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Transport in indium-decorated graphene
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The electronic-transport properties of single-layer graphene that has a dilute coating of indium adatoms have
been investigated. Our studies establish that isolated indium atoms donate electrons to graphene and become a
source of charged impurity scattering, affecting the conductivity as well as magnetotransport properties of the
pristine graphene. Notably, a positive magnetoresistance is observed over a wide density range after In doping.
The low-field magnetoresistance carries signatures of quantum interference effects which are significantly altered

by the adatoms.
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I. INTRODUCTION

Surface adsorbates have the potential to open novel avenues
for tailoring the electronic, optical, magnetic, and chemical
properties of many material systems. In addition to influencing
the electronic-scattering mechanisms, adatoms can couple to
the spin, orbital, and charge degrees of freedom and even
bestow their own distinctive properties upon the substrate
material [1]. These effects are enhanced in thin films due
to the increased surface-to-volume ratio. Graphene, a single-
atom-thick sheet of carbon atoms behaving as a zero band-
gap semimetal with a linear Dirac spectrum, is therefore
a compelling host in this respect. While experiments on
graphene have uncovered a myriad of intriguing properties
to date [2], the effects of adatoms on the electron trans-
port in graphene have only begun to be explored. Early
studies on potassium-doped graphene were instrumental in
demonstrating the role of charged impurity scattering on
the conductivity [3]. The adsorption of elements such as
hydrogen [4,5], oxygen [6], and fluorine [7] have been
found to strongly impact the electronic behavior, inducing
insulating band gaps or local magnetic moments. Transition-
metal adatoms on graphene are of particular interest due
to a spate of intriguing theoretical predictions. Several 5d
atoms are expected to induce novel topological behavior, such
as quantum spin Hall or quantum anomalous Hall effects
[8-10]. Meanwhile, the expectation of magnetic moments
arising from 3d metal adatoms has received experimental
support [11]. Thus further studies into such heavy adatoms
are timely and essential for engineering newer graphene
devices.

In the present work, we employ indium (In) to investigate
the influence of heavy adatoms on the electrical transport
of graphene. We find that dilute In coverages (less than
1%) on SiO,-supported graphene significantly charge dope
the system, leading to increased charged impurity scattering
and decreased carrier mobilities. At the same time, the
magnetoresistance at the few-Tesla scale reveals signatures
of an In-induced enhancement of the charge density inho-
mogeneities (commonly referred to as “puddles”) around
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the Dirac point. At low magnetic fields (<50 mT), clear
signatures of weak localization [12,13] and universal con-
ductance fluctuations are seen, with the In adatoms reducing
the amplitude and expanding the width of the zero-field
weak-localization anomaly and suppressing the conductance
fluctuations.

II. EXPERIMENT

Measurements of the graphene samples were performed in
situ before and after the controlled deposition of In atoms in
a custom-built cryostat inserted into a liquid-helium dewar.
The sample stage, held within the cryogenically established
ultrahigh vacuum (UHV) environment, may be controllably
heated to initially desorb surface contaminants and later to
reverse the charge doping created by the indium adatoms.
A thin, indium-coated tungsten wire, located about 15 cm
below the sample stage, allows for deposition of a dilute
quench-condensed film of In onto the cold graphene sample.
The average concentration of deposited In adatoms may be
estimated from the observed changes in the graphene transport
due to charge doping by the indium; theoretical estimates
[8,14] suggest roughly 0.8 electron donated per In atom. The
deposition rate is highly controllable via the current passed
through the tungsten-wire source. The charge doping induced
by indium deposition can be reversed upon annealing the
sample to temperatures above 450 K, with the sample returning
close to its original state. This behavior was reproducible
in several samples. Apart from the deposition and annealing
processes, the devices are stable at low temperature for periods
of several weeks, due to the intrinsically high vacuum of the
cryogenic environment. Each device consists of graphene me-
chanically exfoliated from Kish graphite onto a Si/SiO, wafer
having an oxide thickness of 285 nm. Voltages V,, applied to the
degenerately doped substrate control the graphene free carrier
density, n o< (V, — Vp), with the offset voltage Vy ~ 15-20 V
determined by charged impurities in the SiO,. Electrical
contacts were made using standard electron-beam lithography.
The samples were subsequently etched in an oxygen plasma to
form a Hall bar and rinsed clean with solvents. Here we report
results from a single Hall bar device having wide and narrow
central regions of width W = 8 yum and 1 pum, respectively;
see Fig. 1(a).
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FIG. 1. (Color online) (a) Contrast-enhanced image of single-
layer graphene Hall bar device. The Hall bar has both a wide (8 wm)
region and a narrow (1 um) region. (b) Resistivity p,, vs density
n at T =12 K for the wide (red) and narrow (blue) regions of the
graphene device prior to deposition with In adatoms. (c) Plot of the
conductivity o, vs n clearly reveals a weak sublinear contribution to
the density dependence of o, in the as-made device.

