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ABSTRACT

Background: A medically induced coma is an anesthetic 
state of profound brain inactivation created to treat status 
epilepticus and to provide cerebral protection after traumatic 
brain injuries. The authors hypothesized that a closed-loop 
anesthetic delivery system could automatically and precisely 
control the electroencephalogram state of burst suppression 
and efficiently maintain a medically induced coma.

Methods: In six rats, the authors implemented a closed-
loop anesthetic delivery system for propofol consisting of: 
a computer-controlled pump infusion, a two-compartment 
pharmacokinetics model defining propofol’s electroencepha-
logram effects, the burst-suppression probability algorithm 
to compute in real time from the electroencephalogram the 
brain’s burst-suppression state, an online parameter-estima-
tion procedure and a proportional-integral controller. In the 
control experiment each rat was randomly assigned to one of 
the six burst-suppression probability target trajectories con-
structed by permuting the burst-suppression probability lev-
els of 0.4, 0.65, and 0.9 with linear transitions between levels.
Results: In each animal the controller maintained approxi-
mately 60 min of tight, real-time control of burst suppression 
by tracking each burst-suppression probability target level 
for 15 min and two between-level transitions for 5–10 min. 
The posterior probability that the closed-loop anesthetic 
delivery system was reliable across all levels was 0.94 (95% 
CI, 0.77–1.00; n = 18) and that the system was accurate 
across all levels was 1.00 (95% CI, 0.84–1.00; n = 18).
Conclusion: The findings of this study establish the feasi-
bility of using a closed-loop anesthetic delivery systems to 
achieve in real time reliable and accurate control of burst 
suppression in rodents and suggest a paradigm to precisely 
control medically induced coma in patients.

M EDICALLY induced coma is an anesthetic state of 
profound unconsciousness and brain inactivation 

created to treat status epilepticus and to facilitate recovery 
after traumatic brain injuries.1–3 When treating status epilep-
ticus, a hypnotic, such as propofol or a barbiturate, is used to 
directly inhibit seizure activity.2,3 After a brain injury these 
drugs are administered to provide brain protection by reduc-
ing cerebral blood flow and metabolism.1 In both cases the 

What We Already Know about This Topic

•	 Medically	 induced	 coma	 with	 burst	 suppression	 is	 used	 to	
treat	status	epilepticus	and	provide	cerebral	protection	after	
brain	injury.	Defining	a	closed-loop	anesthesia	delivery	system	
for	this	purpose	would	be	an	efficient	and	new	approach.

What This Article Tells Us That Is New

•	 A	closed-loop	anesthesia	delivery	system	using	a	computer-
controlled	infusion	of	propofol	can	achieve	a	reliable	and	ac-
curate	real-time	control	of	burst	suppression	in	rats.
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anesthetic is titrated to achieve a specific clinical target that 
indicates a state of large-scale brain inactivation. A standard 
approach is to monitor the patient’s brain activity continu-
ously with an electroencephalogram and use a specified level 
of burst suppression as the target. Burst suppression is an 
electroencephalogram pattern indicating a state of highly 
reduced electrical and metabolic activity during which 
periods of electrical bursts alternate with isoelectric periods 
termed suppressions.4–6

No established guidelines exist for specifying the level of 
burst suppression required for a medically induced coma. A 
target level is chosen, and control of that level is managed 
by continually monitoring the electroencephalogram and 
manually adjusting the drug infusion rate. A common goal of 
medically induced coma is maintaining a reduction in brain 
activity for 24 h or more, periods significantly longer than any 
human operator can maintain tight control. Defining a pre-
cise, quantitative target level of burst suppression and design-
ing a closed-loop anesthetic delivery (CLAD) system for 
maintaining that target would be a more efficient approach.

Closed-loop anesthetic delivery systems for control of 
unconsciousness and sedation have been extensively stud-
ied.7–26 Although no CLAD system has been designed to man-
age medical coma in humans, Vijn and Sneyd27 implemented 
a CLAD system to test new anesthetics in rodents using as 
the control signal the burst-suppression ratio; the fraction of 
time per 15 s that the electroencephalogram is suppressed. For 
several anesthetics they established nonmodel-based control of 
burst-suppression ratio levels measured in terms of group aver-
ages rather than individual control trajectories. Cotten et al.28 
studied methoxycarbonyl etomidate with this paradigm in 
rodents and also reported only group average control results.

We hypothesize that a CLAD system could precisely con-
trol burst suppression as a way to efficiently maintain a medi-
cally induced coma. We test this hypothesis by constructing 
a CLAD system to control burst suppression in real time in a 
rodent model, using electroencephalogram recordings and a 
computer-controlled infusion of propofol. The CLAD system 
uses a two-compartment pharmacokinetics model to charac-
terize the effect of propofol on the electroencephalogram. We 
introduce as the control signal the burst-suppression proba-
bility (BSP), the instantaneous probability of the brain being 
suppressed computed from the electroencephalogram in real 
time. We estimate the pharmacokinetic model parameters 
online for individual rodents and use them to construct pro-
portional-integral (PI) controllers. To evaluate performance 
of our CLAD system we establish new statistical criteria to 
assess reliability and accuracy at individual target levels of 
burst suppression, and a new Bayesian statistical approach to 
assess overall reliability and accuracy of the control experi-
ments. We use our CLAD system to maintain precise control 
of burst suppression in individual rats.

