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Abstract We provide a simple model to measure the impact of aggregate risks. We
consider agents whose rankings of lotteries over vectors of outcomes satisfy expected
utility and separability. Such rankings are characterized in terms of aggregative utilities
that measure sensitivity to aggregate uncertainty in a straightforward way. We con-
sider applications to models of product variety, portfolio choice, and public attitudes
towards catastrophic risks. The framework lends support to precautionary measures
that penalize policies for exposure to correlation. The model rationalizes a number of
behavioral and policy patterns as attempts to hedge against aggregate uncertainty.

Keywords Aggregate risks · Risk and uncertainty

1 Introduction

An important question facing individuals and economic institutions is how to react to
correlation. A recent example is the debate over the role of systemic risk in financial
markets. Although the financial positions of individual institutions may appear sound,
recent crises make a compelling case for heightened regulatory scrutiny of banks’
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exposure to the correlation in these positions.1 The role of correlation appears, of
course, in other evenmore basic contexts. In consumer theory, for example, a consumer
will likely treat uncorrelated changes in relative prices differently from aggregate shifts
in consumption levels.2

A common modeling practice is to assume an additively separable utility:

V (s) = 1

n

n∑

i=1

vi (si ). (1)

Here, the agent faces n coordinates, s = (s1, . . . , sn) is a generic profile, vi is the utility
derived from the i th coordinate, and 1

n is an innocuous normalization. A lottery P over
profiles is evaluated based on its expected utility EP V . Although widely used for
their tractability and appealing foundations, additively separable utilities suffer from
a major limitation, namely their insensitivity to correlation.3 As noted above, concern
about aggregate uncertainty is natural in many settings. It is entirely reasonable for a
public authority to treat correlated pandemic risk (such as the reaction to the recent
Ebola scare) differently from uncorrelated health incidents. The fact that additively
separable utilities cannot distinguish the two is potentially an important limitation.

There is, of course, an easy way out: simply replace V by a general von Neumann–
Morgenstern utility function U (s1, . . . , sn) that is not separable in its n coordinates.
While this approach can succeed in introducing sensitivity to correlation, it is
intractable without further structure on U . For example, one would like to answer
questions like: What is the impact of increasing n? Is randomization beneficial? or
What are good quantitative measures of the attitude towards correlation? These ques-
tions are central to understanding the impact of aggregate risks, yet they can be difficult,
if not impossible, to answer with a general utility function.

This paper provides a very simply way to identify and measure the sensitivity of
economic decisions to aggregate uncertainty. Our starting point is an agent who ranks
lotteries based on their expected utilities with respect to a von Neumann–Morgenstern
utilityU . A tractable model is obtained by requiring, further, that the ranking of deter-
ministic profiles satisfies the conditions in Debreu’s (1960) classic characterization
of separable preferences. His theorem then implies that this ranking has a cardinal
representation V , in the sense of (1) above.4 We are therefore given two cardinal util-
ities, U and V , with identical ordinal ranking of profiles. It follows that there must
be a (cardinally unique) strictly increasing function u such thatU has the aggregative
utility form U (s) = u(V (s)) = u(n−1 ∑

i vi (si )).

1 See, for instance, Acharya et al. (2010) and Adrian and Brunnermeier (2011) for discussions of the policy
issues surrounding, and measures to correct for, correlation.
2 See Sect. 3.4’s discussion of the seminal Dixit–Stiglitz model of consumer choice with product varieties.
3 Since the operations of summing over the population and integrating over states commute, the utility of
a lottery depends only on its marginals on the coordinates s1, . . . , sn , forcing indifference to correlation.
See equation (4).
4 It is crucial that the utility function (1) is unique up to a common positive affine transformation. Multipli-
cation by 1

n is innocuous and simplifies comparisons across different n’s. The formal structure of Debreu’s
theorem is reviewed below.
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We interpret u as reflecting the attitude towards aggregate uncertainty. To justify
this claim, note that the function U captures two conceptually distinct aspects of the
problem: (1) uncertainty about which profile will obtain; and (2) the aggregation of
n coordinates into a utility of a profile. These two components are intertwined in a
generalU . Combining the von Neumann–Morgenstern and Debreu’s cardinal theories
is a natural way to disentangle the two. This approach is very simple, making it all the
more surprising that, to our knowledge, it has not been taken before.

Indifference to correlation obtains if and only if u is affine, while aversion to aggre-
gate uncertainty corresponds to the strict concavity of u. More generally, with obvious
caveats to be discussed below, the standard machinery of utility theory can be used to
quantify the attitude towards correlation. We provide a detailed example in the case
of the Dixit–Stiglitz CES aggregator.

Aggregate uncertainty plays a central role in evaluating public policies, especially
as they relate to catastrophic risks. Catastrophes represent, almost by definition, risks
that are correlated across individuals (firms, assets, or investments). The increasing
interconnectedness of modern economies sharpened the impact of old sources of cor-
relation, such as systemic risk in financial markets, medical treatment uncertainty,
and product recalls. Political and technological changes also created new sources of
correlation, including climate change risk and global terrorism. Many authors noted
the fact that American public opinion reacts differently to these risks compared to
more familiar ones like car accidents and house fires.5 A large debate on the proper
public policy attitude to catastrophic risk centers around the status of the Precautionary
Principle, a policy position that has been widely adopted in many laws, international
treaties, and government regulations.6 This and other related principles that focus on
worst-case scenarios have been criticized by Sunstein (2005) and others as incoherent.

