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Tunneling at νT = 1 in quantum Hall bilayers
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Interlayer tunneling measurements in the strongly correlated bilayer quantized Hall phase at νT = 1 are
reported. The maximum, or critical, current for tunneling at νT = 1 is shown to be a well-defined global property
of the coherent phase, insensitive to extrinsic circuit effects and the precise configuration used to measure it, but
also exhibiting a surprising scaling behavior with temperature. Comparisons between the experimentally observed
tunneling characteristics and a recent theory are favorable at high temperatures, but not at low temperatures where
the tunneling closely resembles the dc Josephson effect. The zero-bias tunneling resistance becomes extremely
small at low temperatures, vastly less than that observed at zero magnetic field, but nonetheless remains finite.
The temperature dependence of this tunneling resistance is similar to that of the ordinary in-plane resistivity of
the quantum Hall phase.
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I. INTRODUCTION

When the total density of electrons nT in a closely spaced
bilayer two-dimensional electron system (2DES) equals the
degeneracy eB/h of a single spin-resolved Landau level
produced by a magnetic field B perpendicular to the planes,
a unique strongly correlated electron fluid emerges at low
temperatures.1 Corresponding to Landau level filling fraction
νT = 1, this quantum fluid may be equivalently described as
a pseudospin ferromagnet or a Bose condensate of interlayer
excitons. The essential physics underlying this unusual phase
of quantum electronic matter is spontaneous interlayer phase
coherence, a broken symmetry arising from the interplay of
the magnetic field and the inter- and intralayer Coulomb
interactions.2–5 As this phase develops, electrons in the system
cease being localized in the individual layers and instead
occupy a coherent linear combination of the individual layer
eigenstates. Remarkably, this delocalization occurs even in
the limit of vanishingly small interlayer tunneling. In the
clean limit, the phase φ of this linear combination in the
ground state is the same for all electrons. Spatial and temporal
variations of φ cost energy and govern both the dynamics of
the exciton condensate and the elementary excitations of the
system.

The coherent νT = 1 bilayer exhibits several remarkable
transport characteristics.6 When electrical currents are driven
in parallel through the two layers, the bilayer behaves as a
conventional quantum Hall system;7–9 the bulk of the 2DES
is insulating, while a single chiral edge state at the system
boundary yields a quantized Hall plateau at ρxy = h/e2. More
interestingly, oppositely directed currents in the two layers
are transported via the neutral exciton condensate, generating
little or no dissipation or Hall voltage.10–12 Recent experiments
have shown that such counterflowing currents, which carry
no net charge, can readily cross the insulating bulk of the
2DES.13–15

Perhaps the most striking property of the coherent νT = 1
bilayer state is a vast enhancement of the tunneling con-
ductance between the two 2D layers.16 Tunneling between
widely separated parallel 2D electron systems has proven to
be an effective tool for the study of intralayer electron-electron

interactions both at zero and high magnetic field B. At
B = 0 the conservation of in-plane momentum leads to a
resonance in the tunneling conductance ∂I/∂V whose width is
governed by the single-electron quantum lifetime.17–19 At high
field, strong Coulomb correlations within each 2DES heavily
suppress the tunneling conductance at zero bias and create
broad resonances in ∂I/∂V at voltages of order of the mean
Coulomb energy e2/ε& in the system [here & = (h̄/eB)1/2 is
the magnetic length].20–24 In both cases the observed tunneling
conductance exposes the convolution of the electronic spectral
functions of the two layers.25

At νT = 1 interlayer tunneling at low temperature under-
goes a qualitative transformation when the effective layer
separation d/& (with d the physical separation between
the layers) is reduced below a critical value.14–16,26–32 The
Coulombic suppression of the tunneling conductance at zero
bias mentioned above is replaced by an extremely sharp
peak in ∂I/∂V which grows rapidly as d/& is reduced.
Eventually this peak overwhelms all other features in the tunnel
spectrum. At the lowest temperatures and d/& the height of
this peak can exceed the tunneling conductance observed at
zero magnetic field by several orders of magnitude. In fact, the
tunneling current-voltage (IV ) characteristic at νT = 1 closely
resembles the dc Josephson effect observed in superconducting
junctions. It is clear that this dramatic transport anomaly
is deeply reflective of the many-body physics of exciton
condensation (or pseudoferromagnetism, if one prefers) at
νT = 1, and there is by now an extensive theoretical literature
on the subject.33–61

We here describe a series of νT = 1 tunneling measure-
ments performed in the multiply connected Corbino geometry.
We demonstrate that while the instability and hysteresis
observed in strongly tunneling devices results from extrinsic
circuit effects, the maximum, or critical, tunneling current,
and the basic shape of the four-terminal IV curve, are
intrinsic properties of the coherent νT = 1 phase. We find
that the critical current is remarkably insensitive to the contact
configuration used to observe it and is in fact a global property
of the system. Surprisingly, the temperature dependence of
the critical current, normalized by its low temperature limiting
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value, is found to be nearly independent of d/&. Comparisons
of the observed IV curves to a recent theory60 show good
agreement at elevated temperatures where the IV curve is
smooth. At low temperatures, however, where the νT = 1
tunneling most closely resembles the dc Josephson effect,
the theory appears unable to capture the transition from the
“supercurrent” branch to the resistive portion of the IV curve.
Finally, we present data on the tunneling resistance along
the “supercurrent” branch, showing it to remain finite at all
temperatures. The temperature dependence of this tunneling
resistance is similar to that of the ordinary longitudinal
resistivity of the νT = 1 quantum Hall system, pointing to
a common origin.

