, the events {A1, . . . ,An} may have no
useful structure and may not even be Borel sets. However, since P is an
extreme point of E(P ), we can invoke Plachky’s theorem a second time and
show that each Ai can be chosen to be a cylinder. Now fix a path ω. Let us
say it belongs to A1. By definition, there is a time t such that ωt =A1. We
now define a test T such that T (P ) = ωt (note that the period t depends
on the opinion P because the partition depends on it). By definition, the
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test ∆BD-controls for type I errors with probability 1− ε. Furthermore, it
is a nonmanipulable test. Given any strategy ζ we can find a period m
large enough such that ωm rejects all opinions in the (finite) support of ζ .
Therefore, in ωm, the probability of passing the test under ζ is 0.

We now sketch the proof of Theorem 2. Consider a zero-sum game between
Nature and the expert. Nature chooses an opinion P and the expert chooses
a strategy ζ (a random device producing opinions). The payoff of the expert
is the probability of passing the test. For each opinion P chosen by Nature
there exists a strategy for the expert (to report P ) that gives him a payoff
of at least 1− ε. If Fan’s (1953) Minmax theorem applies then there exists
a strategy ζthat guarantees the expert a payoff of at least 1− ε for every

opinion chosen by Nature. In this case, the test is manipulable.
Fan’s Minmax theorem requires Nature’s action space to be compact and

her payoffs to be (lower semi) continuous. The main difficulty is that the
set of opinions is not compact in the natural topology, the weak* topology.
Hence, Fan’s Minmax theorem cannot be directly applied. We consider a new
game, defined as above except that Nature can choose any probability in P

(not necessarily Savagean). By the Riesz representation and the Banach–
Alaoglu theorems, the set of all finitely additive probabilities satisfy the
necessary continuity and compactness conditions for Fan’s Minmax theorem.
However, if now Nature chooses a non-Savagean probability M , the expert
cannot replicate her choice because he is restricted to opinions.

Based on the celebrated Hammer–Sobczyk decomposition theorem, we
show the following approximation result: For every M ∈ P, there is an
opinion P such that M(U) ≤ P (U) for every union U of cylinders. Thus,
M(T (P )) ≤ P (T (P ) ≤ ε. It follows that if Natures chooses M and the ex-
pert chooses P then he passes the test with probability at least 1− ε. The
proof is now concluded invoking Fan’s Minmax theorem.

5. Category tests. Theorem 3 provides conditions under which it is fea-
sible to discredit strategic experts. However, even a nonmanipulable test
can be strategically passed on some paths. Under σ-additivity, Dekel and
Feinberg (2006) and Olszewski and Sandroni (2009a) construct nonmanipu-
lable category tests, where uninformed experts fail in all, but a topologically
small (i.e., meager) set of paths. We now show a difficulty in following this
approach in the general case of opinions that satisfy the Blackwell–Dubins
property.

Definition 8. A collection I of subsets of Ω is a strictly proper ideal if
it satisfies the following properties:

(1) If S ∈ I and R⊆ S then R ∈ I ;
(2) If R,S ∈ I then R∪ S ∈ I ; and
(3) No cylinder belongs to I .
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A strictly proper ideal is a collection of sets which can be regarded as
“small.” Property (1) is the natural requirement that if a set S is considered
small then a set R contained in S must also be considered small. Properties
(2) and (3) are satisfied by most commonly used notions of “small” sets,
such as countable, nowhere dense, meager, sets of Lebesgue measure zero
and shy sets. To clarify our terminology, recall that an ideal is a collection
of subsets satisfying properties (1) and (2). An ideal is proper if Ω does not
belong to it. We refer to the elements of a strictly proper ideal as small sets
and to their complements as large sets.

Strictly proper ideals can be defined in terms of probabilities. Given P ∈ P,
define a set N to be P -null if there exists an event E that satisfies N ⊆E and
P (E) = 0. The collection of P -null sets is a strictly proper ideal whenever
P satisfies P (ωt)> 0 for every cylinder ωt.

Theorem 4. Let I be a strictly proper ideal. There exists an opinion

P ∈∆BD such that P (E) = 0 for every event E in I .

There exists an opinion that satisfies the Blackwell–Dubins property and
finds all small events to be negligible. The proof of this result relies on
the characterization of the set ∆BD of opinions satisfying the Blackwell–
Dubins property that we discussed in the previous section. Theorem 4 shows
a basic tension between the control of type I errors and the use of genericity
arguments. Suppose Alice intends to design a test that discredits Bob on
a large set of paths, irrespectively of his strategy. Then the set of paths
(T (P ))c that do not reject opinion P must be small [otherwise Bob could
simply announce opinion P and pass the test on (T (P ))c, a nonsmall set
of realizations]. But if P is the opinion obtained from Theorem 4, we must
have P ((T (P ))c) = 0. So, the test cannot control for type I errors. We have
just proved the following corollary.

Corollary 1. Let I be a strictly proper ideal. For every test T which

∆BD-controls type I errors with positive probability there exists a strategy ζ
such that the set

{ω : ζ({P :ω /∈ T (P )}) = 1}

is not small.

Thus, the stronger nonmanipulable tests in Dekel and Feinberg (2006)
and Olszewski and Sandroni (2009a) cannot be obtained in the general case
of opinions that satisfy the Blackwell–Dubins property.

6. Extensions. In this section, we extend our analysis to the case where
the set of per-period outcomes may be infinite.
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6.1. Setup. Let X be a separable metric space of outcomes and denote
by Ω the set of paths X∞. As before, ωt is the cylinder of length t≥ 0 with
base ω ∈ Ω (in particular ω0 =Ω). The set Ω is endowed with the product
topology and a σ-algebra Σ containing all open sets. We denote by P the set
of finitely additive probabilities on (Ω,Σ) and by ∆ the subset of opinions
(i.e., strongly nonatomic probabilities).

6.2. Conditional probabilities. Let H be the set of all cylinders. We say
that a function

P :Σ×H→[0,1]

is a conditional probability if for every t≥ 0 and ω ∈Ω:

(1) P (·|ωt) ∈ P;
(2) P (ωt|ωt) = 1; and
(3) P (E ∩ ωt+n|ωt) = P (E|ωt+n)P (ωt+n|ωt) for any event E and n≥ 0.

The definition of conditional probability follows Berti, Regazzini and Rigo
(1998), where properties (1)–(3) are justified on the basis of de Finetti’s co-
herence principle: a real function P defined on Σ × H satisfies properties
(1)–(3) if and only if a bookie, who sets P (E|ωt) as the price of a condi-
tional bet on event E, cannot incur in a Dutch book. We refer the reader
to Regazzini (1985, 1987), de Finetti (1990) and Berti and Rigo (2002) for
a precise statement and a formal discussion.