Aggregative utility can also provide a foundation for randomized decision rules.
We consider three instances where randomization arises in the literature. First,
Manski (2004, 2011) makes a normative case for such rules when the effectiveness of
a treatment is uncertain. He derives the optimality of randomized rules by assuming
a utilitarian social planner who uses a non-Bayesian minimax regret criterion. We
show, consistently with Manski and Tetenov (2007), that a Bayesian planner with an
aggregative utility may strictly prefer to randomize as a way to hedge against aggre-
gate uncertainty. Second, sensitivity to aggregate uncertainty relates to an insight of
Schmeidler (1989) and Gilboa and Schmeidler (1989) that individuals may randomize
to hedge against unknown probabilities. Our work is related to Halevy and Feltkamp’s
(2005) finding that strict preference for randomization arises when utility depends on
the outcomes of multiple correlated urns. We note that the decision maker in Halevy

5 See, for example, Sunstein (2005). Robson (1996) provides an evolutionary justification for why Nature
might have designed individuals with differing attitudes towards aggregate vs. idiosyncratic risks.
6 For example, the United Nations Framework Convention on Climate Change, the 1992 Rio Declaration,
the Treaty Establishing the European Community, the U.S. National Environmental Policy Act, and the U.S.
Clean Water Act. One of the best known statements of this policy principle is “Wingspread Declaration”
which states that “When an activity raises threats of harm to human health or the environment, precautionary
measures should be taken even if some cause-and-effect relationships are not fully established scientifically.”
Ashford et al. (1998). See Sunstein (2005) for a review and critique of this principle and Al-Najjar (2015)
for a different perspective on the issue.
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and Feltkamp (2005) has aggregative utility in our sense. Finally, a surprising con-
text where randomization appears is evolutionary dynamics. In Bergstrom (1997), for
example, Nature may introduce heterogeneity in preferences when there is aggregate
uncertainty. Section 5.4 discusses how randomization by introducing heterogeneity in
a population may be interpreted within our analysis.

The plan of the paper is as follows: Sect. 2 introduces notation and a motivating
example, while Sect. 3 states the main theorems. Section 4 considers asymptotics as
n increases. Finally, Sect. 5 considers public choice questions, fractional allocations,
and connects our model to some of the findings in the literatures.

2 Notation and motivating example

2.1 Notation and mathematical structure

An agent’s utility depends on the realization of a profile of n coordinates, indexed by
i ∈ {1, . . . , n}. To each coordinate i corresponds a set of (individual) outcomes Xi . The
product S = X1×· · ·×Xn is the set of profiles, with typical element s = (s1, . . . , sn).
For an individual outcome x ∈ ∩n

i=1Xi , the constant profile where all coordinates are
equal to x is denoted by x̄ = (x, . . . , x).

We assume that each Xi is a complete separable metric space. For any such space
Z , we let �(Z) denote the set of probability distributions (lotteries) on Z .7 We shall
refer to elements of �(S) as lotteries and elements of �(Xi ) as individual lotteries.

Given a lottery P , we use pi to denote its marginal on coordinate i . Define P◦ ∈
�(S) to be the product of the marginals p1 × · · · × pn . The lottery P◦ preserves the
marginal distributions of P but removes any correlation that might exist between the
coordinates. A lottery P is independent if, under P , the random elements s1, . . . , sn
are independent. Note that a lottery P is independent if and only if P = P◦.

2.2 Example: the “life and death” lottery

Consider the problem of choosing among medical treatments with uncertain effec-
tiveness. A common approach is to assume that each individual has a utility function
vi over Xi and to evaluate policies based on the additively separable criterion
V (s) = 1

n

∑n
i=1 vi (si ) introduced in (1). A treatment that gives rise to a lottery

P has expected utility:

EP V =
∫

S

(
1

n

n∑

i=1

vi (si )

)
dP(s). (2)

This criterion, often referred to as “utilitarian,” is extensively used (e.g., in optimal
taxation, treatment problems, among other areas). We caution, however, that it repre-

7 To avoid unnecessary repetition, probabilitymeasures on complete separablemetric spaces are defined on
their Borel σ -algebras. All product spaces, such as S, are given their product topologies and corresponding
σ -algebras. All subsets are assumed to be measurable unless otherwise noted.
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sents a very narrow form of utilitarianism that requires individuals to be indifferent to
others’ outcomes. Section 5 discusses this problem; for now, this simple criterion is
convenient for the purpose of the present example.

An important concern with (2) is its insensitivity to aggregate uncertainty. A stark
example illustrates this point:

Example 1 Consider medical treatments whose individual outcomes are either full
recovery, x , or death, y! Assume that vi = v for all i , and normalize utilities so that
v(x) = 1 and v(y) = 0. Fix 0 < α < 1 and consider the following treatments:

• Treatment 1 yields a lottery where:
– x̄ = (x, . . . , x) obtains with probability α, and
– ȳ = (y, . . . , y) obtains with probability 1 − α.

• Treatment 2 yields a lottery that is uniform over the set Sα ⊂ S of fractional
profiles sα where α% of the population recovers, and the rest dies.8

Under the additively separable criterion (2), Treatment 1 generates an expected
utility αV (x̄) + (1 − α)V (ȳ) = α through a probability mixture of the two constant
profiles, x̄ and ȳ. Under Treatment 2, a utility α is achieved via a population mixture:
a profile sα ∈ Sα is drawn where a known population fraction α gets x , and a fraction
(1 − α)% gets y. Given sα , no probabilities are involved.

Since an additively separable utility treats the perfectly correlated probability mix-
tures and (essentially) idiosyncratic population mixtures identically, it is indifferent
to a treatment where half the population lives and the other half dies, and a treatment
where either everyone lives or everyone dies depending on the outcome of a coin toss!
While it is not irrational for a planner to be indifferent to the two, it is also not irrational
to consider the two treatments to be very different. The notion of aggregative utility
we now introduce provides a way to break the indifference to aggregate uncertainty.

3 Aggregative utility: characterization and properties

3.1 Expected utility

We assume an agent with an expected utility preference over the set of lotteries �(S).
First, some structural assumptions:

Assumption 1 (Structural Assumptions) The following structural assumptions will
be maintained throughout the paper:

(i) n ≥ 3;
(ii) each Xi is a complete separable metric space;

(iiii) each Xi is connected.

8 This formulation simplifies the exposition by forcing the conclusion of the law of large numbers to
hold exactly for any n. Since sα is chosen uniformly, individual outcomes are identically distributed, but
not independent. They are, however, “nearly” independent, in the sense that correlation between any two
outcomes decreases to zero as n increases. Finally, note that we implicitly assume α to be a multiple of 1

n
to ensure that Sα is well-defined.
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This assumptionwill bemaintained throughout the paper. Parts (i) and (iii) are required
to apply the characterization theorem of Debreu (1960). Part (ii) simplifies the intro-
duction of lotteries.

Assumption 2 (Expected Utility) The agent ranks lotteries P ∈ �(S) according to
their expected utility:

U(P) =
∫

S
U (s) dP(s),

whereU : S → R is a bounded and continuous function that is unique up to a positive
affine transformation (or cardinally unique for short).

In the discussion below, we will refer to a specific function U for convenience. It is
to be understood, however, that this function is well-defined only up to positive affine
transformation.