III. RESULTS
A. Transport at zero magnetic field

Figure 1(b) shows the longitudinal resistivity p,, (in ohms
per square) and conductivity o, (in units of e?/h) of both
the wide (red) and narrow (blue) regions of the as-made (i.e.,
before In deposition) device as functions of the free carrier
density n, at T = 12 K. (The gate voltage versus density
calibration is established via observations of Shubnikov—de
Haas magneto-oscillations in p,.) The resistivity peak appears
extremely similar in the two regions, differing noticeably only
at the Dirac point. The conductivity is roughly linear in density
away from the Dirac point, with the slope do,,/dn implying
an average mobility of u ~ 6000 cm?/Vs. As commonly
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FIG. 2. (Color online) Effect of In deposition on graphene con-
ductivity oy, vs gate voltage V, at T = 12 K. Data is from the wide
region of the Hall bar, with trace (a) taken before any In deposition,
trace (b) after the first In deposition, trace (c) after warming the
sample to 450 K, and finally trace (d) after a second In deposition.

observed, there is also a small sublinear contribution to o, (n).
The sublinear contribution appears to be stronger in the narrow
region of the device, at least at high densities on the hole side of
the Dirac point. While the dominant linear density dependence
of o, is believed to arise from long-range charged impurity
scattering, the sublinear contribution is generally attributed
to short-range (on the lattice scale) scatterers [15]. The edge
of the graphene sheet is one obvious source of short-range
scattering and this might explain the enhanced sublinearity of
the conductivity we observe in the narrow region of the device.

The charge doping and associated changes in electronic
transport at zero magnetic field due to In deposition are
demonstrated in Fig. 2 where the conductivity o, is plotted
versus gate voltage V,. The data shown is from the wide region
of the device; the results from the narrow region are almost
identical. Four traces, (a) through (d), are shown in the figure.
Trace (a) was acquired after the graphene had been annealed
at 200° C in the cryogenically established UHV environment,
but prior to any heating of the In evaporation source. The Dirac
minimum conductivity point lies near V, = 20V and the steep,
nearly linear increase in o, away from this point corresponds
to average electron and hole mobilities of & 2> 6000 cm?/ Vs,
as mentioned above. Subsequent to recording trace (a), the
evaporation source was heated and In atoms began to adsorb
onto the graphene surface. This process was monitored in
real time by observing the graphene conductivity. Trace (b),
recorded after the evaporation was stopped, immediately
reveals several qualitative effects of the In deposition. First,
the Dirac point has shifted to more negative V,, demonstrating
electron doping of the graphene by the In adatoms. From the
magnitude of the shift, trace (b) corresponds to a net electron
doping of about 4.5x 10" cm~2. Second, the slope do ., /d V,
away from the Dirac point is much less than in trace (a),
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indicating significantly reduced carrier mobility. Third, the
curvature do,/d ng around the Dirac point is substantially
smaller than in trace (a). This suggests that the In deposition
has enhanced the carrier density inhomogeneity at the Dirac
point. Finally, though not readily apparent in Fig. 2, the weak
sublinearity of o, vs density apparent in Fig. 1(c) is no longer
observed after In has been deposited; in fact, away from the
Dirac point, o.,(V,) shows a small superlinearity after In
deposition. These various effects are broadly similar to those
observed in experiments on graphene doped with potassium or
other adatoms [2,3,15-17], and may reasonably be expected
if indium atoms donate electrons to graphene and become
charged impurity scattering centers.

After trace (b) was recorded, the graphene sample was
briefly heated in situ to about 450 K. After recooling to
T = 12 K, trace (c) was recorded. As the figure makes clear,
the 0., (V,) characteristic of the graphene sample is almost
exactly the same as it was before any In was deposited; there
is only a small shift in the location of the Dirac point. Heating to
450 K is apparently sufficient to “clean” the graphene sample.
Whether this cleaning occurs because the In adatoms have
desorbed, migrated away from the conducting region of the
sample, or have been rendered benign in some other way is, at
present, unknown.

Finally, a second, briefer In deposition was made, resulting
in oy, trace (d). As intended, the doping is less than for trace
(b) and corresponds to about 2.5x 10'> cm~2. All of the effects
observed in trace (b) are also seen in trace (d), only now, as
expected, less intensely.

At low temperatures, the conductivity o,, of graphene,
away from the Dirac point, is often assumed to reflect two
distinct sources of scattering, i.e., screened charged impurities
and abrupt short-range scatterers (edges, lattice defects, etc.)
[15,18]:

o l(n)=og/(n)+oggs- (1

For charged impurities that are a distance d < 1 nm away from
the graphene plane, ¢, (n) is proportional to the carrier density
n:oci(n) = C|n|/Rimp, Where nipy, is the impurity density and
C is a constant estimated [15] to be C = 20e?/ h in the limit
d — 0. (At finite d, Adam et al. find o¢;(n) to be superlinear
in n, increasingly so as d rises [15].) In contrast to this, the
short-range contribution to the conductivity, ogg, is expected
to be independent of density.

For our sample, the conductivity oy,, away from the
Dirac point, is nearly linear in density both before and
after the deposition of indium. This suggests that nearby
screened charged impurities dominate the carrier mobility
W = 0y, /|nle. By making the reasonable assumption that the
number of additional charged impurities, Anjyp, due to the
indium deposition equals the charge doping deduced from
the shift of the Dirac peak, we can estimate the distance d
between the adatoms and the graphene plane by comparing
the conductivity before and after the deposition and using
the theory of Adam et al. [15]. For carrier densities between
n =23 and 4x10'2 cm~2, we find d ~ 0.8-0.9 nm for both
the first and second In deposition. At these d values, the
theory shows somewhat more superlinearity in o, ,(7) than we
observe; this is plausibly the result of short-range scatterers
present in our sample but not included in the theory. We
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FIG. 3. (Color online) Hall coefficient vs density near the Dirac
point. The red and blue data points correspond to Ry measurements
before and after the deposition of about 2.5x10'> cm™? indium
adatoms, respectively. The dashed curve shows the ideal Ry =
—1/ne behavior, while the two solid lines display convolutions of
the ideal behavior with Gaussian density distributions of rms width
0, = 0.3 and 0.6x10"> cm2.

note that recent density-functional-theory (DFT) calculations
suggest that chemisorbed In atoms reside much closer, favoring
positions about d & 0.24 nm above the center of the hexagons
of carbon atoms in the graphene [19,20].