The plan of the paper is as follows. Section II outlines
relevant experimental details about the sample and the basic
measurement techniques we have employed. Section III
presents a simple illustration of the qualitative difference
between conventional intralayer and tunneling interlayer trans-
port in strongly correlated bilayer 2D systems. Section IV deals
with two- versus four-terminal tunneling IV characteristics
at νT = 1, and the instabilities and hysteresis which appear
when tunneling is strong. Section V describes several of
our findings concerning the maximum, or critical, tunneling
current observed at νT = 1. Section VI compares our tunneling
data to a recent theoretical model, while Sec. VII deals with the
large, but finite, slope of the “supercurrent” branch of the IV
curves. Section VIII offers a discussion of our results in the
context of the general theoretical understanding of coherent
νT = 1 bilayer systems. Section IX concludes the paper.

II. EXPERIMENTAL DETAILS

The bilayer 2D electron sample used here has been de-
scribed previously.13,14 Grown by molecular beam epitaxy, the
active region of the sample contains two 18 nm GaAs quantum
wells separated by a 10 nm Al0.9Ga0.1As barrier. The center-
to-center quantum well separation is thus d = 28 nm. As
grown, each quantum well contains a 2DES of nominal density
5.5 × 1010 cm−2 and mobility 1 × 106 cm2/V s. Conventional
lithographic means are used to establish an annular geometry
(1.4 mm outer diameter and 1.0 mm inner diameter). Four
ohmic contacts (1,2,3,4) are positioned at the ends of arms
attached to the outside rim of the annulus, while two more (5,6)
are located on arms attached to the inner rim. A selective deple-
tion scheme allows these contacts to be connected to one or the
other 2D layer separately, or to remain connected to both layers
simultaneously.62 A schematic layout of the device is shown in
Fig. 1.

Electrostatic gate electrodes on the sample top and thinned
backside allow the densities n1,2 of both 2DESs in the annulus
to be separately controlled. (We here confine ourselves to
the balanced case, n1 = n2.) These gates allow the effective
layer separation d/& at νT = 1 to be varied in situ at low
temperatures. The tunneling measurements reported here are
primarily performed by recording the current I which flows
in response to a dc voltage Vex applied between two ohmic
contacts on one or the other rim of the annulus, with one contact
connected to the top 2D layer and the other to the bottom layer.
At the same time, the remaining ohmic contacts are used to
record the voltage differences V between the layers which

FIG. 1. (Color online) Schematic layout of a Corbino device. The
inner ring diameter is 1 mm. Ohmic contacts, 1–6, are shown in blue.
Via depletion gates (not shown) these contacts can be connected
to either 2D electron gas layer. Overall top and backside gates for
controlling density in the annulus are also not shown.

develop in response to the tunneling. Owing to the physical
separation of the contacts, these voltage differences will,
in general, contain both inter- and intralayer contributions.
Variations of this basic measurement protocol will be described
as needed.

To avoid confusion, we will use the subscript pair iα to
denote the specific contacts employed in a given measurement,
with i referring to the contact number (1–6, as shown in Fig. 1)
and α being either t or b to indicate which layer (top or bottom)
is being contacted. For example, Vex,2t,1b denotes an external
dc voltage applied between contact 2 on the top layer and
contact 1 on the bottom layer, whereas V3t,4b is the measured
interlayer voltage between the top layer at contact 3 and the
bottom layer at contact 4.

III. INTERLAYER VERSUS INTRALAYER TRANSPORT

The essential physics underlying the coherent νT = 1
bilayer quantum Hall state is spontaneous interlayer phase
coherence. Owing to Coulomb interactions, electrons in the
bilayer are shared equally between the layers, even in the
absence of single-particle tunneling. Hence, when an electron
definitely in one layer arrives at the edge of a νT = 1 droplet,
it is presumed to rapidly hybridize between the layers as it
moves away from the injection point along the edge of the
droplet. If this hybridization occurs over a very short length
scale, one might guess that the conductance measured between
two contacts on the edge of the droplet would not depend
much upon whether the contacts are connected to both 2D
layers simultaneously, as in a conventional intralayer transport
measurement, or are connected to opposite individual layers,
as in an interlayer tunneling measurement. As we now show,
at νT = 1 this guess is obviously incorrect.

Figure 2 shows two measurements at νT = 1 of the current
I which flows in response to an external voltage Vex applied
between contacts 1 and 2 on the outside rim of the Corbino
ring. For these measurements, the effective layer separation
and temperature are d/& = 1.49 and T ∼ 15 mK, placing
the bilayer well within the coherent νT = 1 phase. For the
red trace, both contacts are connected to both 2D layers
simultaneously. The data show that the current rises essentially
linearly with the voltage Vex, the slope implying a resistance
of about 55 k(. (This exceeds the value of h/e2 = 25.8 k(
expected for an ideal νT = 1 quantum Hall droplet owing to
external series resistances in the measurement circuit.) For
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FIG. 2. (Color online) Current flowing in response to voltage
Vex applied between contacts 1 and 2 on the outside edge of the
Corbino ring at νT = 1. With d/& = 1.49 and T ∼ 15 mK, the
νT = 1 bilayer is deep within the coherent excitonic phase. Red
trace: Contacts connected to both layers simultaneously. Blue trace:
Contacts connected to top and bottom layers separately.

the blue trace, where the contacts are on opposite layers, the
current initially rises steadily with Vex, albeit more slowly
than in the red trace. This is not surprising since the net series
resistance (much of which is in the 2DES arms leading from
the ohmic contacts into the Corbino ring) is larger when only a
single 2DES is available to carry the current toward and away
from the Corbino ring. However, at around Vex ∼ 140 µV, the
current abruptly falls from about I ∼ 1.5 nA to about ∼0.9 nA.
Further increases of Vex elicit only a slowly falling current as
the bilayer 2DES system enters a highly resistive state. We
emphasize that this highly nonlinear behavior is not due to
the breakdown on the quantum Hall effect itself. Independent
measurements reveal that the Hall resistance remains at its
quantized value of ρxy = h/e2 throughout the domain of the
blue trace.

