
PHYSICAL REVIEW B 94, 125409 (2016)

Spin and the Coulomb gap in the half-filled lowest Landau level
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The Coulomb gap observed in tunneling between parallel two-dimensional electron systems, each at half-filling
of the lowest Landau level, is found to depend sensitively on the presence of an in-plane magnetic field. Especially
at low electron density, the width of the Coulomb gap at first increases sharply with in-plane field, but then abruptly
levels off. This behavior appears to coincide with the known transition from partial to complete spin polarization
of the half-filled lowest Landau level. The tunneling gap therefore opens a window onto the spin configuration
of two-dimensional electron systems at high magnetic field.
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I. INTRODUCTION

In the presence of a large perpendicular magnetic field,
Coulomb interactions between electrons confined to a two-
dimensional plane compete with disorder in determining the
system’s physical properties. In the clean limit interactions
dominate and give rise to a wealth of exotic collective states,
including both compressible and incompressible quantum
liquids, various solid phases, and quantum nematic liquid
crystals [1,2]. Moreover, the relatively small spin Zeeman
energy in typical two-dimensional electron systems (2DES)
can be so overwhelmed by these interactions that ground state
spin configurations which defy simple Pauli counting rules can
be stabilized [3]. These unusual spin configurations have been
detected and studied experimentally by various means, includ-
ing conventional electrical transport, photoluminescence and
inelastic light scattering, nuclear magnetic resonance, etc. [4].

The effects of Coulomb interactions on 2D electron systems
at high magnetic field are most dramatically illustrated by
the numerous fractional quantized Hall effect states [5] and
the emergent gapless metallic phases of composite fermions
(CFs) [6,7], all of which exist at specific fractional fillings of
the Landau levels created by the magnetic field. Nevertheless,
these exotic phenomena actually represent relatively subtle
variations in the strong electronic correlations that exist
throughout the high field regime. For example, experiments
[8–10] have revealed a suppression of the zero bias conduc-
tance for electrons tunneling perpendicularly into the 2DES
over a wide range of high magnetic fields. This suppression of
the tunneling conductance is observed regardless of whether
the 2DES is in a thermodynamically gapped or gapless phase,
and extends over a range of voltages about the 2DES Fermi
level [9,10]. These observations are by now well understood
[11–17] to reflect a Coulomb-interaction-induced pseudogap
in the tunneling density of states. This pseudogap arises from
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the inability of the correlated 2DES to rapidly relax the charge
density defect created by the rapid injection of an electron by
tunneling at low energies. Put another way, at low energies
the (N+1)-particle states created by tunneling are essentially
orthogonal to the (N+1)-particle eigenstates of the 2DES.

In this paper we report experimental observations which
indicate that the tunneling Coulomb gap is sensitive to the
spin configuration of the 2DES, a possibility not considered
in prior theoretical work [11–17]. Our experiments consist
of measurements of the current-voltage characteristics for
electrons tunneling between parallel 2D electron systems
in semiconductor double quantum wells in the presence of
magnetic fields both perpendicular and parallel to the 2D
planes. We focus on the case of the half-filled lowest Landau
level (in each 2D layer), both for simplicity and the existence
of a well-developed theory [7,12] for this situation. We find
that the tunneling Coulomb gap increases and then saturates
as the parallel field is applied in a manner consistent with the
known transition from partial to complete spin polarization of
the 2DES.

II. EXPERIMENT

The samples used in this experiment are GaAs-based
semiconductor heterostructures grown by molecular beam
epitaxy. Each contains two 18 nm GaAs quantum wells
separated by a 10 nm Al0.9Ga0.1As barrier layer. Silicon
delta-doping layers, positioned in the thick Al0.32Ga0.68As
layers above and below the double quantum well, populate
the lowest subband of each quantum well with a 2DES of
nominal density n ≈ 5 × 1010 cm−2 and low temperature
mobility µ ≈ 106 cm2/V s. Standard lithographic methods
are used to pattern the 2DES into a mesa structure; for the data
presented here this mesa consists of a 250 µm square with
60 µm-wide arms extending from each side. Ohmic contacts
(NiAuGe) to the individual 2D layers [18] are positioned at the
ends of these arms. These separate layer contacts enable direct
measurements of the interlayer tunneling characteristics of the
sample via conventional dc and low frequency ac methods.
The individual layer densities n1 and n2 in the central mesa
region are controlled by electrostatic gates deposited on the
top and back side of the thinned sample. We focus here on
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FIG. 1. (a) Typical tunneling IV characteristic at ν = 1/2. Data
taken at T = 50 mK with B⊥ = 4.09 T and B|| = 0. Imax and Vmax