A conditional probability is a conditional opinion if P (·|Ω) is strongly
nonatomic. We denote by P

∗ and by ∆∗ the sets of conditional probabilities
and conditional opinions, respectively. To simplify the exposition, given an
event E and a conditional probability P , we use the notation P (E) instead
of the more precise P (E|Ω).

At time 0, Bob is required to announce a conditional opinion P . So, a test
T is now a function mapping each conditional opinion P to an open subset
T (P ) of Ω. The definitions of type I errors, manipulable and nonmanipulable
tests are analogous to the definitions of Section 2 and can be obtained by
replacing ∆ with ∆∗.

6.3. Merging. We now extend the definition of merging of opinions. We
say that X is a discrete space if it is countable and endowed with the discrete
topology.

Definition 9. Let X be a discrete space. If P,Q ∈ P
∗, the conditional

probability P merges with Q if for every ε > 0,

lim
t→∞

Q
({

ω : sup
E∈Σ

|P (E|ωt)−Q(E|ωt)|> ε
})

= 0.

The next definition is based on Blackwell and Dubins (1962).
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Definition 10. Let X be a discrete space. A conditional probability P
satisfies the Blackwell–Dubins property if for every probability Q ∈ P such
that Q≪ P (·|Ω) there exists a conditional probability Q̃ such that

Q̃(·|Ω) =Q and P merges with Q̃.

Let ∆∗
BD be the set of all conditional opinions that satisfy the Blackwell–

Dubins property.

We now show that the connection between testability and merging of
opinions extends to this setup.

6.4. Results.

Theorem 5. Let X be a separable metric space. Consider the case where

any conditional opinion is allowed. Let T be a test that ∆∗-controls for type

I errors with probability 1−ε. The test T can be manipulated with probability

1− ε− δ, for every δ ∈ (0,1− ε].

Theorem 6. Let X be a discrete space. Consider the case where con-

ditional opinions must satisfy the Blackwell–Dubins property. Fix ε ∈ (0,1].
There exists a test T that ∆∗

BD-controls for type I error with probability 1−ε
and is nonmanipulable.

If it is possible for Bob to announce any conditional opinion, then he
cannot be meaningfully tested and discredited. If Bob is restricted to condi-
tional opinions satisfying the Blackwell–Dubins property, then it is possible
to test and discredit him.

The proof of Theorem 5 follows the proof of Theorem 2. The proof of
Theorem 6 is based on the following result: a conditional opinion P ∈∆∗

BD
satisfies limt→∞P (ωt) = 0 for every path ω. This step requires a new ar-
gument, because the characterization of Blackwell–Dubins property used in
the proof of Theorem 3 does not readily extend to the case where X is in-
finite. Once this continuity property is shown to hold, the proof continues
as in Theorem 3. We fix a path ω and for each P ∈∆∗

BD we choose a large
enough period tP such that P (ωtP )< ε. Because X is assumed to be a dis-
crete space, each cylinder ωtP is open. Therefore, we can define test T such
that T (P ) = ωtP for every P ∈∆∗

BD. Following the proof of Theorem 3, we
show that T is nonmanipulable.

APPENDIX A

We now provide an example of an opinion that violates the Blackwell–
Dubins property.
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Example 1. Let Ω= {0,1}∞ and Σ = B. Denote byX1,X2, . . . the coor-
dinate projections on Ω. For every n≥ 1, let Pn be the σ-additive probability
defined as

Pn(Xk = 0) = 2−k for k ≤ n and Pn(Xk = 0) = 1 for k > n

and let P∞ be the σ-additive probability defined as P∞(Xk = 0) = 2−k for
all k.

Consider the opinion P = 1
2P∞ + 1

2

∫
Pn dλ(n), where λ is a finitely ad-

ditive probability on (N,2N) such that λ({n}) = 0 for every n. The finite
additivity of the mixture

∫
Pn dλ(n) may reflect the difficulty of predicting

when the per-period probability of observing the outcome 0 will change from
0.5 to 1.

Clearly, P∞ ≪ P . However, P does not merge with P∞. To this end, let
A be the set of all paths where the outcome 1 appears infinitely often. Then
Pn(A) = 0 for every n and P∞(A) = 1. For every cylinder ωt, we have

P (ωt) =
1

2
P∞(ωt) +

1

2

∫

{n:n>t}
Pn(ω

t)dλ(n) = P∞(ωt)

and moreover,

P∞(A|ωt)−P (A|ωt) = 1−
(1/2)P∞(A∩ ωt) + (1/2)

∫
n
Pn(A∩ ωt)dλ(n)

P∞(ωt)

= 1−
1

2
P∞(A|ωt)

=
1

2

for every ω and every t. Thus, P does not merge with P∞.

A.1. Preliminaries. To minimize repetitions, throughout the Appendix
Ω stands for either {0,1}∞ or X∞. For every algebra A of subsets of Ω
denote by P(A) the space of finitely additive probabilities defined on (Ω,A).
When A = Σ, we write P instead of P(Σ). We denote by ∆ ⊆ P the set
of opinions (strongly nonatomic probabilities). The space P(A) is endowed
with the weak* topology. It is the coarsest topology for which the functional
P 7→

∫
ϕdP is continuous for every function ϕ :Ω→R that has finite range

and is measurable with respect to A. This should not be confused with the
more common weak* topology generated by bounded continuous functions.

APPENDIX B: MERGING OF OPINIONS

In this subsection, we describe of the set of opinions on Ω= {0,1}∞ that
satisfy the Blackwell–Dubins property. We first show that absolute continu-
ity is essentially a necessary condition for merging.
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Proof of Proposition 1. AssumeQ is not absolutely continuous with
respect to P . Then there exists a sequence of events (En)

∞
n=1 and some α> 0

such that P (En)→ 0 but Q(En) > α for every n. Suppose P merges with
Q. For every t, let Ct be a collection of pairwise disjoint cylinders of length t
such that Q(ωt)> 0 for every ωt ∈ Ct and Q(∪Ct) = 1. Fix δ ∈ (0, α4 ). There
exists a time T large enough such that for every t ≥ T there is a subset
Dt ⊆ Ct such that Q(∪Dt)≥ 1− δ and supE∈Σ |Q(E|ωt)− P (E|ωt)| ≤ δ for
every ωt ∈ Dt. Because P (ωt) > 0 for every ωt, the expression P (E|ωt) is
well defined. For every event En,

Q(En) =
∑

ωt∈Dt

Q(En|ω
t)Q(ωt) +

∑

ωt∈Ct−Dt

P (E|ωt)P (ωt)

hence,
∑

ωt∈Dt
Q(En|ω

t)Q(ωt)≥ α− δ. Define

En =

{
ωt ∈Dt :Q(En|ω

t)≥
α

2

}
.