The data shown in Fig. 2 allow us to conclude that
interlayer charge transfer, present in the blue trace but not
in the red trace, fundamentally affects the two-terminal
conductance along the edge of a coherent νT = 1 droplet. It
seems that there is a maximum, or critical, current for such
tunneling transport.15,26,27,30–34,51,56,58 For samples in which
single-particle tunneling is absent, or at least extremely weak
(as it is in the present samples), it has been shown that the
injection of an electron into just one of the 2D layers at
the edge of the droplet necessarily excites both quasiparticle
charge transport along the edge and the emission, into the bulk,
of neutral excitons within the νT = 1 condensate.51,56,63 It is
this connection to the dynamics of the exciton condensate that
renders interlayer tunneling such an effective tool for studying
the coherent νT = 1 bilayer system.

IV. TUNNELING I V CHARACTERISTICS

A. Two- versus four-terminal tunneling measurements

Figure 3(a) contrasts two- and four-terminal tunneling
IV curves at νT = 1. These data were again obtained at
d/& = 1.49 and T ∼ 15 mK where the bilayer 2DES is well

FIG. 3. (Color online) (a) Two- and four-terminal tunneling IV

curves (blue and red, respectively) at νT = 1 with d/& = 1.49 and
T ∼ 15 mK. (b) Measured four-terminal interlayer voltage V3t,4b

vs applied two-terminal voltage Vex,2t,1b. (c) Relation of measured
interlayer voltages on the outer (V3t,4b) and inner (V5t,6b) rims of the
annulus. The solid red line denotes exact equality. (Note: These data
were obtained by sweeping Vex,2t,1b from negative to positive only.
Hence, no hysteresis is seen.)

within the coherent excitonic phase. The blue trace shows the
tunneling current I plotted versus the dc excitation voltage
Vex,2t,1b applied between the source and drain contacts on the
outer rim of the annulus. This is therefore a two-terminal IV
characteristic and, as such, includes the effects of extraneous
resistances in series with the tunnel junction. Prominent among
these series resistances are “contact” resistances of order h/e2

associated with the injection and withdrawal of current from
νT = 1 quantum Hall fluid in the Corbino ring itself,51,64 and
substantial resistances in the single-layer 2D electron gas arms
which connect the bilayer in the ring to the remote ohmic
contacts. Taken together, the net series resistance (Rseries ∼
100 k() accounts for the overall slope of the two-terminal IV
curve at low bias and its weak nonlinearity65 very close to
Vex = 0.

In order to remove the effects of the series resistances, a
four-terminal IV curve is constructed by plotting the tunneling
current I versus the simultaneously recorded interlayer voltage
difference V3t,4b which appears between the two remaining
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contacts on the outer rim of the Corbino ring; the result is
the red curve in Fig. 3(a). Plotted in this way, the tunneling
IV curve strongly resembles the dc Josephson effect, with a
“supercurrent” branch on which substantial tunneling current
can flow with very little, if any, voltage developing across
the remote interlayer contact pair. Figure 3(b) displays the
measured four-terminal voltage V3t,4b versus the applied
voltage Vex,2t,1b. V3t,4b remains very close to zero until a critical
point is reached at which it abruptly becomes finite, and the
tunnel junction enters a resistive state. Finally, Fig. 3(c) plots
the interlayer voltage V5t,6b observed on the inner rim of the
Corbino device against the interlayer voltage V3t,4b detected on
the outer rim. The two voltages are essentially identical when
the tunnel junction is in the resistive state. The cluster of points
near zero voltage arises from the “supercurrent” branch of the
tunneling IV curve; this regime requires the more careful
examination presented in Sec. VII below.

The Josephson-like character of tunneling at νT = 1 was
first noted by Spielman et al.16,26 using a two-terminal method.
In those earlier findings the maximum observed tunneling
current was roughly 75 times smaller than that displayed in
Fig. 3(a). As a result, the effects of the series resistance were
minimal. In particular, the sudden jumps in the tunneling
current and interlayer voltage shown in Fig. 3 were not
observed, nor was any asymmetry in the magnitude of the
positive and negative extremal tunneling current [about 5% in
Fig. 3(a)] detected. As we next discuss, these various effects
are due to circuit instabilities arising from the interplay of the
series resistance and the nonlinear character of tunneling at
νT = 1.

B. Instabilities and hysteresis

Instabilities in tunneling IV characteristics at νT = 1
were first observed by Tiemann et al.30 and subsequently
discussed theoretically by Hyart and Rosenow.60 As observed
previously16,26 and as is evident in Fig. 3, the tunneling
current I at νT = 1 drops rapidly when the system leaves
the “supercurrent” state and becomes highly resistive. As
the resistive state initially develops, the differential resistance
∂V/∂I of the tunnel junction is therefore negative. If ∂V/∂I
is negative and sufficiently small, or if the series resistance
Rseries is sufficiently large, the two can cancel one another.
Put another way, the circuit load line I = (Vex − V )/Rseries
may intersect the intrinsic I (V ) curve of the tunnel junction
at more than one point. The circuit is then unstable and often
hysteretic. This is a common and sometimes useful aspect of
circuits containing strongly nonlinear elements (e.g., tunnel
diode oscillators).

