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Charge imbalance and bilayer two-dimensional electron systems at vy=1
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We use interlayer tunneling to study bilayer two-dimensional electron systems at vy=1 over a wide range of
charge-density imbalance Av=v,—v, between the two layers. We find that the strongly enhanced tunneling
associated with the coherent excitonic vy=1 phase at small layer separation can survive at least up to an
imbalance of Av=0.5, i.e., (v|,v,)=(3/4,1/4). Phase transitions between the excitonic v;=1 state and bilayer
states which lack significant interlayer correlations can be induced in three different ways: by increasing the
effective interlayer spacing d/¢, the temperature 7, or the charge imbalance Av. We observe that close to the
phase boundary the coherent v;=1 phase can be absent at Av=0, present at intermediate Av, and then absent
again at large Av, thus indicating an intricate phase competition between it and incoherent quasi-independent
layer states. At zero imbalance, the critical d/€ shifts linearly with temperature, while at Av=1/3 the critical
d/{€ is only weakly dependent on T. At Av=1/3 we report on an observation of a direct phase transition
between the coherent excitonic vy=1 bilayer integer quantum Hall phase and the pair of single-layer fractional

quantized Hall states at »;=2/3 and v,=1/3.
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I. INTRODUCTION

A fascinating example of the richness of bilayer two-
dimensional (2D) electron system (2DES) quantum phenom-
ena occurs when the total density n; of electrons in the bi-
layer equals the degeneracy eB/h of a single spin-resolved
Landau level created by a magnetic field B. In this situation
the total Landau-level filling factor is vy=ny/(eB/h)=1. If
the spacing between the two layers is small, the 2DES is a
gapped quantum Hall (QH) liquid well described by Halp-
erin’s ¥, wave function’> and may be described in several
equivalent ways, including as a Bose-Einstein condensate of
interlayer excitons® or a pseudospin ferromagnet.*> This col-
lective state exists even in the absence of interlayer
tunneling® and possesses an unusual broken-symmetry spon-
taneous interlayer phase coherence. This phase coherence is
responsible for the very unusual physical properties of the
bilayer system at small layer separation, including
Josephson-type interlayer tunneling’ and vanishing Hall and
longitudinal resistances®~'" when currents are driven in op-
position (counterflow) in the two layers. For layer spacings
larger than a critical value, interlayer phase coherence is lost
and the system properties revert to those characteristic of
independent layers. Interlayer tunneling is heavily sup-
pressed at zero bias.!! No anomalous counterflow transport
properties are observed and, for density-balanced layers (i.e.,
v =1,=1/2), there is no quantized Hall effect. For suffi-
ciently large layer separation, the system may be described
as two independent composite fermion (CF) metals.!>!4

Theory suggests that the transition, as a function of layer
separation, between the coherent and incoherent vy=1 states
reflects an underlying zero-temperature quantum phase tran-
sition. This is consistent with experiments which show that
the dimensionless critical layer separation (d/{), [with d as
the center-to-center separation of the quantum wells contain-
ing the electron gases and €=(%/eB)"? as the magnetic
length] extrapolates to a finite value d/€~2 in the T—0
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limit. At finite temperatures a Kosterlitz-Thouless (KT) vor-
tex unbinding transition is anticipated®! to lead to the loss
of phase coherence above a critical temperature Txt. Re-
cently, strong experimental evidence for a true finite tem-
perature transition in density-balanced vry=1 bilayers has
emerged.'® Although the observed linear temperature depen-
dence of the critical layer separation (d/{),. is roughly con-
sistent with theoretical estimates for the KT transition,’ it
remains unclear how close the connection is.

Spontaneous interlayer phase coherence renders the vy
=1 state at small layer separation insensitive to layer density
difference Av=v,-v,. Indeed, the Halperin ¥,;; wave func-
tion accurately captures the essential correlations at vy=1
and small d/€ for any combination of densities in the two
layers. Experiments have clearly demonstrated the stability
of the coherent vy=1 phase against layer density imbalances
and have even shown that the critical layer separation (d/{),
is increased by small imbalances.'6-2?

The robust character of the coherent v;=1 phase at small
d/{ against density imbalance contrasts sharply with the
situation at large d/€. There the bilayer is effectively two
independent 2DES layers in parallel and density imbalance
opens the possibility of numerous qualitatively different pha-
ses. Conjugate pairs of both incompressible fractional quan-
tized Hall-effect (FQHE) states, e.g., (v, v,)=(1/3,2/3) and
compressible states, e.g., (v|,v,)=(1/4,3/4) are obvious
candidates. But even after specifying the individual filling
factors there remain multiple possibilities if the spin polar-
ization of the system is incomplete. For example, at the low
magnetic fields typical of bilayer v;y=1 experiments a single-
layer 2DES at v=2/3 is most likely spin unpolarized, even
though its conjugate partner at v=1/3 is fully polarized. That
spin is a relevant variable in bilayer v;=1 experiments has
already been clearly demonstrated.?>-2*

The above considerations suggest that the phase boundary
separating the imbalanced coherent vy=1 bilayer at small
d/{ from the numerous possible incoherent states at large
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d/{ is highly intricate. While disorder within the 2D systems
is likely to wash out the finer features of the phase boundary
surface, it is reasonable to expect that interesting ones re-
main. These features are the subject of this paper.

We report here on the results of interlayer tunneling and
transport experiments which map out a large portion of the
(d/€)-T-Av phase diagram for bilayers at v;=1. We make
five main observations: (1) the coherent v;=1 bilayer state
can survive at least up to Av=0.5, i.e., (v;,v,)=(3/4,1/4),
(2) deep inside the coherent phase, at small d/ €, the effect of
a small Av is to reduce the amplitude of the coherent tunnel-
ing resonance, while close to the phase boundary, at larger
d/ €, small imbalances increase the strength of tunneling; (3)
close to the critical (d/€),. the coherent vy=1 phase can be
absent at Av=0, present over an intermediate range of im-
balance, and then destroyed again at larger Av; (4) while the
critical layer spacing (d/{), of density-balanced v;=1 bilay-
ers falls linearly with temperature,'® at Av=1/3, we find a
much weaker temperature dependence; and (5) at Av=1/3
we find clear evidence that as d/€ increases the system
makes a rapid transition from an incompressible interlayer
phase-coherent state to another incompressible but at most
weakly interlayer coupled state consisting of quasi-inde-
pendent FQHE states at v;=2/3 and v,=1/3.