B. Magnetoresistance at intermediate magnetic fields

We turn now to the impact of the indium adatoms on the
resistivity coefficients (Hall p,, and longitudinal p,,) in a
magnetic field B. We concentrate first on fields B 2 50 mT
in order to avoid the quantum interference effects which we
discuss subsequently.

Figure 3 shows the Hall coefficient Ry = dp,,/d B, mea-
sured in the wide region of the device at T =12 K, as
a function of free carrier density n, where n is computed
from the gate voltage (relative to the Dirac point) and the
known capacitance between the graphene and the conducting
Si substrate. Two datasets are shown: The red data points
were obtained from the graphene sample before any indium
deposition, while the blue data were obtained after about
2.5%10'? cm~? indium atoms were deposited. Owing to charge
density inhomogeneity, the Hall coefficient passes smoothly
through Ry = 0 at n = 0 in both cases. It is clear from the
figure that the smearing of the divergence at n = 0 of the ideal
Ry = —1/ne Hall coefficient (indicated by the dashed solid
line in the figure) is significantly stronger when the indium
is present. The two solid lines are simple convolutions of
the ideal Ry behavior with Gaussian density distributions
of rms widths o, = 0.3 and 0.6x10'2> cm™2; these roughly
approximate the observed behavior of Ry (n) for the clean and
indium-decorated graphene sample, respectively.

The data in Fig. 3 corroborate our earlier conclusion that
the deposition of indium adatoms increases the charge density

245402-3



U. CHANDNI, ERIK A. HENRIKSEN, AND J. P. EISENSTEIN

inhomogeneity o, near the graphene Dirac point. The theory
of Adam et al. [15] suggests that a sheet of 2.5x10'?> cm™>
charged impurities positioned d = 0.9 nm away from graphene
will induce charge density fluctuations of rms amplitude
0, = 0.6x10'> cm~2 around the Dirac point. This remarkable
agreement with the blue dataset in Fig. 3 is somewhat
misleading since, as the red dataset in the figure proves,
density fluctuations (o, &~ 0.3x10'?> cm~2) are present in our
sample even prior to the indium deposition. However, since
it is reasonable to assume that these prior density fluctuations
are statistically independent of the fluctuations induced by the
In adatoms, the two sources of inhomogeneity would add in
quadrature to produce o, o ~ 0.7x10'> cm~2, still in good
agreement with the blue dataset in Fig. 3. We note in passing
that if d = 0.25 nm, as DFT suggests [19], then the theory of
Adam et al. [15] would predict o, &~ 1.1x10'2 cm~2. Our data
is not consistent with such a large density inhomogeneity.

Away from the Dirac point, at densities |z| > 10'? cm™2,
the longitudinal resistivity p,, of the sample exhibits very little
magnetic field dependence for B < 3 T. This is illustrated
in Fig. 4(a) where the fractional change in the resistivity,
Apyrx/pxx = [Pxx(B) — pxx(0)]/pxx(0), measured in the wide
region of the device is plotted versus magnetic field at
the holelike density of n = —2.8x10'2 cm™2. Again two
datasets are shown, one with and one without approximately
2.5x 10" cm~2 In adatoms present. This very weak magnetic
field dependence is consistent with the behavior of a simple
Drude metal. (Beyond B &~ 3 T, clear Shubnikov—de Haas
oscillations emerge in p,, data from the clean graphene
sample. Only weak hints of oscillations are seen, at the highest
magnetic fields, in the lower mobility, In-decorated sample.)

As the n = 0 Dirac point is approached, this very weak
magnetoresistance is replaced by a strong positive magne-
toresistance. This is shown in Figs. 4(b) and 4(c), where
Apyy/pxy data from the wide region of the clean and In-
decorated graphene sample, respectively, are displayed at
various free carrier densities n. At n = 0 (red traces), both
the clean and In-decorated samples exhibit a nearly linear
magnetoresistance, with p,, increasing by about 70% (50%)
in the clean (In-decorated) graphene sample by B =2 T.

For the clean graphene sample, the large magnetoresistance
seen at n = 0 disappears quickly as n becomes finite. The
green, blue, magenta, and black traces in Fig. 4(b), correspond-
ing to n =0.7, 1.4, 2.8, and 5.6x10'?> cm™2, respectively,
reveal virtually no magnetoresistance (for B < 2 T) at these
densities. In contrast, for the In-decorated sample, the strong,
quasilinear magnetoresistance found at n = 0 subsides only
gradually with density. Moreover, as Fig. 4(c) demonstrates,
Apyy/pxy at finite n exhibits a nonlinear, saturating depen-
dence on the magnetic field.

These same basic magnetoresistance effects are observed in
Apyx [ pxx data from the narrow region of the graphene sample,
even if some quantitative differences do appear. In addition,
as already suggested by the B = 0 data in Figs. 1 and 2, we
find that the magnetoresistance, at a given |n|, is essentially
identical on the electron (n > 0) and hole (n < 0) sides of the
Dirac point.