We have

α− δ ≤
∑

ωt∈Dt

Q(En|ω
t)Q(ωt)

=
∑

ωt∈En

Q(En|ω
t)Q(ωt) +

∑

ωt∈Dt−En

Q(En|ω
t)Q(ωt)

≤Q(∪En) +
α

2
Q(∪Dt −∪En)

≤Q(∪En) +
α

2

hence, Q(∪En)≥
α
2 −δ. Now let n∗ be large enough such that α

2 −P (En∗ |ωt)>
δ for every ω. Then, for every ωt ∈ En∗ ,

sup
E∈Σ

|Q(E|ωt)− P (E|ωt)| ≥Q(En∗ |ωt)− P (En∗ |ωt)

≥
α

2
− P (En∗ |ωt)

> δ.

To summarize, Q({ω : supE∈Σ |Q(E|ωt)− P (E|ωt)| > δ}) > α
2 − δ for every

t≥ T . Therefore, Q(∪Dt)≤ 1−(α2 −δ). By definition, Q(∪Dt)≥ 1−δ; hence,
δ ≥ α

4 . A contradiction. Hence, P does not merge with Q. �

Our main result is a characterization of the set of opinions that satisfy
the Blackwell–Dubins property. We first recall some results on extensions of
finitely additive probabilities. Let A1 and A2 be two algebras of subsets of Ω
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such that A1 ⊆A2. Given P ∈ P(A1) and Q ∈ P(A2), call Q an extension of

P from A1 to A2 if P (A) =Q(A) for every A ∈A1. Let E(P,A1,A2) be the
set of extensions of P from A1 to A2. As is well known, the set E(P,A1,A2)
is nonempty. Moreover, it is a convex and compact subset of P(A2). The set
of extreme points of E(P,A1,A2) has been studied in great generality. We
refer the reader to Lipecki (2007) and Plachky (1976) for further results and
references.

Theorem 7 [Plachky (1976)]. Fix two algebras A1 ⊆A2 and P ∈ P(A1).
A probability Q ∈ E(P,A1,A2) is an extreme point of E(P,A1,A2) if and

only if for every ε > 0 and A2 ∈A2 there exists A1 ∈ A1 such that Q(A2 △
A1)< ε.

Let F be the algebra generated by all cylinders of {0,1}∞. An event
belongs to F if and only if it is a finite union of (pairwise disjoint) cylinders.
Recall that B is the Borel σ-algebra induced on Ω by the product topology.
Then F ⊆ B ⊆ Σ. For every P ∈ P let PF be the restriction of P on F . It
is easy to see that PF is σ-additive. By Carathéodory theorem, it admits a
σ-additive extension from F to B, denoted by Pσ .

The next result is well known.

Lemma 1. Let Ω = {0,1}∞. For all Q and P in P, if QF ≪ PF then

Qσ ≪ Pσ.

We can now state our main result on merging.

Theorem 8. Let Ω= {0,1}∞. For every P ∈ P, the following are equiv-

alent:

(1) P is an extreme point of E(PF ,F ,Σ).
(2) P satisfies the Blackwell–Dubins property.

(3) For all Q,R ∈ P, if P = αQ + (1 − α)R for some α ∈ (0,1) then P
merges with Q and R.

Proof. (1)⇒ (2). Let P be an extreme point of E(PF ,F ,Σ). If Q≪ P ,
then Qσ ≪ Pσ by Lemma 1. By the Blackwell–Dubins theorem,

Qσ

({
ω : lim

t→∞

(
sup
B∈B

|Qσ(B|ωt)−Pσ(B|ωt)|
)
= 0
})

= 1.

In particular, the sequence of random variables
(
ω 7→ sup

F∈F
|Qσ(F |ωt)−Pσ(F |ωt)|

)∞
t=1
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converges to 0, Qσ-almost surely. Therefore, the sequence converges in prob-
ability. For each ε > 0,

lim
t→∞

Qσ

({
ω : sup

F∈F
|Qσ(F |ωt)− Pσ(F |ωt)|> ε

})
= 0.

Since the last expression only involves events belonging to F ,

lim
t→∞

Q
({

ω : sup
F∈F

|Q(F |ωt)−P (F |ωt)|> ε
})

= 0.

The proof is complete by showing that

sup
E∈Σ

|Q(E|ωt)−P (E|ωt)|= sup
F∈F

|Q(F |ωt)−P (F |ωt)|

for every ωt such that Q(ωt)> 0.
To this end, fix an event E ∈ Σ and a cylinder ωt such that Q(ωt) > 0.

By Plachky’s theorem, there exists a sequence of events (Fn)
∞
n=1 in F such

that P (E △ Fn)→ 0 as n→∞. For each n, the inequality

|Q(E|ωt)−P (E|ωt)| ≤ |Q(E|ωt)−Q(Fn|ω
t)|

+ |Q(Fn|ω
t)−P (Fn|ω

t)|

+ |P (Fn|ω
t)−P (E|ωt)|

implies

|Q(E|ωt)− P (E|ωt)|

≤Q(E △Fn|ω
t) + sup

F∈F
|Q(F |ωt)−P (F |ωt)|+ P (E △ Fn|ω

t).

Because P (E△Fn)→ 0 and Q(ωt)> 0, it follows that P (ωt)> 0 and P (E△
Fn|ω

t)→ 0. Absolute continuity implies Q(E △ Fn|ω
t)→ 0. Therefore,

|Q(E|ωt)−P (E|ωt)| ≤ sup
F∈F

|Q(F |ωt)−P (F |ωt)|

thus

sup
E∈Σ

|Q(E|ωt)−P (E|ωt)| ≤ sup
F∈F

|Q(F |ωt)−P (F |ωt)|

as claimed.
(2)⇒ (3). If P = αQ+ (1− α)R then Q≪ P , hence P merges with Q.
(3) ⇒ (1). Assume by way of contradiction that P is not an extreme

point of E(PF ,F ,Σ). Then there exist Q,R in E(PF ,F ,Σ) such thatP =
αQ+(1−α)R, α ∈ (0,1) and Q 6=R. By assumption, P merges with Q. Let
Ct be a collection of pairwise disjoint cylinders of length t such that Q(ωt)> 0
for every ωt ∈ Ct and Q(∪Ct) = 1. For every t large enough, there exists a
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subsetDt ⊆ Ct such that Q(∪Dt)≥ 1−ε and supE∈Σ |Q(E|ωt)−P (E|ωt)| ≤ ε
for every ωt ∈Dt. For every event E,

|Q(E)− P (E)|=

∣∣∣∣
∑

ωt∈Ct

Q(E|ωt)Q(ωt)−
∑

ωt∈Ct

P (E|ωt)P (ωt)

∣∣∣∣

=

∣∣∣∣
∑

ωt∈Ct

(P (E|ωt)−Q(E|ωt))Q(ωt)

∣∣∣∣

≤
∑

ω∈Dt

|P (E|ωt)−Q(E|ωt)|Q(ωt)

+
∑

ω∈Ct−Dt

|P (E|ωt)−Q(E|ωt)|Q(ωt)

≤ εQ(∪Dt) + (1−Q(∪Dt))

≤ 2ε,

where the first two equalities follow from the fact that Q(ωt) = P (ωt) for all
ωt. Since E and ε are arbitrary, we have P =Q. A contradiction. Therefore,
P must be an extreme point of E(PF ,F ,Σ). �

The next result shows a useful property of opinions that satisfy the
Blackwell–Dubins property.

