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Forecasting

• Every day a forecaster announces a probability p of rain.

• We want to understand if and how these predictions can be refuted
empirically.

Probabilistic predictions:

• weather and climate (Gneiting and Raftery, 2005)

• aggregate output and inflation (Bank of England, Diebold, Tay and
Wallis, 1997), epidemics (Alkema, Raftery and Clark, 2007)

• seismic hazard (Jordan et al., 2011)

• financial risk (Timmermann, 2000)

• demographic variables (Raftery et al., 2012)

• elections (Tetlock, 2005), etc.



Forecasting

A sample of surveys on forecasting:

• Murphy, Winkler,’84: Probability Forecasting in Metereology, JASA.

• Diebold et al., ’97: Evaluating Density Forecasts, IER.

• Gneiting, Katzfuss, ’14: Probability Forecasting, Ann.Rev.Econ.

A recurrent question: what is a good criterion for judging the quality of
probabilistic forecasts?

A common theme: good forecasts should display “statistical
compatibility between the probabilistic forecasts and the realizations;
essentially, the observations should be indistinguishable from random
draws from the predictive distributions. [Murphy and Winkler]”



Calibration Test

Many variations across fields: density forecasts, Value-at-Risk, etc.



Formal Definitions

• In each period an outcome, 0 or 1, is publicly observed.

• Ω = {0, 1}∞ : set of all paths.

• ∆(Ω) : set of all Borel probability measures on Ω.

• ωt : realization at time t along path ω.

• (f1, f2, . . .) : forecasting rule. Each ft takes values in [0, 1] and is
measurable w.r.t. the information available at time t − 1.



Calibration

• Partition [0, 1] into [0, 1/m], . . . , [(m − 1)/m, 1]. Let Mi =
2i−i
2m .

• Given ω consider the frequency

ρTMi
(ω) =

∑T
t=1 ωt1{ft = Mi}∑T
t=1 1{ft = Mi}

(let ρTMi
= Mi if the denominator is 0)

• ρTMi
: frequency of 1’s conditional on the forecast being Mi .
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Calibration

Definition
A forecasting rule (f1, f2, . . .) is 1/m-calibrated along path ω if

lim sup
T

|ρTMi
(ω)−Mi | ≤

1

2m

for every i such that lim supT
∑T

t=1 1{ft = Mi}(ω) > 0.

• Along a given path ω many different forecasting rules can be
calibrated. The test can be made harder by coupling it with a
collection of checking rules (e.g. Sandroni, Smorodinsky, Vohra,
1999).



Fundamental property

• Let P ∈ ∆(Ω) be the true law governing the data.

• P is unrestricted and unknown.

Dawid (1982)
A forecaster who predicts according to P passes the calibration test P-a.s.

Hence:

• Type-I error free: No risk of rejecting the correct predictions of an
expert who knows the true law.

• The tester is not required to have any preconceived theory about the
problem at hand. The forecaster can be evaluated on purely
empirical ground.



Tests and incentive problems

Two main approaches:

1 Contract theory: forecasters as agents advising a principal about the
best course of action.

2 Statistical tests: alternative to standard contracts. Used when:

• Forecasts lack an easily identifiable user.
(e.g. National Weather Service, Macroeconomics)

• Contracts are impractical.

• The decision problem is not well defined.
(e.g. testing of scientific theories)

Key issue:
Forecasters may be concerned about their reputation.



Adverse selection

Consider:

• An expert informed about the true probabilistic law governing the
data.

• A forecaster who is ignorant about the data generating process but
is interested in passing the test.

The calibration test cannot discriminate between the two.



Adverse selection

Theorem (Foster and Vohra, 1998)
For every m, there exists a probability measure ζ over forecasting rules
such that for every ω, the realized sequence of forecasts

(f1, f2, . . .)

generated by ζ is almost surely 1/m-calibrated along the path ω.

• The calibration test can be passed without any knowledge of the
actual data generating process.
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Algorithm (Binary Case)

Two measures of miscalibration, deficit and excess :

dT =

(
1

2
− ρT3/4

)
1

T

T∑
t=1

1{ft = 3/4}

eT =
(
ρT1/4 − 1/2

) 1

T

T∑
t=1

1{ft = 1/4}

Calibration requires dT ≤ 0 and eT ≤ 0 as T → ∞



Algorithm (Binary Case)

1 If dT ≤ 0 let fT+1 = 3/4;

2 If eT ≤ 0 let fT+1 = 1/4; otherwise

3 Choose fT+1 = 1/4 with prob.

dT
dT + eT

and fT+1 = 3/4 with prob.

eT
dT + eT

i.e. randomize with weights that are inversely proportional to the
degrees of miscalibration.

