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Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at

�T ¼ 1 as a function of Zeeman energy EZ. The critical layer separation ðd=‘Þc for exciton condensation

initially increases rapidly with EZ, but then reaches a maximum and begins a gentle decline. At high EZ,

where both the excitonic phase at small d=‘ and the compressible phase at large d=‘ are fully spin

polarized, we find that the width of the transition, as a function of d=‘, is much larger than at small EZ and

persists in the limit of zero temperature. We discuss these results in the context of two models in which the

system contains a mixture of the two fluids.
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Following the development of the Bardeen-Cooper-
Schrieffer theory of superconductivity, physicists [1–5]
speculated that excitons in semiconductors, conduction
band electrons bound to valence band holes, could undergo
a similar pairing transition to a collective state with macro-
scopic quantum phase coherence. Strong evidence of ex-
citon condensation was ultimately found in a surprising
place: double layer two-dimensional electron systems at
high perpendicular magnetic field B? [6–10]. In this, the
quantum Hall effect regime, excitons consisting of elec-
trons in the lowest Landau level (LLL) of one layer bound
to holes in the LLL of the other layer, condense into a
coherent collective state whenever the temperature and
layer separation are small enough, and the total density
nT of electrons in the double layer system equals the
degeneracy eB?=h of one spin-resolved Landau level
[11–14]. This collective electronic state exhibits several
dramatic electrical transport properties including
Josephson-like interlayer tunneling [6], quantized Hall
drag [7], and vanishing Hall resistance [8–10] when cur-
rents are driven in opposition in the two layers.

Exciton condensation in bilayer quantum Hall systems
at total Landau level occupancy �T � nT=ðeB?=hÞ ¼ 1
reflects a spontaneously broken U(1) symmetry in which
electrons are no longer confined to one layer or the other
but instead reside in coherent linear combinations of the
two. This interlayer phase coherence develops only when
the effective interlayer separation d=‘ (with d the center-

to-center quantum well separation and ‘ ¼ ð@=eB?Þ1=2 the
magnetic length) is less than a critical value, ðd=‘Þc. At
large d=‘ the bilayer system behaves qualitatively like two
independent two-dimensional electron systems (2DESs).
The nature of the quantum phase transition separating
these two very different bilayer states remains poorly
understood. In particular, while essentially all theoretical
work concerning the transition makes the simplifying as-
sumption that both phases are fully spin polarized [11–20],
recent experiments [21,22] convincingly demonstrate that
this is not the case in typical samples. Instead, these experi-

ments prove that the two phases have different spin polar-
izations, with the polarization of the excitonic phase at
small d=‘ exceeding that of the incoherent phase at large
d=‘. (The data further suggest that the polarization of the
excitonic phase is in fact complete, at least in the zero
temperature limit.) While a cleanly observed jump in spin
polarization at a critical d=‘ would strongly suggest that
the phase transition is first order, in the actual samples the
transition appears to be continuous. Whether this is the
result of a fundamentally first-order transition smeared by
disorder [18,23] or is an intrinsic attribute [19,20] of
strongly correlated bilayers at �T ¼ 1 remains unknown.
Using tilted magnetic fields to increase the electronic

Zeeman energy EZ, Giudici et al. [24] have recently been
able increase the spin polarization of the incoherent phase
and to approach the situation where both phases are fully
polarized. The expected [21,22] increase of ðd=‘Þc with EZ

was clearly detected [24], but no qualitative change in the
character of the excitonic phase transition was reported.
Here we report the observation of just such a qualitative
change in the character of the transition as both phases
become fully spin polarized. Our data show that the tran-
sition is dramatically broadened when both phases are spin
polarized and that this broadening persists in the limit of
zero temperature.
Our results are based on a study of Coulomb drag [25],

the force one current-carrying 2DES exerts on a second,
electrically isolated 2DES, in a GaAs=AlGaAs double
quantum well (DQW). The DQW consists of two 18 nm
GaAs quantum wells separated by a 10 nm Al0:9Ga0:1As
barrier (and hence d ¼ 28 nm). As grown, remote Si do-
nors populate each quantum well with a 2DES with a
density and low temperature mobility of n � 5:5�
1010 cm�2 and � � 1� 106 cm2=Vs, respectively. The
sample is patterned into a 250 �m square with narrow
arms extending outward from each side to diffused
NiAuGe Ohmic contacts. A selective depletion scheme
allows these contacts to connect separately to one or the
other 2DES in the central square region. By tilting the
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sample relative to an external magnetic field BT , the
Zeeman energy EZ ¼ g�BBT can be adjusted at the fixed
perpendicular field B? needed to establish �T ¼ 1. The
crucial ratio d=‘ ( ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffi

2�nT
p

at �T ¼ 1) is tuned in situ
via gate electrodes which control the individual layer
densities n1;2; we focus here on the balanced, n1 ¼ n2 ¼
nT=2 case. Drag measurements are performed by driving a
small ac current I (typically 0.5 nA at 13 Hz) through two
contacts on one layer while measuring the induced voltage
VD between two contacts on the other layer; the drag
resistance is defined as the ratio VD=I. As expected, the
measured drag resistance is unchanged when the role of the
two layers is interchanged.

Figure 1 shows the measured Hall and longitudinal drag
resistances, Rxy;D and Rxx;D, respectively, at �T ¼ 1 vs d=‘

at T ¼ 30 mK. Two sets of data are shown, one with the
sample plane perpendicular to the magnetic field (� ¼ 0)
and one with the sample normal rotated by � ¼ 66� rela-
tive to the field. As observed previously [7] at � ¼ 0, Rxy;D

rises from zero at large effective layer separation d=‘ to the
quantized value Rxy;D ¼ h=e2 at small d=‘. The passage

between these two values is relatively sharp in d=‘ and
signals the transition between the compressible bilayer
�T ¼ 1 phase at high d=‘ and the excitonic phase at small
d=‘. Quantization of Hall drag is expected [16,26] in the
excitonic phase and has been elegantly explained via an
analogy to a superconducting Giaever flux transformer
[27]. Coincident with the step in Rxy;D, the longitudinal

drag resistance Rxx;D exhibits a strong peak [28]. While

various models [18,19] have been advanced to explain the
origin of this peak, for the moment it suffices to employ it
to define the location ðd=‘Þc [29] and width �ðd=‘Þ of the
transition between the excitonic and compressible phases
at �T ¼ 1.

Figure 1 also demonstrates that the same basic transition
is observed when the sample is tilted by � ¼ 66�. This is
not unexpected since it is well known that the quantized

Hall effect at �T ¼ 1 in conventional transport is robust
against the application of in-plane magnetic fields [30].
While this proves the existence of an energy gap, the
quantization of Hall drag further demonstrates that non-
perturbative interlayer correlations are central to the struc-
ture of the phase [26]. Beyond the similarities of the data
sets at � ¼ 0 and 66�, there are two important differences:
tilting the sample shifts the transition region from d=‘ �
1:75 to d=‘ � 1:85, and substantially broadens it. This
broadening is equally evident in the Hall and longitudinal
components of the drag.
Figure 2 displays a color map of the longitudinal drag

Rxx;D at �T ¼ 1 and T ¼ 50 mK, versus d=‘ and � ¼
EZ=ðe2=�‘Þ, the Zeeman energy normalized by the mean
intralayer Coulomb energy e2=�‘. The plot is constructed
from 9 sets of Rxx;D vs d=‘ measurements at tilt angles

ranging from � ¼ 0 to � ¼ 66�. (Note that for fixed �,
varying d=‘, by changing nT , at �T ¼ 1 traces out a
straight-line trajectory d=‘ / �, with slope proportional
to cos�. Trajectories for � ¼ 0 and 66� form the left and
right boundaries, respectively, of the colored region in
Fig. 2.) There are several important features in Fig. 2.
First, at each � Rxx;D exhibits a well-defined peak vs d=l.
As the coloring suggests, the height of this peak is roughly
independent of �, varying by no more than �5% from its
average value. We use the center of the peak to define the
critical effective layer separation ðd=‘Þc between the ex-
citonic and incoherent phases; these determinations are
indicated by the solid dots in the figure [29]. As � is first
increased from zero, thus increasing �, ðd=‘Þc rises stead-
ily. This previously observed effect [21,22,24] is due to the
difference in spin polarization �� ¼ �ex � �i of the exci-
tonic and incoherent phases at �T ¼ 1. Since �ex > �i at
small � [21,22], tilting the sample and thereby increasing
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FIG. 1 (color online). Hall and longitudinal Coulomb drag at
�T ¼ 1 vs d=‘ at T ¼ 30 mK. Dots, � ¼ 0; triangles, � ¼ 66�.
Solid curves in (b) are Gaussian fits.
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FIG. 2 (color online). Longitudinal drag Rxx;D vs d=‘ and � ¼
EZ=ðe2=�‘Þ at �T ¼ 1 and T ¼ 50 mK. Color scale: purple,
Rxx;D ¼ 0; red, Rxx;D ¼ 2 k�. Solid dots: phase boundary,

