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Coulomb drag is a process whereby the repulsive interactions between elec-

trons in spatially separated conductors enable a current flowing in one of the

conductors to induce a voltage drop in the other1–3. If the second conductor is

part of a closed circuit, a net current will flow in that circuit. The drag current

is typically much smaller than the drive current owing to the heavy screening

of the Coulomb interaction. There are, however, rare situations in which strong

electronic correlations exist between the two conductors. For example, bilayer

two-dimensional electron systems can support an exciton condensate consisting

of electrons in one layer tightly bound to holes in the other4–6. One thus expects

“perfect” drag; a transport current of electrons driven through one layer is ac-

companied by an equal one of holes in the other7. (The electrical currents are

therefore opposite in sign.) Here we demonstrate just this effect, taking care to

ensure that the electron-hole pairs dominate the transport and that tunneling

of charge between the layers is negligible.

The exciton condensate of interest here develops at high perpendicular magnetic field B⊥

when the separation d between two parallel two-dimensional electron systems (2DESs) is

comparable to the magnetic length ! = (!/eB⊥)1/2 and the total density nT = n1 + n2 of

electrons in the bilayer (we consider only the balanced case n1 = n2) matches the degeneracy

eB⊥/h of a single spin-resolved Landau level4–6. Hence, the total Landau level filling factor

is νT = 1. When d/! ! 1.8 an energy gap to charged excitations opens and the bilayer

electron system displays a quantized Hall (QH) plateau ρxy = h/e2. The interlayer tunneling

conductance becomes strongly enhanced near zero bias and, when equal electrical currents

are driven in opposite directions through the two layers, the Hall effect vanishes at low

temperature8–11.

Even in the limit of zero tunneling through the barrier separating the layers, interlayer

Coulomb interactions at νT = 1 are sufficient to both open the charge gap and to sponta-

neously generate quantum phase coherence between electrons in opposite layers. Sponta-

neous interlayer phase coherence allows the system ground state to be described as a Bose

condensate of interlayer excitons. At low temperatures the charged excitations are frozen

out and unable to transport current across the bulk of the 2D system. In contrast, the

neutral electron-hole pairs in the condensate remain populous and free to move about the

bulk. Transport of these excitons is equivalent to counterflowing electrical currents in the
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two layers.

Evidence for exciton transport at νT = 1 was obtained from Hall effect measurements

in which counterflowing electrical currents were driven through the two layers9–11. The

observed vanishing of the Hall voltage at νT = 1 is consistent with the counterflowing cur-

rents being carried by excitons. However, interpretation of these experiments is complicated

by the conducting edge states which exist at the boundary of all quantum Hall systems.

Furthermore, since the experiments were performed using simply-connected Hall bar ge-

ometries, they were incapable of proving that excitons were moving through the bulk of

the 2DES. Subsequent experiments by Tiemann et al and later Finck et al, employed the

multiply-connected Corbino geometry (essentially an annulus with separated edge states on

the two rims) in order to search for exciton transport across the insulating bulk12–14. By

connecting the two layers together at one rim while applying a voltage between the layers at

the other rim, Finck et al. observed that relatively large, oppositely directed currents would

flow across the bulk of the νT = 1 QH state14. This observation contrasts sharply with the

observed inability of the bulk to support co-directed currents in the two layers. Finck et al

concluded that bulk exciton transport was responsible for their results14.

We show here that the excitonic correlations built into the νT = 1 QH state can force

oppositely directed currents to flow in the two layers even when there is no electrical con-

nection between them. For small driving currents the observed drag current is closely equal

in magnitude to the drive current; i.e. the drag is “perfect”. The role of interlayer tunneling

is investigated and shown to be irrelevant in the proper circumstances.

Our sample consists of two parallel 2DESs confined in a GaAs/AlGaAs double quantum

well structure, the details of which are given below. The bilayer 2DES is patterned into an

annulus (1 mm inner, 1.4 mm outer diameter) with arms extending from each rim to ohmic

contacts; a schematic plan-view of the device is shown in Fig. 1a. Each ohmic contact

may be connected either to both 2D layers simultaneously or to either layer separately15.

