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Tunneling and Coulomb drag are sensitive probes of spontaneous interlayer phase coherence in bilayer
two-dimensional electron systems at total Landau level filling factornT=1. We find that the phase boundary
between the interlayer phase coherent state and the weakly coupled compressible phase moves to larger layer
separations as the electron density distribution in the bilayer is imbalanced. The critical layer separation
increases quadratically with layer density difference.
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Bilayer two-dimensional electron systems(2DES) are
most interesting when the separation between the layers is
comparable to the average distance between electrons in the
individual layers. Interlayer Coulomb interactions are then
just as important as intralayer ones and the system supports
collective phases that do not exist in the individual layers.1 A
particularly interesting example occurs when a magnetic
field B is applied perpendicular to the layers and the total
densityNT=N1+N2 of electrons in the system equals the de-
generacyeB/h of the lowest spin-resolved Landau level pro-
duced by the field. In this case the total Landau level filling
factor nT=n1+n2=hNT/eB=1. Beyond exhibiting a quan-
tized Hall effect(QHE) when electrical currents flow in par-
allel through the two layers,2 this many-body phase displays
a variety of fascinating phenomena associated with observ-
ables which are antisymmetric in the layer degree of free-
dom. For example, a giant enhancement of the zero bias
interlayer tunneling conductance has been observed,3 as has
the vanishing of both the longitudinalandHall resistances of
the system when equal but oppositely directed currents flow
in the two layers.4,5 These findings strongly support the idea
that the ground state of the system is a Bose condensate of
phase coherent interlayer excitons.

As the separation between the layers is increased, the ex-
citonic phase weakens and a poorly understood transition to
a state exhibiting none of the above properties occurs. At
very large layer separation abalancedbilayer system(i.e.,
one in whichN1=N2 and thusn1=n2=1/2) may be regarded
as two independent compressible composite fermion liquids.6

However, near the critical layer separation the situation is
much less clear. Indeed, it is not known what the order of the
transition is nor whether intermediate phases exist between
the excitonic phase and the weakly coupled composite fer-
mion fluid. Recent experiments7 have shown a strong en-
hancement of the longitudinal Coulomb drag in the transition
region which has been interpreted8 in terms of phase separa-
tion induced by static disorder.

If the bilayer system is imbalanced, but remains atnT=1,
the spectrum of possible phases widens further. At large layer
separation, both compressible(e.g., n1=1/4, n2=3/4) and
incompressible(e.g.,n1=1/3,n2=2/3) possibilities exist. At
small separations, deep in the excitonic phase, small layer

imbalances are not expected to be qualitatively important,
since this state is characterized by a broken Us1d symmetry
in which fluctuations in the layer density differenceN1−N2
are large. Larger imbalances may, however, lead to the defeat
of the excitonic phase by competing phases, with possibili-
ties including one or more conjugate pairs of fractional
quantized Hall states such assn1,n2d=s1/3,2/3d ;
s2/5,3/5d ; s3/7,4/7d; etc. In this paper we report interlayer
tunneling and Coulomb drag measurements which clearly
indicate that near the critical layer separation small layer
density imbalances enhance the stability of the interlayer
phase coherent excitonic phase. A quantitative determination
of the shape of the phase boundary for small imbalances is
presented.

The samples used in these experiments are GaAs/AlGaAs
double quantum wells grown by molecular beam epitaxy.
Two 18 nm GaAs quantum wells are separated by a 10 nm
Al0.9Ga0.1As barrier. Remote Si dopants yield 2DES’s in
each well with densities of about 5.531010 cm−2 and mobili-
ties around 1.03106 cm2/Vs. The splitting between the low-
est symmetric and antisymmetric states in the double well
potential is estimated to beDSAS<90 mK. Separate electrical
contacts to the individual two-dimensional(2D) layers are
realized using a local selective depletion technique. For tun-
neling studies square mesas 250mm on a side(with four
contact arms extending outward) are patterned onto the wa-
fer, while for Coulomb drag experiments a rectangular mesa
(160 by 320mm) with seven contact arms is used. Metal
gates deposited on the front and back sides of the central
mesa region provide for independent control of the layer
densitiesN1 and N2 and thus allow for the creation of both
balanced and imbalanced bilayer systems. The action of
these gates is calibrated via measurements of the low mag-
netic field quantum oscillations of the interlayer tunneling
and/or resistivity of the individual layers. Control over the
total electron density also allows for continuous tuning of the
ratio of intralayer to interlayer Coulomb interactions in the
sample. This ratio is conveniently parametrized byd/,, with
d=28 nm being the center-to-center quantum well separation
and ,=s" /eBd1/2 the magnetic length. Prior experiments3,4