Theorem 9. Let Ω = {0,1}∞. For every P ∈ ∆BD and every ε > 0,
there exists a partition {C1, . . . ,Cn} of Ω such that for each i= 1, . . . , n, Ci

is a cylinder and P (Ci)≤ ε.

Proof. Let P ∈∆BD and fix ε > 0. Because P is strongly nonatomic,
then there exists a partition {E1, . . . ,Em} of events such that P (Ei)<

ε
2 for

every i = 1, . . . ,m. By Theorem 8, P is an extreme point of E(PF ,F ,Σ).
By Plachky’s theorem, for each i we can find a sequence (Fi,k)

∞
k=1 in F

such that P (Ei △ Fi,k) → 0 as k → ∞. Choose K large enough such that
P (Ei △Fi,K)< ε

2m for each i.

Let F1 = F1,K and define Fi = Fi,K −
⋃i−1

j=1Fj,K for each i= 2, . . . ,m. Let

Fm+1 =Ω−
⋃m

i=1Fi,K and consider the partition {F1, . . . , Fm+1}. It satisfies
P (Fi)≤ P (Fi,K)< ε

2 +
ε
2m for each i= 2, . . . ,m. Moreover,

P (Fm+1) = P

((
m⋃

i=1

Ei

)
−

(
m⋃

i=1

Fi,K

))
≤ P

(
m⋃

i=1

(Ei −Fi,K)

)
≤

ε

2
.

Therefore, P (Fi)≤ ε for each Fi ∈ {F1, . . . , Fm+1}. Because each Fi is a finite
union of pairwise disjoint cylinders, the proof is complete. �
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The next theorem shows that for every sigma additive probability P we
can find a continuum of probabilities that agree with P on every cylinder,
fail σ-additivity but satisfy the Blackwell–Dubins property. A related result
appears in Lipecki (2001).

Theorem 10. Let Ω= {0,1}∞. For every σ-additive probability P ∈ P,
the set

{Q ∈∆BD :QF = PF ,Q is not σ-additive}

has cardinality at least c.

Proof. Fix a collection {Dξ : ξ ∈ [0,1]} of pairwise disjoint, Borel and
dense subsets of Ω [see, e.g., Ceder (1966)]. For every ξ ∈ [0,1], let Aξ be
the algebra generated by F ∪ {Dξ}. That is,

Aξ = {(F1 ∩Dξ)∪ (F2 ∩Dc
ξ) :F1, F2 ∈F}.

Let ρξ ∈ P(Aξ) be defined as

ρξ(F ∩Dξ) = P (F )

for every F ∈ F . Because Dξ is dense, then F ∩Dξ 6= ∅ for every F ∈ F .
Hence, ρξ is well defined. It satisfies ρξ(Dξ) = 1.

For each ξ ∈ [0,1] fix an extreme point Pξ of E(ρξ ,Aξ,Σ). We claim it is
also an extreme point of E(PF ,F ,Σ). By construction, Pξ ∈ E(PF ,F ,Σ).
Now suppose Pξ = αQ+ (1− α)R, with α ∈ [0,1] and Q,R ∈ E(PF ,F ,Σ).
Because Pξ(Dξ) = 1, then Q(Dξ) =R(Dξ) = 1. Hence, P (F ) =Q(F ∩Dξ) =
R(F ∩Dξ) for every F ∈ F . Therefore, Q,R ∈E(ρξ,Aξ,Σ). By assumption,
Pξ is an extreme point of E(ρξ,Aξ,Σ). Hence, P =Q= R. This concludes
the proof of the claim.

By Theorem 8, each Pξ satisfies the Blackwell–Dubins property. More-
over, each Pξ agrees with P on every cylinder. Hence, each σ-additive Pξ

must agree with P on every Borel sets. Because the sets {Dξ : ξ ∈ [0,1]} are
Borel and pairwise disjoint, at most one probability in {Pξ : ξ ∈ [0,1]} agrees
with P on every Borel set. Thus, there exists at most one σ-additive prob-
ability in {Pξ : ξ ∈ [0,1]}. Therefore, the set {Pξ : ξ ∈ [0,1], Pξ 6= P}, which
is included in {Q ∈∆BD :QF = PF ,Q is not σ-additive}, has cardinality c.
This completes the proof. �

APPENDIX C: STRONGLY NONATOMIC PROBABILITIES

We now provide a technical result important for the proofs of Theorems 2
and 5. Throughout this subsection, Ω =X∞.

A {0,1}-probability is a probability Z ∈ P that satisfies Z(E) ∈ {0,1} for
every E ∈Σ.
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Theorem 11. Let E ⊆Σ−{∅} be closed under finite intersection. There

exists a {0,1}-probability Z such that Z(E) = 1 for every E ∈ E .

Proof. This is a corollary of the ultrafilter theorem. See, for instance,
Aliprantis and Border (2006), Theorem 2.19. �

Every P ∈ P can be decomposed into a strongly nonatomic part and a
mixture of countably many {0,1}-probabilities.

Theorem 12 [Sobczyk and Hammer (1944)]. For every P ∈ P, there
exists an opinion Ps ∈∆ and a sequence (Zi)

∞
i=1 of {0,1}-probabilities such

that

P = αPs + (1−α)

∞∑

i=1

βiZi,

where α,βi ∈ [0,1] for every i and
∑∞

i=1 βi = 1.

Given an algebra A, P ∈ P(A) is strongly continuous if for every ε > 0
there exists a partition {A1, . . . ,An} of Ω such that Ai ∈ A and P (Ai)< ε
for every i.

Theorem 13. Let A be a σ-algebra. A probability P ∈ P(A) is strongly

continuous if and only if it is strongly nonatomic.

Proof. See Bhaskara Rao and Bhaskara Rao (1983), Theorem 11.4.5.
�

Theorem 14. For every P ∈ P, there exists an opinion P̃ ∈∆ such that

P (U)≤ P̃ (U)

for every open set U .