ðd=‘Þc vs �. Dashed line: approximate location of knee in
drag contours. Left and right boundaries of colored region: � ¼
0 and � ¼ 66� trajectories, respectively.
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EZ enhances the stability the excitonic phase, and thus
increases ðd=‘Þc. As � is further increased, the energetic
advantage of the excitonic phase declines owing to the
increasing spin polarization of the incoherent phase.
Once full spin polarization of the incoherent phase is
reached, ðd=‘Þc should cease changing with �. This is
the regime approached, but not entered, by Giudici et al.
[24]. Here we reach higher values of � and thereby probe
deeply into the fully polarized regime.

The data in Fig. 2 show that this simplest scenario is not
quite observed. After a steady rise, ðd=‘Þc reaches a maxi-
mum and then begins a gentle decline with �. We believe
that this decline is in fact an orbital effect of the large in-
plane magnetic field and that the two phases are indeed
fully spin polarized in this regime. In addition to enhancing
EZ, tilted magnetic fields lead to level mixing effects due to
the finite thickness of the 2D layers. In the present sym-
metrically doped DQW, these mixing effects lead to
‘‘squashing’’ of the subband wave function and an increase
in the mean separation between electrons in the two layers.
Both effects reduce the relative stability of the excitonic
phase, and we believe they are responsible for the slow
decline of ðd=‘Þc at large �.

A second surprising aspect of the data in Fig. 2 concerns
the location of the ‘‘knee’’ in the various drag contours.
The dashed line in the figure represents the approximate
location of this knee. If the knee indicates the onset of full
spin polarization of the incoherent phase, then the finite
slope of the dashed line implies that the normalized
Zeeman energy � required for full polarization depends
on the effective layer separation d=‘, at least within the
transition region. If within this transition region the bilayer
2DES is in some kind of mixed phase (either heteroge-
neously [18] or homogeneously [19,20]), with attributes of
both the excitonic and incoherent fluids, then the finite
positive slope of the dashed line suggests that the incoher-
ent fluid polarizes more readily when spin polarized exci-
tonic fluid is also present.

Finally, Fig. 2 clearly displays the broadening of the
transition region noted above. The width of the transition
appears to increase steadily while ðd=‘Þc is rising with �.
At higher �, beyond the knees in the drag contours, the
width of the transition appears to saturate. This is made
clearer in Fig. 3(a) where the width �ðd=‘Þ, defined as the
half width at half maximum of the Rxx;D peak, at T ¼
50 mK is plotted vs �. The total change in the width is
quite substantial: about a factor of 3.

The large increase in �ðd=‘Þ is not simply due to an
enhancement of thermal fluctuations. Figure 3(b) shows
the temperature dependence of �ðd=‘Þ at � ¼ 0 and � ¼
66�. As observed previously [31], at � ¼ 0 �ðd=‘Þ in-
creases linearly with T but is very small in the T ! 0 limit.
In contrast, at � ¼ 66�, in the spin polarized regime,
�ðd=‘Þ clearly does not vanish in the zero temperature
limit. This implies the presence of a nonthermal broad-
ening mechanism.