The basic correctness of the above explanation for the
observed instabilities is easily verified by systematically
adding external series resistances Rext to the tunneling circuit.
Figure 4(a) contrasts the two-terminal tunneling IV curves
with and without an added Rext = 300 k( series resistor.
With the external resistor in place, the slope of the two-
terminal IV is appropriately reduced and the jump between the
“supercurrent” and resistive states is moved to a larger absolute
Vex. As the figure indicates, the jump is hysteretic with the
sweep direction of Vex, with the jump from the “supercurrent”
state to the resistive one always occurring at a larger absolute

FIG. 4. (Color online) Effect of added series resistance.
(a) Two-terminal and (b) four-terminal tunneling IV curves, with
(blue) and without (red) an added 300 k( series resistor. (c) Critical
current vs added series resistance. All data at νT = 1 with d/& = 1.49
and T ∼ 15 mK. Current source and drain on contacts 2t and 1b,
respectively; four-terminal voltage probes on contacts 3t and 4b.

Vex than the jump in the reverse direction. (As a corollary to
this, when jumping from the resistive to the “supercurrent”
branch, the junction arrives at a lower absolute current than
the maximum current attained immediately prior to jumping
in the reverse direction.) While the hysteresis loop is clearly
magnified by the added Rext, it remains observable even at
Rext = 0 due to the relatively large on-chip series resistance
which cannot be removed from the tunneling circuit.

Owing to the circuit instability, there are gaps in the observ-
able four-terminal IV characteristic at small, but nonzero, V .
These gaps are widest when the tunneling is strong and/or the
net series resistance is large. Nevertheless, as Fig. 4(b) shows,
the four-terminal tunneling IV curves obtained with and
without the added external series resistor Rext are essentially
identical wherever both are measurable. This near-perfect
agreement was verified in numerous measurements with Rext
ranging from 0 to 600 k(. We therefore conclude that
there is an intrinsic tunneling IV characteristic at νT = 1,
although portions of it may be unobservable due to circuit
instabilities. In particular, there appears to be a well-defined
maximum, or critical, tunneling current that the coherent
νT = 1 bilayer system can support before significant interlayer
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FIG. 5. (Color online) Four-terminal tunneling IV curves at νT =
1 and d/& = 1.49 at T = 15, 100, 200, and 300 mK. Note that only the
T ∼ 15 mK IV curve exhibits a data gap due to the circuit instability
discussed in the text. Arrows indicate critical tunneling current at
T ∼ 15 mK.

voltage appears between the two layers. Figure 4(c) shows that
this maximum current is nearly independent66 of the added
external series resistance Rext, falling by only about 8% as
Rext is increased from 0 to 600 k(.

V. TUNNELING CRITICAL CURRENT

A. Empirical definition

Figure 5 shows representative four-terminal IV curves
at νT = 1 and effective layer separation d/& = 1.49. Traces
at four temperatures, T = 15, 100, 200, and 300 mK, are
shown. For the T = 15 and 100 mK data there is no difficulty
in identifying the critical current Ic. At T = 200 mK the
tunneling current still shows a well-defined local maximum
at low voltage which can be used to define Ic. However, by
T = 300 mK no low voltage local maximum is seen in the
tunneling current, even if it is visually clear that the current
exhibits a smeared step discontinuity centered at V = 0.
Unless otherwise explicitly noted, we will assign a critical
current only when the IV characteristic exhibits a well-defined
local maximum near V = 0. In those cases where the circuit
instability is present, we take the critical current to be that
observed just before the system jumps from the “supercurrent”
branch to the resistive branch.

We note in passing that of all of the IV curves shown in
Fig. 5, only the T = 15 mK data display the circuit instability
(and concomitant gap in the data) discussed in the previous
section. Among these d/& = 1.49 tunneling IV curves, only
at this lowest temperature is the tunneling strong enough that
the cancellation of the series resistance by the intrinsic negative
differential resistance of the junction occurs. As discussed in
Sec. VI, continuous, nonhysteretic four-terminal tunneling IV
curves are observed down to the lowest temperatures in this
sample, provided d/& ! 1.6.

B. Temperature and d/" dependence

Figure 6 summarizes the temperature and d/& dependence
of the tunneling critical current Ic at νT = 1. Figure 6(a)
shows the temperature dependence of Ic for six values of

FIG. 6. (Color online) (a) νT = 1 tunneling critical current Ic vs
temperature. Top to bottom: d/& = 1.39, 1.49, 1.55, 1.62, 1.67, and
1.72. (b) Low temperature maximum critical current Ic,max vs d/&.
(c) Normalized critical current Ic/Ic,max vs temperature for same d/&

values as in (a).

the effective layer separation: d/& = 1.39, 1.49, 1.55, 1.62,
1.67, and 1.72. In each case, Ic appears to saturate below
about T = 25 mK; we use this saturation value to define
Ic,max, the maximum critical current. The inset, Fig. 6(b),
reveals that Ic,max falls essentially linearly with increasing d/&,
extrapolating to zero at about d/& = 1.77. For d/& ! 1.8 all
vestiges of the coherent νT = 1 quantum Hall phase are lost
and the system increasingly resembles two independent 2D
layers.

In Fig. 6(c) the normalized critical current (defined as
Ic/Ic,max) is plotted versus temperature for all six values
of d/&. Remarkably, the temperature dependence of this
normalized critical current appears to be virtually independent
of d/&. Small deviations from this simple scaling behavior
are, however, visible, especially at the highest d/& values
(d/& = 1.67 and 1.72).