Materials and Methods
Animal Care and Use
These animal studies were approved by the Subcommittee 
on Research Animal Care, Massachusetts General Hospi-
tal, Boston, Massachusetts. Six male Sprague–Dawley rats 
(Charles River Laboratories, Wilmington, MA) weighing 
377–460 g were used for these studies. Animals were kept 
on a standard day–night cycle (lights on at 7:00 AM, and off 
at 7:00 PM), and all experiments were performed during the 
day. We use rats as our experimental system because they are 
an established model for study of burst suppression.27,28

Instrumentation and Preparation
Extradural electroencephalogram electrodes were surgically 
implanted at least 7 days before experimentation as previ-
ously described.29,30 Briefly, general anesthesia was induced 
and maintained with isoflurane. A microdrill (Patterson Den-
tal Supply Inc., Wilmington, MA) was used to make four 
holes at the following stereotactic coordinates: A0L0, A6L3, 
A6L-3, and A10L2 relative to the lambda.29,30 An electrode 
with mounting screw and socket (Plastics One, Roanoke, 
VA) was screwed into each hole, and the sockets were inserted 
in a pedestal (Plastics One). The screws, sockets, and ped-
estal were all permanently fixed with dental acrylic cement, 
and the animal underwent a minimum recovery period of 7 
days. The potential difference between electrodes A0L0 and 
A6L-3 (left somatosensory cortex) was recorded. The signal 
was referenced to A10L2 and recorded using a QP511 Quad 
AC Amplifier System (Grass Instruments, West Warwick, 
RI) and a USB-6009 14-bit data-acquisition board (National 
Instruments, Austin, TX). The sampling rate was 512 Hz. A 
line filter with cutoff frequencies of 0.3 and 50 Hz was used.

Rats were anesthetized in an induction chamber with 
2–3% isoflurane in oxygen before the placement of a 
24-gauge intravenous catheter in the tail. Isoflurane was dis-
continued and propofol anesthesia was initiated only after 
the animal regained the righting reflex and returned to a 
normal level of activity. A Physio 22 syringe pump (Harvard 
Apparatus, Holliston, MA) was used to deliver propofol. 
After the rat had loss of righting under propofol anesthesia, 
a rectal temperature probe was inserted and the animal was 
placed in the supine position on a heating pad to maintain 
core temperature between 36.5° and 37.4°C. Oxygen was 
provided by face mask to prevent hypoxemia.

CLAD System Design for Burst-suppression Control
Before describing the experimental protocol, we give a con-
ceptual overview of the components of our CLAD system 
and how the system works. We constructed a CLAD system 
whose primary components were (fig. 1A): an electroen-
cephalogram recording system; a computer-controlled infu-
sion pump; a real-time segmentation algorithm to convert 
the continuous electroencephalogram into a binary time 
series; a real-time signal-processing algorithm to estimate the 
state of burst suppression from the binary time-series; and a 
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PI control algorithm that issues commands to the infusion 
pump based on the burst-suppression state estimate.

To understand how our CLAD system works, we explain it 
schematically (fig. 1A). We introduce the concept of the BSP; 
a number between 0 and 1, which describes the instantaneous 
probability of the electroencephalogram being in a state of 
suppression.31 A BSP value of 0 corresponds to an active elec-
troencephalogram with no suppression, whereas a value of 1 
corresponds to a completely isoelectric or suppressed electro-
encephalogram. We assume that a target level of burst suppres-
sion, BSPtarget, has been set as a number between 0 and 1 (step 
0). We further assume that propofol is being administered by 
an infusion pump and that this infusion is producing a state of 
burst suppression, which we wish to control at BSPtarget (steps 
1 and 2). The time course of the BSP computed from the 
electroencephalogram is the quantity that our CLAD system 
tracks. To do so, we segment the electroencephalogram into a 
binary time series (step 3) with a 20 ms resolution in which a 
burst is a 0 and a suppression is a 1 (Eqs. 19–21). The binary 
time series is input to the BSP filter algorithm (Eqs. 7–13), 
which computes a real-time BSP estimate (step 4).

The estimated BSP is the feedback signal that our con-
troller compares with BSPtarget (step 5). The difference 
between the estimated BSP and BSPtarget is the error signal. 
The error signal, transformed to concentration (Eqs. 14 and 
15), is passed to a PI controller (step 6). The objective of the 
controller is to keep the error as close to 0 as possible, which 
means that the CLAD is maintaining the target BSP level. 
Therefore, the PI controller issues commands to the infusion 
pump to change the infusion rate based on the magnitude 
and sign of the error signal (step 7). The entire cycle from 
steps 1–7 takes 1 s, the update interval of our CLAD system.