Immediate to extend to the non-binary
case.
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Approachability

• While the algorithm is simple looking, a proof is highly nontrivial.

• I will cover a proof due to Foster and Hart-Mas-Colell.

• It relies on the theory of repeated zero-sum vector games,
initiated by Blackwell (1956).

• A (finite) zero-sum vector game is a game ⟨u,A,B⟩ where

u : A× B → Rm

• We are going to consider the corresponding repeated game.
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Blackwell (1956)

Definition
A set C ⊆ Rm is approachable if there exists a strategy (σt)∞t=1 of
Player 1 such that for any strategy of Player 2

dist

(
1

T

T∑
t=1

u
(
at , bt

)
,C

)
→ 0 a.s.

Definition
An halfspace {x ∈ Rm : ⟨x , λ⟩ ≥ β} is enforceable if there exists a
randomization π ∈ ∆(A) such that⟨∑

a∈A
π (a) u (a, b) , λ

⟩
≥ β for all b ∈ B.



Blackwell (1956)

Theorem (Blackwell, 1956)
A closed convex set C is approachable if and only if every halfspace
containing C is enforceable.

• Original motivation: an analog of von Neumann’s minmax theorem.

• Applications across several fields: repeated games (Aumann and
Maschler, 1995), learning in games (Hart and Mas-Colell, 2000),
contract theory (Chassang, 2013), algorithmic game theory, and
machine learning (Cesa-Bianchi and Lugosi, 03).

• Key to the applicability of the result is its constructive proof.



Main Ideas:

• Look at the accumulated average payoff vector

wT =
1

T

T∑
t=1

u
(
at , bt

)

• Let c ∈ C be the point of minimum distance from wT .

• Then
C ⊆ {x ∈ Rm : ⟨x − c,wT − c⟩ ≤ 0} .



Main Ideas:

• Blackwell Strategy: play according to a randomization π such that⟨∑
π
(
aT+1

)
u
(
aT+1, b

)
︸ ︷︷ ︸

expected vector payoff

− c,wT − c

⟩
≤ 0 for all b.

• A geometric argument suggests that E [δT+1], the expected distance
from C , shrinks over time.



Main Ideas:

Let δT+1 = minx∈C

∥∥∥ 1
T+1

∑T+1
t=1 u (at , bt)− x

∥∥∥2
δT+1 ≤

∥∥∥∥ T

T + 1
(wT − c) +

1

T + 1

(
u
(
aT+1, bT+1

)
− c
)∥∥∥∥2

δT+1 ≤
T 2

(1 + T )2
δT+

2T

(1 + T )2

⟨
u
(
aT+1, bT+1

)
− c ,wT − c

⟩
+

M

(1 + T )2

Taking expectations:

E [δT+1] ≤
T 2

(1 + T )2
E [δT ] +

M

(1 + T )2

=⇒ E [δT ] ≤ M
T . Hence E [δT+1] → 0 as T → ∞.
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Back to Calibration:

Two measures of miscalibration:

dT =

(
1

2
− ρT3/4

)
1

T

T∑
t=1

1{ft = 3/4}

eT =

(
ρT1/4 −

1

2

)
1

T

T∑
t=1

1{ft = 1/4}

We want to find a strategy such that (eT , dT ) converges to the negative
orthant as T → ∞, no matter how data unfolds.

Plan of action: establish that (eT , dT ) is the average accumulated
vector payoff in an appropriate repeated zero-sum game against Nature.
Then show that the negative orthant is approachable.

Blackwell’s strategy will lead to Foster and Vohra’s algorithm.
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Proof of the Calibration Theorem
Consider a repeated zero-sum game where in each period t,

• Nature chooses a realization ωt ∈ {0, 1}
• The forecaster chooses a prediction ft ∈ {1/4, 3/4}

Payoffs:

u(ωt , 1/4) =

(
ωt −

1

2
, 0

)

u(ωt , 3/4) =

(
0,

1

2
− ωt

)

Accumulated average payoff = vector of miscalibration scores:

wT =
1

T

T∑
t=1

u(ωt , ft) = (eT , dT )
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Proof of the Calibration Theorem

We must find probabilities π (1/4) and π (3/4) such that

⟨
π (1/4)

(
ωt −

1

2
, 0

)
+ π (3/4)

(
0,

1

2
− ωt

)
,
(
e+T , d+

T

)⟩
≤ 0 for all ωt

A solution is obtained by the following randomization:

• If e+T = 0 set π (1/4) = 1

• If d+
T = 0 set π (3/4) = 1

• Otherwise set
π (1/4)

π (3/4)
=

dT
eT
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Adverse selection

Foster and Vohra (1998)
There exists a randomized forecasting algorithm that requires no
knowledge about the data generating process and makes the forecaster
calibrated with high probability, no matter what data is realized.