Stern and Halperin (SH) [18] attribute the peak in Rxx;D

to phase separation near the critical d=‘. The source of this
phase separation is assumed to be static fluctuations in the
2DES density arising from spatial inhomogeneities in the
Si donor populations in the sample. For d=‘ * ðd=‘Þc the
bilayer 2DES is presumed to consist largely of the inco-
herent phase with small inclusions of the excitonic phase.
For d=‘ & ðd=‘Þc the situation is reversed. The large Rxx;D

near the critical point results from the very different trans-
port properties of the two phases: while the incoherent
phase consists of two essentially independent compressible
composite fermion (CF) metals, the excitonic phase is an
incompressible quantum Hall conductor for parallel cur-
rents in the two layers but a superfluid for antiparallel
currents [8–10,16]. Among the predictions of this model
is a universal value, �xx;D ¼ h=2e2, for the peak drag

resistivity.
Although the SH model was constructed assuming full

spin polarization of both phases, it should certainly be
possible to modify it to include partial polarization of the
incoherent phase. It is unclear to us whether such a modi-
fication could account for the much larger transition width
in the polarized regime and the apparent dependence of the
Zeeman energy � required to produce full polarization (the
knee) on the layer separation d=‘. One interesting possi-
bility is that since the density of states of the CFs presum-
ably drops by a factor of 2 upon full spin polarization, their
ability to respond to the disorder potential would be
changed. This could result in a different transition width.
It may also be possible to understand our results without

assuming that the phase transition is first order. Simon,
Rezayi, and Milovanovic (SRM) have proposed that as d=‘
is reduced, the bilayer �T ¼ 1 system evolves smoothly
from an incoherent phase consisting of two independent
CF metals to a coherent phase comprised of Bose con-
densed composite bosons (CB). At intermediate d=‘ CFs
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FIG. 3 (color online). (a) Width, �ðd=‘Þ, of the longitudinal
drag peak at �T ¼ 1 and T ¼ 50 mK versus normalized Zeeman
energy � at the peak center. (b) Temperature dependence of
�ðd=‘Þ at � ¼ 0 (blue squares) and � ¼ 66� (red triangles).
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and CBs coexist, and SRM present mixed CF-CB wave
functions to describe the many-body ground state in this
regime. This homogeneously mixed CF-CB model leads to
the same drag transport signatures that SH find in their
phase separation model.

A simple mean-field model of the energetics of the SRM
scenario may be constructed as follows. We assume the
condensed CBs are fully spin polarized, but allow for
partial polarization of the CFs. Let f denote the fraction
of electrons in the CF phase. To allow for partial polariza-
tion of the CFs, we write f ¼ f" þ f#. Treating the CFs and
CBs as independent, the total energy per electron in the
�T ¼ 1 bilayer system is assumed to be E ¼ 1

2EF0ðf2" þ
f2# Þ � 1

2EZðf" � f#Þ þ ð1� fÞðC� 1
2EZÞ. Here EF0 is the

Fermi energy of the system assuming it consisted only of
spin polarized CFs [32], and C is the energy of each
condensed CB. Minimizing E, we find f" ¼ C=EF0 and

f# ¼ ðC� EZÞ=EF0. Thus, if EZ < C, CFs of both spins

are present and f ¼ ð2C� EZÞ=EF0. Conversely, if EZ >
C, the CFs are fully polarized (f# ¼ 0) and f ¼ C=EF0.

Clearly, a mixed phase (0< f < 1) will exist over a range
of C in both the partially and fully polarized CF regimes. In
the partially polarized regime, contours of fixed f satisfy
C ¼ ðfEF0 þ EZÞ=2 and thus rise linearly with EZ.
However, when the Zeeman energy reaches EZ ¼ C, the
CF phase becomes fully spin polarized (i.e., f# ¼ 0) and
the contour becomes independent of Zeeman energy. The
knee in the contour occurs when EZ ¼ fEF0 and is thus
proportional to the CF fraction, f. If we use the range
1=4< f < 3=4 to define the transition width �C, we find
that the width �C ¼ EF0=2 in the fully polarized regime is
twice as large as �C ¼ EF0=4 in the partially polarized
regime. Making the plausible assumption that the con-
densed CB energy C increases linearly with d=‘ near the
critical point, these conclusions agree qualitatively with all
of the main features of the drag contours in Fig. 2, although
we stress that a theory directly relating f to the measured
drag resistances is lacking.

In summary, we have observed how quantum Hall ex-
citon condensation in bilayer systems depends on Zeeman
energy and have probed deeply into the fully polarized
regime. Several qualitative effects have been observed,
most notably a dramatic increase in the width of the
transition when all spins become polarized. We have dis-
cussed our results in terms of two models of the transition,
both of which assume mixing of excitonic and composite
fermion phases. It remains to be determined whether this
mixing occurs via first-order phase separation or reflects a
homogeneous crossover.
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