CLAD System Identification
A central component of our CLAD system is a second-order 
pharmacokinetics state model, which characterizes how the 
infusion of propofol changes the concentration in the brain 
compartment or effect site (Eqs. 1–2). We link this model to 
the BSP through a binomial probability model (Eqs. 3–4). 
By equation 4, the probability of being suppressed increases 
monotonically with the effect-site concentration. To use the 
state model in the PI controller we must estimate its param-
eters for each rat so that the model’s response properties are 
tailored to each animal. We estimated the model parameters 
for each animal by conducting a preliminary experiment 
before starting the control experiment. We accomplished 
this process, termed system identification, by administering 
one or more bolus doses of propofol, estimating the time 
course of the effect-site concentrations from the time course 
of the BSP and then fitting the pharmacokinetic state model 
to the estimated effect-site concentration data by nonlinear 
least squares (fig. 1B).

Experimental Protocol
After the system identification, which required 10–15 min, 
we initialized the controller by requiring it to track a BSPtarget 

A

B

Fig. 1. Closed-loop anesthetic delivery system design for 
burst-suppression control. (A) Closed-loop anesthetic de-
livery system design. A burst-suppression probability (BSP) 
target is specified by the user (step 0) while an infusion pump 
maintains the flow of propofol to the rodent through a tail-vein 
intravenous catheter (step 1). Electroencephalogram (EEG) is 
recorded (step 2) and segmented into a binary time series 
representing bursts and suppressions (step 3). The binary 
time series is passed to the BSP filter to compute a real-time 
estimate of the BSP (step 4). The BSP estimate then feeds 
back (step 5) and is compared with the target BSP (step 6). 
The difference between the target and the current estimate, 
termed the error signal, is passed to the proportional-integral 
(PI) controller, which issues compensatory commands to the 
infusion pump (step 7). (B) Timeline of experiment. First, one 
or more boluses are administered to facilitate system identifi-
cation (ID) of the rodent pharmacokinetics model parameters 
(15 min). After system identification, the system is switched 
to closed-loop operation and an initialization is undertaken to 
ensure that the system operates as expected (10 min). Finally, 
the BSP target tracing is initiated and control begins (60 min).
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of 0.2 for 5–15 min before starting the control experiment 
(fig. 1B). This allowed us to ensure correct communication 
between the software and the infusion pump. The initializa-
tion also ensured that each control experiment started with 
each animal in the same, low-level state of burst suppression. 
After the initialization, we set BSPtarget to the target BSP tra-
jectory selected for that animal and let the CLAD system 
continue BSP control.

For the control experiment, we defined six BSP target 
trajectories by permuting the order of three BSP levels, 0.4, 
0.65, and 0.9, to test the ability of our CLAD system to 
achieve and maintain BSP control for each individual ani-
mal. We randomly assigned each of six rats to one of the 
six control trajectories. For each permutation, the duration 
of each level was 15 min. We set an approximate 5–10 min 
linear ramp between each level to give a total target con-
trol duration of approximately 60 min. We set the controller 
update interval at 1 s.

The electroencephalogram acquisition and segmentation, 
the BSP estimation, and the PI control were carried out in 
real-time using custom MATLAB (Version R13; Natick, MA) 
software run on an HP Probook 5430s (Hewlett Packard, Palo 
Alto, CA) laptop computer (fig. 1A). The controller software 
issued commands through an RS-232 serial connection to con-
trol the syringe pump (Harvard-22; Harvard Apparatus) infu-
sion rate. We give the mathematical details of each component 
of the CLAD design and implementation in the appendix.

Analysis of CLAD System Performance
We measured performance of the CLAD system in terms of 
the error defined by

 etracking target measuredBSP BSP= −  (a)

For each target level and for each transition we used (Eq. a) 
to obtain percent error defined as

 pe  sd BSP  
tracking target= ×e / ,100  (b)

where the SD is taken across all sampled data points. For 
transitions, we took BSPtarget as the mean BSP traversed dur-
ing the transition.

In addition to (Eq. b) we determined, for each level and 
transition, the median absolute deviation (MAD)

 MAD  median tracking= {| |},e  (c)

along with two common performance metrics used in the 
evaluation of clinical pharmacokinetics models.32

They are the median performance error (MDPE):

 MDPE  median BSP   tracking target= ×{ }/ ,e 100  (d)

and the median absolute performance error (MDAPE):

 MDAPE  MAD BSP  target= ×/ ,100  (e)

where, in equations c–e, the median is taken across all sam-
pled data points. The MDPE provides a measure of bias (in 

our case, steady state tracking offset), whereas the MDAPE 
is an alternative to (Eq. b), which is less sensitive to outlying 
errors. The MDAPE is simply the ratio of the MAD to the 
target level. To summarize performance we computed the 
median of each metric across animals at each level and the 
transitions. All statistics are computed in MATLAB.