C. Contact independence

Figure 7 shows the νT = 1 critical current Ic versus temper-
ature at d/& = 1.5 measured with three different source-drain
contact pairs on the Corbino annulus. The distance between
the source and drain, measured along the relevant rim of
the Corbino annulus, varies by more than a factor of 3
for these three contact sets. In spite of this, the measured
critical currents are virtually identical at all temperatures.
As noted previously,15 this observation supports the existing
evidence29,31 that tunneling at νT = 1 occurs throughout the
bulk of the 2D electron system.
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FIG. 7. (Color online) νT = 1 tunneling critical current Ic vs
temperature at d/& = 1.49 for three different source and drain
contact pairs of widely different separations. Inset: Colored squares
qualitatively indicate the locations of the source and drain contacts
for the three configurations.

D. Multiple source-drain pairs

In their experiments, Huang et al.15 observed that when
two interlayer source-drain contact pairs, one on each rim
of a Corbino annulus, are used to simultaneously inject
currents I1 and I2 into one of the 2D layers (and withdraw
them from the other), the individual currents may exceed the
critical current Ic, provided that the sum |I1 + I2| does not.
We have reproduced this result, using the setup shown in
Fig. 8.

Independent interlayer dc bias voltages V1 and V2 are
applied between the top and bottom layer contacts on the outer
and inner rim of the Corbino ring, using contact pairs (2t,1b)
and (5t,6b), respectively. In contrast to Huang et al.,15 only
one of these bias circuits is referenced to the ground potential;
the other circuit floats. This prevents net current from flowing
across the bulk of the 2DES. The measurement consists of
recording the currents I1 and I2 which develop as one of the
bias voltages (V2 for the data in Fig. 8) is slowly swept while the
other (V1) is held fixed. Figure 8(a) plots, left to right, the three
I2 vs I1 characteristics observed as V2 is swept at V1 = −300,
0, and +300 µV. In each case, the “supercurrent” branch is
readily identified as the portion of the data in which I1 remains
constant while I2 ranges between two critical values. These two
extremal I2 values are plotted versus the stationary I1 value in
Fig. 8(b). The upper diagonal line is a linear least-squares fit
to the upper critical I2 value (the fitted slope is −0.97). The
lower diagonal line is parallel to the upper line, only shifted
downward by 3.02 nA. In agreement with Huang et al.,15 these
data demonstrate that the actual critical current is determined
by the sum |I1 + I2|, not the individual currents. This result
vividly demonstrates that tunneling is not confined to small
regions near the source and drain contacts but is instead taking
place throughout the sample.

VI. TUNNELING LINE-SHAPE ANALYSIS

Recently, Hyart and Rosenow (hereafter referred to as
HR) have presented a theory of tunneling in disordered
coherent νT = 1 bilayers which allows for a quantitative

FIG. 8. (Color online) Tunneling at νT = 1 with dual source-drain
contacts. The diagram illustrates the setup. (a) Tunneling currents I2

vs I1 observed while bias voltage V2 is swept and V1 is held fixed.
Left to right: V1 = −300, 0, and +300 µV. (b) Critical values of I2,
indicated by arrows, vs the stationary I1 value on the “supercurrent”
branch. The upper diagonal line is a linear least-squares fit to the
upper I2 critical current; the slope is −0.97. The lower diagonal line
is parallel to the upper diagonal, but shifted down by 3.02 nA. Data
taken at d/& = 1.49 and T ∼ 15 mK.

comparison with experiment.60 Expanding upon earlier work
by Stern et al.,37 HR assume that the condensate phase φ
is heavily disordered, containing much quenched vorticity
and possessing both a finite correlation length ξ and a
correlation time τφ . These measures of disorder, combined
with the intrinsic parameters of the clean coherent νT = 1 state
(the pseudospin stiffness ρs , the pseudo-spin-wave velocity
u, and single-particle tunnel splitting +SAS), allow HR to
effectively explain the small magnitude of the observed
tunneling critical currents, their scaling with sample area, the
strong suppression of tunneling by an added in-plane magnetic
field, and the surprisingly weak signatures of the observed26

linearly dispersing pseudo-spin-wave modes.36–38 Moreover,
HR are led to a specific prediction for the shape of the tunneling
IV characteristic:

I (V ) = I0

∫
dq

π (1 + q2)3/2

[
α

α2 + (V/V0 − q)2

− α

α2 + (V/V0 + q)2

]
. (1)
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Hence, in the HR theory, three parameters, I0, V0, and α,
determine the shape of the IV curve. Roughly speaking, I0 and
V0 determine the maximum tunneling current67 and the voltage
beyond which the current becomes small. The parameter α =
ξ/uτφ encodes the impact of the correlation time. HR argue
that most of the temperature dependence of the IV curve arises
from α. In the limit α $ 1, which suffices for our purposes,
Eq. (1) reduces to

I (V ) = 2I0

π [1 + (V/V0)2]3/2
arctan(V/αV0). (2)

The product αV0 thus sets the voltage scale for the initial rise
of the current toward its maximum value.

In order to compare the HR theory to our experimental
results, we restrict our attention to data in which the circuit
instabilities discussed in Sec. IV B are not present. This is
essential in order to avoid the data gap at the onset of the
resistive portion of the IV curve. In what follows, we will
focus on data acquired at d/& = 1.62 where the tunneling is
weak enough so that no circuit instability occurs and there is
no gap in the data.