Since any profile s can be identified with the degenerate lottery δs that puts unit
mass on s, we may view the set of deterministic profiles S as a subset of �(S). The
aggregation properties ofU concern the restriction of utility to S. For every non-empty
proper subset of indices I ⊂ {1, . . . , n}, let SI denote the set of profiles defined for
members in I only. Given such an I , define S = SI × SI c , where I c is the complement
of I . Using this notation, write any profile as s = (sI , sI c ), where sI ∈ SI and
sI c ∈ SI c .

Assumption 3 (Non-triviality) For every non-empty proper subset of indices I , there
exists sI , yI , zI c such that

U (sI , zI c ) > U (yI , zI c ).

3.2 Main theorem

The next assumption is Debreu’s separability condition over deterministic profiles.
Formally, given a profile t , let StI = {s : si = ti , i ∈ I } be the set of profiles that
coincide with t on I , and let UtI be the restriction of U to StI . Thus, UtI is the utility
over profiles whose extensions to the subpopulation I are made to coincide with t .

Assumption 4 (Separability) For every non-empty proper subset of indices I and
profiles t and z, we have

UtI = UzI .

This condition says that the ranking of profiles that have a common value on a subset
I does not depend on that common value. It is clear that this condition is necessary
for an additive representation over S. Debreu (1960) shows that it is also sufficient.9

Our main representation result is

9 Assuming non-triviality, continuity, and a version of the structural conditions above, Gorman (1968)
extends Debreu’s theorem to partial separability.
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Theorem 1 The ranking over the set of lotteries �(S) is non-trivial, has an expected
utility representation, and is separable if and only if it can be represented by

U(P) =
∫

S
u

(
1

n

n∑

i=1

vi (si )

)
dP(s) (3)

for some continuous and non-constant functions vi : Xi → R, i = 1, . . . , n, and an
increasing, continuous, bounded function u : range ( 1

n

∑n
i=1 vi

) → R. In addition,
the vi’s are unique up to a common positive affine transformation, and, for fixed
v1, . . . , vn, u is cardinally unique.

The theorem says that the agent evaluates a distribution on profiles in three steps:
(1) an individual utility v(si ) is calculated for each i ; (2) the utilities are additively
aggregated to 1

n

∑n
i=1 vi (si ); and (3) the agent’s final utility is a function u of this

aggregate. The factor 1
n is a convenient normalization to simplify comparisons when

n changes.

Definition 1 (i) The utilityU(underlying preference) satisfying the properties inThe-
orem 1 is called an aggregative utility (preference).

(ii) An aggregative utility is additively separable if u is affine.
(iii) A utility is additively separable if it has an additively separable representation.

Debreu’s theorem is usually used to justify additively separable consumer util-
ity over commodity bundles in a deterministic setting. In our case, we start with
an expected utility preference over lotteries represented by a utility function U . An
expected utility preference is necessarily separable across states. We further assume
that the restriction of this preference to deterministic profiles is separable across
coordinates. The interplay between these two forms of separability is what underlies
Theorem 1.

Our companion paper develops a similar theory for infinite populations (Al-Najjar
and Pomatto (2014), available on our websites). An important advantage is that an
exact law of large numbers holds in the infinite setting. The two are complementary, but
independent, theories. Debreu’s theorem, which underlies the present model, requires
the number of coordinates to be finite, so our arguments do not extend to the infinite
population setting. We instead use Savage’s (1954) theory of subjective probability to
provide a cardinal population aggregator. An important limitation of Savage’s theory
is that the vi ’s must all be equal. Since applying his theory requires the population to
be infinite, the (more complex) machinery in our companion paper cannot be used to
deal with the finite case. Finite models are important in many applications. Regulation
of an industry consisting of a handful of firms (such as pharmaceutical companies or
investment banks) is one example. Another example is modeling attitudes to different
sources of revenue, as discussed below.

3.3 Characterizing the sensitivity to aggregate uncertainty

In this section, we formalize the intuition that u captures the agent’s sensitivity to
aggregate uncertainty.
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Definition 2 A utility U is indifferent to aggregate uncertainty if U(P) = U(Q) for
any two lotteries P, Q ∈ �(S) that have the same marginals (i.e., pi = qi for all i).

In particular, such a planner is indifferent to a lottery P and the product of its mar-
ginals P◦. The following theorem says that additive separability is both necessary and
sufficient for indifference to aggregate uncertainty:

Theorem 2 A utility U is indifferent to aggregate uncertainty if and only if it is addi-
tively separable.

To further appreciate the role of aggregate uncertainty, assume vi = v for all i and
that u is affine. Then, after an appropriate normalization, we can express aggregative
utility as ∫

S

1

n

n∑

i=1

v(si )dP(s) = 1

n

n∑

i=1

EPv(si ). (4)

If we interpret 1
n in the RHS as a uniform distribution on the finite set {1, . . . , n},

then the above expression can be interpreted as the expected utility obtained from
interacting with a single randomly drawn individual.10 In other words, indifference
to aggregate uncertainty eliminates the distinction between two intuitively different
problems: one where decisions are based on the entire profile, and another where they
are based on a randomly drawn individual.

To illustrate the theorems, we revisit the stylized life-and-death lottery introduced
in Sect. 2.2. In that example, we had

V (x̄) = 1 > V (sα) = α > V (ȳ) = 0.

Assume, further, that the preferenceover lotterieshas an expected utility representation∫
S U (s)dP(s), normalized so that:

U (x̄) = 1 > U (sα) = u(α) > U (ȳ) = 0.

Since V and U agree on the ordinal ranking of profiles, U can be decomposed as
U (s) = u(V (s), where V represents how profiles are aggregated, and u reflects
attitude towards aggregate uncertainty.

In Fig. 1, populationmixtures are represented on the horizontal axis, and probability
mixtures on the vertical axis. Given a fractional profile sα , the additive separability of
V implies

V (sα) = αV (x̄) + (1 − α)V (ȳ).

10 The assumption that vi = v for all i is not completely innocuous. Suppose that, for some vector
(q1, . . . , qn) of probabilities on {1, . . . , n}, the function V̂ (s) = ∑

i qi v̂i (si ) is another cardinal represen-
tation of V (s) = n−1 ∑

i vi (si ). Since utility is unique up to a common positive affine transformation,

requiring vi = v for all i in V forces qi = 1
n for all i in V̂ . Without this requirement, the “probabilities”

with which various individuals are drawn are indeterminate. While this indeterminacy does affect the point
being made here, it also adds a degree of freedom that may confound the issue.
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U(ȳ)

U(x̄)
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Fig. 1 Population versus probability mixtures

On the other hand, the number u(α) must satisfy:

U (sα) = u(α)V (x̄) + (1 − u(α))V (ȳ).