Statistical Analysis
We used the performance measures to define specific statisti-
cal criteria to assess the reliability and accuracy of our CLAD 
system.33 A preliminary study of our system indicated that 
the absolute errors were less than 0.2. Therefore, for a given 
target level, we defined reliability of the CLAD system as 
the absolute error being less than 0.15 with high probability. 
We set that probability at 0.95. This criterion can be eas-
ily evaluated as it is equivalent to the 95th percentile of the 
absolute error distribution being 0.15 or less. We computed 
the absolute error distribution at a given level as the absolute 
values of e-tracking (Eq. a) at that level. We used 900 data 
points (60 points per min × 15 min per level) to compute the 
absolute error distribution at a level. There were six animals 
and three levels per animal or 18 levels in total. We assessed 
reliability on each of the 18 levels separately and overall by 
considering all levels across animals.

We defined accuracy of the CLAD system for a given level 
by the error distribution at that level being indistinguishable 
from zero. We computed the error distribution at a given 
level as the values of e-tracking (Eq. a) at that level. We also 
used 900 data points to compute the error distribution at a 
level. We considered the CLAD system control to be accu-
rate at a given level if zero was inside the 2.5th and 97.5th 
percentile of the error distribution (95% CI). If zero was 
outside this 95% CI for a given level then we rejected the 
hypothesis that the system is accurate with a P value less than 
0.05. If zero was below (above) the 2.5th (97.5th) percentile 
the systems had a positive (negative) bias. If zero was inside 
the 50% CI, i.e., between the 25th and 75th percentiles, 
we considered the system to be highly accurate. We assessed 
accuracy on each of the 18 levels separately and overall by 
considering all levels across animals.

We used Bayesian analysis to assess overall reliability of 
the CLAD system by combining data across levels.29,34 We 
performed the overall reliability analysis across the 18 lev-
els assuming levels within animals were independent. Inde-
pendence is a reasonable assumption because if we assume a 
high first-order serial correlation of 0.98 between adjacent 
data points separated by 1 s and if we allow between-level 
transitions of 5–10 min then, the maximum correlation 
between the closest two points in immediately adjacent lev-
els is between ((0.98)600 = 5.4 × 10−6; (0.98)300 = 2.3 × 10−3), 
where 300 (600) = 5 (10) min × 60 data points per min.35 
That is, control activity separated by 5 min or more  
is unrelated.

Let p denote the probability that the CLAD system is reli-
able at a level. The analysis of reliability across levels yields a 
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binomial probability model with n = 18 assessments of which 
on k levels the system was reliable and on n − k levels the sys-
tem was not reliable. Being reliable at a given level is defined 
as the system satisfying the reliability criterion that the 95th 
percentile of the absolute error distribution was 0.15 or less. If 
we assume a uniform probability distribution on the interval 
(0, 1) for the previous distribution of p then it is well known 
that the posterior distribution of p is a β distribution.29,34 We 
estimate the probability that the CLAD system is reliable 
across all levels as the mode of the posterior distribution. We 
consider the experiment to have established reliability of our 
CLAD system across levels if 0 is less than the left endpoint 
of the 95% Bayesian credibility (confidence) interval for p. 

We performed similar Bayesian analyses to assess the 
accuracy of the CLAD system across levels. We consider the 
experiment to have established accuracy of our CLAD sys-
tem across all levels if 0 is less than the left endpoint of the 
95% Bayesian credibility (confidence) interval for P.

We chose 18 levels because if there were a minimum 
of 14 levels of reliable (accurate) control giving a posterior 
probability of estimate of 0.78, the lower endpoint on the 
95% Bayesian credibility interval would be 0.55, meaning 
that overall it was more likely that the CLAD system was 
reliable (accurate) than not.

Results
Real-time Electroencephalogram Segmentation and BSP 
Estimation
Using our CLAD system, we successfully segmented the elec-
troencephalogram into bursts and suppressions in real time for 
each animal. The system was robust to electroencephalogram 
signal quality and the overall morphology of burst activity 
(fig. 2). In some animals, we encountered good electroen-
cephalogram signal quality and sharp, easily discernible bursts 
(rat 6; fig. 2A) whereas in others, we found noisier electro-
encephalogram signals and broader bursts (rat 1; fig. 2B). In 
each case, we were able to use the design parameters of our 
electroencephalogram filtering (Eqs. 19–20 and panel 1 in 
fig. 2, A and B) and thresholding (Eq. 21 and panel 2 in fig. 2, 
A and B) to obtain good segmentation of the electroencepha-
logram into the binary time series (panel 3 in fig. 2, A and B). 
In these representative examples, we illustrate the ability of the 
filtering, governed by the forgetting factor α (Eqs. 20 and 21), 
to distinguish the amplitude envelope of bursts from the back-
ground suppression level. Similarly, we show that the ampli-
tude threshold vthreshold partitioned bursts from suppressions 
assigning a 0 (1) when the filtered electroencephalogram was 
less than (exceeded) vthreshold. The forgetting factors were 0.995 
for animals 1 and 2, 0.595 for animals 3 and 4, and 0.695 for 
animals 5 and 6 whereas, the thresholds were 3 × 10−5 μV for 
animals 1 and 2, 1.5 × 10−6 μV for animal 3, and 4.3 × 10−6 μV 
for animals 4, 5, and 6. A larger forgetting factor (more forget-
ting) corresponds to more filtering, meaning that the animal 
had a noisier electroencephalogram (e.g., fig. 2B), whereas a 
smaller forgetting factor (less forgetting) is more suitable for 