The paper is organized as follows. Section II discusses
experimental issues, focusing in particular on the challenges
encountered in accurately determining the densities of the
individual layers in imbalanced bilayers and in making reli-
able tunneling measurements in systems with low sheet con-
ductivities. Readers uninterested in these details may wish to
skip this section. Section III presents interlayer tunneling and
transport data at v;=1 over a broad range of Av, d/€, and T.
In Sec. IV, we discuss and interpret the data. Section V con-
tains our conclusions. The Appendix summarizes the numeri-
cal modeling used to simulate the interlayer charge-transfer
effect encountered in the course of these experiments.

II. EXPERIMENTAL METHODS

A. Sample

The sample used in this experiment is a GaAs/AlGaAs
double quantum well heterostructure grown by molecular-
beam epitaxy. Two 18 nm GaAs quantum wells separated by
a 10 nm Aly¢Ga,As barrier are embedded between thick
cladding layers of Alj3,Gag cgAs. Remote Si doping sheets in
the cladding layers populate the ground subband of each
quantum well with a 2DES with nominal density of 5.4
%X 10" cm™ and low-temperature mobility of 1X10°
cm?/V s. Standard photolithographic techniques are used to
confine the bilayer 2DES to a square mesa, 250 um on a
side. Four 40-um-wide arms extend away from the sides of
the square to evaporated AuNiGe ohmic contacts. Each arm
is crossed by evaporated metal strip gates on the top and
thinned backside of the sample. These arm gates are used to
selectively deplete either the top or bottom 2DES in the bi-
layer, thereby allowing the ohmic contacts to connect to the
inner square region via one or the other 2DES layer sepa-
rately. These independent layer contacts are essential for
measuring the interlayer tunneling conductance dI/dV versus
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interlayer voltage V in the sample. The densities of the indi-
vidual 2DESs in the central region of the device are con-
trolled via additional top- and back-gate voltages V,, and Vy,.
Typically the density of each 2DES must be reduced by
about a factor of 2 in order to reach the regime where the
effective interlayer spacing d/€~ 1.8 and interlayer coher-
ence at vy=1 becomes possible. At these lower densities the
mobility of each 2DES is reduced accordingly (in rough pro-
portion to the density) and this in turn adversely affects the
strength of correlated electron phenomena in the sample. The
problem is amplified when large density imbalances are im-
posed for then the effects of disorder are asymmetric and can
be severe in the low-density layer of the pair.

B. Imbalanced layers: Density calibration

The density n of a single 2DES is readily determined from
conventional magnetotransport measurements. At low mag-
netic field or at high temperatures, both of which suppress
the quantized Hall effect, the Hall resistance R,,=B/ne is the
simplest way to obtain n. Alternatively, the Shubnikov-de
Haas oscillations of the longitudinal resistance R,, at inter-
mediate magnetic fields allow for accurate density measure-
ments. Both of these methods become problematic in the
quantized Hall-effect regime where plateaus in R,, and wide
zeroes in R, interfere. '

Density determinations in bilayer 2D systems present
their own unique challenges, even when independent electri-
cal connections to the individual layers, such as we have
here, are available. At low and intermediate magnetic fields,
Hall and Shubnikov-de Haas measurements on the individual
layers still provide a satisfactory way to determine the layer
densities n; and n,. Figure 1(a) shows typical Shubnikov-de
Haas oscillations in the resistivity of the top 2DES. However,
owing to the finite compressibility of the individual 2D elec-
tron systems,? it cannot be assumed that the actions of the
top and backside gates are orthogonal. Instead, it is necessary
to independently measure n; and n, over an entire grid of
gate voltages Vi, and Vj,.

It is worth noting that interlayer tunneling measurements
at zero and low magnetic fields provide an accurate check of
the density calibrations for the special case of equal layer
densities. At B=0 the tunneling conductance dI/dV versus V
exhibits a resonance when the subband energies in the two
wells line up.?® This resonance is centered at V=0 only when
the densities of the two layers match precisely. It is straight-
forward to adjust the top and backside gates to achieve this
condition. Once the bilayer is so balanced, the low-field
Shubnikov-de Haas-type oscillations in the zero-bias tunnel-
ing conductance, G(0)=dI/dV at V=0, can then be used to
extract the layer densities n,=n,.

The situation for imbalanced bilayers at high magnetic
field is considerably more complicated. When the top and
backside gates are used to create a density imbalance be-
tween the layers, the calibrations discussed above only re-
main accurate at low and intermediate magnetic fields. At
high fields, in the lowest Landau level, many-body effects
lead to a redistribution of charge between the layers. In the
following we explain how this effect is observed, under-
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FIG. 1. (Color online) (a) Longitudinal magnetoresistance trace
in the top 2D gas at low magnetic field B for zero applied top and
bottom gate voltages Vi,=Vp,=0 and 7=100 mK. A density of n,
=5.4x10' ecm™? is extracted from the Shubnikov-de Haas oscilla-
tions. (b) Hall resistance traces for the bottom 2D gas at T
=700 mK. The carrier density is extracted from the Hall slope. The
upper solid (black) trace is acquired with V;;=-450.3 mV and
Vie=—3.64 V. Under these conditions n,=4.5+0.15 X 10" cm2,
while the top 2DES is fully depleted, n;=0. The lower solid (red)
trace is acquired with Vz=-353.7 mV and V,,=-3.33 V. With
these gate voltages n;>0. Below B=1 T the two traces overlap
and hence yield essentially identical values for the lower-layer den-
sity. Above B=1 T the traces begin to separate. The dashed line is
a linear fit to the lower Hall resistance trace at high fields giving

»=53+0.15%10'" cm™2. (c) Filling factor imbalance Avpigy de-
duced from high B-field Hall measurements versus Awv,,, the im-
balance deduced from low-field Shubnikov-de Haas oscillations un-
der the same gating conditions for three different d/€’s at vy=1.
The dashed line indicates Avy;op=Av|oy. The solid line is the result
of the simulation of the charge-transfer effect described in the text
and Appendix.
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stood, and accounted for in the analysis of our experimental
results on imbalanced v;=1 bilayers.