Proof. We first prove the result for the case where P is a {0,1}-
probability. To this end, fix a {0,1}-probability Z. Let C ={U :U open,
Z(U) = 1}. The collection C is closed under finite intersection.

We now construct a sequence (Dn)
∞
n=1 of countable, dense and pairwise

disjoint subsets of Ω. The proof of this claim proceeds by induction. The
space Ω =X∞ is separable, so it has a countable dense subset D1. Assume
that for some N the sets D1, . . . ,DN have been defined and satisfy the
desired properties. Let (Vk)

∞
k=1 be a countable base of Ω and for each k

pick a path ωk ∈ Vk −
⋃N

n=1Dn. Let DN+1 = {ω1, ω2, . . .}. This completes
the induction step and the proof of the claim.

For every n, the collection

Cn = {U ∩Dn :U ∈ C}
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is closed under finite intersection and does not contain the empty set. By
Theorem 11, for every n there exists a {0,1}-probability Zn such that
Zn(E) = 1 for every E ∈ Cn. For each n and for every open set U , if Z(U) =
1 then U ∩ Dn ∈ Cn and Zn(U) = 1. Hence, Z(U) ≤ Zn(U). Let λ be a
strongly continuous finitely additive probability on (N,2N) and define the

function Z̃ :Σ→ [0,1] as

Z̃(E) =

∫

N

Zn(E)dλ(n)

for every E ∈Σ.
It follows from the additivity of the integral that Z̃ ∈ P. For every open set

U , if Z(U) = 1 then Z̃(U) =
∫
N
Zn(U)dλ(n) =

∫
N
1dλ(n) = 1. Hence, Z(U)≤

Z̃(U). It remains to prove that Z̃ is strongly nonatomic. By Theorem 13, it
is enough to prove it is strongly continuous. Fix ε > 0. Since λ is strongly
continuous, we can find a partition {Π1, . . . ,Πk} of N such that λ(Πi)≤ ε for
every i = 1, . . . , k. Consider now the partition {

⋃
m∈Π1

Dm, . . . ,
⋃

m∈Πk
Dm,

(
⋃

m∈NDm)c} of Ω. For every i= 1, . . . , k and n, we have Zn(
⋃

m∈Πi
Dm) =

1Πi
(n) where 1Πi

is the indicator function of Πi. Therefore,

Z̃

( ⋃

m∈Πi

Dm

)
=

∫

N

Zn

( ⋃

m∈Πi

Dm

)
dλ(n)

=

∫

N

1Πi
(n)dλ(n)

= λ(Πi)≤ ε

and Z̃((
⋃

m∈NDm)c) = 0. This proves that Z̃ is strongly continuous.
Now let P be any finitely additive probability. By the Hammer–Sobczyk

decomposition, we can write P as the convex combination

P = αPs + (1−α)
∞∑

i=1

βiZi,

where Ps is strongly nonatomic and each Zi is a {0,1}-probability. For each

i, let Z̃i be an opinion such that Zi(U)≤ Z̃i(U) for every open set U . Define

P̃ = αPs + (1−α)
∑∞

i=1 βZ̃i. It is easy to see that P̃ is strongly continuous.
By Theorem 13, it is an opinion. For every open set U , we have

P (U) = αPs(U) + (1− α)

∞∑

i=1

βiZi(U)

≤ αPs(U) + (1− α)
∞∑

i=1

βiZ̃i(U) = P̃ (U)

as desired. �
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APPENDIX D: PROOFS OF THEOREMS 2–6

Theorem 15 [Fan (1953)]. Let X and Y be convex subsets of two vector

spaces. Let f :X ×Y →R. If X is compact Hausdorff and f is concave with

respect to Y and convex and lower semicontinuous with respect to X, then

sup
y∈Y

min
x∈X

f(x, y) =min
x∈X

sup
y∈Y

f(x, y).

See Fan (1953) for a more general version of this theorem.

Proof of Theorem 2. Define the function V :P×∆f∆−→R as

V (P, ζ) =

∫
ζ({Q ∈∆:ω /∈ T (Q)})dP (ω)

for every (P, ζ) ∈ P ×∆f∆. The function V is affine in each variable and
continuous with respect to P. The weak* topology is Hausdorff. Moreover,
it follows from the Riesz representation and Banach–Alaoglu theorems that
P is compact [see Aliprantis and Border (2006), Theorems 14.4 and 6.21].
All the conditions of Fan’s Minmax theorem are verified, therefore,

sup
ζ∈∆f∆

min
P∈P

V (P, ζ) = min
P∈P

sup
ζ∈∆f∆

V (P, ζ).(D.1)

By Theorem 14, for every P ∈ P there exists P̃ ∈ ∆ such that P (U) ≤

P̃ (U) for every open set U . Because T (P̃ ) is an open set, then P (T (P̃ ))≤

P̃ (T (P̃ ))≤ ε. That is, V (P, δ
P̃
) = 1− P (T (P̃ ))≥ 1− ε. Thus,

sup
ζ∈∆f∆

min
P∈P

V (P, ζ) = min
P∈P

sup
ζ∈∆f∆

V (P, ζ)≥min
P∈P

V (P, δ
P̃
)≥ 1− ε.

For every δ ∈ (0,1− ε], there exists a strategy ζsuch that V (P, ζ)> 1− ε− δ
for every P ∈ P. In particular,

V (δω, ζ) = ζ({Q ∈∆:ω /∈ T (Q)})≥ 1− ε− δ

for every path ω. �

Proof of Theorem 3. Fix ε > 0 and a path ω. By Theorem 9, for
every P ∈∆BD we can choose a partition {C1, . . . ,Cn} of cylinders such that
P (Ci)< ε for every i= 1, . . . , n. Let ω ∈Ci. There exists a time tP such that
ωtP =Ci. Hence, P (ωtP )< ε. Define a test T as T (P ) = ωtP for every opinion
P ∈∆BD. The test ∆BD-controls for type I errors with probability 1− ε.

