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Observation of a Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet
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Double-layer two-dimensional electron systems can exhibit a fascinating collective phase believed
to display both quantum ferromagnetism and excitonic superfluidity. This unusual phase has recently
been found to exhibit tunneling phenomena reminiscent of the Josephson effect. A key element of the
theoretical understanding of this bizarre quantum fluid is the existence of linearly dispersing Goldstone
collective modes. Using the method of tunneling spectroscopy, we have demonstrated the existence of
these modes. We find the measured velocity to be in reasonable agreement with theoretical estimates.
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The remarkable properties of superfluids and supercon-
ductors are intimately related to the existence of a bosonic
condensate of composite particles consisting of an even
number of fermions within the strongly interacting many-
body environment. In superfluid *He these composite par-
ticles are the helium atoms themselves. In superconductors
Cooper pairs play the analogous role. In semiconduc-
tors excitons, which consist of conduction band electrons
paired with valence band holes, have long been consid-
ered candidate building blocks of a new class of neutral
superfluids [1]. More recently, it has become apparent that
double layer two-dimensional electron systems provide yet
another system for realizing the exotica of superfluidity. In
the presence of a large magnetic field B such systems will
exhibit a quantized Hall plateau at p,, = h/e? if the layer
separation is sufficiently small [2]. When tunneling be-
tween the layers is weak this quantum Hall state reflects
the condensation of a remarkable strongly interacting elec-
tron quantum fluid. This fluid may be viewed as an exci-
tonic superfluid in which an electron in one layer is paired
with a hole (in the conduction band) in the other layer.
Quantum mechanical uncertainty makes it impossible to
tell which layer either component of this composite boson
is in. Equivalently, the system may be regarded as a ferro-
magnet in which every electron exists in a coherent su-
perposition of the “pseudospin” eigenstates which encode
the layer degree of freedom [3]. The phase variable of
this superposition, which is analogous to the phase variable
in conventional superconductors or superfluid “He, deter-
mines the orientation of the pseudospin magnetic moment.
Spatial variations of the phase govern the low energy ex-
citations in the system. We report here strong evidence,
obtained via tunneling spectroscopy, for these excitations.

The physical properties of this bilayer quantum fluid are
predicted to be quite exotic [2—6]. For example, the transi-
tion to the ordered state is expected to be a finite tempera-
ture Kosterlitz-Thouless (KT) transition. This is unusual
since the quantum Hall effect (QHE) is usually associated
only with a zero temperature quantum phase transition.
Below the KT transition temperature, Tk, counterflow su-
perfluidity is expected: transport involving equal but oppo-
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sitely directed currents in the two layers should be dissipa-
tionless, at least in linear response [2,4]. There have also
been controversial predictions of a Josephson effect in the
tunneling transport between the layers [5,6]. This issue, in
particular, has come under renewed scrutiny since the ex-
perimental discovery of a huge resonant enhancement of
the zero bias tunneling conductance when the separation
between the layers is reduced below a critical value [7].

The Hall plateau p,, = h/e? corresponds to total Lan-
dau level filling factor ¥ = 1, with v defined as the ratio
of the total electron density N7 to the degeneracy eB/h of
a single spin resolved Landau level. If the layers are iden-
tical, this occurs despite the fact that each layer viewed
independently has filling factor » = 1/2. That the net sys-
tem exhibits a QHE even though the layers by themselves
do not is a result of the interlayer couplings in the system.
If tunneling is negligible the 7 = 1 QHE results from the
interplay of Coulomb interactions among electrons in the
same layer with those in opposite layers. If the separation
between the layers is too large, the interlayer correlations
break down and the QHE disappears.

A good approximation to the ground state at small layer
separation is the product of a Slater determinant of all or-
bital states in the lowest Landau level and a totally sym-
metric pseudospin wave function [8]. An electron in one
layer is pseudospin up, |1), while one in the other layer
is pseudospin down, |]). Exchange interactions favor each
electron being in the same pseudospin state: |f) + ei‘f’ll).
The phase ¢ is uniform and, in the absence of tunneling,
arbitrary. The system is thus an easy-plane ferromagnet
whose moment lies near the xy plane of pseudospin space.
Owing to the finite layer separation the pseudospin mo-
ment fluctuates, both within the plane and perpendicular
to it. The latter corresponds to local fluctuations in the
density difference between the layers and are attended by
a capacitive energy penalty. These fluctuations become in-
creasingly severe at larger layer spacing and eventually de-
stroy the ordered state. The precise nature of the associated
quantum phase transition is still being vigorously investi-
gated [9-11]. Although the ferromagnetic phase has a gap
to charged excitations (and hence displays a QHE), it also
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possesses linearly dispersing neutral collective modes (i.e.,
pseudospin waves) associated with spatial gradients in the
phase. These are the Goldstone modes of the broken sym-
metry ground state and are gapless in the long wavelength
limit [5,12]. These modes are the main focus of this Letter.