Figure 1(b) shows two Hall resistance R,, versus mag-
netic field B traces for the bottom 2D electron gas in the
bilayer at 7=700 mK. This high temperature was chosen to
suppress all but the strongest integer quantum Hall states.
The two traces correspond to two very different gating con-
ditions but with each designed to produce the same electron
density n, in the bottom 2D layer. For the upper (black) trace
the top 2D electron gas is fully depleted, n;=0, by applying
a top gate voltage of V;,=—450.3 mV. Meanwhile, the back-
side gate voltage is set to Vp,=—3.64 V, yielding n,
=4.5+0.15%X10'° cm™2. For the lower (red) trace the gate
voltages are Vi;=-353.7 mV and V,,=-3.33 V, yielding
n,=4.6+0.15X “101 ¢m2 and ny=1. 2+0.15%101° cm2
for the bottom and top 2DESs, respectively. As expected, at
low magnetic fields, B=1 T, the two Hall traces are essen-
tially identical, demonstrating the near equality of the bottom
layer densities in the two cases.

For B>1 T, corresponding to v, <2 and the Fermi level
of the lower layer entering the lowest orbital Landau level,
the two traces begin to separate. For the upper (black) trace,
which corresponds to the case where the top 2DES is fully
depleted, the slope of the Hall resistance at high magnetic
fields gives essentially the same density as found at low
fields (n,=4.6+0.15X 10'° cm™). In contrast, in the lower
(red) trace, for which the top 2DES is not fully depleted, the
Hall slope at high fields is not the same as the slope at low
fields. Moreover, the Hall plateaus at R,,=h/e* and h/2¢” in
the lower trace occur at higher magnetic field than in the
upper trace. Apparently, the density of the lower 2DES layer
becomes larger at high magnetic fields when a nonzero den-
sity of electrons is present in the top layer. The dashed line is
a linear fit to the lower Hall data trace for fields B>3.5 T.
This line, which extrapolates back to R,,=0 at B=0, indi-
cates a density of n,=5.3+0.15X10'" cm™. This is sub-
stantially larger than the density of n,=4.6*0.15
% 10! ¢m~? inferred from the low-field data. Hall measure-
ments on the top 2DES under comparable gating conditions
reveal that its density is reduced as the magnetic field rises
above B=1 T. Our data are consistent, to within experimen-
tal error, with the total density ny=n,;+n, remaining constant
as the magnetic field is increased even though a significant
transfer of charge from one layer to the other takes place.

Figure 1(c) summarizes this density transfer effect for
three different total electron densities ny and thus three dif-
ferent d/€ values at vy=1. For each d/{ there are several
data points, each corresponding to a specific combination of
top and backside gate voltages Vi, and V), imposed in order
to imbalance the bilayer. The horizontal coordinate of each
data point indicates the filling factor imbalance A, at vy
=1 deduced from low-field Shubnikov-de Haas measure-
ments made under the same gating conditions. The vertical
coordinate represents the density imbalance Awy;,, deduced
from the Hall slopes observed at high fields and tempera-
tures, again with same gate voltages. The dashed line indi-
cates where Ao, =Awy,; the data do not lie along this line.
They merely cross it at Av=0. The imbalance correction is
largest at low d/{ and large Aw, and measurements have
verified that the density changes are equal and opposite in
the two layers.
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The light solid line in Fig. 1(c) represents a simulation,
described in detail in the Appendix, of the charge-transfer
effect. In essence, the charge transfer is due to the compress-
ibility of the 2D electron systems. Owing to their finite com-
pressibility, the density of the individual 2DESs in an imbal-
anced bilayer system does not match the density of positive
charges on the gate and in the doping layer closest to it. (Of
course, the sum of the two 2DES densities equals the sum of
the positive background charge density on both gates and
both doping layers.) If the compressibility is negative,” the
net result is that the imbalance in 2DES densities exceeds the
imbalance in the gate charge density. The solid line in the
figure shows that a crude approximation of the effects of
negative compressibility captures the essential physics be-
hind the charge-transfer effect we observe experimentally.

In what follows, we refer only to the imbalance Av de-
duced from high-field Hall-effect measurements and thus al-
ways incorporate the charge-transfer effect. We stress that for
the data presented here the maximum correction to Av never
exceeds 0.1 and is generally much smaller. Indeed, for the
majority of the qualitative conclusions we draw, it is imma-
terial whether the charge-transfer effect is included or not.
However, the inclusion of this effect is important in predict-
ing the gate voltages that will render v=1/3 and 2/3 in the
individual layers. We estimate that our quoted imbalances Av
are accurate to better than =0.01 near Av=0 and *0.03 at
Av=1/3.

C. Sheet conductivity versus tunneling conductivity

The tunneling measurements presented here are two-
terminal. A voltage V [consisting of a dc voltage plus a small
(1-10 wV) ac modulation at 3.3 Hz] is applied between the
two layers and the resulting ac current is recorded. The ratio
of the ac current to the applied ac modulation voltage yields
the conductance dI/dV. This conductance is dominated by
interlayer tunneling only when the sheet conductivity of the
2D layers themselves is much larger than the tunneling con-
ductance. If this condition is not met, then only a fraction of
the applied voltage drops across the tunnel barrier (with the
rest dropping within the 2D layers themselves) and the ob-
served conductance is smaller than the true tunneling
conductance.?’

At high d/€, where the two layers are behaving essen-
tially independently, low sheet conductivity is rarely a prob-
lem at least near zero interlayer voltage. This is because of
the strong suppression of low-energy interlayer tunneling at
high magnetic field arising from Coulomb blockadelike
effects.!! In essence, even if a 2DES is in a thermodynami-
cally compressible state (e.g., at ¥=1/2), on the very short
time scales characteristic of tunneling the strong intralayer
correlations in the system render it effectively incompress-
ible. The resulting strong suppression of the tunneling con-
ductance allows for reliable measurements even in the pres-
ence of relatively low sheet conductivities.?®

At small d/€, in the interlayer coherent vy=1 phase, a
strong and very sharp resonant enhancement of the tunneling
conductance dI/dV appears around zero interlayer bias.”
This peak is one of the most dramatic signatures of sponta-
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FIG. 2. (Color online) (a) Tunneling conductance spectra dI/dV
vs Vat vp=1, T=55 mK, and effective layer spacing d/€=1.56 for
various charge imbalances Av=v;—v,. (b) Temperature dependence
of G(0), the height of the tunneling resonance at v;=1, for various
Av. The solid lines are guides for the eyes. The arrows associated
with the Av=0.28, 0.40 and 0.50 data traces indicate the crossover
temperature 7* defined in the text.

neous interlayer phase coherence at vy=1. At the same time,
its very strength makes tunneling measurements more diffi-
cult owing to the finite sheet conductivity of the two 2D
layers.