denote location of maximum tunneling, while " is voltage where
tunneling current has reached 0.02Imax. (b) Density dependence of
Vmax at B|| = 0. Solid line is an unweighted least-squares fit of Vmax

versus n1/2; the fit extrapolates to Vex = −2.0 mV at n = 0.

the balanced case n1 = n2 ≡ n, with n varied from about
3.9 × 1010 to 6.3 × 1010 cm−2. Via in situ tilting of the sample
relative to an applied magnetic field Btot, field components
both perpendicular (B⊥) and parallel (B||) to the 2DES
plane could be applied. Except where otherwise noted, the
tunneling data presented here were obtained with B⊥ adjusted
to render the Landau level filling factor ν = hn/eB⊥ = 1/2
in each layer [19]. The density n was kept high enough that
condensation into the total filling factor νT = 1/2 + 1/2 = 1
bilayer excitonic phase did not occur.

III. RESULTS

Figure 1(a) shows a typical tunneling current-voltage IV
characteristic at ν = 1/2. A pronounced suppression of the
tunneling current I around zero interlayer voltage V is readily
apparent. This feature, a Coulomb pseudogap, is the main
focus of this paper. Away from V = 0 the tunneling current
rises and forms a broad peak. Both the Coulomb gap around
V = 0 and the broad peak at finite V are due to the strong
electron-electron interactions which dominate the physics
of Landau quantized 2D electron systems. These features
have received substantial theoretical scrutiny [11–17] and
are qualitatively well understood. We emphasize that these
theoretical studies assumed the electron spins were fully
polarized by the magnetic field [20].

Figure 1(b) presents the density dependence of the voltage
Vmax at which the ν = 1/2 tunneling current reaches its maxi-
mum value. As noted previously [21], if Coulomb interactions
within each 2DES dominate the tunneling IV curve, one
expects Vmax (at fixed filling factor) to be proportional to
n1/2. As Fig. 1(b) shows, Vmax is linearly dependent on n1/2,
but extrapolates to a negative value Vex in the n = 0 limit.
This negative value Vex = −2.0 mV for the data in Fig. 1(b),
represents the excitonic attraction, in the final state, of a
tunneled electron and the hole it leaves behind. In agreement
with earlier work, Vex ≈ −0.5e2/ϵd, with d = 28 nm, the
center-to-center spacing between the quantum wells [21].

For a single layer 2DES, adding an in-plane magnetic field
B|| to a pre-existing perpendicular field B⊥ increases the spin
Zeeman energy (EZ = gµBBtot, with g the Lande g factor
and µB the Bohr magneton) and couples to the finite thickness
of the 2DES thereby inducing mixing between Landau levels
and the subbands of the confinement potential. For electrons
tunneling between two parallel 2DESs separated by a distance
d there is an additional effect arising from the Lorentz force
associated with the in-plane field; a tunneling electron acquires
a “momentum boost” !q, with q = edB||/!. At B⊥ = 0 this
momentum boost can completely suppress the zero bias tunnel-
ing conductance if !q > 2kF , with kF the Fermi wave vector
[22]. At high B⊥, with the Fermi level in the lowest Landau
level, the momentum boost leads to an exponential suppression
of the tunneling matrix element t . Ignoring all other effects
of the in-plane field, the tunneling current is expected to
follow I (B||) = I (0)exp(−q2ℓ2/2), with ℓ = (!/eB⊥)1/2 the
magnetic length [23]. This B||-induced suppression of the
tunneling current at high B⊥ is clearly displayed in Fig. 2(a).
The figure plots the maximum tunneling current Imax in the
broad peak above the Coulomb gap, normalized by its value
at B|| = 0, versus qℓ. Data for four different 2DES densities,
ranging from n = 3.9 to n = 6.3 × 1010 cm−2 are shown; in
all cases B⊥ is set to produce ν = 1/2 in each 2DES layer.
Plotted in this way the various data sets collapse onto a single
curve and the agreement with theory (dashed line) is excellent.