Strong, quasilinear, positive magnetoresistance of graphene
near the Dirac point has been reported previously [21,22]. It
is generally believed to be a result of the charge density inho-
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FIG. 4. (Color online) Effect of In adatoms on the magnetoresis-
tance of graphene. (a) Apy/p.x V8 B atn = —2.8x10'2 cm™2. The
red trace corresponds to clean graphene sample, while for the blue
trace, approximately 2.5x10'2 cm™2 In adatoms are present. (b),(c)
Magnetoresistance at various free carrier densities in the clean and
In-decorated sample, respectively. Red, green, blue, magenta, and
black traces: n = 0, 0.7, 1.4, 2.8, and 5.6x10'? cm~2. All data at
T =12K.

mogeneities (electron and hole “puddles”), which are known
to exist near the n = 0 charge neutrality point. As the average
density |n| increases, the system eventually becomes unipolar,
with the fractional density fluctuation o, /|n| falling with |n|
owing to enhanced screening. It seems reasonable to expect
the magnetoresistance to subside once o, /|n| is sufficiently
small and the graphene carriers become more Drude-like. The
fact that we observe a strong positive magnetoresistance over
a wider density range about n = 0 in the In-decorated sample
compared to the clean sample further supports our conclusion
that the In adatoms exacerbate the density inhomogeneities in
the sample.
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Some aspects of the positive magnetoresistance features
observed near the Dirac point are captured by theories which
treat transport in a system of electron and hole puddles
within an effective medium approximation (EMA) [23-25].
For example, EMA models [23], which assume electron and
hole puddles that have the same carrier mobility u, predict a
linear magnetoresistance at n = 0, at least for magnetic fields
B > ', Similarly, the observed nonlinear saturating behav-
ior of Apy,/pxx With B at finite |n| also emerges from EMA
calculations. Although estimating the mobility of the electron
and hole puddles presumably present at n = 0 is problematic,
we note that the linear magnetoresistance we observe near n =
0 persists to magnetic fields considerably smaller than !, if
w is taken to be any of the values (1 ~ 2000—-6000 cm?/Vs)
found in our sample at densities well away from the Dirac
point. Finally, we note that alternative theories [26] of the
linear magnetoresistance, based on multiple scattering off of
poorly conducting regions in an inhomogeneous conductor,
have also recently appeared.

C. Quantum interference effects

At magnetic fields below about B ~ 100 mT, the magne-
toresistance of both the clean and indium-decorated sample
shows clear signs of quantum interference effects, including
both weak localization and universal conductance fluctuations.
Figure 5(a) shows the change in the magnetoconductance
Ao = —Ap/p* around B = 0, at various temperatures, for
the clean graphene sample at a free carrier density of
n ~ 5x10'? cm™2. These data exhibit a cusplike minimum
in Ac at B =0, of depth comparable to e?/h. As the
temperature is increased, the minimum broadens and weakens.
In addition, the fluctuations in the conductance, which are
roughly symmetric in magnetic field and quite prominent at
the lowest temperatures, subside entirely by 7 = 50 K. These
features are clearly reminiscent of the signatures of weak
localization and universal conductance fluctuations seen in
ordinary disordered thin metal films [27,28].

Figure 5(b) shows the effect of indium adatoms on the
magnetoconductance at T = 12 K. The top trace corresponds
to the clean graphene sample, while for the middle and lower
trace, the sample is decorated with approximately 2.5 and
4.5%10'? cm™2 In adatoms, respectively. In each case, the
gate voltage V, was adjusted to yield the same free carrier
density, n ~ 5x10'> cm~2; this relatively high density was
chosen so that the complicating effects of carrier density
inhomogeneity, discussed in Sec. III B, are minimized. As the
figure makes clear, the In adatoms reduce the magnitude and
broaden the width of the cusplike minimum in Ao around
B = 0. The conductance fluctuations, so readily apparent in
the clean sample at low temperatures, are almost entirely
suppressed by the In adatoms. As explained below, these
various changes in the magnetoconductance can be understood
as consequences of the reduced mobility of the graphene
carriers in the In-decorated sample.

Finally, Fig. 5(c) displays the temperature dependence of
the magnetoconductance of the graphene sample decorated
with approximately 2.5x10'> cm~2 indium adatoms. Just as
for the clean sample, increasing the temperature weakens
and broadens the cusplike minimum in Ac. Here again, the
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FIG. 5. (Color online) Low-field magnetoconductance observed
in the narrow region of the sample at a free carrier density of n =
5.5x10'2 cm™2. (a) Clean sample at T = 12, 20, 33, and 50 K. (b)
Effect of In deposition on Ao at T = 12 K. Blue: clean sample.
Green (red): After deposition of approximately 2.5 (4.5) x10'? cm~2
In adatoms. (c) Magnetoconductance at 7 = 12, 20, 33, and 50 K of
sample decorated with 2.5x 10'2 cm~2 In adatoms.

free carrier density is n &~ 5x10'2 cm~2. At this density, the
mobility is found to be u & 5400 and 2300 cm?/Vs in the
clean and In-decorated sample, respectively.

The data shown in Fig. 5 were obtained from the narrow
region of the Hall bar. Data taken from the wide region of the
Hall bar display the same cusplike minimum in Ao, although
it is not as deep as that seen in the narrow region. Possible
explanations for this difference are discussed below.