Fundamental question: What tests cannot be manipulated?



Model: Basic Ingredients

• In each period an outcome from a finite set X is publicly observed.

• Ω = X∞ : set of all paths.

• ∆(Ω) : set of all Borel probability measures on Ω.



Model: Empirical Tests

• A forecaster claims to know the law P ∈ ∆(Ω) governing the data.

• A tester is interested in evaluating this claim.

Timing:

1 The tester designs a test

T : Ω×∆(Ω)→ {pass, reject}

2 The forecaster observes T and reports a prediction P.

3 Nature produces a path ω ∈ Ω.

4 T (ω,P) determines acceptance or rejection.



Example · Likelihood-Ratio Test

1 The forecaster announces P.

2 The test produces a competing theory P∗ such that

P(E ) = 1 and P∗(E ) = 0 for some E ⊆ Ω

3 T (ω,P) = pass if and only if

lim
n→∞

P(ωn)

P∗(ωn)
=∞

By a martingale convergence argument, P{ω : T (ω,P) = pass} = 1 for
every P.



Adverse Selection

The forecaster is either:

• A true expert who knows the true law P governing the data, and
reports it truthfully.

• A strategic forecaster uninformed but interested in passing the
test.

A (mixed) strategy is a randomization ζ ∈ ∆(∆(Ω)) with finite support.



Examples:

1 Fix a benchmark measure P∗ with full support and a time n.

2 The forecaster announces P ∈ ∆(Ω).

3 T (ω,P) = pass if and only if

P(ωn)

P∗(ωn)
> 1

There exists a strategy ζ ∈ ∆(∆(Ω)) such that

ζ{P : T (ω,P) = pass} ≥ 1− 1

2n

for every ω ∈ Ω.
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Desiderata

• I : The test does not reject a true expert.

Definition
A test T passes the truth with probability 1− ε if for all P ∈ ∆(Ω)

P{ω : T (ω,P) = pass} ≥ 1− ε



Desiderata

• II : The test decides in finite time.

Definition
A test T is finite if for every P ∈ ∆(Ω) there exists a time NP such that
T (·,P) is measurable with respect to FNP

.



Sandroni(2003)

Theorem
Consider a test T that is finite and passes the truth with probability
1− ε. Then, for every δ > 0 there exists a strategy ζ such that

ζ{ω : T (ω,P) = pass} ≥ 1− ε− δ

for every path ω.

• The test can be ignorantly passed without any knowledge about the
data generating process.



Proof

Theorem (Fan)

Let X and Y be convex subsets of two topological vector spaces and
consider a function

V : X × Y → [0, 1]

If

• X is compact

• V (·, y) is convex and lsc

• V (x , ·) is concave

then

min
x

sup
y

V = sup
y

min
x

V

• See Fan (1953) or Mertens (1986), “The minmax theorem for
USC-LSC payoff functions,” IJGT.



Generalizations

• Shmaya (2008): prequential tests.

• Olszewski and Sandroni (2008): future-independent tests.



Nonmanipulable Tests

• Dekel and Feinberg (2006) and Olszewski and Sandroni (2009)
overturned the negative results in the literature by constructing
nonmanipulable tests.

• Their approach: to allow for tests that may not return, for some
realization, a pass/fail decision in finite time.

• But first, a detour.



Verification and Falsification

Let

• 1: a “white swan”

• 0: a “black swan”

consider the claim “all swans are white”

ω = (1, 1, 1, . . . ).

• No finite evidence can verify this claim.

• A single black swan is enough to falsify it.

Popper’s essential claim: falsification is a better maxim than
verification for empirical research.
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Verification and Falsification

More generally, consider a set A ⊆ Ω. Then

• A is open ⇐⇒ ∀ω ∈ A, there exists n s.t. ωn ⊆ A

i.e. if A is true then it can be verified using finite evidence.

• A is closed ⇐⇒ ∀ω /∈ A, there exists n s.t. ωn ⊆ Ac

i.e. if A is false then it can be falsified using finite evidence.