Figure 2 illustrates the effects of finite sheet conductivity
on tunneling at v;=1 in the coherent phase. In Fig. 2(a) three
vr=1 tunneling conductance resonances are shown. The total
electron density in the bilayer (n;=4.95%10'° ¢cm=2), mag-
netic field (B=2.05 T), temperature (T=55 mK), and effec-
tive layer spacing (d/€=1.56) are the same in each case. At
this d/€ and T the bilayer is relatively deep within the co-
herent vy=1 phase. The three resonances differ in the
amount of gate-induced density imbalance that is present:
Av=0 for the solid black trace, 0.18 for the short-dashed
(red) trace, and 0.32 for the long-dashed (blue) trace. For
both Av=0 and 0.18 the tunneling conductance displays the
sharp [[FWHM ~7 wV), where FWHM is full width at half
maximum] resonance characteristic of the coherent vy=1
phase. In contrast, at Av=0.32 the resonance is heavily dis-
torted. This distortion is caused by low sheet conductivity in
the low-density layer (n,~1.7X10'° cm™2) of the imbal-
anced bilayer system. The two-terminal voltage across the
sample includes substantial voltage drops within the plane of
the low-density layer and therefore exceeds the voltage drop
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across the tunnel barrier. The tunnel resonance consequently
appears to be broadened and its amplitude is reduced. Con-
ventional in-plane transport measurements on the individual
layers in the bilayer confirm that their longitudinal conduc-
tivity becomes extremely small when their density is reduced
sufficiently and the temperature is low. This is not surprising
since electrostatic gating reduces the density of mobile elec-
trons in the 2DES but does not alter the number of charged
impurities in the modulation doping layer. In effect, gating
the density down creates a more disordered 2D electron gas.
At sufficiently low density, percolation will cease and the
electron gas will become an insulator. As the density is re-
duced toward this point the sheet conductivity will eventu-
ally fall below the interlayer tunneling conductance and tun-
neling measurements will begin to fail. Interestingly, in spite
of the general decrease in the sheet conductivity in the low-
density layer, a (distorted) zero-bias tunneling peak is still
observed, demonstrating that some amount of interlayer co-
herence remains. We speculate that this somewhat paradoxi-
cal result may be due to strong inhomogeneities within the
2DES, with pockets of interlayer coherent vy=1 fluid sur-
rounded by an incoherent bilayer system in which one layer
has very low sheet conductivity.

It is clearly essential to develop a criterion for distinguish-
ing reliable v;=1 tunneling data for which sheet conductivity
effects may be safely ignored from data for which they can-
not. Fortunately, the temperature dependence of the tunnel-
ing conductance offers a simple solution to this problem.
Figure 2(b) shows the height of the vy=1 tunneling reso-
nance at zero bias G(0) as a function of temperature for
various Av at d/€=1.56. At small imbalances, Av=0 and
0.14, G(0) increases monotonically as the temperature is re-
duced and interlayer phase coherence strengthens. However,
at larger Av, G(0) initially grows as the temperature falls, but
then reaches a maximum at some temperature 7" below
which the conductance falls with decreasing temperature.
For a given imbalance 7" marks the crossover from a
tunneling-dominated regime at high temperatures to a sheet-
conductivity-dominated regime at low temperature. As the
data in Fig. 2(b) show, the crossover temperature 7T is
strongly dependent on Av. By acquiring similar data at each
d/€ and Av of interest, we determine the minimum tempera-
ture at which our conductance data are dominated by inter-
layer tunneling and are therefore faithful probes of interlayer
phase coherence at v;y=1. All data presented in the remainder
of this paper fulfill this criterion.

III. RESULTS

Figure 3 illustrates the effect of layer charge-density im-
balance on coherent tunneling at v;=1. The figure displays
two series of tunneling spectra dI/dV versus V taken at T
=85 mK. The data in panels (a) and (b) were taken at d/€
=1.65 and 1.80, respectively. For each trace shown the inter-
layer voltage V is swept from —150 to +150 V. The traces
are offset, by an amount proportional to the imposed imbal-
ance Av, for clarity. The central trace in each panel is taken
in the balanced configuration Av=0. Traces to the upper
right of center are increasingly imbalanced by adding charge
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FIG. 3. Tunneling conductance spectra dI/dV vs V at vy=1 and
T=85 mK vs imbalance Av for (a) d/€=1.65 and (b) 1.80. In each
panel the middle trace corresponds to Av=0 while the remaining
traces are offset by an amount proportional to Av for clarity. The
interlayer voltage range is from —150 to +150uV in all cases.

to the top layer while subtracting it from the bottom layer
yielding Av=v,—v,>0. Traces to the lower left of center
correspond to the opposite sense of imbalance Av<0.
Figure 3(a) demonstrates that at d/€=1.65 the tunneling
peak at V=0 is gradually reduced as the bilayer system is
increasingly imbalanced. This result is characteristic of the
coherent vy=1 phase at d/€ well below the critical layer
separation.?’ In contrast, the tunneling data shown in Fig.
3(b) reveal a much more complex dependence on charge-
density imbalance. These data, which were obtained at d/€
=1.80 and 7=85 mK, show no tunneling peak in the bal-
anced condition Av=0. Under these conditions the balanced
bilayer system is just outside the coherent v;=1 phase. As
reported previously, imposing a small density imbalance Av
creates a zero-bias tunneling peak and thus forces the system
across the phase boundary and into the coherent phase.!'62%
Increasing the imbalance initially strengthens the tunneling
peak and drives the system deeper into the coherent phase.
Similar conclusions have been reached via conventional
magnetotransport measurements.'’~1%21:22 Here, however, we
have the possibility to study the phase boundary out to much
larger Av than previously up to Av~ 0.4 for the data in Fig.
3. As Fig. 3(b) demonstrates, the tunneling amplitude reaches
a maximum at intermediate imbalance and thereafter is rap-
idly reduced to zero again. These results suggest that the
critical effective layer separation (d/€). between the coher-
ent and incoherent phases of vy=1 bilayers may have, in
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FIG. 4. Tunneling conductance spectra dI/dV vs V at vy=1 and
d/€=1.71 vs imbalance Av for (a) T=55 and (b) 125 mK. In each
panel the middle trace corresponds to Av=0 while the remaining
traces are offset by an amount proportional to Av for clarity. The
interlayer voltage range is from —150 to +150 wV in all cases.

addition to a local minimum at Av=0, a local maximum at
|Av|>0. Additional tunneling and magnetotransport data, to
be discussed below, strongly support this conclusion.