The theory of weak localization in graphene [29-31] is
more intricate than the corresponding theory for ordinary
metal films [32-34]. A description including only two time
scales, i.e., an elastic scattering time t,; and a dephasing
time 74, is insufficient to capture the necessary physics. In
graphene, intervalley scattering, sublattice symmetry-breaking
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processes, trigonal warping of the Dirac cones, and weak spin-
orbit effects all must be included in a complete theory. Indeed,
it is generally believed that intervalley scattering explains
why weak localization is observed in graphene instead of the
weak antilocalization originally anticipated to arise from the
chirality-induced absence of intravalley backscattering.

In this paper, we use a simplified version of the theory
of McCann et al. [29], including only the elastic scattering
time t,;, the dephasing time 7y, and an intervalley scattering
time 7;. We are thus ignoring sublattice symmetry-breaking
processes, band warping, and spin-orbit effects. In addition,
we approximate the elastic scattering time t,; by the mobility
lifetime 7,. This is justified since the dephasing times 74,
which reflect all inelastic processes, deduced from our analysis
exceed 7, by one and two orders of magnitude at all
temperatures studied. In this simplified approach, the change
in the magnetoconductance, Ao = o(B) — ¢(0), is given by

e? B B B
Ao=—|F|—|-F|———)-2F ,
7T/’l B¢ B¢ +2Bl B¢+Bi

1

1 h
F(z)=In(z)+ ¢ (5 + ;) s B¢,,‘ = mrqﬁ_zl )

Here, D = v%1,/2 is the diffusivity and  is the digamma
function. Numerical estimates of 74 and 7; are obtained by
fitting our data to Eq. (2) over the magnetic field range
|B| <25 mT. With this relatively narrow field window,
the fits obviously emphasize the cusplike feature in Ao at
B =0 at the expense of its behavior at larger fields. This
approach is justified, we believe, by several considerations.
First, there are observed contributions to the magnetoresistance
atintermediate fields which are not captured by Eq. (2), notably
those due to carrier density inhomogeneity and universal
conductance fluctuations. Second, the applicability of Eq. (2)
is limited to fields small enough that the elastic mean free
path £, = vpt, is much less than the magnetic length [27,33]
£y = (h/eB)'/?. For the clean graphene sample, at a free
carrier concentration of 5x10'? cm™2, ¢, = £, already at
B =~ 25 mT. Finally, we find that the inclusion of additional
fitting parameters (e.g., sublattice symmetry-breaking times)
leads to multiple y -squared minima in the fitting procedure and
large uncertainties in some of the extracted scattering times.

Figure 6(a) shows two examples of the fits of Eq. (2) to
data obtained from the clean and In-decorated sample. The
fits are clearly good at very low magnetic field. At higher
fields, especially for the clean sample, the fit worsens. While
this is partly a result of the stronger conductance fluctuations
evident in the clean sample, it might also suggest that we have
oversimplified the McCann theory in arriving at Eq. (2), or
merely violated the £,, < £, requirement too egregiously.

Figure 6(b) presents the fitted values of the dephasing time
74 and intervalley scattering time 7; for the clean and In-
decorated sample at free carrier density n &~ 5x10'> cm™2.
The diagonal dashed lines are theoretical predictions of 74 in
a diffusive two-dimensional (2D) conductor from the work of
Altshuler et al. [35],

L kT

T¢ = mln(ﬂth), (3)
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FIG. 6. (Color online) Results of weak-localization data analysis
at n ~ 5x10'? cm™2. (a) Examples of fits (dashed lines) of Eq. (2)
to data (solid lines) at 7 = 12 K. Blue: clean graphene sample; Red:
after deposition of approximately 2.5x 10'? cm~? indium adatoms.
(b) Fitted values of 7 (solid circles) and 7; (open circles) for the clean
(blue) and In-decorated (red) graphene sample. Diagonal (horizontal)
dashed lines: theory estimates of 74 (7,) in graphene at mobilities
5400 (blue) and 2300 (red) cm?/Vs.

with D again the diffusivity and v the density of states at
the Fermi level. The upper and lower diagonal lines represent
Eq. (3) with D and v evaluated for graphene with mobilities
of 5400 and 2300 cm?/ Vs, respectively, at n = 5x10'2 cm™2.
These predictions are in reasonably good agreement with the
fitted values of 4.

The fitted values of t;, i.e., the intervalley scattering
time, are essentially temperature independent and statistically
identical for the clean and In-decorated sample. This last
observation is intriguing, for if one assumes that scattering
off of an indium adatom is only intravalley, then t; should
increase after indium deposition owing to the reduction
in the electron mobility and diffusivity. The fact that t;
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instead appears to be unaffected by the indium implies that
the intervalley scattering length ¢; = (Dt;)"/ 2 is shorter, by
about a factor of (5400/2300)1/ 2 & 1.5, in the In-decorated
sample. Thus some fraction, crudely of the order of 10%,
of the scatterings off of the indium adatoms appear to be
intervalley processes. It seems at least conceivable that the
adatoms weakly distort the graphene lattice in their immediate
vicinity (in addition to providing a long-range Coulomb
scattering potential) and thereby enable intervalley scattering.
Alternatively, this somewhat surprising result could be an
artifact of our simplified weak-localization analysis.