Now, let (P1, . . . , Pn) be the support of a strategy ζ . Choose a time t such
that t≥ tPi

for each i= 1, . . . , n. Then

ωt ⊆

n⋂

i=1

T (Pi)

hence, ζ({P ∈∆: ω̃ /∈ T (P )}) = 0 for every path ω̃ in ωt. �
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Proof of Theorem 4. Recall that F is the algebra generated by cylin-
ders. Fix a probability π ∈ P(F) such that π(ωt)→ 0 as t→∞ for every path
ω. Now let I be a strictly proper ideal and consider the collection of events

A= {(F ∩L)∪ S :F ∈ F , S ∈ I ∩Σ,Lc ∈ I ∩Σ}.(D.2)

We prove it is an algebra. If (F ∩L) ∪ S ∈A, then its complement is equal
to

(F ∩L)c ∩ Sc = (F c ∪Lc)∩ Sc = (F c ∩ Sc)∪ (Lc ∩ Sc)

since Sc is large and Lc∩Sc is small we have that (F c ∩Sc)∪ (Lc ∩Sc) ∈A.
Using the notation in (D.2), let (F1 ∩L1)∪S1 and (F2 ∩L2)∪S2 belong to
A. Observe that L= L1 ∩L2 is large and, therefore L1 −L and L2 −L are
small. We can write

(F1 ∩L1)∪ S1 ∪ (F2 ∩L2)∪ S2 = (F1 ∩L)∪ (F2 ∩L)∪ S
(D.3)

= ((F1 ∪ F2)∩L)∪ S,

where S = (F1∩ (L1−L))∪S1∪ (F2∩ (L2−L))∪S2 is a union of small sets.
This proves that (F1 ∩L1)∪S1 ∪ (F2 ∩L2)∪S2 ∈A. We conclude that A is
an algebra. By construction, F ⊆A⊆Σ.

Define a set function π̃ :A→ [0,1] as

π̃((F ∩L)∪ S) = π(F )

for each (F ∩L)∪ S ∈A.
We verify that π̃ is well defined. Using the notation in (D.2), let (F1 ∩

L1)∪ S1 = (F2 ∩L2)∪ S2. Equivalently,

(F1 ∩F2 ∩L1)∪ (F1 ∩F c
2 ∩L1)∪ S1 = (F2 ∩L2)∪ S2.

Therefore, F1∩F c
2 ∩L1 ⊆ S2. Hence, F1∩F c

2 ∩L1 is small. But also F1∩F c
2 ∩

Lc
1 ⊆Lc

1 is small, hence F1 ∩F c
2 is small. The set F1 ∩F c

2 is either empty or
a union of cylinders. By the definition of strictly proper ideal F1 ∩F c

2 must
be empty. Similarly, F2 ∩ F c

1 =∅. Hence, F1 = F2, and π̃((F1 ∩L1) ∪ S1) =
π̃((F2 ∩L2)∪ S2).

We prove π̃ is additive. Let (F1∩L1)∪S1 and (F2∩L2)∪S2 be two disjoint
sets belonging to A. The sets F1 and F2 are disjoint. To see this, notice that
F1 ∩F2 ∩L1 ∩L2 =∅ implies F1 ∩F2 ⊆ (L1 ∪L2)

c. The set F1 ∩F2 is either
empty or a union of cylinders. Since (L1 ∪L2)

c is small, it must be empty.
Let L= L1 ∩L2 and S = (F1 ∩ (L1 −L))∪S1 ∪ (F2 ∩ (L2 −L))∪S2. Similar
to (D.3), we have

π̃((F1 ∩L1)∪ S1 ∪ (F2 ∩L2)∪ S2) = π̃(((F1 ∪F2)∩L)∪ S)

= π(F1 ∪ F2)

= π(F1) + π(F2)

= π̃((F1 ∩L1)∪ S1) + π̃((F2 ∩L2)∪ S2).
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Therefore, π̃ is a finitely additive probability defined on (Ω,A). By construc-
tion, it satisfies π̃(S) = 0 for every S ∈ I ∩Σ.

Consider the set of extensions E(π̃,A,Σ) and let P be one of its extreme
points. We prove that P is an extreme point of E(π,F ,Σ). Write P as
P = αQ+(1−α)R with Q,R ∈E(π,F ,Σ). Let π̃Q and π̃R be the restriction
of Q and R on A. Since P is an extension of π̃, we have π̃ = απ̃Q+(1−α)π̃R.
We claim that π̃ = π̃Q = π̃R. For every S ∈ I ∩ Σ, since π̃(S) = 0, then
π̃Q(S) = π̃R(S) = 0. Therefore,

π̃Q((F ∩L)∪ S) = π̃Q(F ∩L) = π̃Q(F ) = π(F ) = π̃((F ∩L)∪ S)

for every event (F ∩ L) ∪ S ∈A. The same is true for π̃R. Therefore, π̃Q =
π̃R = π̃. This proves that Q,R ∈E(π̃,A,Σ). Because P is an extreme point
of E(π̃,A,Σ), then P =Q= R. This concludes the proof that P is an ex-
treme point of E(π,F ,Σ). By Theorem 8, P satisfies the Blackwell–Dubins
property.

It remains to prove that P is strongly nonatomic. Since π(ωt) → 0 for
every ω, π is strongly continuous. A fortiori, P is strongly continuous and
also strongly nonatomic by Theorem 13. �

Proof of Theorem 5. Define the function V :P×∆f∆
∗ →R as

V (P, ζ) =

∫
ζ({Q ∈∆∗ :ω /∈ T (Q)})dP (ω)

for all (P, ζ) ∈ P×∆f∆
∗. Given P ∈ P, by Theorem 14 there exists an opinion

Q such that P (U)≤Q(U) for every open set U . By Theorem 4 in Regazzini
(1985), we can find a conditional opinion Q∗ ∈∆∗ such that Q= Q∗(·|Ω).
Then P (T (Q∗)) ≤ Q(T (Q∗)) = Q∗(T (Q∗)) ≤ ε. The proof is complete by
replicating the argument used in the proof of Theorem 2. �

Proof of Theorem 6. We first prove that for every P ∈ ∆∗
BD and

every path ω, limt P (ωt) = 0. We argue by contradiction. Let ωo be a path
such that inft P (ωt

o) = δ > 0. Fix a sequence of positive real numbers (ξt)
such that

P (ωt
o) = δ+ ξt

for every t.
Fix ε ∈ (0, 12 ). Because P is strongly nonatomic, for every time t we can

find an event F t ⊆ ωt
0 such that P (F t) = 1

2P (ωt
0). For every n, we have

P (F t|ωt+n
0 ) =

P (F t ∩ ωt+n
o )

P (ωt+n
o )

=
P (F t)−P (ωt

o − ωt+n
o )

δ + ξt+n
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=
(1/2)(δ + ξt)− (ξt − ξt+n)

δ+ ξt+n

=
1

2

δ + ξt
δ + ξt+n

−
ξt − ξt+n

δ+ ξt+n

.

We can therefore fix t̄ large enough such that F = F t̄ satisfies P (F |ωt
0) ∈

(12 − ε, 12 + ε) for every t > t̄.
Let Q be the opinion defined as

Q(E) =
P (E ∩ F )

P (F )

for every event E. Then Q≪ P (·|Ω). By Theorem 4 in Regazzini (1985),

we can find a conditional opinion Q̃ satisfying Q̃(·|Ω) =Q. The proof of the

claim will be concluded by showing that P does not merge with Q̃. Note
that for every t > t̄

Q̃(ωt
0) =

P (F ∩ ωt
0)

P (ωt
0)

P (ωt
0)

P (F )
= P (F |ωt

0)
P (ωt

0)

(1/2)P (ωt̄
0)

= P (F |ωt
0)2

δ + ξt
δ + ξt̄

hence, for all t > t̄

Q̃(ωt
0)≥ (1− 2ε)

δ

δ + ξt̄
.