That is, the utility U (sα) of the α-fractional profile is an average of the utility of
the constant profiles but with the weights α%, (1 − α)% distorted by u. Theorem 2
states that the 45◦ line, defined by u(α) = α, characterizes indifference to aggregate
uncertainty. In this case, α-population mixtures and α-probability mixtures are treated
as equivalent. On the other hand, to convince a planner averse to aggregate uncertainty
to give up sα , a higher probability of x̄ is required. This means that u(α) > α and u
must be concave, as shown in the figure. For a concave u, the difference u(α) − α

measures the compensation needed to offset the impact of aggregate uncertainty.
The construction of Theorem 1 works only because Assumptions 2 and 4 provide

two independent cardinal measurements of utility. To illustrate this, suppose that U
is the cardinal von Neumann–Morgenstern utility as before, but that V̂ is just an
ordinal utility whose ranking of profiles is consistent with U .11 While it is still true
that U = û(V̂ ) for some increasing function û, the shape of this function no longer
captures anything useful. When V̂ is only ordinal, we can modify it with increasing
transformations to make û take just about any shape. Debreu (1960)’s theorem is key
because it fixes a cardinal ranking over profiles.

As further illustration of the results, we briefly discuss one of the most familiar con-
texts where aggregative utility appears, namely portfolio allocation among n assets.

11 In the sense that V̂ (s) ≥ V̂ (s′) if and only if U (s) ≥ U (s′) for any s, s′.
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Let si ∈ R denote the random payoff to investing $1 in assets i = 1, . . . , n, and α =
(α1, . . . , αn) a portfolio where αi is the amount of money invested in asset i . The stan-
dard assumption is that the investor evaluates portfolios based on the expected utility:

∫
u

(
1

n

n∑

i=1

αi si

)
dP(s).

This, of course, is an aggregative utility where vi (αi si ) = αi si (and the normalization
1
n is suppressed).

The assumption that the vi ’s are the identity builds-in perfect fungibility of different
sources of income. Experimental studies (and introspection) suggest that individuals
often treat different sources of returns as different “accounts.” When the vi ’s are
possibly different, we obtain

∫
u

(
1

n

n∑

i=1

vi (αi si )

)
dP(s).

Barberis and Huang (2001) use a functional form with similar features to model
investors who focus narrowly on sources of gains and losses. The reader is referred
to their paper for further motivation and references.12 Violating fungibility in our
model is not “irrational,” in the sense that it is not inconsistent with expected utility
(Assumption 2) and can even be consistent with separability (Assumption 4).

3.4 Sensitivity to correlation with CES aggregators

In application, it is often important to quantify the sensitivity to correlation in terms of
a preference parameter. For concreteness, consider Dixit and Stiglitz (1977)’s seminal
model of consumer choice with product varieties. A representative consumer has a
CES utility: ∑

sρ
i ,

where si ∈ (0,∞) is the number of units of variety i = 1, . . . , n, and ρ ∈ (0, 1)
measures the representative consumer’s taste for variety.13 This is often normalized

using the transformation r 
→ ( r
n

) 1
ρ to obtain

12 In Barberis and Huang (2001), a narrow framing may reflect “utility unrelated to consumption. [...]
An investor may interpret a big loss on a stock as a sign that he is a second-rate investor, thus dealing his
ego a painful blow, and he may feel humiliation in front of friends and family when word about the failed
investment leaks out.”
13 This is one of many aggregators considered in their paper. We focus on the finite-variety version of the
Dixit–Stiglitz aggregator; the framework of our companion paper, Al-Najjar and Pomatto (2014), can be
used to model the infinite variety case.
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(
1

n

∑
sρ
i

) 1
ρ

. (5)

The exponent 1
ρ
in (5) has, in principle, no cardinal meaning. In models with no

uncertainty, the interpretation of 1
ρ
is a moot issue. But when consumption levels are

random, say due to price fluctuations, a cardinal measure is needed. To obtain such a
measure, apply Theorem 1 and require, further, that vi = v takes the form v(r) = rρ .
This yields a cardinal utility of the form:

U (s) = u

(
1

n

∑
sρ
i

)
. (6)

Note that Debreu’s theorem does not restrict the shape of the vi ’s, so the CES form
must either be assumed directly or derived from additional assumptions.

To place more structure on (6), assume that (the cardinally unique) u has the form
u(r) = r

κ
ρ for some κ > 0 so (6) can be rewritten as

(
1

n

∑
sρ
i

) κ
ρ

. (7)

The utility function (7) distinguishes between the representative consumer’s taste for
variety and his attitude towards uncertainty about consumption levels.

To make this precise, recall that the elasticity of substitution between any pair of
varieties is 1

1−ρ
. To incorporate uncertainty about consumption levels, fix a consump-

tion profile s and consider proportional changes in consumption of the form αs for
α > 0. We can quantify the sensitivity of utility to such changes by the coefficient of
relative risk aversion with respect to changes in α:

R(α) ≡ −αU ′′(αs)
U ′(αs)

,

where derivatives are with respect to α. It is easy to see that R(α) = 1 − κ .14

For κ = 1, we obtain the usual normalization (5), except that the exponent 1
ρ
has a

cardinal meaning corresponding to risk neutrality to lotteries over consumption levels.
For κ = ρ, aversion to changes in consumption level is the inverse of the elasticity of
substitution between varieties. Aversion to lotteries in income and lotteries in relative
prices are represented by the sameparameterρ. Finally,whenκ < ρ, the representative
consumer is more averse to changes in consumption level than to substitution between
varieties.

14 Note that U (αs) =
(
1
n

∑
i (α si )

ρ
) κ

ρ = ακ U (s) and differentiate with respect to α.
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4 Aggregating idiosyncratic risks

Does idiosyncratic risk become irrelevant as n increases? This conclusion does not
directly follow from the law of large numbers, which concerns the statistical properties
of profiles (s1, . . . , sn), rather than the utility they generate. Even if the si ’s are i.i.d., the
fact that the vi ’s are different means that a small number of individuals may continue
to have a large utility impact regardless of n.