The dephasing times 74 found here lead to dephasing
lengths £, = (D14)'/? ranging from €5 ~ 1.0 umat T = 12K
in the clean graphene sample to £y ~ 0.26 umat T = 33 K in
the In-decorated sample. Since the width of the narrow region
of the Hall bar is W = 1 um, the data described above may
be in a crossover regime from 2D to 1D localization. This, in
addition to the fact that boundary scattering is more important
in the narrow region of the device than the wide region, may
explain why the weak-localization signatures are stronger in
the narrow region of the Hall bar.

One motivation for depositing In adatoms onto graphene is
that their strong spin-orbit interaction will convert graphene
from a gapless semimetal into a topological insulator [8,10].
Weak localization is well known to be a sensitive probe
of spin-orbit effects in metals [1,33,34]. In graphene, the
theoretical situation is again more complicated than in ordinary
metals [31]. Although our simplified analysis omits spin-orbit
scattering at the outset, it seems clear from the data that no
weak-antilocalization features analogous to those observed in
metal films that have strong spin-orbit scattering (e.g., Mg:Au
[1]) are seen. This is perhaps not surprising given the very low
In coverages (~0.1%) employed here.

IV. CONCLUSION

Transport studies of graphene decorated with dilute con-
centrations of indium adatoms have been reported here. Our
results reveal that the In adatoms electron dope the graphene,
as evidenced by gate voltage shifts of the Dirac point. The
mobility of free carriers in the graphene is significantly reduced
by the indium adatoms. The near linearity with density of the
graphene conductivity after indium is deposited shows that the
adatoms act primarily as long-range Coulombic scatterers. At
the same time, our results reveal a pronounced broadening of
the conductivity minimum and Hall coefficient at the Dirac
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point, demonstrating that the In adatoms increase the level of
charge density inhomogeneity in the system.

Analysis of the conductivity and Hall-effect data via the
theory of Adam et al. suggests that the In adatoms reside
approximately d ~ 0.8-0.9 nm from the graphene surface.
This seems surprisingly large given that the In readily dopes
the graphene with electrons. It is also in disagreement
with recent density-functional-theory calculations which find
d ~ 0.24 nm. Resolving this discrepancy requires additional
experimental work.

At intermediate magnetic fields, a strong quasilinear
positive magnetoresistance is observed at the Dirac point.
This finding, which has been reported previously, has been
attributed to the existence of electron and hole “puddles” at
the (net) charge neutrality point. While this effect subsides
rapidly upon moving away from the Dirac point in the
clean graphene sample, it persists to considerably higher
density after indium adatoms have been deposited. This further
supports our conclusion that the In adatoms exacerbate the
charge density inhomogeneity in the graphene.

Obvious signatures of weak localization and universal
conductance fluctuations are seen at low magnetic field. These
signatures are modified when In adatoms are deposited in a way
largely attributable to the resulting reduced carrier mobility.
A simplified version of the theory of weak localization in
graphene suffices to fit the magnetoconductance at very low
fields and the extracted values of the dephasing times 7,
are in reasonable agreement with theory. Plausible values of
the intervalley scattering time 7; are also obtained from the
analysis, along with intriguing evidence that the In adatoms,
while dominantly sources of long-range intravalley Coulomb
scattering, occasionally enable intervalley events as well. No
clear-cut evidence for spin-orbit effects is apparent in our data.
We note that similar conclusions have been reached in the work
of Jia et al. [36].

ACKNOWLEDGMENTS

We thank S. Adam, I. Aleiner, J. Alicea, S. Das Sarma, J. Hu,
K. Kechedzhi, E. McCann, R. Mong, J. Pollanen, G. Refael,
and R. Wu for helpful correspondence and discussions. This
work was supported by U.S. Department of Energy Grant No.
FGO02-99ER45766 and the Institute for Quantum Information
and Matter, an NSF Physics Frontiers Center with support of
the Gordon and Betty Moore Foundation through Grant No.
GBMF1250.

[1] G. Bergmann, Phys. Rev. Lett. 48, 1046 (1982).

[2] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod.
Phys. 83, 407 (2011).

[3] J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer,
E. D. Williams, and M. Ishigami, Nat. Phys. 4, 377
(2008).

[4] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov,
P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. L.
Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610
(2009).

[5] J. Balakrishnan, G. Kok Wai Koon, M. Jaiswal, A. H. Castro-
Neto, and B. Ozyilmaz, Nat. Phys. 9, 284 (2013).

[6] J. Ito, J. Nakamura, and A. Natori, J. Appl. Phys. 103, 113712
(2008).

[7]1 X. Hong, K. Zou, B. Wang, S.-H. Cheng, and J. Zhu, Phys. Rev.
Lett. 108, 226602 (2012).

[8] C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu, Phys. Rev. X
1, 021001 (2011).

[9] H. Zhang, C. Lazo, S. Blgel, S. Heinze, and Y. Mokrousov,
Phys. Rev. Lett. 108, 056802 (2012).