The data shown in Fig. 3 demonstrate that the imbalance
dependence of the tunneling resonance changes significantly
when the effective layer separation d/€ approaches the criti-
cal value (d/f),.. Recent experiments, however, have shown
that (d/€), itself, at least for balanced v;=1 bilayers, exhib-
its a significant temperature dependence.'® Thus, if the evo-
lution of the imbalance dependence of the tunneling reso-
nance shown in Fig. 3 signals proximity to the phase
boundary, the same qualitative behavior ought to be observ-
able at other temperatures 7" and effective layer separations
d/ € along that boundary. In particular, it should be possible
to induce the same evolution by changing T at fixed d/€.
Figure 4 demonstrates that this is the case. In Fig. 4(a) d/¢€
=1.71 and T=55 mK and the system is well inside the co-
herent phase. As in Fig. 3(a), under these conditions the
strength of the tunneling resonance falls smoothly with in-
creasing imbalance. In Fig. 4(b) the layer separation is still
d/€=1.71 but the temperature has been raised to T
=125 mK, thus positioning the system close to the phase
boundary. Here, as in Fig. 3(b), the tunneling resonance ini-
tially grows with increasing imbalance and then falls again at
sufficiently large Awv. Beyond corroborating our earlier
evidence'® for a finite temperature phase transition in bal-
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FIG. 5. Tunneling conductance at zero bias G(0) at v7=1 vs Av
for various d/€. (a) T=85, (b) 55, and (c) 200 mK. The solid lines
are guides for the eyes.

anced vy=1 bilayers, these data generalize the notion of a
finite temperature phase transition to include highly imbal-
anced vy=1 bilayers. The evolution from a local maximum
in tunneling at Av=0 to a local minimum at Ay=0 flanked
by local maxima at intermediate Av indicates proximity to a
phase transition which can be approached either by raising
d/{ at fixed T or by raising T at fixed d/{.

Figure 5 summarizes the evolution of the imbalance de-
pendence of the zero-bias tunneling conductance G(0) with
effective layer separation d/¢ at three different temperatures
T=85, 55, and 200 mK in panels (a), (b), and (c), respec-
tively. At each temperature there is a critical (d/€), above
which G(0) at Av=0 vanishes, signaling the loss of inter-
layer phase coherence. As reported previously,'® (d/€), at
Av=0 falls linearly with increasing temperature. The data in
Fig. 5 also reveal that for d/€ slightly larger than (d/€), at
Av=0 there is a range of imbalance centered at Av=0 over
which the vy=1 bilayer remains incoherent. For instance, in
Fig. 5(a) the d/€=1.83 data demonstrate a lack of interlayer
coherence for |[Ay|=<0.11. Remarkably, for 0.11=<|Av]
=0.34 a small but readily identifiable zero-bias tunneling
peak is restored. This strongly suggests that for this effective
layer separation, d/€=1.83, the v;=1 bilayer is phase coher-
ent only in this imbalance window. We emphasize that the
collapse of the tunneling resonance at the boundaries of this
window is quite rapid. In particular, near |Av|=0.34 the col-
lapse of the tunneling resonance shown in Fig. 5(a) at d/€
=1.83 is far more sudden than the gentle imbalance-induced
decline of G(0) observed for d/€ <1.74. Indeed, we believe
that the latter effect is not indicative of a phase transition
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FIG. 6. (Color online) (a) Phase boundary separating the inter-
layer coherent vy=1 phase at small d/{ from the incoherent states
at large d/€ vs Av at T=55, 85, 125, and 200 mK. The data points
represent the position in d/€ of the smallest measured tunneling
resonance. Arrows denote Av=*1/3. (b) Phase boundary in the
(d/€)-T plane extracted from panel (a) for fixed Av=0, 0.16, and
1/3. The lines are guides for the eyes.

while the former more sudden collapse is. Figures 5(b) and
5(c) reveal that the same phenomenology observed at T
=85 mK and shown in Fig. 5(a) is also encountered at T
=55 and 200 mK; the only significant differences are the d/€
values at which the various features occur.

A phase boundary for the coherent v;y=1 bilayer may be
constructed by finding the largest d/ ¢, for a given imbalance
Av and temperature T, at which a zero-bias tunneling reso-
nance is still identifiable above the noise in the tunneling
conductance measurement (~5X 1072 nS). Figure 6(a) dis-
plays the results of such a construction at 7=55, 85, 125, and
200 mK. At each temperature the coordinates in (d/€)-Av
space of the minimum detectable zero-bias tunneling reso-
nance are plotted; the associated solid lines are guides for the
eyes. As expected, the various curves all display a camel-
back shape with a local minimum at the balance point Av
=0. In general, the curves move to higher d/€ values as the
temperature is reduced, with the effect being most pro-
nounced at the balance point Av=0. Near Av=*1/3 the
curves cluster together at the lowest 7. As we shall discuss,
this effect is most likely related to competition between the
coherent bilayer vy=1 phase and two quasi-independent
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single-layer fractional quantized Hall states, one at v=1/3
and the other at v=2/3.

Figure 6(b) displays cuts through the phase boundary in
the (d/{€)-T plane at three different imbalances Av=0, 0.16,
and 0.33. The data at Av=0 (solid circles) represent the
phase boundary between the balanced coherent vy=1 bilayer
state and a compressible incoherent state consisting of two
quasi-independent v=1/2 2D electron systems. This phase
boundary is linear in temperature over our data range in
agreement with earlier findings'® based on empirical scaling
analyses of the peak tunneling conductance G(0) versus d/¥.
At Av=0.16 the extracted critical layer spacing (open
circles) shows a temperature dependence similar to the Av
=0 data, with some hint of saturation at the lowest tempera-
tures. For the Aw=1/3 data this saturation is pronounced; the
critical layer separation (triangles) shows very little tempera-
ture dependence for 7=125 mK.

To investigate in more detail the special case of Av
=1/3, we prepared our bilayer sample with (v, v,)
=(2/3,1/3) and studied both interlayer tunneling and con-
ventional magnetotransport as a function of d/€ at T
=85 mK. Figure 7(a) shows the tunneling conductance
dl/dV versus V for d/€=1.62, 1.71, 1.80, and 1.84. The
strongly enhanced tunneling signature of interlayer phase co-
herence at vy=1 is clearly visible at low d/€ but quickly
collapses as d/{ increases, with the tunneling peak disap-
pearing between d/{€=1.80 and 1.84. This rapid collapse of
the zero-bias tunneling resonance with increasing d/€ is very
similar to the one observed for the case of balanced layers
where v;=1,=1/2 and the bilayer is compressible at large
d/€. However, in the present (v{,v,)=(2/3,1/3) situation,
the bilayer system at large d/€ consists of two incompress-
ible FQHE states. It is therefore plausible that the phase tran-
sition we observe is from a coherent vy=1 bilayer whose
Hall resistance is quantized at p,,=h/ e to an incoherent
system in which one layer exhibits a quantized Hall plateau
at p,,=3h/ 2¢% and the other a Hall plateau at pry=3h/ e’
This scenario contrasts starkly with the situation for the bal-
anced vy=1 bilayer. In that case the Hall resistances of the
individual layers at d/€>(d/{), are equal to pxy:Zh/e2 and
are not quantized.