Whether idiosyncratic risk is irrelevant to utility is not automatic, as it requires
conditions to ensure that utility is not too sensitive to individual coordinates. The
theorems in this section introduce such conditions and use concentration-of-measures
results to derive bounds on the impact of idiosyncratic risk for any given n (rather than
just asymptotically).

4.1 Idiosyncratic risk in large finite populations

Given the aggregative utility

U(P) =
∫

S
u

(
1

n

∑

i=1

vi (si )

)
dP(s), (8)

it will be useful to define

Ū(P) = u

(
1

n

n∑

i=1

Epi vi

)
(9)

as the utility obtained by replacing random outcomes by their expectations Epi vi with
respect to the marginal pi .

Idiosyncratic risk disappears when U(P) is approximately equal to Ū(P). Instead
of an asymptotic argument that takes limits as n increases, we use concentration
inequalities to establish a bound for any n. First we need the following:

Assumption 5 The aggregative utility U satisfies

(i) The range of vi is contained in [0, 1] for every i ;
(ii) u is Lipschitz continuous, with Lipschitz constant K ;
(iii) The range of u is contained in [0, 1].

It is important that the bounds on the functions vi , i = 1, . . . , n, and u are indepen-
dent of n (the specific values, 0 and 1, are for convenience). The first two parts of the
assumption ensure that the population average utility is not dominated by the utility of
a single individual. By restricting the ranges of the v′

i s, part (i) rules out the possibility
that the utility impact of a single individual is so large that idiosyncratic risk remains
significant even as n increases without bound. Part (ii) rules out the case where a small
change in one individual’s outcome can have large impact on the planner’s utility. Part
(iii) is an innocuous normalization.
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Theorem 3 For every aggregative utility U satisfying Assumption 5, for every ε > 0,
and every independent distribution P

P

{
s :

∣∣∣∣∣u
(
1

n

n∑

i=1

vi (si )

)
− Ū(P)

∣∣∣∣∣ < ε

}
> 1 − 2e−2n ( ε

K )
2
.

In particular,

∣∣U(P) − Ū(P)
∣∣ < ε + 2e−2n ( ε

K )
2
.

Theorem 3 formalizes the intuition that independent risks disappear as n increases
without assuming that the lotteries are i.i.d. or that the vi ’s are equal (much less linear).
The key feature of the theorem is that the bounds hold simultaneously over all n’s, u’s,
vi ’s, and independent lotteries P . No assumptions are made relating, for instance, the
profile of individual utility functions (v1, . . . , vn) for different values of n.

4.2 The conditionally i.i.d. case

A natural way to model correlation is to assume that outcomes are i.i.d. with an
unknown parameter. This class of conditionally i.i.d. distributions is widely used in
practice and has the advantage of being easy to parameterize.

Definition 3 (Conditionally i.i.d. Distributions) Fix n, assume that X = Xi for all i ,
and let 	 = �(X) denote the set of probability distributions on X .

(1) For θ ∈ 	, a distribution Pθ is i.i.d.(-θ ) if the random objects s1, . . . , sn are
independent with a common marginal θ .

(2) For μ ∈ �(	), a distribution Pμ is conditionally i.i.d.(-μ) if for every event
E ⊂ S, we have Pμ(E) = ∫

	
Pθ (E) dμ(θ).15

(3) The marginal distribution of a conditionally i.i.d. Pμ on coordinate i is

pμ
i (E) =

∫

	

θ(E)dμ(θ), E ⊂ Xi . (10)

Note that pμ
i in (10) does not depend on i , and that when μ puts unit mass on a

single θ , we have pμ
i = pθ

i = θ . Nevertheless, we continue writing pμ
i throughout

for notational consistency.
With this notation, aggregative utility is

Un(P
μ) =

∫

	

∫

S
u

(
1

n

n∑

i=1

vi (si )

)
dPθ (s)dμ(θ). (11)

15 If n were infinite, then de Finetti’s theorem characterizes conditionally i.i.d. distributions as those that
are invariant to permutations (or exchangeable). This equivalence does not hold for finite n.
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The usual interpretation is that the outcomes are i.i.d. with an unknown parameter θ ,
with μ representing the planner’s belief about this parameter.

From Theorem 3, we know that independent (in particular, i.i.d.) variations wash
out when n is large. Thus, for any parameter θ , the realized random utility concentrates
around the utility of the expectation, and the rate at which this concentration occurs is
independent of θ . The next theorem uses Theorem 3 to conclude that, when n is large,
idiosyncratic risk disappears, but aggregate uncertainty remains.

Theorem 4 Assume X = Xi for all i, j , and that Assumption 5 holds. Then, for every
μ ∈ �(	),

∣∣∣∣∣U(Pμ) −
∫

	

u

(
1

n

n∑

i=1

Epθ
i
vi

)
dμ(θ)

∣∣∣∣∣ < ε + 2e−2n ( ε
K )

2
.

Idiosyncratic risk disappears in the sense that variability conditional on the parameter
moves inside u, but aggregate uncertainty, represented by μ, does not.

5 Planning under aggregate uncertainty

A large literature evolved to explore whether special public policy measures are
warrantedwhendealingwith aggregate uncertainty.16 Compare, for example, the intro-
duction of a fire code with the implementation of a new medical procedure. Assume
that both policies give rise to conditionally i.i.d. lotteries with identical marginals.
In the case of fire code, abundant past data support the belief that the causes of fires
and the effectiveness of safety measures are well-understood, while for a new medical
procedure, it is likely that a significant residual uncertainty about its effectiveness
remains.

We explore some of these issues from the perspective of aggregative utility in a
large population. Unless indicated otherwise, we assume that policies give rise to
conditionally i.i.d. distributions and that the policy maker has an aggregative utility
that takes the form:

U(P) =
∫

	

∫

S
u

(
1

n

n∑

i=1

v(si )

)
dPθ (s)dμ(θ). (12)

This makes a number of implicit assumptions: (1) individuals have symmetric pref-
erences that do not depend on the size of the population; (2) the dependence of the
planner’s utility on the average individual utilities also does not vary with n.

16 An example is the Precautionary Principle, according to which “When an activity raises threats of
harm to human health or the environment, precautionary measures should be taken even if some cause-and-
effect relationships are not fully established scientifically.” “Wingspread Statement on the Precautionary
Principle,”Ashford et al. (1998). See Sunstein (2005) for a review and critique of this principle andAl-Najjar
(2015) for a different perspective on precautionary policies.
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5.1 Social versus private attitudes to risk

Consider the problem of designing a fire code. An individual outcome in this case
contains all relevant information about the costs of safetymeasures, property damages,
. . . etc. The function v summarizes the various individual costs and benefits trade-offs.
A fire code then gives rise to a social lottery Pμ characterized by a distribution μ on
	.