If the momentum boost was the only effect of the in-plane
magnetic field then, aside from an amplitude scale factor, the
basic IV curve would be independent of B||. We find that
this is clearly not the case. Figure 2(b) presents a typical
example of how the normalized tunneling IV curve responds
to the application of an in-plane field. (For these ν = 1/2,
n = 4.24 × 1010 cm−2 data, the perpendicular field is fixed at
B⊥ = 3.51 T.) Roughly speaking, the entire IV curve expands
to higher voltages as B|| is applied.

Figures 3(a) and 3(b) demonstrate that the B||-induced
expansion of the IV curve is not a simple rigid shift to higher
voltages. In Fig. 3(a) the voltage location Vmax of the peak
tunneling current is shown to increase linearly with Btot as the
in-plane field is applied. Over the density range studied, we
find that the rate of this increase is essentially constant.

In contrast, the voltage width of the region of strongly
suppressed tunneling, i.e., the Coulomb gap, behaves quite
differently. To illustrate this, Fig. 3(b) plots ", the voltage at
which the tunnel current first reaches 2% of its subsequent
maximum value, versus Btot. These data were obtained from
the same set of tunneling IV curves used to create Fig. 3(a). In
general, " at first rises swiftly as B|| is applied, but then quickly
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FIG. 2. Effect of an in-plane magnetic field on the tunneling IV

curve at ν = 1/2. (a) Maximum tunneling current versus qℓ at various
densities. Dashed line is theory prediction described in text. (b)
Normalized ν = 1/2 tunneling IV curves at n = 4.24 × 1010 cm−2

for B|| = 0 and B|| = 2.9 T. Upward arrows near lower left show
change in " induced by the in-plane field. Data taken at T = 50 mK.

levels off. For the lowest density data (solid red dots; n = 3.9 ×
1010 cm−2), the initial increase of " is almost twofold. As the
2D density is increased, the net increase in " declines until,
at n = 6.33 × 1010 cm−2, little effect remains. We emphasize
that the precise definition of " is not important here, so long
as it corresponds to a voltage where the tunneling current is a
small fraction of Imax.

The relatively sharp “knee” in the dependence of " on Btot
suggests that a qualitative transition in the nature of the 2DES
at ν = 1/2 occurs as the in-plane field is applied. Moreover,
the transition is most prominent at low density, disappearing
almost entirely at the highest densities investigated here. These
observations are at least consistent with a change in the
spin configuration of the 2DES, a possibility which we now
consider.

IV. DISCUSSION

There is by now copious evidence that the ground state of
the 2DES at ν = 1/2 is not fully spin polarized at low density
[24–33]. For example, Tracy et al. [30], using resistively
detected nuclear magnetic resonance (RDNMR) methods,
observed a relatively sudden increase in the nuclear spin lattice
relaxation time T1 as the density of a 2DES, maintained at
ν = 1/2, was increased. This observation was readily ex-
plained by the disappearance of both up and down electronic

FIG. 3. Effect of in-plane magnetic field on ν = 1/2 tunneling
critical points, Vmax and ", at three different densities, plotted versus
total magnetic field Btot. For each density, the perpendicular field B⊥
is fixed while the in-plane field B|| is varied. The leftmost data point of
each set corresponds to B|| = 0 (tilt angle θ = 0). The arrows indicate
our assignment of the “knee” in the " vs Btot data.

spin states at the Fermi level as the 2DES transitions from
partially to completely spin polarized. Similarly, Li et al.
[32], using both conventional transport and resistively detected
nuclear spin relaxation methods, showed that the ν = 1/2
spin transition could be driven either by increasing the 2DES
density or by adding an in-plane magnetic field.