Verification and Falsification

Definition
T is a verification test if

for all P the set {ω : T (ω,P) = pass} is open (1)

T is a falsification test if

for all P the set {ω : T (ω,P) = pass} is closed (2)

(1) : any theory P can be verified by the test.

(2) : any theory P can be falsified by the test.



Falsifiability and Nonmanipulable Tests

Theorem
Consider a verification test T that passes the truth with probability
1− ε. The test can be ingnorantly passed with probabililty 1− ε− δ.

Theorem (DF-OS)

For every ε there exists a falsification test T that passes the truth with
probability 1− ε and is nonmanipulable: for every strategy ζ the set

{ω : ζ({Q : T (ω,Q) = pass}) = 0}

is nonempty and open.



Proof

• Fix ω = (1, 1, 1, . . .).

• Let Rn = ωn − {ω}

• Rn : set of paths where the first n consecutive swans are white but
a black swan is eventually observed.

• Rn ⊇ Rn+1 and
⋂

n R
n = ∅

• For every P ∈ ∆(Ω), P(Rn) ↓ 0 as n→∞.

• For every P fix nP ∈ N large enough s.t. P(RnP ) < ε

• Define T as T (ω,P) = reject ⇐⇒ ω ∈ RnP

• Key Property : the sets RnP are nested.
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Category Tests

Ideally, we would like to establish that for every strategy ζ the set of
paths

{ω : ζ({Q : T (ω,Q) = pass}) = 0}

where a strategic forecaster is rejected is “large” or “typical.”

Following Dekel and Feinberg (2006), the literature has taken as a
desideratum tests where the above set is topologically large.



Category Tests

Theorem (DF-OS)

For every ε there exists a falsification test T that passes the truth with
probability 1− ε and such that for every strategy ζ the set

{ω : ζ({Q : T (ω,Q) = pass}) = 0}

is open and dense.



A Decision Theoretic Perspective

Payoffs:

• 0 outside option

• w > 0 if T = pass

• d < 0 if T = reject

• Uninformed forecasters choose according to Wald’s maxmin
criterion.

Maxmin expected payoff:

v = sup
ζ

inf
P

EP⊗ζ [w1{T = pass}+ d1{T = reject}]

v < 0 whenever T is nonmanipulable.

So, only informed experts will
participate to the test. Hence, T can screen between informed and
uninformed forecasters.
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Another Look at Nonmanipulable Tests

• Fix ω = (1, 1, 1, . . .).

• Let Rn = ωn − {ω}

• For every P ∈ ∆(Ω), P(Rn) ↓ 0 as n→∞.

Why?

• Not a mere technicality.
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The Axioms of Probability

• Consider an agent, Bob, who thinks the data will unfold according
to P.

• Say P(ω) > 0. Then P(Rn) ↓ 0 is equivalent to

P(ω|1, . . . , 1︸ ︷︷ ︸
n

)→ 1 as n→∞

• After sufficiently many white swans are observed the statement “all
swans are white” becomes a virtual certainty. Bob is willing to
conclude, from finite evidence, that a universal law of nature is
true.

• Is Bob justified in making this inference?

Hume: in the absence of a
logical justification for it, induction must either be accepted on faith
or must be rejected.
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true.

• Is Bob justified in making this inference? Hume: in the absence of a
logical justification for it, induction must either be accepted on faith
or must be rejected.



The Axioms of Probability

• Consider an agent, Bob, who thinks the data will unfold according
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• Say P(ω) > 0. Then P(Rn) ↓ 0 is equivalent to

P(ω|1, . . . , 1︸ ︷︷ ︸
n

)→ 1 as n→∞

• An ongoing debate on “Bayesian orgulity” in philosophy of science
revisits these questions in the language of modern probability.

• Intrinsic in Kolmogorov’s axioms of probability (σ-additivity) is a
form of faith in induction.

• In two papers with Nabil Al-Najjar and Alvaro Sandroni, we discuss
these ideas in the context of testing forecasters.



Other approaches:

• Assumptions about the data-generating process.

• Testing multiple forecasters (Al-Najjar and Weinstein, 2008,
Feinberg and Stewart, 2008, Olszewski and Sandroni, 2008).

• Impose a computational bound on strategies (Fortnow and Vohra,
2008, Hu and Shmaya, 2013).

• Focus on a specific decision problem (Olszewski and Peski, 2011,
and Gradwohl and Salant, 2011).

• Evaluate the forecaster’s performance against a default artificial
predictor, by means of a scoring rule (Wilks, 2011, Statistical
Methods in the Atmospheric Sciences, and Lambert et al. 2011).