245402-7


http://dx.doi.org/10.1103/PhysRevLett.48.1046
http://dx.doi.org/10.1103/PhysRevLett.48.1046
http://dx.doi.org/10.1103/PhysRevLett.48.1046
http://dx.doi.org/10.1103/PhysRevLett.48.1046
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1038/nphys935
http://dx.doi.org/10.1038/nphys935
http://dx.doi.org/10.1038/nphys935
http://dx.doi.org/10.1038/nphys935
http://dx.doi.org/10.1126/science.1167130
http://dx.doi.org/10.1126/science.1167130
http://dx.doi.org/10.1126/science.1167130
http://dx.doi.org/10.1126/science.1167130
http://dx.doi.org/10.1038/nphys2576
http://dx.doi.org/10.1038/nphys2576
http://dx.doi.org/10.1038/nphys2576
http://dx.doi.org/10.1038/nphys2576
http://dx.doi.org/10.1063/1.2939270
http://dx.doi.org/10.1063/1.2939270
http://dx.doi.org/10.1063/1.2939270
http://dx.doi.org/10.1063/1.2939270
http://dx.doi.org/10.1103/PhysRevLett.108.226602
http://dx.doi.org/10.1103/PhysRevLett.108.226602
http://dx.doi.org/10.1103/PhysRevLett.108.226602
http://dx.doi.org/10.1103/PhysRevLett.108.226602
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1103/PhysRevLett.108.056802
http://dx.doi.org/10.1103/PhysRevLett.108.056802
http://dx.doi.org/10.1103/PhysRevLett.108.056802
http://dx.doi.org/10.1103/PhysRevLett.108.056802

U. CHANDNI, ERIK A. HENRIKSEN, AND J. P. EISENSTEIN

[10] J. Hu, J. Alicea, R. Wu, and M. Franz, Phys. Rev. Lett. 109,
266801 (2012).

[11] T. Eelbo, M. Wasniowska, P. Thakur, M. Gyamfi, B. Sachs,
T. O. Wehling, S. Forti, U. Starke, C. Tieg, A. I. Lichtenstein,
and R. Wiesendanger, Phys. Rev. Lett. 110, 136804 (2013).

[12] F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K.
Savchenko, Phys. Rev. Lett. 100, 056802 (2008).

[13] F. V. Tikhonenko, A. A. Kozikov, A. V. Savchenko, and R. V.
Gorbachev, Phys. Rev. Lett. 103, 226801 (2009).

[14] K. T. Chan, J. B. Neaton, and M. L. Cohen, Phys. Rev. B 77,
235430 (2008).

[15] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma,
Proc. Natl. Acad. Sci. USA 104, 18392 (2007).

[16] J. Yan and M. Fuhrer, Phys. Rev. Lett. 107, 206601 (2011).

[17] K. Pi, K. M. McCreary, W. Bao, Wei Han, Y. F. Chiang, Yan Li,
S.-W. Tsai, C. N. Lau, and R. K. Kawakami, Phys. Rev. B 80,
075406 (2009).

[18] K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 96, 256602
(2006).

[19] J. Alicea and R. Wu (private communication).

[20] K. Nakada and A. Ishii, Solid State Commun. 151, 13 (2011).

[21] S. Cho and M. S. Fuhrer, Phys. Rev. B 77, 081402 (2008).

[22] J. Ping, I. Yudhistira, N. Ramakrishnan, S. Cho, S. Adam, and
M. S. Fuhrer, Phys. Rev. Lett. 113, 047206 (2014).

PHYSICAL REVIEW B 91, 245402 (2015)

[23] V. Guttal and D. Stroud, Phys. Rev. B 71, 201304(R) (2005).

[24] R. P. Tiwari and D. Stroud, Phys. Rev. B 79, 165408 (2009).

[25] E. Rossi, S. Adam, and S. Das Sarma, Phys. Rev. B 79, 245423
(2009).

[26] N.V.Kozlova, N. Mori, O. Makarovsky, L. Eaves, Q. D. Zhuang,
A. Krier, and A. Patane, Nat. Commun. 3, 1097 (2012).

[27] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287
(1985).

[28] P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).

[29] E. McCann, K. Kechedzhi, Vladimir I. Fal’ko, H. Suzuura, T.
Ando, and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).

[30] I. L. Aleiner and K. B. Efetov, Phys. Rev. Lett. 97, 236801
(2006).

[31] E.McCann and V. I. Fal’ko, Phys. Rev. Lett. 108, 166606 (2012).

[32] B. Altshuler, D. E. Khmel’nitskii, A. I. Larkin, and P. A. Lee,
Phys. Rev. B 22, 5142 (1980).

[33] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63,
707 (1980).

[34] S. Maekawa and H. Fukuyama, J. Phys. Soc. Jpn. 50, 2516
(1981).

[35] B. L. Altshuler, A. G. Aronov, and D. E. Khmel’nitskii, J. Phys.
C 15,7367 (1982).

[36] Z. Jia, B. Yan, J. Niu, Q. Han, R. Zhu, D. Yu, and X. Wu,
Phys. Rev. B 91, 085411 (2015).