easily discernible bursts, meaning the animal had sharper elec-
troencephalogram signals (fig. 2A).

In each animal, we were able to effectively record the 
dynamic response of the electroencephalogram to infusions of 
propofol by applying the BSP filter to the binary time series. 
The BSP responded reliably in all six animals to bolus infu-
sions, which we demonstrate with a representative example 
(fig. 3). There were clear changes in the unprocessed electroen-
cephalogram (fig. 3A), the segmented electroencephalogram 
(fig. 3B), and the corresponding BSP time course (fig. 3C) 
estimated by the BSP filter algorithm (Eqs.7–13). This bolus 
rapidly brought the animal to a nearly isoelectric electroen-
cephalogram, as evidenced by a long period of suppression 
(fig. 3A). Consequently, the BSP rose rapidly (fig. 3D). As the 
effect of the bolus subsided, bursts reappeared, were detected 
by our segmentation method, and the BSP began a slow 
decay. The success of the BSP algorithm allowed us to conduct 
the system identification (fig. 4) and to estimate in real time 
the animal’s instantaneous state of burst suppression for the 
CLAD system (fig. 5).

A

B

Fig. 2. Real-time segmentation of electroencephalogram 
(EEG) recordings. Segmenting clean (A) and noisy (B) EEG into 
bursts (black curves) and suppressions (gray curves). In each 
panel are: unprocessed EEG (1), filtered EEG (2), and binary 
time series (3). An amplitude threshold (red horizontal line) is 
applied to the filtered EEG to produce the binary time series. 
(A) Rat 6, showing a clean EEG with easily discernible, sharp 
bursts. (B) Rat 1, showing a noisier EEG with broader bursts.
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Rodent Pharmacokinetics Models Are Identified Online
We completed successful system identification in each ani-
mal, estimating the parameters of its pharmacokinetics 
model in response to one or more propofol boluses. To illus-
trate, we present a representative example (rat 1) with two 
boluses of propofol (fig. 4B). We administered the second 
bolus once the electroencephalogram returned to a continu-
ously active state, that is, all suppression had subsided. The 
second propofol bolus produced a similar BSP response as 
the first bolus (fig. 4A). After this second bolus, we fit the 
pharmacokinetics model by nonlinear least squares to the 
time course of effect-site concentrations computed from the 
BSP estimates using Eq. 12 (see the appendix). The fit accu-
rately described the time course of the BSP in response to 
the bolus sequence, demonstrating that our pharmacokinet-
ics model captured well the dynamics of the state of burst 
suppression induced by propofol (fig. 4A). In particular, we 
found that the second-order state models are sufficient to 
account for the rodents’ BSP responses, obviating the need 
for more detailed four-compartment pharmacokinetics 
models36 commonly used to represent propofol.

We performed all system identification for each animal 
online, whereby the pharmacokinetic model fitting did not 
depend on the specific shape, size, or design of the bolus 
sequence. In each animal we used two or three boluses. After 
estimating the model parameters, we computed each ani-
mal’s parameters for its PI controller (Eqs. 17–18), which we 
then used for closed-loop tracking.

Real-time Closed-loop Tracking of BSP Target Levels Is 
Achieved in Individual Rodents
For each of the six animals the CLAD system tracked the 
target levels closely by making control corrections every 
second (fig. 5). The PI controller rapidly changed the infu-
sion rates to maintain control at the target levels. The infu-
sion rates changed most to maintain the BSP level of 0.9, 
and least to maintain the level of 0.4. The larger changes 
at 0.9 were expected because a BSP of 0.9 means admin-
istering larger amounts of propofol to keep the electroen-
cephalogram isoelectric 90% of the time yet, allowing for 
burst activity 10% of the time. The controllers made transi-
tions from a lower to a higher target level by increasing the 
infusion rate, whereas they made the transitions to lower 
rates by decreasing or frequently, setting the infusion rate 
to zero. The controller responded rapidly to correct diver-
gence between the estimated and target BSP levels. In two 
cases (fig. 5, D and E) in which the BSP estimate showed 
transient excursions from the target trajectories, the con-
troller compensated immediately and restored control. In 
all cases, the computer regulated the infusion rates with 
second-to-second dynamics that could not be equaled by 
a human operator.