Figure 7(b) shows the measured Hall resistance in the top
layer as a function of v}l at various d/€. Deep inside the
coherent phase, at d/€=1.62, the Hall resistance at vy=1
exhibits a plateau quantized at h/e” to within 0.3%. This
result demonstrates that the top layer, whose individual fill-
ing factor is v;=2/3, is part of the coherent vy=1 bilayer
state. (It is a remarkable fact that within the coherent v,=1
phase the Hall voltage in either layer is precisely //e> times
the total current flowing through the bilayer irrespective of
how that current is distributed between the two layers.’®) At
d/€=1.71 the Hall plateau at h/e? is still present but is nar-
rower than at d/€=1.62. By d/{=1.80 the transition is im-
minent; the Hall plateau is gone, being replaced by a local
minimum in p,, slightly above h/e*. Increasing d/{ just
slightly to 1.84 has a dramatic effect on p,,; now a plateau is
reforming but near 34/2¢>. Further increases in the effective
layer spacing lock this nascent plateau accurately onto p,,
=3h/2¢?, thus proving the existence of the v;=2/3 FQHE
state in the top layer. This rapid transition in p,, occurs in the
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FIG. 7. (Color online) Observation of the transition from the
interlayer coherent vr=1 phase to two quasi-independent fractional
quantized Hall states. (a) Tunneling conductance spectra at vy=1
and T=85 mK at fixed imbalance Av=+1/3 (i.e., »,=2/3 and »,
=1/3). Zero-bias peak collapses rapidly as d/€ increases and inter-
layer coherence is lost. (b) Hall resistance pyy op in the top 2DES vs
inverse fotal filling fraction 1/ vy at d/€=1.62, 1.71, 1.80, 1.84, and
2.10. For each trace the imbalance at vy=1 is Av=+1/3. A clear
transition from a Hall plateau at /1/¢” to one at 3%2/2¢? is observed
at vp=1.

same range of d/€ values where the zero-bias tunneling reso-
nance disappears. (Similar data reveal that the Hall resistance
in the lower layer comes within 3% of 3h/e?, confirming the
presence of the 1/3 FQHE state in that layer.) When taken
together, the tunneling and Hall resistance data in Fig. 7
convincingly demonstrate a direct phase transition in imbal-
anced bilayer v;=1 systems from the interlayer coherent ex-
citonic quantized Hall phase at small d/€ to quasi-
independent fractional quantized Hall states in the individual
layers at large d/ <.

IV. DISCUSSION

The data presented above allow for several different con-
clusions about the coherent vy=1 bilayer state to be drawn.
Most obviously, the data in Figs. 3—-5 demonstrate that reso-
nantly enhanced zero-bias tunneling is observable in imbal-

PHYSICAL REVIEW B 78, 205310 (2008)

anced v;=1 systems out to |Av|=0.5. This strongly supports
theoretical predictions? that interlayer quantum phase coher-
ence, the enabler of collective tunneling, remains intact at
these large density imbalances.

It is nevertheless also clear that large density imbalances
reduce the strength G(0) of the zero-bias tunneling peak.
Figure 5 shows that this reduction is fairly gentle when
d/€<(d/€). and the system is relatively deep within the
coherent phase. At larger d/ €, closer to the phase boundary,
the collapse of G(0) at large Av becomes much more abrupt.
That these abrupt collapses occur at larger d/€, and hence
larger total electron density ny than the more gentle reduc-
tions observed at smaller d/{ discounts the possibility that
they are caused by disorder in the 2D electron system. Since
the concentration of impurities in the sample is fixed, the
effects of disorder are less pronounced at high ng. (This is
readily apparent in the mobility of the sample at zero mag-
netic field.) For this reason we believe that the abrupt col-
lapses of G(0) with Av reflect imbalance-induced phase tran-
sitions from coherent to incoherent v;=1 states.

The gentler reductions in G(0) with imbalance observed
at smaller d/€ do not suggest incipient phase transitions and
therefore must have a different origin. One simple possibility
derives from the pseudospin ferromagnetism picture of the
coherent vy=1 state. In this picture an electron definitely in
one layer is labeled pseudospin “up” while an electron defi-
nitely in the other layer is pseudospin “down;” convention-
ally these are the eigenstates of the z component of the pseu-
dospin operator 7,. In the coherent v;y=1 ground state, all
electrons are in the same linear combination of up and down
states. If the bilayer is density balanced (7.)=Av=0, and the
net pseudospin moment lies in the x-y plane of pseudospin
space. If the bilayer is imbalanced (7,)=Av+#0, and the
pseudospin moment lies on the surface of a cone symmetric
about the z axis. Relative to the balanced case, the compo-
nent of the pseudospin moment lying in the x-y plane is
reduced by the factor [1—-(Av)?]"2. In an ideal disorder-free
sample, an arbitrarily small amount of interlayer tunneling is
sufficient to orient the in-plane component of the moment
along the x axis. Since recent theory3! suggests that the zero-
bias tunneling conductance G(0) is proportional to (7,),
density imbalance should reduce G(0) in direct proportion to
[1-(Av)?]. Figure 8 shows a typical comparison between the
observed imbalance dependence of G(0) at relatively low
d/€ and this simple moment projection model; clearly the
model fails to fit the data. Near the balance point the ob-
served downward curvature of G(0) versus Av is about 15
times larger than the model. The light solid line represents an
empirical Gaussian fit to the data.

We speculate that the failure of the moment projection
model to fit the data may be due to the effects of disorder in
the sample. It has long been suspected that disorder is re-
sponsible for the much smaller than expected value of G(0),
even in balanced vy=1 bilayers at the lowest d/{ and tem-
peratures. The disorder almost certainly creates inhomogene-
ities in the pseudospin field, which strongly suppress (7,)?
and thereby?! the tunneling conductance G(0). Why this sup-
pression effect apparently becomes more severe as imbal-
ance is imposed remains unclear.