More significantly, we must also try to remove from the
data the contribution of incoherent tunneling processes which
are not specific to the νT = 1 excitonic phase. As mentioned
in the Introduction, in the absence of interlayer coherence,
tunneling between 2D electron systems at high magnetic field
is characterized by a Coulomb gap around zero bias followed
by broad peaks in the tunneling current at voltages comparable
to the mean intralayer Coulomb energy e2/ε&. While this
energy scale is typically much larger than those relevant
to the coherent νT = 1 phase, these incoherent tunneling
features remain visible (especially at high voltages) in the
IV curves16,26 even at low d/&.

Since the incoherent tunneling at νT = 1 depends, albeit
weakly, on temperature T and effective layer separation d/&,
its determination is best accomplished by destroying the
coherent portion of the IV curve with these parameters held
fixed. Fortunately, this can be readily done by adding an
in-plane magnetic field component B‖ to the perpendicular
field B⊥ used to establish νT = 1. (This is accomplished by
tilting the sample relative to the applied magnetic field.) It is
well known that only a relatively small B‖ is needed to heavily
suppress coherent tunneling at νT = 1, via a phase-winding
mechanism closely related to that which suppresses the critical
current in a conventional superconducting tunnel junction.26,68

Figure 9 illustrates the subtraction of the νT = 1 incoherent
tunneling at d/& = 1.62 for T = 15 and 200 mK. The solid
blue traces are the tunneling IV curves observed at B‖ = 0,
while the dashed blue traces are the results with B‖ = 0.6 T.
[At this B‖ the Josephson-like jump in the tunneling current at
V = 0 has been reduced to about 1.5% of its value at B‖ = 0,
and is nearly invisible in Fig. 9(a). We regard this as sufficient
suppression of the coherent part of νT = 1 tunneling.69] The
red curves are the calculated tunneling IV curves obtained
by subtracting the B‖ = 0.6 T data from the B‖ = 0 data. At
both temperatures the contribution of the incoherent tunneling
at voltages below about V ∼ 50 µV is quite small while by
V ∼ 400 µV it supplies well more than half of the total
tunneling current.

FIG. 9. (Color online) Subtraction of incoherent tunneling at
νT = 1 and d/& = 1.62. (a) T = 15 mK results. Solid blue curve:
Four-terminal tunneling IV curve with B‖ = 0. Dashed blue curve:
IV with the sample tilted to yield B‖ = 0.6 T. Red curve: Difference
between the solid and dashed blue curves. Dashed black line: Least-
squares fit of Eq. (2) to the red curve over the entire voltage range.
(b) Same as (a) except at T = 200 mK. For the data in this figure, the
current source and drain are contacts 2t and 1b, respectively, while
the voltage is measured between contacts 3t and 4b.

The black dashed lines in Fig. 9 are the results of
unweighted least-squares fits of Eq. (2) to the red tunneling
IV curves. The fits are done over the entire voltage range
shown in the figure. For the T = 200 mK data the fit is quite
good, with the extracted fit parameters being I0 = 0.255 nA,
V0 = 394 µV, and α = 0.0401. In contrast, the fit to the
T ∼ 15 mK data is poor, especially where the “supercurrent”
branch meets the resistive portion of the IV curve at the critical
current. In this case the fit parameters are I0 = 0.638 nA,
V0 = 252 µV, and α = (7 ± 4) × 10−5. This very small and
highly uncertain value of α reflects the extreme steepness of
the “supercurrent” branch at T ∼ 15 mK.

Better fits to the “supercurrent” branch of the IV curve can
be obtained by reducing the voltage domain of the fit. This is
demonstrated in Fig. 10(a), where the near-perfect fit of Eq. (2)
to the T = 15 mK tunneling IV curve over the narrow voltage
range |V | " 5 µV is shown. Figure 10(b) shows, however,
that this same fit fails at voltages in excess of about 10 µV.
Expanding the fit domain [to |V | " 50 and 100 µV, as shown
in Fig. 10(b)] improves the fit at higher voltages, but only at
the expense of a poorer fit near the cusp in the IV curve at the
critical current.

Apparently, the transition from the “supercurrent” branch
to the resistive branch at very low temperature is not captured
by the HR theory.60 We emphasize that this conclusion
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FIG. 10. (Color online) (a) Red trace: νT = 1 tunneling IV

curve at T ∼ 15 mK and d/& = 1.62, with incoherent tunneling
contribution subtracted, at very low voltage. Dashed black line: Fit to
Eq. (2) over the voltage range |V | " 5 µV. (b) Red trace: Same IV

curve as in (a), displayed over a wider voltage range near the critical
current. The dashed black line is the same fit as in (a). Light solid
and dashed-dotted black lines: Fits to Eq. (2) over voltage ranges
|V | " 50 and 100 µV, respectively.

does not rely on the efficacy of the incoherent tunneling
subtraction since the latter contribution to the tunneling current
is negligible at these low voltages. At higher temperatures, the
HR theory does a much better job. This situation was actually
anticipated by HR, who point out that at very low temperatures,
where α is small, their perturbative approach to tunneling may
no longer be justified.60

VII. THE “SUPERCURRENT” BRANCH

Perhaps the most dramatic feature of the tunneling IV
curves at νT = 1 is the nearly vertical “supercurrent” branch
observed around zero bias at very low temperatures. This
feature, which strongly resembles the dc Josephson effect,
has been the subject of intense interest for over a decade. In
this section we describe the results of measurements in this
portion of the tunneling IV curve, restricting our attention to
the vicinity of zero tunneling current.