Electrostatic gating of the 2DESs in the annulus (but not the contact arms) allows the key

parameter d/! to be tuned from d/! = 2.35 down to about d/! = 1.49 at νT = 1. In addition

to the perpendicular magnetic field B⊥ needed to establish νT = 1, an in-plane field B|| may

also be applied by tilting the sample relative to the total magnetic field. This allows us to

suppress16 the interlayer tunneling which can otherwise pollute Coulomb drag measurements.

The sample displays a robust QH effect at νT = 1 for d/! ! 1.8 for all tilt angles up to at
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least θ = 66◦. Figure 1a illustrates the insulating character of the bulk of the 2D system at

νT = 1 (with d/! = 1.5 and θ = 26◦) in an Arrhenius plot of the Corbino conductance σ||
xx

for parallel transport in the two layers. A small ac excitation voltage (Vex ∼ 18 µV at 13 Hz)

is applied between contacts (to both layers) on the inner and outer rim of the annulus. The

resulting current flow δI, plus the rim-to-rim voltage difference δV between two additional

contacts, are recorded and used to compute σ||
xx = ∂I/∂V . As expected, the conductance is

thermally activated, σ||
xx ∼ e−∆/2T , and gives an energy gap ∆ ≈ 360 mK. When a dc bias

Vdc is added to the ac excitation voltage Vex, the conductance σ||
xx increases. This smooth

“breakdown” of the νT = 1 QH effect, shown in Fig. 1b, has important consequences for

the Coulomb drag results to which we now turn.

In a Corbino Coulomb drag measurement, a voltage V is again applied between the inner

and outer rims of the annulus, but only via contacts to one of the two 2D layers. The other

layer is either left open or is closed upon itself by connecting an external resistor between

the two rims. The open-circuit case is similar to the σ||
xx measurement discussed above;

current will flow in the drive layer, but only in proportion to σ||
xx. The closed-circuit case is

potentially different; if strong interlayer correlations are present, relatively large oppositely

directed currents, mediated by exciton transport, might flow in the two layers.

Figure 2 shows the results of such closed-circuit drag measurements. External resistors

in both the drive and drag loops allow us to monitor the currents I1 and I2 flowing in each.

This arrangement is illustrated in the inset to Fig. 2a; I1 and I2 are defined as positive if

they flow in the direction of the arrows. While the drive circuit is grounded at one point,

the drag circuit is left to float. Figure 2a shows the dc currents I1 and I2 flowing, at T ≈ 17

mK, in response to a dc drive voltage Vdc at νT = 1, with d/! = 1.49 and θ = 26◦. For

small Vdc, I1 and I2 are very nearly equal and grow steadily, if somewhat super-linearly, with

voltage. In the Vdc → 0 limit, the conductances ∂I1/∂V ≈ ∂I2/∂V exceed the parallel flow

Corbino conductance σ||
xx at νT = 1 by a factor of 5. At large Vdc, the currents separate, with

I1 continuing to grow steadily while I2 begins to saturate. Figure 2b shows the magnetic

field dependence (at θ = 26◦) of the drag transconductance ∂I2/∂V at Vdc = 0 (obtained by

applying a weak purely ac excitation voltage Vex across the drive circuit) at T ≈ 25 mK. As

expected, significant drag is found only in the vicinity of νT = 1 at B⊥ = 1.87 T.

Since the currents I1 and I2 are detected outside the bilayer 2DES, it is not obvious that

the drive current is truly passing through the top 2D layer and the drag current through the
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bottom 2D layer. As noted previously12,13, interlayer tunneling could be shunting the current

from the top to the bottom layer near the outer rim of the device, through external drag

layer loop, and then back from the bottom to top layer near the inner rim. To investigate

this possibility, we have examined the tunneling conductance in our sample at both θ = 0

and 26◦.