The composite fermion (CF) theory of the ν = 1/2 state
provides a simple way to understand this transition. In this
theory the 2DES at ν = 1/2 resembles a Fermi gas at zero
magnetic field, only the constituent fermions are CFs, electrons
with two fictitious magnetic flux quanta attached. In general,
both up and down spin CFs are present at the Fermi level, their
relative populations determined by the comparison between
the spin Zeeman energy EZ and the CF Fermi energy EF . The
Zeeman energy is presumed to be the same as for ordinary
electrons, EZ = gµBBtot, with the g factor that appropriate
to the host crystal band structure (|g| = 0.44 for electrons
in GaAs). In contrast, the CF Fermi energy is unrelated
to the band structure and, ideally, is determined only by
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FIG. 4. Solid red circles: Critical normalized Zeeman energy
determined from knee in Coulomb gap " data vs 2DES density
n. Open circle: CF spin transition point found by Tracy et al. [30].
Dashed line: Theoretical estimate of Park and Jain [34].

electron-electron interactions. Dimensional arguments alone
then require EF = γ e2/ϵℓ, with γ a universal, though only
approximately known, constant [34]. Since EZ ∝ Btot, while
EF ∝ B

1/2
⊥ , it is clear that EZ can be made to exceed EF

either by increasing the density or by adding an in-plane
magnetic field. Defining the normalized Zeeman energy
η = EZ/(e2/ϵℓ), the transition from partial to complete spin
polarization at ν = 1/2 should occur at ηc = γ , independent of
electron density. Various nonidealities of the 2DES, e.g., the
inescapable finite thickness of the 2D layer and interaction-
driven Landau level mixing effects, can be expected to disrupt
this universality and produce sample-to-sample variations in
the observed critical Zeeman energy ηc [35].

Using the knee observed in the " vs Btot data shown in
Fig. 3(b) as an indicator of the CF spin transition, the deduced
critical Zeeman energy ηc is plotted vs 2DES density n at
ν = 1/2 in Fig. 4. Also shown is the ν = 1/2 spin transition
point found by Tracy et al. [30] in their RDNMR experiment.
While the agreement between the present experiment and
this earlier one strongly supports the identification of the
tunneling critical point with the CF spin transition, the near
quantitative agreement may be fortuitous. Both similar [33]
and somewhat larger [31,32] values of ηc have been observed
in other experiments. The dashed line is the theoretical estimate
of Park and Jain [34].

To support the identification of the knee in the " vs
Btot data shown in Fig. 3(b) with the transition from partial
to complete spin polarization in the 2DES, the underlying
physical mechanism relating these properties of the 2DES
needs to be determined. As is already well understood
[11–17], the Coulomb gap in the tunneling density of states
arises from the electronic correlations created by Coulomb
interactions in the Landau quantized 2DES. These correlations
are obviously sensitive to the spin polarization of the 2DES:
parallel spin electrons avoid one another more strongly than
antiparallel electrons owing to the Pauli principle. A partially
spin polarized 2DES is in this sense less strongly correlated
than a fully polarized one.

A more detailed picture emerges from consideration of
the wave-vector-dependent conductivity σxx(q) of the 2DES.
The Coulomb gap itself reflects the inability of the 2DES

to rapidly relax the charge defects created by tunneling. An
electron tunneling into (or out of) a Landau quantized 2DES
creates a localized excess (or deficit) of charge. The rate at
which these defects can relax to equilibrium is determined
by the conductivity, with higher conductivity producing a
smaller Coulomb gap and lower conductivity a larger one.
This connection between the magnitude of the Coulomb gap
and the conductivity was made concrete by He, Platzman, and
Halperin (HPH) [12].

Hence, we are led to ask how the spin polarization affects
the conductivity. Since at voltages of order " the charge defects
created by tunneling are localized on the scale of several
magnetic lengths ℓ, the disorder-dominated q = 0 conductivity
measured in an ordinary electrical transport measurement is
not the relevant quantity. Instead, it is σxx(q) at q ∼ ℓ−1

that counts. In their study of the CF metal at ν = 1/2,
Halperin, Lee, and Read [7] calculated the conductivity for
the fully spin polarized case: σxx(q) = (e2/8π!)q/kF , where
kF = (4πn)1/2 is the Fermi wave vector of the spin polarized
CF Fermi sea. This intriguing q-linear conductivity was
confirmed experimentally in high frequency surface acoustic
wave experiments by Willett et al. [36].