Figures 3-5 also demonstrate that at larger d/€ the tun-
neling conductance G(0) exhibits a complex dependence on
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FIG. 8. (Color online) Tunneling peak height vs imbalance at
T=85 mK and d/€=1.56. The dashed line is prediction of pseu-
dospin moment projection model. The solid line is Gaussian fit to
the data.

Av, including rapid onsets and collapses, which we have
interpreted as signaling imbalance-driven phase transitions.
Figure 6 summarizes our conclusions about the shape of the
phase boundary surface in (d/€)-Av-T space. The curves
shown in Fig. 6(a) were assembled by determining the maxi-
mum effective layer separation (d/€), at which a barely de-
tectable zero-bias tunnel resonance could still be observed at
a given imbalance Av and temperature 7. Figure 6(b) shows
the temperature dependence of (d/€). at Av=0, 0.16, and
0.33.

The camel-back shape of the phase boundary surface
shown in Fig. 6 reflects the interplay of various competing
effects. Near Av=0 small imbalances increase the critical
effective layer separation (d/€), and thus stabilize the coher-
ent vy=1 phase relative to competing incoherent phases. This
result, which has been reported previously,'®2*> was pre-
dicted theoretically.?>>* In their T=0 Hartree-Fock analysis
Joglekar and MacDonald®** found that the collective-mode
spectrum at vy=1 exhibits a local minimum at finite wave
vector analogous to the roton minimum in the excitation
spectrum of superfluid helium. As d/<€ increases this magne-
toroton minimum deepens and eventually goes soft at a criti-
cal effective layer separation (d/{).. Joglekar and Mac-
Donald identified this point as the phase transition from the
interlayer coherent v;y=1 quantum Hall phase to a bilayer
charge-density wave state lacking both interlayer coherence
and Hall quantization. They also found that the collective-
mode spectrum stiffens when charge-density imbalance is
imposed and that as a result (d/{), increases quadratically
with Av. Subsequent experiments?® were in qualitative
agreement with this prediction.

An intuitive, if oversimplified, model®® that explains the
initial quadratic increase in (d/€), with imbalance can be
constructed by appealing to a composite fermion (CF) de-
scription of the incoherent vy=1 bilayer system. Close to the
critical layer spacing the model assumes that for Av=0 the
difference in the total energies of the coherent and incoherent
vr=1 states is AE=E ,—Ejpcon=Ald/€—(d/€). o], with A as
a positive constant. For small imbalances Av the model fur-
ther assumes that interlayer phase coherence renders any
imbalance-induced changes in E_,, negligible compared to
those in Ej,.,,. The analogy between a CF metal at v~ 1/2
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and an ordinary 2D electron gas near zero magnetic field
allows for estimating how Ej,.., depends on Av. In an im-
balanced vy=1 state, the filling factors of the individual lay-
ers are v;=1/2+Av/2 and v,=1/2—-Awv/2. In the composite
fermion theory of the half-filled Landau level,'? deviations of
the filling factor from »=1/2 correspond to deviations in the
effective magnetic field B, experienced by the CFs from
zero; B, (v—1/2) for small (v—1/2). Just as in an ordinary
2DES, when this effective field is weak (and CF Landau
levels are not resolved) the total energy of the CF system
will increase in proportion to Bfoc (Av)?; this is Landau dia-
magnetism for composite fermions. In the imbalanced vy
=1 bilayer this diamagnetic effect modifies the energy differ-
ence between the coherent and incoherent states: AE=E,_,
—Ejneon=A[d/ €~ (d/€),,]- C(Av)?, with C as another posi-
tive constant.’® Setting AE=0 reveals that the critical layer
separation rises quadratically with imbalance, (d/€),
=(d/€).o+C(Av)*/A, in agreement with experiment.

We now turn to the large Av regime where, as Fig. 6(a)
demonstrates, the critical effective layer separation (d/€).
begins to fall with increasing imbalance. One possibility is
that the downturn is due to disorder in the sample. At large
imbalance the density of electrons in one of the two layers
obviously becomes quite low. Disorder-induced localization
of carriers in that layer might overwhelm the electron-
electron interactions responsible for spontaneous interlayer
phase coherence. In this scenario the zero-bias tunnel reso-
nance would disappear as Av is increased at fixed d/ € just as
Fig. 6(a) suggests. Increasing the temperature would sup-
press carrier localization but would also weaken the coherent
phase. Figure 6(b) shows that the net result is complex; at
Av=1/3 there is relatively little effect on (d/€), until the
temperature becomes quite high. At very large Av a simple
picture might re-emerge. The high-density layer would likely
display a traditional v=1 integer quantized Hall effect while
the low-density layer would be an insulator. Interlayer coher-
ence would presumably be absent.

Our data clearly demonstrate that disorder-induced local-
ization effects cannot be solely responsible for the shape of
the phase boundary at large Av. Most obviously, the data in
Fig. 7 prove that a transition from the interlayer phase-
coherent vy=1 state to an incoherent pair of quasi-
independent FQHE states (with »;=2/3 and »,=1/3) has
been observed. Interaction effects are essential to the exis-
tence of both of these bilayer phases. Figure 6 even contains
hints that additional structure may be developing in the phase
boundary around Av=*1/3 at low temperatures. These re-
sults offer a proof of phase competition between coherent
and incoherent vy=1 imbalanced bilayer states. Both of
which are incompressible. To our knowledge, this situation
was first examined theoretically, in the context of electron-
hole bilayers, by Yoshioka and MacDonald.?’

Figure 6(a) shows that the downturn in the (d/{), versus
Av phase boundary moves to lower imbalance as the tem-
perature is reduced. By T=55 mK the maxima in (d/f), are
at Av= £0.2. This is considerably smaller than Av=*1/3
where the transition is from the coherent v;=1 phase to a
conjugate pair of fractional quantized Hall states. This obser-
vation can be plausibly understood using the same composite
fermion description of the incoherent phase that we used
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previously to intuitively explain the local minimum in the
phase boundary at Av=0. Initially, as Av grows the total
energy of the incoherent phase E;, .., rises quadratically with
Av. At larger Av the CF Landau levels begin to be resolved
and oscillations in Ej,., result. This is exactly analogous to
the situation with a conventional noninteracting 2D electron
gas in a quantizing magnetic field. In that case the Landau
splittings are associated with the integer quantized Hall ef-
fect; in the present case the CF Landau splittings lead to the
fractional QHE. The oscillations in E;,., eventually become
quite strong; in an ordinary 2D electron gas the total energy
falls all the way back to its zero-field value when the Fermi
level lies halfway between well-resolved Landau levels. Al-
though disorder and finite temperature are likely to smear out
all but the strongest CF Landau-level splittings (i.e., the ones
responsible for the v=1/3 and 2/3 FQHE states), it is rea-
sonable to expect that E;,.., exhibits a maximum somewhere
between Av=0 and 1/3. If, as assumed previously, the im-
balance dependence of the coherent phase is relatively weak,
this maximum in E;,.,, explains the maxima in the phase
boundary near Av= *0.2 shown in Fig. 6(a).