Figure 3 shows dc tunneling current-voltage characteristics at νT = 1 and d/! = 1.49, for

θ = 0 and 26◦. These data were obtained at T ≈ 20 mK by applying an external dc voltage

Vdc between contacts to the “upper” and “lower” 2DES layer on the outside rim of the

annulus and recording both the resultant tunneling current I and the interlayer voltage Vint

between the two remaining outside rim contacts. Figure 3a shows the tunneling currents

plotted versus Vint while Fig. 3b plots the currents versus Vdc; the two figures therefore

contrast the “four-terminal” and “two-terminal” tunneling current-voltage characteristics

of the bilayer system. The four-terminal I-Vint characteristic at θ = 0 clearly shows the

Josephson-like near-discontinuity at Vint = 0 reported previously8,13,16,17. In contrast, the

two-terminal I-Vdc characteristic shows the tunneling current initially rising smoothly with

Vdc. This difference is due almost entirely to the extrinsic series resistances presented by the

arms leading into the annulus. Indeed, comparison of the two- and four-terminal tunneling

data allows us to accurately estimate the series resistances and their non-linearity with

voltage; these estimates are important in the analysis of the Coulomb drag data. Note

that for θ = 0◦ the maximum tunneling currents are comparable to the currents I1 and I2

observed in the drag measurement and shown in Fig. 2a.

Most importantly, Figs. 3a and 3b reveal the expected16 suppression of the tunneling

current resulting from tilting the sample. At θ = 26◦ the zero bias anomaly so prominent

at θ = 0 in the four-terminal I-Vint characteristic is essentially obliterated. Even at the

relatively high applied voltage of |Vdc| = 300 µV the tunnel current is only ∼ 0.1 nA.

The two- and four-terminal characteristics at θ = 26◦ are very similar since the tunneling

resistance at this tilt angle is much larger than the extrinsic series resistances.

Comparing the tunneling data in Fig. 3 with the Coulomb drag data in Fig. 2a demon-

strates that tunneling is not an important contributor to the drag current I2 at θ = 26◦.

Ignoring, for the moment, the different excitation means in the two cases (interlayer vs. in-

tralayer biasing), it is clear that the tunneling conductance near Vdc = 0 is at least 10 times

smaller than the drag transconductance ∂I2/∂V . Similarly, the drag current at Vdc = 200
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µV is I2 ≈ 650 pA, while the tunneling current at the same bias is only 44 pA. This com-

parison, however, greatly exaggerates the importance of tunneling precisely because of the

different excitation means in the two experiments. In a drag measurement, the bias voltage

Vdc is applied across the drive layer; the drag layer is allowed to float. Direct measurements

of the interlayer voltage under these conditions shows it to be quite small (< 15 µV), even

when the intralayer drive voltage reaches |Vdc| ∼ 300 µV. At such small interlayer voltages

the tunneling current (at θ = 26◦) is extremely small (! 4 pA). Note that this argument

fails at θ = 0 where, as Fig. 3a shows, a large (> 1 nA) and virtually discontinuous jump

in the tunneling current occurs at zero interlayer voltage.

The above discussion enables us to conclude that the drive and drag currents shown in

Fig. 2b do indeed flow across the bulk of the top and bottom 2D layers in the annulus,

and in opposite directions. For small drive voltages, I1 ≈ I2 and thus the drag is essentially

perfect. In this nearly pure counterflow regime, the drag process is dominated by neutral

exciton transport.

Figures 4a and 4b shows how the drag ratio I2/I1 depends on temperature T and effective

layer separation d/!, respectively. For small drive voltages Vdc the drag ratio is close to

unity (I2/I1 ≈ 0.97) only at the lowest T and d/!, where the νT = 1 QH state is strongest.

Increasing either parameter reduces the drag ratio at small Vdc. In all cases, the drag ratio

also falls with increasing drive voltage. We believe that these deviations from perfect drag are

due primarily to the finite Corbino conductance σ||
xx which allows parallel charge transport

across the bulk to occur alongside the neutral exciton transport.