Moreover, for every t > t̄,

Q̃

({
ω : sup

E

|Q(E|ωt)−P (E|ωt)|>
1

2
− ε

})
> Q̃

({
ω :P (F |ωt)<

1

2
+ ε

})

≥ Q̃(ωt
0),

where the first equality follows from Q̃(F |ωt
0) = 1 and the second equality

follows from P (F |ωt
0)<

1
2 + ε. Because the sequence (Q̃(ωt̄

0), Q̃(ωt̄+1
0 ), . . .) is

bounded away from 0, P does not merge to Q̃. Therefore, we can conclude
that for every P ∈∆∗

BD and every path ω, limtP (ωt) = 0.
Now fix a path ω and ε > 0. We can find for every P ∈∆∗

BD a time tP
such that P (ωtP )< ε. Because X is endowed with the discrete topology, ωtP

is an open set. Let T (P ) = ωtP for every P ∈∆∗
BD. The test ∆∗

BD-controls
for type I error with probability 1− ε. The same argument in the proof of
Theorem 3 shows that T is nonmanipulable. �
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Sankhyā Ser. A 50 363–380. MR1065549
Dawid, A. P. (1985). Calibration-based empirical probability. Ann. Statist. 13 1251–1285.

MR0811493
de Finetti, B. (1990). Theory of Probability. Wiley, Chicester.
Dekel, E. and Feinberg, Y. (2006). Non-Bayesian testing of a stochastic prediction.

Rev. Econom. Stud. 73 893–906. MR2260750
Diaconis, P. and Freedman, D. (1986). On the consistency of Bayes estimates. Ann.

Statist. 14 1–26. MR0829555
Fan, K. (1953). Minimax theorems. Proc. Natl. Acad. Sci. USA 39 42–47. MR0055678
Feinberg, Y. and Lambert, N. (2011). Mostly calibrated. Mimeo.
Feinberg, Y. and Stewart, C. (2008). Testing multiple forecasters. Econometrica 76

561–582. MR2406866
Fortnow, L. and Vohra, R. V. (2009). The complexity of forecast testing. Econometrica

77 93–105. MR2477844
Foster, D. P. and Vohra, R. (2011). Calibration: Respice, adspice, prospice. Mimeo.
Foster, D. P. and Vohra, R. V. (1998). Asymptotic calibration. Biometrika 85 379–390.

MR1649119
Foster, D. and Young, P. (2001). On the impossibility of predicting the behavior of

rational agents. Proc. Natl. Acad. Sci. USA 98 12848–12853.
Foster, D. P. and Young, H. P. (2003). Learning, hypothesis testing, and Nash equi-

librium. Games Econom. Behav. 45 73–96. MR2022861

http://www.ams.org/mathscinet-getitem?mr=2406865
http://www.ams.org/mathscinet-getitem?mr=2888863
http://www.ams.org/mathscinet-getitem?mr=2378491
http://www.ams.org/mathscinet-getitem?mr=1899945
http://www.ams.org/mathscinet-getitem?mr=2301563
http://www.ams.org/mathscinet-getitem?mr=0751777
http://www.ams.org/mathscinet-getitem?mr=0149577
http://www.ams.org/mathscinet-getitem?mr=0206900
http://www.ams.org/mathscinet-getitem?mr=2409394
http://www.ams.org/mathscinet-getitem?mr=1065549
http://www.ams.org/mathscinet-getitem?mr=0811493
http://www.ams.org/mathscinet-getitem?mr=2260750
http://www.ams.org/mathscinet-getitem?mr=0829555
http://www.ams.org/mathscinet-getitem?mr=0055678
http://www.ams.org/mathscinet-getitem?mr=2406866
http://www.ams.org/mathscinet-getitem?mr=2477844
http://www.ams.org/mathscinet-getitem?mr=1649119
http://www.ams.org/mathscinet-getitem?mr=2022861


MERGING AND TESTING OPINIONS 25

Fudenberg, D. and Kreps, D. M. (1993). Learning mixed equilibria. Games Econom.

Behav. 5 320–367. MR1227915

Fudenberg, D. and Levine, D. K. (1998). The Theory of Learning in Games. MIT

Press Series on Economic Learning and Social Evolution 2. MIT Press, Cambridge,
MA. MR1629477

Fudenberg, D. and Levine, D. K. (1999). An easier way to calibrate. Games Econom.

Behav. 29 131–137. MR1729313

Fudenberg, D. and Levine, D. K. (2009). Learning and equilibrium. Annu. Rev. Econ.
1 385–420.

Gradwohl, R. and Salant, Y. (2011). How to buy advice. Mimeo.

Gradwohl, R. and Shmaya, E. (2013). Tractable falsification. Mimeo.
Hart, S. and Mas-Colell, A. (2013). Simple Adaptive Strategies: From Regret-Matching

to Uncoupled Dynamics. World Scientific, Singapore.
Hu, T. W. and Shmaya, E. (2013). Expressible inspections. Theor. Econ. 8 263–280.

MR3062153

Jackson, M. O., Kalai, E. and Smorodinsky, R. (1999). Bayesian representation of
stochastic processes under learning: de Finetti revisited. Econometrica 67 875–893.

MR1693917
Kalai, E. and Lehrer, E. (1993a). Rational learning leads to Nash equilibrium. Econo-

metrica 61 1019–1045. MR1234792

Kalai, E. and Lehrer, E. (1993b). Subjective equilibrium in repeated games. Econo-
metrica 61 1231–1240. MR1234796

Lehrer, E. (2001). Any inspection is manipulable. Econometrica 69 1333–1347.
MR1848782

Lehrer, E. and Smorodinsky, R. (1996a). Compatible measures and merging. Math.

Oper. Res. 21 697–706. MR1403312
Lehrer, E. and Smorodinsky, R. (1996b). Merging and learning. In Statistics, Probabil-

ity and Game Theory. Institute of Mathematical Statistics Lecture Notes—Monograph

Series 30 147–168. IMS, Hayward, CA. MR1481779
Lipecki, Z. (2001). Cardinality of the set of extreme extensions of a quasi-measure.

Manuscripta Math. 104 333–341. MR1828879
Lipecki, Z. (2007). On compactness and extreme points of some sets of quasi-measures

and measures. IV. Manuscripta Math. 123 133–146. MR2306629
Monderer, D., Samet, D. and Sela, A. (1997). Belief affirming in learning processes.