We note that the best current estimates®® of the total en-
ergy (per electron) of isolated v=1/2, 1/3, and 2/3 layers are
-0.466, —0.410, and —0.518, respectively,® in units of ¢*/ €.
From these numbers we conclude that for the same total
electron density, two independent 2DES layers have signifi-
cantly lower energy, by 0.016¢?/ €€ per electron, when in the
imbalanced (1/3,2/3) state as opposed to the balanced (1/2,
1/2) state.** To the extent that the incoherent vy=1 state in
our bilayer samples consists of quasi-independent layers and
that the total energy of the coherent phase is only weakly
dependent on A, this numerical result is certainly consistent
with our observation of local maxima in (d/{), between
Av=0 and *1/3 and suggests that the critical layer separa-
tion (d/€). at Av=*x1/3 might ultimately be found to be
even smaller than it is at Av=0.

At |Av|>1/3 the results in Fig. 6(a) suggest that the criti-
cal layer separation continues to fall. This observation is not
understood at present. The disorder of course becomes more
and more important in this regime where the density in one
of the two layers becomes very small. More interesting sce-
narios including, for example, a Wigner crystal in one layer
and a conventional v=1 integer QHE in the other, or an
exotic excitonic crystalline phase such as suggested by
Yang,*! are also possible.

V. CONCLUSION

Interlayer tunneling spectroscopy has been used to study
the effect of layer charge-density imbalance on strongly cor-
related bilayer 2D electron systems at total filling factor vy
=1. These tunneling measurements have allowed the deter-
mination, over a wide range of density imbalance, tempera-
ture, and effective interlayer separation, of the shape of the
phase boundary surface separating the spontaneously coher-
ent vy=1 state from various incoherent states. Careful atten-
tion was paid to subtle interlayer charge-transfer effects
which complicate the determination of the imposed density
imbalances and to sheet resistance effects which can pollute
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the determination of the tunneling conductance.

These experiments have demonstrated that the main sig-
nature of spontaneous interlayer phase coherence at v;=1, a
sharp resonance in the tunneling conductance at zero inter-
layer voltage, is stable against charge-density imbalance out
to at least Av=v,—1,=0.5. At small effective layer separa-
tion d/ € the tunneling resonance strength falls smoothly with
increasing Av albeit at a rate considerably faster than ideal-
ized theory would suggest.

At larger d/ €, close to the phase boundary, a much richer
dependence is observed. Sharp onsets and collapses of the
tunneling resonance suggest imbalance-induced phase transi-
tions. We find that the coherent phase can be absent over a
range of Av about Av=0, present at intermediate Av, and
then absent again at large Av. This is reflected in a camel-
back shape of the critical effective layer separation (d/f),
versus Av.

Consistent with prior experiments'® we find that the tran-
sition between the coherent and various incoherent v,=1 bi-
layer states can be tuned either by increasing d/¢ at fixed
temperature 7" or by increasing 7 at fixed d/€. For balanced
bilayers we find a linear relationship between the critical d/€
and temperature. At Av=1/3 the temperature dependence of
the critical d/€ is much weaker.

Finally, an observation of a direct transition from the co-
herent and incompressible wvy=1 phase and quasi-
independent fractional quantized Hall states lacking inter-
layer coherence is reported. At Av=1/3 increasing d/€
induces both a rapid collapse of the tunneling resonance and
simultaneously a transition between distinct quantized pla-
teaus in the Hall resistances of the individual layers.
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APPENDIX

The qualitative origin of the charge-transfer effect lies in
the negative compressibility of 2D electrons in the lowest
Landau level. Imagine that the doping profile in the sample is
perfectly balanced but that inequivalent electric fields are
applied by the top and bottom gates, thereby imbalancing the
bilayer. Owing to the finite compressibility of the 2D elec-
tron systems, a nonzero electric field penetrates into the bar-
rier between the layers. This implies that the density of each
layer does not precisely match the sum of the charge density
on the gate and in the doping layer closest to it, even though
the total system obviously obeys charge neutrality. Remark-
ably, the exchange energy of 2D electron systems actually
drives the compressibility negative at low density.?> This
leads to the nonintuitive result that reducing the density of
one 2D layer with its associated gate can actually slightly
increase the density of the other more remote layer. (At low
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magnetic fields this effect is automatically incorporated into
our density calibrations via the Shubnikov-de Haas measure-
ments described above.) The same basic effect occurs at high
magnetic field. Indeed, the quenching of the kinetic energy
created by Landau quantization enhances the importance of
many-body effects and renders the compressibility even
more strongly negative. The great complexity of the full den-
sity dependence of the total energy of a 2DES in the lowest
Landau level makes quantitative modeling impossible, but a
qualitative picture is easy to obtain. To estimate the size of
the charge-transfer effect we have performed two calcula-
tions: one for zero magnetic field and the other for v,y=1.
(These numerical procedures are described in detail
elsewhere.?) For zero magnetic field we determine the den-
sity of each 2DES in an imbalanced bilayer system by self-
consistently solving the Schrédinger and Poisson equations,
using the local-density approximation (LDA) to incorporate
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the effects of exchange and correlation, for a range of gate
voltages and doping densities. At high magnetic field, in the
lowest Landau level, we do a similar calculation except the
kinetic energy of the electrons is removed and many-body
effects are approximated via the “backbone” density depen-
dence of the total energy established by Fano and Ortolani.*?
While this backbone dependence misses subtle features, such
as the FQHEs and spontaneous interlayer phase coherence, it
captures the qualitative trend toward negative compressibil-
ity at low density. The light solid line in Fig. 1(c) shows
typical calculated results for imbalanced bilayers at vy=1.
This line is constructed by comparing the LDA calculations
of the layer densities at B=0 and at the magnetic field where
vr=1. In common with the experimental data shown, the
theoretical curve indicates that the magnitude of the actual
imbalance [Avyg,| at v7=1 exceeds the value [Av,| pre-
scribed by the zero- (and low-) field density difference.*?
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