have shown that the transition from the weakly coupled com-
pressible phase to the strongly coupled excitonic phase at
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nT=1 occurs neard/,,1.7–1.8 in the present samples.
Since the ratio of the tunnel splittingDSASto the mean Cou-
lomb energye2/e, is only about 1310−6, thenT=1 QHE in
these sample is overwhelmingly dominated by electron-
electron interactions.

Figure 1(a) shows two representative low-temperature
sT=25 mKd interlayer tunneling conductance spectra atnT

=1 in a balanced bilayer 2DES. The lower trace was ob-
tained atd/,=1.82 and is representative of the compressible
phase just above the critical layer separation. Near zero in-
terlayer voltage V the conductancedI /dV is heavily
suppressed.9 This is a single layer effect and reflects the fact
that at high magnetic field a 2DES is strongly correlated,
irrespective of whether it is compressible or incompressible.
The sudden injection, via tunneling, of anuncorrelatedelec-
tron into the 2DES can only produce a highly excited state;
no low energy states are accessible on the rapid time scale of
the tunneling event. The upper trace in Fig. 1(a) was ob-
tained atd/,=1.76, inside the strongly coupled excitonic
phase. Instead of a suppression of tunneling at zero bias,
there is now a huge and very sharply resonant enhancement.
This Josephson-like effect has been widely interpreted as a
direct result of spontaneous interlayer phase coherence in the

bilayer system. The strong interlayer correlations ensure that
an electron about to tunnel always faces a hole in the oppo-
site layer and is thus fully correlated in advance.

The remaining panels of Fig. 1 show enlargements of the
zero bias region of tunneling spectra from the same sample
but with d/, very close to the critical value separating the
weakly and strongly coupled phases. Figures 1(b) and 1(c)
containnT=1 tunneling spectra in the balanced configuration
at d/,=1.795 and 1.816, respectively. The data in Fig. 1(b)
show a weak peak near zero bias, demonstrating that the
sample is just inside the excitonic phase. In Fig. 1(c) the
peak is absent; the sample is evidently just outside the exci-
tonic phase.10 Most interesting are Figs. 1(d) and 1(e). Here
the total densityNT is the same as in Fig. 1(c) and thus
d/,=1.816, but now the sample is imbalanced:N1=sNT
+DNd /2 and N2=sNT−DNd /2. In Figs. 1(d) and 1(e)
DN/NT= ±0.08, respectively.11 In both cases a peak has ap-
peared at zero bias. The data in Figs. 1(c)–1(e) convincingly
demonstrate that a small layer density imbalance can stabi-
lize the excitonic phase even when it is not present in the
balanced configuration at the same total density.

A similar imbalance-induced stabilization of the strongly
couplednT=1 excitonic phase is observed in Coulomb drag
experiments. In such measurements a currentI driven
through one of the 2D layers produces voltage dropsVD in
the other layer.12 At zero magnetic field the drag voltage is
parallel to the current and is simply proportional to the inter-
layer momentum relaxation rate. Deep within thenT=1 ex-
citonic phase the quantum Hall energy gap suppresses inelas-
tic interlayer Coulomb scattering events and the observed
longitudinal drag voltage at low temperatures is exponen-
tially small.13 However, a strong transverse, or Hall, compo-
nent of the drag is observed. In the strongly coupled phase
the Hall drag resistanceRxy,D=Vxy,D / I is in fact precisely
quantized, withRxy,D=h/e2.13 Strong Hall drag is unusual
and is believed to be a direct signature of nontrivial inter-
layer correlations.14–18 Girvin19 has offered an intuitive ex-
planation of the effect. In the strongly coupled bilayernT
=1 phase, each electron “sees” a vortex, or node, in the
many-body wave function at the location of each of the other
electrons,irrespective of which layer they are in. Thus, a
current flowing solely in one layer produces a flow of vorti-
ces in the other layer. Via the Josephson relation, this flow of
vortices produces a transverse voltage in the non-current-
carrying layer. This is Hall drag andRxy,D=h/e2 follows im-
mediately.