245402-8


http://dx.doi.org/10.1103/PhysRevLett.109.266801
http://dx.doi.org/10.1103/PhysRevLett.109.266801
http://dx.doi.org/10.1103/PhysRevLett.109.266801
http://dx.doi.org/10.1103/PhysRevLett.109.266801
http://dx.doi.org/10.1103/PhysRevLett.110.136804
http://dx.doi.org/10.1103/PhysRevLett.110.136804
http://dx.doi.org/10.1103/PhysRevLett.110.136804
http://dx.doi.org/10.1103/PhysRevLett.110.136804
http://dx.doi.org/10.1103/PhysRevLett.100.056802
http://dx.doi.org/10.1103/PhysRevLett.100.056802
http://dx.doi.org/10.1103/PhysRevLett.100.056802
http://dx.doi.org/10.1103/PhysRevLett.100.056802
http://dx.doi.org/10.1103/PhysRevLett.103.226801
http://dx.doi.org/10.1103/PhysRevLett.103.226801
http://dx.doi.org/10.1103/PhysRevLett.103.226801
http://dx.doi.org/10.1103/PhysRevLett.103.226801
http://dx.doi.org/10.1103/PhysRevB.77.235430
http://dx.doi.org/10.1103/PhysRevB.77.235430
http://dx.doi.org/10.1103/PhysRevB.77.235430
http://dx.doi.org/10.1103/PhysRevB.77.235430
http://dx.doi.org/10.1073/pnas.0704772104
http://dx.doi.org/10.1073/pnas.0704772104
http://dx.doi.org/10.1073/pnas.0704772104
http://dx.doi.org/10.1073/pnas.0704772104
http://dx.doi.org/10.1103/PhysRevLett.107.206601
http://dx.doi.org/10.1103/PhysRevLett.107.206601
http://dx.doi.org/10.1103/PhysRevLett.107.206601
http://dx.doi.org/10.1103/PhysRevLett.107.206601
http://dx.doi.org/10.1103/PhysRevB.80.075406
http://dx.doi.org/10.1103/PhysRevB.80.075406
http://dx.doi.org/10.1103/PhysRevB.80.075406
http://dx.doi.org/10.1103/PhysRevB.80.075406
http://dx.doi.org/10.1103/PhysRevLett.96.256602
http://dx.doi.org/10.1103/PhysRevLett.96.256602
http://dx.doi.org/10.1103/PhysRevLett.96.256602
http://dx.doi.org/10.1103/PhysRevLett.96.256602
http://dx.doi.org/10.1016/j.ssc.2010.10.036
http://dx.doi.org/10.1016/j.ssc.2010.10.036
http://dx.doi.org/10.1016/j.ssc.2010.10.036
http://dx.doi.org/10.1016/j.ssc.2010.10.036
http://dx.doi.org/10.1103/PhysRevB.77.081402
http://dx.doi.org/10.1103/PhysRevB.77.081402
http://dx.doi.org/10.1103/PhysRevB.77.081402
http://dx.doi.org/10.1103/PhysRevB.77.081402
http://dx.doi.org/10.1103/PhysRevLett.113.047206
http://dx.doi.org/10.1103/PhysRevLett.113.047206
http://dx.doi.org/10.1103/PhysRevLett.113.047206
http://dx.doi.org/10.1103/PhysRevLett.113.047206
http://dx.doi.org/10.1103/PhysRevB.71.201304
http://dx.doi.org/10.1103/PhysRevB.71.201304
http://dx.doi.org/10.1103/PhysRevB.71.201304
http://dx.doi.org/10.1103/PhysRevB.71.201304
http://dx.doi.org/10.1103/PhysRevB.79.165408
http://dx.doi.org/10.1103/PhysRevB.79.165408
http://dx.doi.org/10.1103/PhysRevB.79.165408
http://dx.doi.org/10.1103/PhysRevB.79.165408
http://dx.doi.org/10.1103/PhysRevB.79.245423
http://dx.doi.org/10.1103/PhysRevB.79.245423
http://dx.doi.org/10.1103/PhysRevB.79.245423
http://dx.doi.org/10.1103/PhysRevB.79.245423
http://dx.doi.org/10.1038/ncomms2106
http://dx.doi.org/10.1038/ncomms2106
http://dx.doi.org/10.1038/ncomms2106
http://dx.doi.org/10.1038/ncomms2106
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/PhysRevLett.55.1622
http://dx.doi.org/10.1103/PhysRevLett.55.1622
http://dx.doi.org/10.1103/PhysRevLett.55.1622
http://dx.doi.org/10.1103/PhysRevLett.55.1622
http://dx.doi.org/10.1103/PhysRevLett.97.146805
http://dx.doi.org/10.1103/PhysRevLett.97.146805
http://dx.doi.org/10.1103/PhysRevLett.97.146805
http://dx.doi.org/10.1103/PhysRevLett.97.146805
http://dx.doi.org/10.1103/PhysRevLett.97.236801
http://dx.doi.org/10.1103/PhysRevLett.97.236801
http://dx.doi.org/10.1103/PhysRevLett.97.236801
http://dx.doi.org/10.1103/PhysRevLett.97.236801
http://dx.doi.org/10.1103/PhysRevLett.108.166606
http://dx.doi.org/10.1103/PhysRevLett.108.166606
http://dx.doi.org/10.1103/PhysRevLett.108.166606
http://dx.doi.org/10.1103/PhysRevLett.108.166606
http://dx.doi.org/10.1103/PhysRevB.22.5142
http://dx.doi.org/10.1103/PhysRevB.22.5142
http://dx.doi.org/10.1103/PhysRevB.22.5142
http://dx.doi.org/10.1103/PhysRevB.22.5142
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1143/JPSJ.50.2516
http://dx.doi.org/10.1143/JPSJ.50.2516
http://dx.doi.org/10.1143/JPSJ.50.2516
http://dx.doi.org/10.1143/JPSJ.50.2516
http://dx.doi.org/10.1088/0022-3719/15/36/018
http://dx.doi.org/10.1088/0022-3719/15/36/018
http://dx.doi.org/10.1088/0022-3719/15/36/018
http://dx.doi.org/10.1088/0022-3719/15/36/018
http://dx.doi.org/10.1103/PhysRevB.91.085411
http://dx.doi.org/10.1103/PhysRevB.91.085411
http://dx.doi.org/10.1103/PhysRevB.91.085411
http://dx.doi.org/10.1103/PhysRevB.91.085411