A. Experimental issues

For the tunneling IV data presented above, the four-
terminal voltage difference is measured between top and
bottom layer contacts, which are physically separated along
the edge of the Corbino annulus. Consequently, this voltage
is “diagonal” and will, in general, contain both inter- and
intralayer contributions. Fortunately, the intralayer part of this
voltage can be separately measured and then subtracted from
the diagonal voltage to yield the purely interlayer voltage at
either contact. For example, the interlayer voltage at contact
2 can be deduced from measurements of the diagonal voltage
V2t,3b and the intralayer voltage V2b,3b, via Kirchoff’s law:
V2t,2b = V2t,3b − V2b,3b. (Note that Kirchoff’s law implies
that the same interlayer voltage can be determined in two
independent ways: V2t,2b = V2t,3b − V2b,3b = V2t,3t − V3t,2b.)
This procedure for subtracting the intralayer voltage is only

necessary on the “supercurrent” branch, where the interlayer
voltage is extremely small. In the resistive portion of the tun-
neling IV , the intralayer voltages are negligible in comparison
to the interlayer voltages.

When the coherent νT = 1 state is well developed, the
interlayer voltages along the “supercurrent” branch are suffi-
ciently small (typically sub-µV) that dc amplifier drift makes
ac lock-in detection essential. In what follows, we describe
interlayer voltage measurements performed using purely ac
current excitation, with Iex = 0.2 nA at 13 Hz. To avoid
spurious signals arising from capacitive effects, we found it
necessary to inject the current using a ratio-transformer bridge
in order to reduce the common-mode voltage of the tunnel
junction. In addition to recording the inter- and intralayer
voltages which developed, the current was also measured
so that small deviations from perfect current bias could be
accounted for.

B. Resistance of the “supercurrent” branch

The ratio of the ac interlayer voltage at contact j to the ac
tunneling current provides a measure of the resistance Rs,j

of the “supercurrent” branch around zero bias. Figure 11
displays the observed temperature dependence of Rs,3 at
νT = 1 and d/& = 1.49. (Very similar results are obtained
for the other contacts in the device.) Data for three different
current source/drain configurations are shown: I2t,1b, I4t,1b, and
I5t,6b. In all three configurations, Rs,3 drops rapidly as the tem-
perature is reduced. For comparison, the dashed line shows an
assumed thermally activated dependence, Rs ∼ exp(−+/2T ),
with + = 450 mK. This value of + is essentially the same as
the νT = 1 energy gap we deduce from conventional in-plane
transport measurements at this d/&.

The data in Fig. 11 demonstrate that the resistance Rs of
the “supercurrent” branch remains finite down to at least T =
30 mK. (This appears to remain true at still lower temperatures,

FIG. 11. (Color online) Resistance Rs of the “supercurrent”
branch vs inverse temperature at νT = 1 and d/& = 1.49. Rs is
determined from the interlayer voltage at contact 3 (yellow square in
the device schematics) arising in response to ac current bias for three
different source/drain configurations (blue, red, and black squares
in the device schematics). For comparison, the dashed straight line
indicates simple thermal activation.
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but measurement difficulties suggest further work is needed in
this regime.) Moreover, the resistance depends significantly
on the location of the current source and drain contacts. This
stands in sharp contrast to the critical tunneling current Ic

which, as Fig. 7 proves, is independent of the source/drain
contact configuration.

Our data suggest that by T = 30 mK, the resistance of
the “supercurrent” branch falls to around Rs ∼ 100 (. By
this measure, the zero-bias tunneling conductance G(0) =
R−1

s ∼ 250e2/h at νT = 1 is some 6000 times larger than
it is at zero magnetic field where tunneling is essentially a
single-particle phenomenon.71 This comparison makes plain
the highly collective nature of tunneling at νT = 1.

VIII. DISCUSSION OF RESULTS

The similarity between the tunneling IV characteristics
in coherent νT = 1 bilayers and superconducting Josephson
junctions was first noted by Spielman et al. via two-terminal
measurements on weakly tunneling samples of small area.16,26

Subsequent measurements by Tiemann et al.30,31 displayed the
striking difference between two- and four-terminal tunneling
experiments on large area strongly tunneling samples. This
difference arises both from extrinsic series resistance in the
measurement circuit and from an intrinsic quantum Hall
contact resistance.51,64 Aside from reproducing Tiemann’s
findings, we have shown that the instabilities and hysteresis
in the IV are not deeply related to the many-body physics
of the coherent νT = 1 bilayer, but instead arise from rela-
tively mundane circuit effects which become important when
tunneling is strong.60

In spite of the instabilities and hysteresis effects observed
in strongly tunneling situations, we have shown that the
maximum, or critical, tunneling current Ic is unaffected by
them and is a genuine feature of tunneling in coherent νT = 1
systems. Our results suggest that Ic is an intrinsic property of
the system, being independent of the contact configuration
used to make the tunneling measurement and limiting the
total tunneling current even when two source-drain contact
pairs on opposite rims of the Corbino annulus are used to
inject current. These findings support the prior evidence that
tunneling in coherent νT = 1 bilayers is a bulk phenomenon,
with the maximum tunneling current proportional to the area
of the 2D system.

This scaling with area is surprising since one expects, in
an ideal, disorder-free νT = 1 system, tunneling currents to
be confined to within a short distance of the source and
drain contacts. This distance, λJ = 2&

√
πρs/+SAS (with ρs

the pseudospin stiffness in the coherent phase, and +SAS

the single-particle tunnel splitting in the double quantum
well), is analogous to the Josephson penetration length in
superconducting junctions68 and is estimated to be in the
µm range, far smaller than the mm-scale dimensions of our
Corbino ring. Presumably, as has been suggested,50,58 disorder
in realistic νT = 1 samples leads to an effective coarse-
grained average of λJ which is much larger than the ideal
value.