Recent experiments7 have shown thatRxy,D at nT=1 rises
from zero to the quantized value over a fairly narrow range
of effective layer separationsd/, about the critical value
separating the two phases. Figure 2 shows Hall drag data at
nT=1 andT=50 mK from a bilayer sample taken from the
same parent wafer as the tunneling sample described above.
These data were obtained by first measuring the magnetic
field dependence ofRxy,D at fixed layer densities and then
picking out the value atnT=1. The transition ofRxy,D at nT
=1 from 0 toh/e2 as d/, is reduced is shown both in bal-
ancedN1=N2 and imbalancedsDN/NT= ±0.10d situations. It
is clear from the figure that imbalance causes the midpoint of
the drag transition to move to larger effective layer separa-
tions.

FIG. 1. Tunneling spectra atnT=1 andT=25 mK. (a) Balanced
bilayer. Upper trace:d/,=1.76, coherent phase. Lower trace:d/,
=1.82, compressible phase. Upper trace shifted vertically for clarity.
(b) Enlargement of zero bias region atd/,=1.795, just inside the
coherent phase in the balanced case. A small peak near zero bias is
evident.(c), (d), and(e) Spectra atd/,=1.816 in both balanced and
imbalanced cases. While no zero bias peak is seen at balance, the
small density imbalance creates one.
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Figure 3 shows the boundaries in thed/, vs DN/NT plane
which separate the weakly coupled and strongly coupled
phases atnT=1 as deduced from tunneling and drag data like
those in Figs. 1 and 2. For tunneling, sets of conductance
spectra at fixed total densityNT (and thus fixedd/,) but
various layer imbalancesDN/NT were examined for the pres-
ence of a zero bias peak. For those densities and effective
layer separations where the peak was absent at balance but
present at sufficiently large imbalance, a point on the phase
boundary could be determined. For Coulomb drag, the criti-
cal d/, value at a given imbalanceDN/NT was taken to be
that whereRxy,D=0.5h/e2. It is clear from the figure that both
tunneling and Hall drag suggest that the critical layer sepa-
ration d/, rises roughly quadratically withDN/NT.

The phase boundaries determined by tunneling and Hall
drag shown in Fig. 3 are displaced from one another by
approximatelyDsd/,d=0.1, in spite of the fact that the data
were obtained with samples from the same semiconductor
wafer. This difference is in large part a result of the way we
have defined the transition point in the two experiments. In
Hall drag the phase boundary is identified with thed/, value
whereRxy,D reaches one-half of its quantized valueh/e2. As
Fig. 2 makes clear, nonzero Hall drag is observed at notice-
ably larger layer separations than this. In contrast, the tun-

neling transition is identified by the first observation of a tiny
zero bias peak. This is the only sensible definition in this
case, since unlike Hall drag, the tunneling conductance is not
changing from zero to some universal value as the phase
boundary is crossed. Beyond this, we note that Hall drag and
tunneling may depend very differently on the connectivity of
regions in the sample in which the strongly coupled phase
exists. Stern and Halperin8 have argued that static fluctua-
tions in the layer densities of real samples lead to phase
separation in the transition region. Asd/, is reduced toward
the phase boundary, initially only small regions of the
strongly coupled excitonic phase appear within the weakly
coupled background fluid. While interlayer tunneling will de-
tect these regions almost immediately, the quantization of the
drag and conventional Hall resistances requires them to per-
colate which will only occur at smallerd/,.