Figure 1 shows the measured tunneling conductance
dI/dV and current I vs the voltage difference V between
two 2D electron gas layers at vr = 1 at T = 25 mK. The
sample consists of two individually contacted modulation-
doped 18 nm GaAs quantum wells separated by a
9.9 nm AlggGagAs barrier layer. Electrostatic gating
is used to adjust the layer densities; for the data shown
Ni =N, = Nr/2 =26 %X 10" cm™2. At this density
the ratio of interlayer separation d to the magnetic length
¢ = (li/eB)"/? is d/€ = 1.61. This ratio determines the
relative importance of interlayer and intralayer Coulomb
interactions in the system. As Spielman et al. [7] showed,
the sharp peak in dI/dV at V = 0 disappears when the
density, and thus d /¢, is increased. Above d/€ =~ 1.84 the
peak in dI/dV is replaced by the familiar deep minimum
characteristic of the Coulomb barrier to tunneling between
uncorrelated 2D systems [13].

The sharp zero bias peak in dI/dV illustrated in Fig. 1 is
accompanied by a near discontinuity in the tunnel current
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FIG. 1. Tunneling data at v7 = 1 and T = 25 mK. Total den-
sity Ny = 5.2 X 10'® cm~2. Upper panel: conductance dI/dV
vs interlayer voltage V; lower panel: tunnel current / vs V.
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I. Although this observation is suggestive of a Josephson
effect, the present data do not exhibit a true supercurrent
at zero bias. The zero bias conductance Gy, while vastly
enhanced over its value at higher densities, remains finite
as T — 0. Similarly, the width I" of the zero bias conduc-
tance peak attains a minimum, but nonzero, value in this
limit.

Figure 2 illustrates the temperature dependence of the
zero bias conductance G and peak width I" atd/€ = 1.61.
The peak height rises steadily as the temperature is re-
duced to around 50 mK. Below this temperature it satu-
ratesat Go = 5 X 107% Q !, The width I (defined as the
full width at half maximum of the dI/dV peak) decreases
down to about the same temperature below which it satu-
rates at I’ = 6 uV. We emphasize that this resonance is
roughly 15 times narrower and 150 times taller than the
tunnel resonance observed at zero magnetic field in the
same sample. At zero field tunneling can be understood in
single particle terms and the linewidth reflects the lifetime
of the quasiparticles in the 2D systems [14]. In contrast,
the dramatic resonance at vy = 1 suggests that a collec-
tive mode dominates the spectral weight at low energy.

The low temperature saturation of Gy and I" is not un-
derstood. Indeed, it is not at all clear that the saturation is
intrinsic. Extrinsic electromagnetic interference led to the
broader and weaker zero bias peaks reported in the origi-
nal work of Spielman et al. [7]. Although much effort has
since been expended in improving the noise environment,
the possibility of a still narrower conductance peak at very
low temperature remains. Electron heating is another po-
tential source of the saturation. Finally, we remark that as
the present tunneling measurements are effectively two ter-
minal, finite series resistances will ultimately limit height
of the tunnel peak.

The Goldstone mode of the coherent QHE ground state
offers a natural way to understand the zero bias peak at
vy = 1. This mode involves oscillations of the pseudospin
magnetization in the xy plane and along the z axis of
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FIG. 2. Linewidth I' (solid dots) and peak helght Go (Open
squares) at vy = 1. Total density Ny = 5.2 X 10'°
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pseudospin space. In the absence of tunneling, the mode
has zero energy at zero wave vector ¢g. Any tunneling,
however, opens a small gap Ap at ¢ = 0 and allows the
mode to effectively transfer charge between the layers. If
Ay is small enough, a zero bias enhancement of the tunnel-
ing conductance is expected. Within this framework, the
sharp zero bias peak in dI/dV represents a direct spec-
troscopic detection of the Goldstone mode of the vy = 1
broken symmetry ground state. The significance of the
height and width of this peak is less clear [15,16].

To test this interpretation, we have examined the tunnel-
ing spectra after adding a small magnetic field component
B)| parallel to the 2D planes to the existing perpendicular
field B,. The in-plane field renders the /-V character-
istic sensitive to spectral features at the nonzero, and
adjustable, wave vector g = eB)d/h. This powerful
technique has been applied widely in the past [17] and
is of known efficacy in tunneling between 2D electron
systems in semiconductor heterostructures [18,19]. In the
present circumstance the parallel field has been predicted
[15,16] to split the zero bias tunneling peak into two reso-
nances symmetric about V = 0. The voltage location of
these resonances should be eV = *hw(q), where hiw(q)
is the Goldstone mode energy at the parallel field-induced
wave vector g. Since the mode disperses linearly for
small g, detection of the splitting will provide a measure
of its velocity c.

Figure 3 shows a sequence of tunnel spectra at v7 = 1
and 7 = 25 mK with different parallel fields applied.
These data are obtained by tilting the sample relative
to an external magnetic field whose magnitude is ad-
justed to maintain B, and hence the Landau level
filling factor v = hNr/eB, and magnetic length € =
(Fi/eB.)"?, constant. The parallel field is accurately
determined using a second 2D electron gas sample
mounted perpendicular to the tunneling sample. The
Hall resistance of this second sample is then proportional
to B||. The data shown in Fig. 3 again correspond to
N; =N, =N7y/2=52%X 10" cm™? and d/€ = 1.61;
similar data have been obtained at various other densities
provided d/€ < 1.84.