It may be reasonable to think that there is enough data on the causes of fires and the
effectiveness of safetymeasures that the distribution on the outcomes θ is known. Con-
trast this with the problem of approving a new drug. Here, there is usually significant
residual uncertainty about outcomes, such as side effects, costs, and effectiveness, even
after lengthy medical trials. This uncertainty can be captured by a diffuseμ, reflecting
the correlation in the drug’s performance across users. Call a policy Pμ risky if μ puts
unit mass on a single θ (the fire code example), and uncertain otherwise.

Can a planner with an aggregative utility rely on self-interested individuals to carry
out his policy choices? To answer this question,we need to specify agents’ preferences.
An individual with utility v over individual outcomes cares only about si and will thus
rank social lotteries Pμ based on their marginal distributions pμ

i . Intuitively, p
μ
i is the

“average” lottery, where the average is taken with respect to the distribution μ. The
distribution pμ

i completely ignores correlation.
The following definition formalizes the relationship between public and private

attitudes towards risk:

Definition 4 The choice between two social lotteries Pμ and Pν can be decentralized
in large populations if there is an N such that for all n ≥ N ,

Un(Pμ) ≥ Un(Pν) ⇐⇒ Epμ
i
v ≥ Epν

i
v.

Implicit in the definition is the assumption that all individuals and the planner agree
on μ. Under this assumption, the planner is not more (or less) informed than the
individuals, ruling out tensions in public policy due to differing subjective beliefs.
While we do not believe that this assumption is always reasonable, maintaining it
makes it possible to focus on the role of aggregate uncertainty.

Theorem 5 Fix an aggregative utility U , as in (12), satisfying Assumption 5.

(1) The choice between any two risky social lotteries θ0, θ1 can be decentralized in
large populations.

(2) Unless U is additively separable, there exist social lotteries Pμ and Pν such that
the choice between them cannot be decentralized in large populations.

Part 1 says that individual and social ranking of risky lotteries coincide in large
populations. This, of course, is trivial for any population size if u were affine. The
point is that this holds even when u is not affine, provided that the population is large.
Consider the case where u is strictly concave. In this case, the planner is more risk
averse than any individual agent; indeed, for small n, the planner would prefer more
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cautious alternatives than the individual.17 However, when n is large, Theorem 3 can
be used to show that the impact of i’s utility on the social planner diminishes, bringing
the planner’s ranking closer to the agent’s.

Part 2 says that the planner’s sensitivity to aggregate uncertainty creates a tension
between the planner’s and the individual’s preferences. For concreteness, consider a
planner with a strictly concave u. An individual will be indifferent to a social lottery
Pμ and an i.i.d. lottery with marginal pμ. However, the planner is willing to settle for
a worse social lottery Pμ in exchange for removing aggregate uncertainty, while the
individual, who is indifferent to aggregate uncertainty, would consider such move as
inferior.

5.2 Hedging and fractional allocations

Inmany instances the set of options is discrete: vaccines are either taken or not, airbags
are installed or not, . . . etc. Motivated by Manski’s work,18, we explore the use of
randomization and fractional allocations in treatment problems when the planner has
aggregative utility.

For concreteness, we focus on a very simple setting with just two policies: a status
quo policy that guarantees a constant profile x̄ = (x, . . . , x) and an uncertain policy
Pμ with an unknown distribution of consequences. Consider the following variation
on Example 1:

Example 2 (Treatment with Status Quo) A new medical treatment is proposed to
treat an illness.

• With probability β the treatment succeeds and everyone receiving this treatment
recover completely, but with probability 1 − β it fails and everyone receiving
this treatment suffers significant complications and diminished state of health.
Normalize the payoffs of these two outcomes to 1 and 0 per patient, respectively.

• The status quo is a constant profile x̄ with utility v = v(x) ∈ (0, 1) per patient.19

For β > v, every individual will strictly prefer to use the new treatment, as would a
planner with separable utility.

In the example, assigning all individuals to the new treatment exposes the planner
to considerable aggregate uncertainty, yet this uncertainty is irrelevant under additive
separability. If the planner is averse to aggregate risk (u strictly concave), hewill prefer
to use a mixture of the two treatments. One way to mix the two treatments is to assign
only a subset of individuals to the new treatment. We define this more generally:

Definition 5 Consider a social lottery Pμ and a status quo x̄ = (x, . . . , x).

(a) A treatment assignment is a vector a = (a1, . . . , an) ∈ {0, 1}n ;

17 When the population is small (e.g., n = 2) and u is non-linear, there will typically be “aggregate
uncertainty” even if P is independent.
18 Especially, Manski (2004) and Manski and Tetenov (2007). For a survey, see Manski (2011).
19 An important restriction, discussed below, is that the status quo is deterministic.
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(b) The fractional treatment (relative to an assignment a) is the social lottery

x̄ ⊕a Pμ

defined by:
• si = x with probability whenever ai = 0; and
• x̄ ⊕a Pμ and Pμ have the same marginal distribution on

∏
{i :ai=1} Xi .

We define fractional assignment only with respect to a deterministic status quo.
Fractional assignment of two general social lotteries Pμ1 and Pμ2 is more involved
since one must take into account the correlation between the two treatments. Note
also that the assignment a = (a1, . . . , an) is deterministic; Sect. 5.3 below considers
random assignments.

A planner with a strictly concave u will strictly prefer to hedge against the aggregate
uncertainty by assigning some individuals to an ex ante inferior status quo. The next
example illustrates the point:

Example 3 (Fractional Assignments) Consider the setting of Example 2 with β ≥ v.
Assume that the planner has a differentiable and strictly concave u, with limr↓0 u′(r) =
∞ and limr↑1 u′(r) = 0.20

Let δ denote the fraction of the population the planner assigns to the new treatment.
Then his utility is

• u (δ × 1 + (1 − δ)v) with probability β;
• u (δ × 0 + (1 − δ)v) with probability 1 − β.

Differentiating with respect to δ and setting the derivative equal to 0, the optimal
fraction δ̄ must satisfy

β (1 − v)u′ (δ̄ + (1 − δ̄)v
) = v(1 − β) u′ ((1 − δ̄)v

)
.