Several prior experiments have suggested that the QHE in
bilayer nT=1 systems is robust against layer density
imbalance.20–23 Sawadaet al.20 reported that the strength of
thenT=1 QHE(inferred from the width of the quantized Hall
plateau and the energy gapD extracted from the temperature-
dependent diagonal resistivity) increased symmetrically with
layer density imbalance. These measurements, however,
were made in a sample with very strong tunneling(the
symmetric-antisymmetric tunnel splitting wasDSAS<7 K,
considerably larger than the observed transport gapD) and
thus were not necessarily representative of the physics of
nT=1 QHE in the Coulomb-dominated, spontaneously inter-
layer phase coherent regime. Tutucet al.22 using strongly
correlated 2D hole bilayers with very weak interlayer tunnel-
ing, also found the energy gap of thenT=1 QHE to increase
with layer imbalance. Finally, Clarkeet al.,23 again using
bilayer hole samples, found that the width of thenT=1 QHE
resistivity minimum either remained the same as the sample
was imbalanced, or increased. Clarkeet al. also claimed that
the interlayer phase coherentnT=1 state could develop in the
presence of layer density imbalances even when it is not
present at balance. However, this conclusion was drawn from
observations at very large imbalances, where the possibility
of competing independent layer phases is large. Indeed,
Clarke et al.23 suggested that the system first exhibited the
sn1,n2d=s1/3,2/3d fractional QHE before condensing into
the interlayer phase coherentnT=1 QHE at still larger imbal-
ances.

All of these prior studies rely upon conventional trans-
port, i.e., with parallel currents in the two layers. Conse-
quently, they reflect the existence of a QHE as a transport
phenomenon, but are not directly sensitive to the presence, or
lack, of spontaneous interlayer phase coherence in the
ground state. In addition, these earlier studies do not estab-
lish the shape of the phase boundary, in thed/, vs DN/NT
plane, separating the excitonic phase from the weakly
coupled compressible phase. In contrast, the present mea-
surements employ observables(tunneling and Hall drag)
which involve the antisymmetric transport channel and are
thus directly dependent upon interlayer phase coherence and
hence allow, as Fig. 3 demonstrates, determination of the
phase boundary.

The effect of layer density imbalance on the bilayernT
=1 quantized Hall state has been examined theoretically by

FIG. 2. Hall drag vsd/, at nT=1 andT=50 mK. Solid squares:
Balanced bilayer,DN/NT=0. Solid and open circles: Imbalanced
bilayer, DN/NT= ±0.1.

FIG. 3. Boundaries ind/, vs DN/NT separating the weakly-
coupled and strongly-coupled phases atnT=1 as deduced from tun-
neling(triangles) and Hall drag(dots) (Ref. 11). Solid lines are least
squares fits to parabolas. Dashed curve is modified theoretical pre-
diction of (Ref. 26).
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several groups.24–26Joglekar and MacDonald26 offer a quan-
titative prediction for the shape of the phase boundary. In
their Hartree-Fock theory the magneto-roton minimum in the
collective mode spectrum of the strongly coupled phase
deepens asd/, increases, signaling incipient instability
against charge density wave formation. The criticald/, is
assumed to correspond to the vanishing of the magneto-roton
gap. Joglekar and MacDonald find that the collective mode
spectrum stiffens and the criticald/, increases quadratically
with Dv, the splitting between the single-particle ground
states in the two quantum wells. Since the interlayer capaci-
tance in the nT=1 coherent phase is only slightly
renormalized,26 Dv is essentially proportional toDN/NT. The
dashed line in Fig. 3 shows their estimate of the phase

boundary, shifted vertically byDsd/,d=0.58. The qualitative
agreement is seen to be good.

In conclusion, we have used interlayer tunneling and Cou-
lomb drag to establish the layer density difference depen-
dence of the phase boundary separating the interlayer coher-
ent excitonic phase from the weakly coupled compressible
phase atnT=1. We find that layer density imbalance en-
hances the stability of the coherent phase and that the critical
layer separation increases quadratically withDN/NT.
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ported by the NSF under Grant No. DMR-0242946 and the
DOE under Grant No. DE-FG03-99ER45766.
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