In agreement with the plots in figure 5, the magnitude of 
the tracking errors as evaluated by the SD, and the MADs 
were small (table 1). For the target levels 0.4, 0.65, 0.9 
and the between-level transitions, the SDs (MADs) were 
respectively 0.039 (0.34), 0.062 (0.4), 0.042 (0.026), and 
0.057 (0.56). The smaller values of the MAD relative to the 
SD and the percent error relative to the median absolute 
percent error are expected, given the insensitivity of the 
MAD to large errors. The errors were approximately equal 

A

B

C

D

E

Fig. 3. Electroencephalogram (EEG) segmentation and burst-
suppression probability (BSP) estimation from a bolus infu-
sion. (A) The unprocessed EEG. (B) Filtered EEG with thresh-
old (red horizontal line). (C) Binary time series. (D) BSP filter 
estimate of the BSP time course. (E) Twenty-five second bo-
lus of propofol that induced the EEG response in A.

A

B

Fig. 4. System identification of pharmacokinetics model for 
rat 1. (A) Measured burst-suppression probability (BSP; gray 
curve) and fitted response (red curve). Gray line is the BSP 
estimated by the BSP filter and red line is the fit of the two-
dimensional pharmacokinetics model, obtained by nonlinear 
least-squares fitting (see the appendix). (B) Two bolus propo-
fol doses, which induced the BSP responses in A.
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on levels 0.4 and 0.65, lowest on level 0.9, and highest 
during the transitions. The percentage errors relative to the 
SD and the MAD, as well as the bias, were consistent with 
this observation.

The better control at the 0.9 target level is most likely 
because the BSP state of 0.9, i.e., a probability of 0.9 of 
being suppressed, is easier to estimate from the electro-
encephalogram recordings than the BSP states of 0.4 and 

A B

C D

E F

Fig. 5. Closed-loop control in six animals (rats 1–6 in A–F, respectively). Each upper subpanel shows burst-suppression prob-
ability (BSP) target trajectory (red line) and control BSP time course (black curve). Each lower subpanel shows instantaneous 
infusion rate. All permutations of the sequence 0.4, 0.65, and 0.9 are achieved. See table 1 for performance results.

Downloaded From: http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/journals/jasa/930989/ on 04/03/2018



Anesthesiology 2013; 119:848-60 855 Ching et al.

PERIOPERATIVE MEDICINE

0.65. The variance of a binomial random variable (Eq. 4) 
is lowest for pt closer to either 0 and 1, and highest for pt 
close to 0.5. The larger errors during the transitions likely 
reflect anticipated limitations in the controller performance  
(see Discussion).

Our statistical analysis (see Materials and Methods) 
shows that on 17 of the 18 levels the 95th percentile of the 
absolute error distribution was less than 0.15 (fig. 6A). The 
exception was animal 2, at level 0.65 for which the 95th per-
centile was 0.155. The posterior probability that the CLAD 
system was reliable across all levels was 0.94 = 17/18 (95% 
CI, 0.77–1.00; n = 18). Because zero is well below the left 
endpoint of these Bayesian credibility (confidence) intervals 
we conclude that our CLAD system is reliable.

On 18 of the 18 levels, the 95% CIs for the errors 
included 0, whereas on 17 of the 18 levels, the 50% CIs 
included 0 (fig. 6B). For the latter, the only exception was 
animal 5 at level 0.4. The posterior probability that the 
CLAD system was accurate across all levels was 1.00 =18/18 
(95% CI, 0.84–1.00; n = 18). Similarly, the posterior prob-
ability that the CLAD system was highly accurate across all 
levels was 0.94 = 17/18 (95% CI, 0.77–1.00; n = 18). There-
fore, because 0 is well within these CIs we conclude that our 
CLAD system is highly accurate.

Discussion
To study the feasibility of automating control of medically 
induced coma, we developed a CLAD system to control burst 
suppression in a rodent model. We demonstrated that our 
CLAD system can reliably and accurately control burst suppres-
sion in individual animals across dynamic target trajectories.

CLAD System Development
Closed-loop anesthetic delivery system development 
started more than 60 yr ago10 and later reappeared in the 
1980s.24 There have been several clinical studies of CLAD 
systems, and versions are now commercially available.37 
The most frequently used control signal has been the 
Bispectral Index (BIS).7–9,11,13,14,17,18,21–23,38–40 Other con-
trol signals have included a wavelet-based index,12 entropy 
measures,16 an auditory evoked potential index,15 and the 
spectrogram median frequency.24–26 These systems have 
been constructed with standard and nonstandard control 
paradigms15,16,23,24,40 and used principally to control uncon-
sciousness.7,9,12,14,16,18,23,24,38,39 A recent report investigated 
control of both antinociception and unconsciousness.16 The 
criteria for successful control differed across these studies. 
Schwilden et al.24 demonstrated control of median frequency 
in individual human subjects. In contrast, several of the 
studies that used BIS as the control signal defined successful 