It is clear that this cannot be satisfied for δ close to 1.

In the example, assigning a positive fraction of the population to the ex ante inferior
status quo can strictly increase utility because a population mixture can be valuable for
hedging purposes. Manski (2004; 2011) calls such rules fractional treatment rules.
He points out that fractional treatments are inconsistent with a Bayesian decision
criterion and an additively separable social welfare function, but shows that they
can be derived from a minimax regret criterion. The above example points out that
fractional treatments can arise in a Bayesian setting with aggregative utility.

It is useful to record the general point illustrated by the example for future reference:

Corollary 1 There exists a social lottery Pμ and a deterministic status quo x̄ such
that

U(x̄ ⊕a Pμ) > U(x̄) ≥ U(Pμ) (13)

for some fractional assignment a.

20 This assumption simplifies the example, but may be inconsistent with the new treatment having a
well-defined utility. Note that we do not need to calculate the expected utility of the new treatment in this
example.
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The conditions under which mixing with a strictly inferior treatment might help
are difficult to investigate in the finite population setting because the assessment of
utility can confound aggregate and idiosyncratic risks.21 We investigate these issues
more thoroughly in our companion paper, Al-Najjar and Pomatto (2014), where the
population is infinite and an exact law of large numbers holds.

Manski and Tetenov (2007) consider a social planner who evaluates treatments
based on the expectation of a concave increasing transformation f of the treatments
success rate. They interpret the concavity of f as the planners risk aversion. Using our
results, it can be shown that this functional form corresponds to an aggregative utility
(3) when the set of outcomes is binary, treatments give rise to conditionally i.i.d. social
lotteries, the function u is concave, and the size of the population n increases to infinity.
In addition to providing foundations for the social welfare functional in Manski and
Tetenov (2007), we also address the finite n case. As noted earlier, a finite population
is more appropriate in applications such as financial regulations of investment banks,
drug approval policy for pharmaceutical companies, among others.

5.3 Preference for randomization

Consider a planner who finds it optimal to assign a positive fraction of individuals to
an inferior treatment for hedging purposes, in the sense of Corollary 1. Since a planner
with aggregative utility is only concerned about the average of the individuals’ utilities,
in a symmetric environment, such a planner is indifferent to all assignment profiles
that keep the fractions allocated to each treatment fixed.

Individuals assigned to the ex ante inferior treatment may feel justified in viewing
such an assignment as “unfair.” A completely satisfactory solution to this problem
seemsdifficult: hedging against aggregate uncertainty requires differential treatment of
ex ante identical individuals, and somewill have to be assigned to an inferior treatment.

While fairness considerations do not receive a formal support in our setting, it is still
natural to impose them indirectly in the form of a constraint set on what the planner
can do. For example, suppose we impose the requirement that the planner can only
choose policies that induce symmetric social lotteries. Formally, we require the social
lottery to have the property that pi = p j for all i, j . In a symmetric environment, this
ensures ex ante equity, in the sense that each individual gets the same expected payoff
as any other.

Ex ante equity can be implemented by assigning treatments at random. To formalize
this observation, fix n and consider any number δ = j

n , j ∈ {0, . . . , n}. Let Aδ denote
the uniform distribution on the (finite) set of assignments where a fraction δ receives
treatment 1 and a fraction 1− δ receives treatment 0.22 For a constant profile x̄ , define

x̄ ⊕Aδ Pμ

as the social lottery x̄ ⊕a Pμ where the assignment profile is drawn at random uni-
formly.

21 This issue was artificially eliminated in Examples 2 and 3 by assuming away idiosyncratic risk.
22 That is, Aδ is the uniform distribution on the finite set

{
a : ∑

i ai = nδ
}
.
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Corollary 2 There exist a social lottery Pμ and a deterministic status quo x̄ such that

U(x̄ ⊕Aδ Pμ) > U(x̄) ≥ U(Pμ). (14)

Randomized rules play an important role in many contexts. In addition to Man-
ski’s work discussed earlier, randomization also underlies the fundamental insight of
Schmeidler (1989) and Gilboa and Schmeidler (1989) that individuals may strictly
prefer to randomize as a way to hedge against unknown probabilities. Our approach
is closely related to Halevy and Feltkamp (2005) who show that randomization can
be strictly preferred when the decision maker’s payoff is the sum of two draws from
two conditionally i.i.d. urns. The large population context makes it clear that random-
ization yields higher utility not because it is intrinsically desirable, but because (a)
deterministic δ-fractional rules hedge against aggregate uncertainty; and (b) uniform
randomization using Aδ always picks one such fractional rule.

It is clear from (14) that aggregative utility fails the Pareto criterion. This is because
a planner with an aggregative utility is concerned about the joint distribution induced
by a policy, while individuals only care about the marginals. From Theorem 5, the
difference is immaterial if the risk associated with the policy is idiosyncratic, but can
be significant when policy risk is correlated. For example, consider a central bank
regulating a financial sector. Private banks are concerned about their own profits and
financial positions, not about systemic risk that impacts the entire financial sector. In
this case, weakening the Pareto criterion seems reasonable. A better understanding of
the sensitivity of welfare criteria to aggregate uncertainty is an important challenge
for future work.

5.4 Hedging via population heterogeneity

The strict preference for randomization discussed earlier has an intriguing connection
to bet-hedging strategies in evolutionary biology. Take the point of view of Nature as
a principal who designs individuals’ utilities.23 If Nature is anthropomorphized as a
planner with an aggregative utility, then the same logic that led to a strict preference
for mixed treatments implies that evolution would favor heterogeneity in behavior to
hedge against environmental uncertainty. One way for Nature to induce heterogenous
behavior is to introduce heterogeneity in preferences. The injection of heterogeneity
in preferences as a bet-hedging strategy is well-known in the evolutionary biology
literature; an early paper isCooper andKaplan (1982).Robson andSamuelson (2010)’s
survey provides further discussion and recent references.

Bergstrom (1997) provides a nice example: a population (of squirrels) infrequently
faces winters of varying intensity. Most winters are mild and require storing only the
normal reserves of food. Harsh winters are infrequent but can wipe out all members
except for those who accumulated large reserves. By assumption, accumulating large
reserves is an inferior strategy most of the time, except in those infrequent episodes
of harsh winters. Similar to the randomized treatment discussed above, where a frac-

23 See Robson and Samuelson (2010)’s survey for discussion of the principal-agent approach.
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tion of the population is assigned to the ex ante inferior treatment, in Bergstrom’s
model, Nature designs random utilities where a subpopulation has a preference for
accumulating large reserves. This subpopulation is Nature’s insurance policy against
the unpredictability of winters.