It is clear from Fig. 3 that the parallel magnetic field
has a dramatic effect on the tunnel spectrum. Only a few
tenths of a tesla are required to strongly suppress the zero
bias conductance peak. Closer inspection, however, re-
veals a more subtle effect: complex structure appears on
the flanks of the zero bias peak. This structure, which is
magnified in the inset in Fig. 3, first appears as two small
peaks in dI/dV positioned symmetrically about V = 0,
superimposed on the still substantial flanks of the main
zero bias resonance. As the parallel field increases these
split-off peaks move toward higher energies and become
more prominent. At the same time the zero bias resonance
weakens steadily. As Fig. 3 shows, the split-off peaks are
really part of a more complex undulation in the conduc-
tance. Qualitatively, these split-off resonances have the

036803-3

251

201
=
Z 10}
S|

0.5

0.0 — " B;=06T
-200 0 200
V(uv)
FIG. 3. Tunneling conductance spectra at T = 25 mK and

Nr =52 X 10" cm™2 for various parallel magnetic fields.
Main panel: B; = 0, 0.11, 0.24, 0.29, 0.35, 0.43, 0.49, and
0.59 T. Inset: expanded view of spectra for B) = 0.07, 0.11,
0.15, 0.24, and 0.35 T. Dots indicate the positions of the
split-off resonances in dI/dV.

“derivative” shape theoretically expected [15,16]. With
this in mind, we identify the energy of the resonances with
the voltage V* at which the derivative of the conductance,
i.e., d’I/dV?, exhibits an extremum. The solid dots in the
inset in Fig. 3 show this identification. At high B)| these
intriguing resonances are lost in the broad, presumably in-
coherent, tunneling background.

Figure 4 displays the average energy eV™ of the split-off
resonances versus the wave vector g = eB)d/h. Data
for three different densities, Ny = 5.2, 6.0, and 6.4 X
10'° ¢cm™2, corresponding to d/€ = 1.61, 1.71, and 1.76,
are shown. Within the uncertainties these data lie on
straight lines whose slopes imply a velocity ¢ of about
1.4 X 10* m/s. We believe that these experimental results
demonstrate the existence of a linearly dispersing collec-
tive mode in the bilayer 2D electron system at vy = 1.
This mode is very likely the anticipated pseudospin Gold-
stone mode of the broken symmetry state. The dashed line
in Fig. 4 shows a recent theoretical estimate of the disper-
sion relation of this mode at long wavelengths [20].

The data in Fig. 3 also possess aspects which are not ex-
plained by the theoretical models [15,16] mentioned above.
The biggest puzzle is presented by the residual zero bias
conductance peak which persists to significant Bj. This
feature is not contained within present perturbative theories
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FIG. 4. Energy, eV", of split-off peaks vs the wave vector g =
eB|d/h induced by the parallel magnetic field. Crosses: Ny =
6.4 X 10'° cm™2; empty squares: Ny = 6.0 X 109 cm™2;
filled circles: Ny = 5.2 X 10'°© cm™2. The dashed line is a
theoretical estimate [20] for the Goldstone mode dispersion
relation at small g. The solid line is a guide to the eye and
corresponds to a collective mode velocity of 1.4 X 10* m/s.

[15,16]. One possibility is that this peak reflects second or-
der (in the tunneling amplitude) “two-magnon” processes
[21]. Alternatively, the residual zero bias peak might be a
nonperturbative effect and one may speculate on its pos-
sible relation to a Josephson supercurrent.

An interesting analogy has been drawn [22] between
tunneling in this bilayer 2D system and a conventional
Josephson junction (JJ). In a classic experiment, Eck,
Scalapino, and Taylor [23] observed resonances at finite
voltage in the dc tunnel current of a JJ in the presence of
a parallel field B)|. These resonances were successfully
interpreted as resulting from excitation of the electromag-
netic modes (i.e., the Swihart modes) of the junction by
the ac Josephson current. At nonzero B) the temporal
and spatial oscillations of the Josephson current can reso-
nantly excite the junction modes. This leads to features in
the dc tunneling characteristics which trace out the linear
dispersion of those modes as the parallel field is varied.
In the present case the analogous mode is the pseudospin
Goldstone mode and the corresponding excitation is pro-
duced by the periodic tunneling currents which result from
the ferromagnetic order within the bilayer 2DES at finite
B [21].

In summary, magnetotunneling spectroscopy experi-
ments on double layer 2D electron systems in the vy = 1
QHE state reveal a collective mode in the system which
disperses linearly with wave vector at low energy. The
measured velocity of this mode is in reasonable agreement
with theoretical estimates for the Goldstone mode of the
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broken symmetry ground state. The question of whether
the system supports a Josephson effect remains open.
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