Table 1. Tracking Performance Metrics across BSP Target Levels (0.4, 0.65, 0.9) and Transitions (See Materials and 
Methods for Details)

Rat 1 2 3 4 5 6 Median

Level 0.4
 sd0.4 0.052 0.054 0.063 0.022 0.025 0.027 0.039
 pe0.4 (%) 12.9 13.5 15.7 5.5 6.2 6.6 9.9
 MAD0.4 0.04 0.038 0.06 0.015 0.029 0.017 0.034
 MDAPE0.4 (%) 9.9 9.6 14.9 3.7 7.4 4.2 8.5
 MDPE0.4 (%) −0.2 3.3 −10.5 −1.2 −6.9 −1.9 −1.6
Level 0.65
 sd0.65 0.055 0.072 0.039 0.077 0.068 0.043 0.062
 pe0.65 (%) 8.4 11.0 5.9 11.8 10.4 6.7 9.5
 MAD0.65 0.036 0.056 0.027 0.065 0.041 0.029 0.039
 MDAPE0.65 (%) 5.5 8.7 4.1 10.0 6.3 4.5 5.9
 MDPE0.65 (%) −0.6 −4.7 1.8 −6.4 −3.5 −0.7 −2.0
Level 0.9
 sd0.9 0.049 0.043 0.035 0.024 0.042 0.043 0.042
 pe0.9 (%) 5.4 4.8 3.9 2.7 4.6 4.8 4.7
 MAD0.9 0.027 0.025 0.023 0.017 0.041 0.03 0.026
 MDAPE0.9 (%) 3.0 2.8 2.6 1.9 4.6 3.3 2.9
 MDPE0.9 (%) 0.4 −0.4 0.5 −0.3 −3.5 −1.1 −0.35
Ramp transitions
 sdramp 0.074 0.104 0.066 0.047 0.043 0.08 0.057
 peramp (%) 11.3 17.7 9.2 6.6 6.6 13.6 10.3
 MADramp 0.071 0.091 0.052 0.045 0.038 0.059 0.056
 MDAPEramp (%) 14.4 14.7 7.3 6.4 5.8 10.2 8.7
 MDPEramp (%) −13.5 −4.5 2.1 −3.2 2.3 −1.0 −2.1

BSP = burst-suppression probability; MAD = median absolute deviation; MDAPE = median absolute performance error; MDPE = median 
performance error; pe = percent error; sd = standard deviation.
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control as a BIS value between 40 and 60, and reported BIS 
time courses averaged across subjects.7–9,11,13,14,17,18,21–23,38–40 
Control using BIS as a control signal is achieved with a 20- 
to 30-s delay required to compute the BIS updates.41 In con-
trast, our system updates the control input every second with 
no delay. Those CLAD systems that have been developed to 
study burst suppression have also only shown results for time 
courses averaged across subjects.27,28 None of these studies 
considered control of dynamic trajectories nor conducted a 
formal statistical assessment of reliability and accuracy.

A CLAD System for Burst-suppression Control
Our work makes important improvements on current 
CLAD systems. We chose burst suppression as a control state 
because, unlike the brain states defined by the BIS score,42 
the state of the brain in burst suppression is well-defined 
neurophysiologically.4,5 Furthermore, burst suppression has 
a well-defined electroencephalogram signature that can be 

quantified in real time, and therefore, controlled. Our two-
dimensional pharmacokinetics model (Eqs. 1–2) provides a 
simple and sufficient representation for capturing the essen-
tial properties of burst suppression. This model was the start-
ing point for designing our CLAD system. We formulated 
this model based on observations made while monitoring 
the electroencephalogram of patients under general anesthe-
sia in the operating room. We noticed that once the state 
of burst suppression is achieved increasing or decreasing the 
rate of a propofol infusion directly increases or decreases the 
rate of suppression events. However, because intravenous 
injection of propofol does not deliver the drug directly to 
the brain, a burst-suppression model must have a minimum 
of two compartments. Therefore, for control of burst sup-
pression, our simpler second-order model can replace more 
detailed four-compartment models36 because the objective is 
to control a single brain state and not the wide range of brain 
states that could be represented by the higher-order model.