6 Concluding remarks

Aggregate risks appear in greater frequency and significance in contexts ranging from
epidemics, to product recalls and systemic financial risk. A fundamental weakness of
standard additive decision criteria is their inability to capture sensitivity to correlation.
This paper provided a theoretical framework to isolate andmeasure the impact of these
risks.We use two classical cardinal measurements of utility, one reflecting aggregation
and the other risk, to provide a simple theory that can be adapted to a wide range of
problems.We view the simplicity of the theory as an advantage, making it all the more
surprising that this approach has not been taken before.

7 Proofs

Proof of Theorem 1 Sufficiency: Given Assumptions 3, 4, and the continuity of U in
Assumption 2, Fishburn (1970, Theorem 5.5, p. 71) implies that the utilityU restricted
to S can be represented by the function:

V (s) ≡
n∑

i=1

vi (si )

for some continuous, and non-constant functions vi : Xi → R, i = 1, . . . , n, and that
these functions are unique up to a common positive affine transformation.

The functions V and U represent the same preference on S, so V (s) ≥ V (t) if and
only ifU (s) ≥ U (t). Therefore, there exists a strictly increasing function u : V (S) →
R such that U (s) = u

(∑n
i=1 vi (si )

)
for every s ∈ S.

The continuity of u follows from the continuity of the functions
∑n

i=1 vi and U
and the connectedness of S. See Wakker (1991, Lemma 2.1, p. 1). Finally, because the
function U is cardinally unique, u is also cardinally unique given v1, . . . , vn .

Necessity: the preference obviously satisfies expected utility with U (s) =
u

(∑n
i=1 vi (xi )

)
. Since the vi ’s and u are continuous, so is U . Non-triviality follows

from the fact that the vi ’s are not constant. To prove separability, we first note that U
restricted to profiles is ordinally equivalent to the function V above. Given two profiles
s and t ,

U(s) ≥ U(t) ⇐⇒ u

(
n∑

i=1

vi (si )

)
≥ u

(
n∑

i=1

vi (ti )

)

⇐⇒
n∑

i=1

vi (si ) ≥
n∑

i=1

vi (ti ),
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where the last equality follows from the fact that u is strictly increasing. The preference
this function represents is obviously separable. ��
Proof of Theorem 2 Suppose that the agent’s preference has an additively separable
representation U and that P, Q are two lotteries with identical marginals. Then

U(P) =
∫ (

n∑

i=1

vi (si )

)
dP(s)

=
n∑

i=1

(∫

S
vi (si )dP(s)

)

=
n∑

i=1

Epi vi

=
n∑

i=1

Eqi vi .

= U(Q). (15)

The key step is the equality (15) where the sum over the population and the expectation
over the uncertainty are interchanged. This is possible when u is affine, but is generally
not true otherwise.

In the other direction, assume that P∼Q whenever P and Q have identical mar-
ginals. Fishburn (1970, Theorem 11.1, p. 149) shows that U must have an additive
representation.24 ��
Proof of Theorem 3 ApplyMcDiarmid’s concentration inequality (McDiarmid (1998,
Theorem 3.1)) to the function: V (s) = 1

n

∑n
i=1 vi (si ) to obtain:

P
{
s : |V (s) − EPV | <

ε

K

}
> 1 − 2e−2n ( ε

K )
2

for every independent distribution P .
The first claim of the theorem is now proved by applying Lipschitz continuity and

noting that because Ūn(P) = u(EPV ), we have that

|V (s) − EPV | <
ε

K
�⇒

∣∣∣∣∣u
(
1

n

n∑

i=1

vi (si )

)
− Ū(P)

∣∣∣∣∣ < ε.

The secondconclusion follows from the fact that the distancebetweenu
( 1
n

∑n
i=1 vi

)

and Ūn(P) is bounded by 1 and is less than ε with probability at least 1− 2e−2n ( ε
K )

2
.

��

24 Fishburn’s theorem requires only that indifference obtains for lotteries that are either degenerate or
assigns equal weights to the two deterministic profiles.
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Proof of Theorem 4 For every θ , Theorem 3 implies

∣∣U(Pθ ) − Ū(Pθ )
∣∣ ≤ ε + 2e−2n ( ε

K )
2

By definition, U(Pμ) = ∫ U(Pθ )dμ(θ). Hence

∣∣∣∣U(Pμ) −
∫

Ū(Pθ )dμ(θ)

∣∣∣∣ =
∣∣∣∣
∫ (U(Pθ ) − Ū(Pθ )

)
dμ(θ)

∣∣∣∣

≤
∫ ∣∣U(Pθ ) − Ū(Pθ )

∣∣ dμ(θ)

≤ ε + 2e−2n ( ε
K )

2
.

��
Proof of Theorem 5 Since u and v are bounded, it is without loss of generality to
assume that their range is included in [0, 1]. For each lottery Pμ, Theorem 4 implies
that Un(Pμ) converges to

∫
u(Eθ

pv)dμ(θ).
Therefore, given any two lotteries Pμ and Pν , we have that Un(Pμ) ≥ Un(Pν) for

each n large enough if and only if

∫
u(Epθ v)dμ(θ) ≥

∫
u(Epθ v)dν(θ).

Because u is strictly increasing, this means that when μ and ν are degenerate (i.e., the
lotteries are i.i.d.), the choice between the two lotteries can be decentralized.

We now prove that if the choice between any two social lotteries can be decentral-
ized, then u must be affine. Let ξ0 and ξ1 be two points in v(X), and let θ0 and θ1
satisfy Epθ0 v = ξ0 and Epθ1 v = ξ1. Now fix α ∈ [0, 1] and let μ satisfy μ (θ0) = α

andμ (θ1) = 1−α. Finally, define θα to be the i.i.d. social lottery with marginal equal
to pμ. By construction, we have

Epθα v = Epμv

If the choice between Pθα and Pμ can be decentralized, then it must be that

u(Epθα v) = αu(Epθ0 v) + (1 − α)u(Epθ1 v).

That is,

u(αξ0 + (1 − α)ξ1) = αu(ξ0) + (1 − α)u(ξ1)

which proves that u is affine. ��
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