Consistent with prior results,27,31 we find that Ic depends
strongly on the effective layer separation d/& at νT = 1,
rising from zero at d/& ≈ 1.8 to Ic ! 2 nA at d/& = 1.39

and T ∼ 15 mK. Surprisingly, however, we find that the
temperature dependence of the normalized critical current
Ic/Ic,max (with Ic,max the T → 0 value of the critical current) is
nearly independent of d/&. To the extent that this is precisely
the case, our data suggest that the critical current is of the
form Ic(T ,d/&) = g(d/&) × f (T/T0), with g a function of d/&
alone and f a function of T/T0 alone, with the characteristic
temperature T0 independent of d/&. It seems peculiar that
the temperature-induced suppression of coherent interlayer
tunneling would be independent of d/&, since this parameter
reflects the relative strength of inter- and intralayer Coulomb
interactions and governs the onset of all the exotic transport
phenomena observed at νT = 1. One speculative possibility is
that T0 is determined entirely by disorder, the bare unscreened
potential of which is fixed, independent of the electron
density in the quantum wells. We emphasize, however, that
Ic/Ic,max is not precisely independent of d/&, with deviations
visible at the largest effective layer separations. Moreover, at
higher temperatures, where the maximum tunneling current
occurs at a significant nonzero voltage, incoherent processes
contribute substantially to the tunneling current. Subtracting
these contributions, in a manner similar to that described
in Sec. VI, will likely enhance the d/& dependence of
Ic/Ic,max.

At elevated temperatures we find that the recent phe-
nomenological theory60 of the tunneling line shape agrees
reasonably well with our observations, provided that the
incoherent contribution to the tunneling current is subtracted.
At lower temperatures this does not seem to be the case. The
experimentally observed tunneling IV curve then shows a very
pronounced cusplike feature where the “supercurrent” branch
meets the resistive portion of the IV characteristic. Fits of
the Hyart-Rosenow60 theory to the data do not capture this
cusp.

While the maximum two-terminal tunneling conductance at
νT = 1 is expected to remain finite (and of order e2/2h) down
to the lowest d/& and temperature,51,64 the situation is less clear
regarding the four-terminal conductance around zero bias. Our
results, summarized in Fig. 11, clearly show that the resistance
of the “supercurrent” branch falls rapidly with temperature,
but remains finite certainly down to T ∼ 30 mK and likely
to even lower temperature. Experimentally, therefore, it does
not appear that the condensate phase φ is time independent
along the “supercurrent” branch, even if its precession rate is
vastly less than it is on the resistive portion of the IV curve.
In our view, this is not surprising. The data presented here
and elsewhere have shown that tunneling at νT = 1 occurs
throughout the bulk of the 2DES. In order for this to be
true, in-plane transport must be involved. In spite of the very
small conductivity of the bulk for net charge transport (the
coherent νT = 1 bilayer is a conventional quantum Hall system
in this regard), it is virtually transparent to neutral exciton
transport within the condensate.13,14 Since the latter consists of
counterflowing charge currents in the two layers, it can readily
relax the antisymmetric charge defects created by tunneling.
As a corollary therefore, any dissipation accompanying exciton
transport can be expected to also show up in the tunneling IV
curve. At the same time, the local interlayer voltage created
by such dissipation would naturally depend on the spatial
distribution of the exciton transport. This could account for the
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dependence of the resistance Rs of the “supercurrent” branch
on the relative locations of the source, drain, and interlayer
voltage contacts shown in Fig. 11.

Dissipation in counterflow transport has, to date, been
most sensitively studied in experiments employing Hall bar
geometries.10–12 All of these experiments suggest that dissipa-
tion remains finite down to the lowest temperatures. Moreover,
the experiments show that for small currents, the observed
response is linear; there is as yet no clear evidence for the
predicted nonlinear effects due to current-induced vortex pair
ionization.5

Interestingly, the data shown in Fig. 11 suggest that the
temperature dependence of the resistance of the “supercurrent”
branch is not terribly different from simple thermal activation
and, as mentioned above, is in fact comparable to that observed
for conventional in-plane charge transport. (The data shown
in Fig. 11 do show more curvature than is typically found in
the temperature dependence of conventional charge transport.)
Similarity between the observed dissipation in counterflow and
ordinary quantum Hall transport at νT = 1 has been noticed
before, in both electron-electron10 and hole-hole11 bilayers.
This similarity suggests that dissipation in counterflow at
low temperatures is governed by the ordinary quantum
Hall energy gap for charged quasiparticles. If, as has been
suggested,41,50,55,72,73 the motion of single, disorder-induced,
unpaired vortices is responsible for the observed dissipation
in neutral exciton transport, these observations suggest that
the same process may also be responsible for dissipation
in ordinary charge transport. This contrasts with the usual
theoretical assumption that the dominant charged excitation
at νT = 1 is a meron-antimeron pair. While carrying electrical

charge (±e), such objects are vortex neutral and thereby unable
to unwind an excitonic superflow.

IX. CONCLUSION

An extensive set of tunneling measurements on strongly
correlated bilayer 2D electron systems at νT = 1 has been
reported here. Our results are consistent with the many prior
experimental observations but also provide several different
perspectives. Prominent among these are the observations of
an unexpected scaling behavior the maximum, or critical,
tunneling current and a precise independence of the critical
current on contact configuration. Our findings also provide a
detailed view of the temperature dependence of the tunneling
resistance along the “supercurrent” branch of the IV curve
and allow for a sensitive comparison to recent theories of the
tunneling line shape.
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subsequent publication.
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