If instead of completely spin polarized, the CF Fermi
sea were completely unpolarized, the Fermi wave vector is
reduced to kF = (2πn)1/2 and the conductivity σxx(q), thereby
increased [37] by a factor of

√
2. Between these extremes,

where the 2DES is partially spin polarized, we can expect
the conductivity to steadily decrease with increasing spin
polarization. Given the connection between conductivity and
the width of the Coulomb gap established by HPH [12], this
dependence qualitatively explains the behavior of " vs Btot
shown in Fig. 3(b) and thus fortifies our association of the
knee in the Coulomb gap data with the transition to complete
spin polarization.

V. OPEN QUESTIONS AND CONCLUSION

There are, of course, issues that require further study. For
example, as Fig. 3(a) demonstrates, Vmax, the voltage at which
the maximum in the tunneling current occurs, does not exhibit
any evidence of a transition similar to that displayed by ".
We find this behavior unsurprising. The voltage Vmax is the
crossover point between two regions of suppressed tunneling.
At low energies the slow dynamics of the correlated 2DES
produce the Coulomb gap at the Fermi level. At high energies,
in the single particle cyclotron gap between Landau levels,
there are no final states in which to tunnel. In between these
extremes, at energies of order the net Coulomb broadening
Ec ∼ e2/ϵℓ of the Landau level, the tunneling current has
a maximum. Since Ec depends only on the mean spacing
a between electrons (a = n−1/2 = 2π1/2ℓ at ν = 1/2), no
particular sensitivity to the spin state of these electrons is
expected. The modest [38] linear increase of Vmax with
Btot shown in Fig. 3(a) nevertheless remains a puzzle. One
possibility is that it is due to a stiffening of the effective
Coulomb interaction between electrons due to a “squeezing”
of their wave functions. Such squeezing can result from
the subband/Landau level mixings induced by the in-plane
magnetic field.
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A more interesting question concerns the role of inter-
layer Coulomb interactions. That such interactions exist is
made evident by the linear extrapolation to zero density of
the Vmax vs n1/2 data shown in Fig. 1(b). The substantial
negative intercept Vex = −2.0 mV is believed to be due to
a final-state excitonic attraction between a tunneled electron
and the hole it leaves behind. At low energies, e.g., inside
the Coulomb gap, the charge defects created by tunneling are
larger in lateral extent [39] than they are at Vmax. While this
reduces the magnitude of the excitonic attraction, some effect
undoubtedly remains. HPH considered interlayer Coulomb
interactions and concluded that in addition to an excitonic
“down-shift” of the peak in the tunnel current, the detailed
shape of the IV curve deep in the gap was altered [12]. To
what extent these interactions change the way spin influences
the Coulomb gap is not presently known.

A more dramatic interlayer interaction effect is the con-
densation of the double layer 2DES into an intrinsically bi-
layer collective state possessing spontaneous interlayer phase
coherence [40]. This state, with its remarkable superfluidlike
properties, occurs at the same total filling factor as studied here
(i.e., νT = 1/2 + 1/2 = 1) and is observable in the present
samples, but only at densities lower than those explored here.
While some hypothetical precursors of this transition might be
influencing the present tunneling results, two considerations
suggest otherwise. First, we have observed that a very similar
increase of the Coulomb gap is induced by an in-plane
magnetic field when each 2DES is at filling factor ν = 0.45
or ν = 0.55 (i.e., at total filling factors νT = 0.9 and 1.1,

respectively). Thus, unlike the coherent bilayer νT = 1 state,
the effects reported here exist over a relatively wide range
of filling factors. Second, we have found that the in-plane
field-induced increase in the Coulomb gap persists to at least
T = 0.6 K. This is well above the temperature at which the
bilayer νT = 1 interlayer coherent state has collapsed [41].

In conclusion, we find that the Coulomb gap which domi-
nates the low energy tunneling between two parallel 2DESs at
high magnetic field can be acutely sensitive to the application
of an in-plane magnetic field. This sensitivity appears to
coincide with the transition from partial to complete spin
polarization which the in-plane field drives by increasing the
spin Zeeman energy. The wave-vector-dependent conductivity
of the 2DES provides a plausible link between the Coulomb
gap and the system’s spin configuration. The Coulomb gap
thus appears to offer a new perspective on the spin state of
highly correlated 2D electrons.
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