Assuming σ||
xx=0 and dissipationless exciton transport, Su and MacDonald7 predict I1 =

I2 = V/(R1+R2), where R1 and R2 are the net resistances in series with the Corbino annulus

in the drive and drag circuits, respectively. These include the external circuit resistors Rext,

the resistances Rarm of the 2DES arms leading into the annulus, and quantum Hall “contact”

resistances Rc of order h/e2. Generalizing the Su-MacDonald model to include non-zero σ||
xx,

we find, assuming linear response, the drag current reduced to I2 = V/(R1+R2 +R1R2σ
||
xx)

and the drag ratio to I2/I1 = 1/(1+R2σ
||
xx). Using the tunneling data in Fig. 3a to estimate

R1 and R2 and the measured σ||
xx data in Fig. 1a, we can estimate the expected drag ratio

I2/I1 near zero bias. These estimates, shown in Fig. 4a, compare quite favorably with the

observed drag ratios at T = 17, 35, and 50 mK. At higher bias the non-linearity of σ||
xx

(shown in Fig. 1b) and the series resistances R1 and R2 must also be taken into account.
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The dashed lines in Fig. 2b display the results of one such calculation of the drag and drive

currents. The qualitative agreement with the experimental results is strong evidence that

the enhanced Corbino conductance σ||
xx at elevated temperatures and drive voltages is the

dominant source of deviations from perfect Coulomb drag at νT = 1.

The assumption that exciton transport across the bulk of the 2DES is dissipationless can

be questioned in real, disordered samples such as ours18–21. A phenomenological excitonic

“resistance” Rs can be introduced whereby Rs(I1 + I2) equals the difference ∆Vint between

the interlayer voltages on the two rims of the annulus (a spatially uniform interlayer voltage

would produce no dissipation). In the σ||
xx=0 limit, this new resistance leaves the drag

perfect, but reduces the currents to I1 = I2 = V/(R1 + R2 + Rs). The relatively large

magnitude of R1 + R2 (never less than 2h/e27,22) limits the ability of the present Coulomb

drag experiments to detect small values of Rs. Future multi-terminal measurements should

be able to set stringent limits on any dissipation occurring in the exciton channel.

Methods The present sample consists of two 18 nm GaAs quantum wells separated

by a 10 nm Ga0.1Al0.9As barrier. The center-to-center layer separation is therefore d =

28 nm. This double well structure is flanked by thick Ga0.7Al0.3As cladding layers. Si

doping sheets within the cladding layers populate the lowest subband of each quantum well

with a 2DES of nominal density 5.5 × 1010 cm−2 and low temperature mobility of 1 × 106

cm2/Vs. Standard photo-lithographic techniques are used to pattern the bilayer 2DES into

the geometry depicted in Fig. 1. Diffused AuNiGe ohmic contacts are positioned at the ends

of arms extending away from both rims of the annulus. Electrostatic gates cross these arms

(both on top and thinned backside of the sample) in order to employ a selective depletion

scheme which allows the contacts to communicate with the 2DES in the annulus either via

both layers in parallel or either layer separately15. Additional gates control the 2D layer

densities in the annulus itself. The sample is mounted on a Ag platform in good thermal

contact with the mixing chamber of a 3He-4He dilution refrigerator. The electrical transport

measurements reported here employ standard dc and/or low frequency ac techniques. The

dc drive and drag currents I1 and I2 can be determined either by exciting the drive circuit

with a purely dc voltage, or by numerical integration of the ac currents δI1 and δI2 flowing

in response to a weak ac voltage (Vex ∼ 18 µV at 13 Hz) added to the dc component of V .
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While the two methods are in excellent agreement, the ac technique is less noisy.
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FIG. 1. a) Corbino conductance σ||
xx = ∂I/∂V at zero dc bias vs. T−1 at νT = 1 with d/$ =

1.5 and θ = 26◦. Solid line implies an energy gap of ∆ ≈ 360 mK. Inset: Schematic plan-view

of device. Solid dots indicate contacts to both layers; open dots contacts to lower layer only. b)

Corbino conductance ∂I/∂V vs. applied dc bias Vdc under same conditions as in a) for various

temperatures.
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b) Drag transconductance, ∂I2/∂V at Vdc = 0 vs. perpendicular magnetic field at T ≈ 25 mK. All

data at θ = 26◦.
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