J. Econom. Theory 73 438–452.

Nachbar, J. H. (1997). Prediction, optimization, and learning in repeated games. Econo-
metrica 65 275–309. MR1433485

Nachbar, J. H. (2001). Bayesian learning in repeated games of incomplete information.
Soc. Choice Welf. 18 303–326. MR1838240

Nachbar, J. H. (2005). Beliefs in repeated games. Econometrica 73 459–480. MR2117239

Olszewski, W. (2011). Calibration and expert testing. Mimeo.
Olszewski, W. and Peski, M. (2011). The principal agent approach to testing-experts.

American Economic Journal: Microeconomics 3 89–113.
Olszewski, W. and Sandroni, A. (2007). Contracts and uncertainty. Theor. Econ. 2

1–13.

Olszewski, W. and Sandroni, A. (2008). Manipulability of future-independent tests.
Econometrica 76 1437–1466. MR2468602

Olszewski, W. and Sandroni, A. (2009a). A nonmanipulable test. Ann. Statist. 37

1013–1039. MR2502659

http://www.ams.org/mathscinet-getitem?mr=1227915
http://www.ams.org/mathscinet-getitem?mr=1629477
http://www.ams.org/mathscinet-getitem?mr=1729313
http://www.ams.org/mathscinet-getitem?mr=3062153
http://www.ams.org/mathscinet-getitem?mr=1693917
http://www.ams.org/mathscinet-getitem?mr=1234792
http://www.ams.org/mathscinet-getitem?mr=1234796
http://www.ams.org/mathscinet-getitem?mr=1848782
http://www.ams.org/mathscinet-getitem?mr=1403312
http://www.ams.org/mathscinet-getitem?mr=1481779
http://www.ams.org/mathscinet-getitem?mr=1828879
http://www.ams.org/mathscinet-getitem?mr=2306629
http://www.ams.org/mathscinet-getitem?mr=1433485
http://www.ams.org/mathscinet-getitem?mr=1838240
http://www.ams.org/mathscinet-getitem?mr=2117239
http://www.ams.org/mathscinet-getitem?mr=2468602
http://www.ams.org/mathscinet-getitem?mr=2502659


26 L. POMATTO, N. AL-NAJJAR AND A. SANDRONI

Olszewski, W. and Sandroni, A. (2009b). Strategic manipulation of empirical tests.
Math. Oper. Res. 34 57–70. MR2542989

Olszewski, W. and Sandroni, A. (2011). Falsifiability. American Economic Review 101

788–818.
Plachky, D. (1976). Extremal and monogenic additive set functions. Proc. Amer. Math.

Soc. 54 193–196. MR0419711
Regazzini, E. (1985). Finitely additive conditional probabilities. Rend. Sem. Mat. Fis.

Milano 55 69–89. MR0933711
Regazzini, E. (1987). de Finetti’s coherence and statistical inference. Ann. Statist. 15

845–864. MR0888444
Sandroni, A. (1998). Necessary and sufficient conditions for convergence to Nash equilib-

rium: The almost absolute continuity hypothesis. Games Econom. Behav. 22 121–147.
MR1604792

Sandroni, A. (2003). The reproducible properties of correct forecasts. Internat. J. Game

Theory 32 151–159. MR2046685
Sandroni, A., Smorodinsky, R. and Vohra, R. V. (2003). Calibration with many

checking rules. Math. Oper. Res. 28 141–153. MR1961271
Savage, L. J. (1954). The Foundations of Statistics. Wiley, New York. MR0063582
Schervish, M. and Seidenfeld, T. (1990). An approach to consensus and certainty with

increasing evidence. J. Statist. Plann. Inference 25 401–414. MR1064433
Shmaya, E. (2008). Many inspections are manipulable. Theor. Econ. 3 367–382.
Sobczyk, A. and Hammer, P. C. (1944). A decomposition of additive set functions. Duke

Math. J. 11 839–846. MR0011164
Stewart, C. (2011). Nonmanipulable Bayesian testing. J. Econom. Theory 146 2029–

2041. MR2887773
Vovk, V. and Shafer, G. (2005). Good randomized sequential probability forecasting is

always possible. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 747–763. MR2210691
Walker, S. G., Lijoi, A. and Prünster, I. (2005). Data tracking and the understanding

of Bayesian consistency. Biometrika 92 765–778. MR2234184
Young, H. P. (2002). On the limits to rational learning. European Economic Review 46

791–799.
Young, P. (2004). Strategic Learning and Its Limits. Oxford Univ. Press, Oxford, UK.

Managerial Economics & Decision Sciences Department

Kellogg School of Management

2001 Sheridan Road

Evanson, Illinois 60208

USA

E-mail: al-najjar@kellogg.northwestern.edu
l-pomatto@kellogg.northwestern.edu
sandroni@kellogg.northwestern.edu

URL: http://www.kellogg.northwestern.edu/faculty/directory/al-najjar nabil.aspx
http://www.kellogg.northwestern.edu/faculty/pomatto/index.htm
http://www.kellogg.northwestern.edu/faculty/directory/sandroni alvaro.aspx

http://www.ams.org/mathscinet-getitem?mr=2542989
http://www.ams.org/mathscinet-getitem?mr=0419711
http://www.ams.org/mathscinet-getitem?mr=0933711
http://www.ams.org/mathscinet-getitem?mr=0888444
http://www.ams.org/mathscinet-getitem?mr=1604792
http://www.ams.org/mathscinet-getitem?mr=2046685
http://www.ams.org/mathscinet-getitem?mr=1961271
http://www.ams.org/mathscinet-getitem?mr=0063582
http://www.ams.org/mathscinet-getitem?mr=1064433
http://www.ams.org/mathscinet-getitem?mr=0011164
http://www.ams.org/mathscinet-getitem?mr=2887773
http://www.ams.org/mathscinet-getitem?mr=2210691
http://www.ams.org/mathscinet-getitem?mr=2234184
mailto:al-najjar@kellogg.northwestern.edu
mailto:l-pomatto@kellogg.northwestern.edu
mailto:sandroni@kellogg.northwestern.edu
http://www.kellogg.northwestern.edu/faculty/directory/al-najjar_nabil.aspx
http://www.kellogg.northwestern.edu/faculty/pomatto/index.htm
http://www.kellogg.northwestern.edu/faculty/directory/sandroni_alvaro.aspx

	1 Introduction
	1.1 Related literature

	2 Setup
	2.1 Strategic forecasting

	3 Merging of opinions
	4 Main results
	5 Category tests
	6 Extensions
	6.1 Setup
	6.2 Conditional probabilities
	6.3 Merging
	6.4 Results

	A Appendix A
	A.1 Preliminaries

	B Merging of opinions
	C Strongly nonatomic probabilities
	D Proofs of Theorems 2–6
	Acknowledgements
	References
	Author's addresses