A

B

Fig. 6. Assessment of closed-loop anesthetic delivery (CLAD) system reliability and accuracy using modified boxplot summaries 
of the absolute error and error distributions. (A) Modified boxplot summaries of the absolute error distributions at each level for 
the six animals. Whiskers are the 95th percentiles of the absolute error distributions. The lower (upper) border of the box is the 
25th (75th) percentile and the middle line is the median. The CLAD system is reliable (95th percentile <0.15) for all levels except 
for animal 2 at 0.65. (B) Modified boxplot summaries of the error distributions at each level for the six animals. Whiskers are the 
2.5th and 97.5th percentiles of the error distributions. CLAD system was highly accurate (25th percentile ≤ 0 ≤ 95th percentile) 
for all levels except for animal 5 at level 0.4.
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The segmentation and BSP filter algorithms and our sys-
tem identification procedure were critical for implementing 
our CLAD system in real time. Tuning the segmentation 
algorithm allowed us to robustly detect bursts over a broad 
range of signal qualities. The BSP filter algorithm, derived 
from our state-space estimation paradigm for point processes 
and binary observations,43 uses the one-to-one relationship 
between the BSP (Eq. 3) and the effect-site anesthetic level 
(Eq. 12) to estimate in real time the effect-site anesthetic 
level. We have previously shown that the BSP filter algo-
rithm gives more credible burst-suppression estimates than 
the burst-suppression ratio.31 The burst-suppression ratio 
can require up to 5 min to estimate the brain’s burst-suppres-
sion state,44 a feature that would substantially limit its use in 
real-time control.

The system identification procedure (fig. 4), allowed us 
to estimate model (Eqs. 1–2) and control parameters (Eqs. 
14–18) for each animal and thereby implement individu-
ally tailored PI control strategies. We chose a PI controller 
because it is widely used and known to be robust noise and 
parameter uncertainty.45

We used a statistically efficient design in our experiments 
by testing control at all three levels within animal. Further-
more, by allowing 5–10 min for the CLAD system to transi-
tion between levels, data from different levels within animal 
are effectively independent. Hence, the 18 levels served as 
the units of analysis instead of the six animals in our assess-
ments of overall reliability and accuracy.

The final novel feature of our approach is the use of spe-
cific statistical criteria to assess reliability and accuracy of 
our CLAD system within levels and across the entire experi-
ment. We adapted accepted concepts in reliability theory to 
define these criteria and computed the overall assessments of 
reliability and accuracy in a Bayesian framework.33 Current 
performance measures for CLAD systems have been adapted 
from those used to assess performance of target-controlled 
infusion systems.32 Recently, CLAD systems have been eval-
uated by comparing their performance to performance using 
manual control.19 Our Bayesian paradigm should facilitate 
design and testing of future CLAD systems by making it 
possible to assess performance in terms of specified proper-
ties on a system’s error distribution.

Improving CLAD System Design
Many technical improvements can be made in our CLAD sys-
tem. The second-order state model performed well in our PI 
controller. A more detailed state model could be constructed 
from our recently developed neurophysiological metabolic 
model of burst suppression.5 As an alternative to our deter-
ministic PI controller, we could model system noise explicitly 
and apply a stochastic control strategy.46 A model predictive 
control strategy could be adopted to formally impose con-
straints such as nonnegative infusion rates.47 The BSP filter 
algorithm (Eqs. 7–10) could be improved by using instead of 
the first-order random walk model (Eq. 6), a stochastic version 

of our two-dimensional state model (Eq. 1) to estimate simul-
taneously the BSP and its rate of change. This is equivalent to 
estimating both the peripheral and effect-site anesthetic levels 
from the binary time series. Modifying the BSP filter in this 
way could improve tracking performance during transitions 
by allowing more rapid increases in transitions from lower to 
higher target levels (fig. 5A) and preventing undershoot in 
transitions from higher to lower levels (fig. 5D). By doing so, 
we would be adopting the common practice of using the same 
model for state estimation and control. Tight control during 
transitions was not a primary design consideration in the cur-
rent work because large and frequent level changes are not 
usually required to manage medically induced coma.

CLAD Systems for Control of Medically Induced Coma and 
States of General Anesthesia
There are several possible benefits of using a CLAD system 
to control medically induced coma using burst suppression. 
These include maintaining tight control of brain states for 
extended periods, providing adequate brain protection with 
the least amount of anesthetic, facilitating periodic arous-
als for neurological assessments, reducing the likelihood of 
propofol overdose syndrome,48 and using intensive care unit 
staff more efficiently.

To realize these benefits will require development of our 
CLAD system in humans. Because in the intensive care unit 
the controller will have to function over several hours or 
days, it would be prudent to next test our CLAD system 
in a rodent model for periods longer than an hour. Experi-
ments lasting for several hours will require changes in our 
current protocol to allow intubation and mechanical ventila-
tion, as well as invasive monitoring of blood pressure and 
use of vasoactive drugs. Though challenging, these experi-
ments would substantially test system robustness and bet-
ter approximate actual management of intensive care unit 
patients using our system. System identification in the inten-
sive care unit would be conducted when the initial doses 
of propofol are administered to induce burst suppression. 
This approach would obviate the administration of propofol 
solely for parameter estimation, a maneuver that could fur-
ther destabilize a hemodynamically unstable patient. Over 
several hours or days, the assumption that the model and 
control parameters remain constant will likely not hold. If 
the model and control parameters were to drift then, we 
would estimate them adaptively.49 This is a tractable yet, 
nontrivial estimation problem.

In conclusion, we have demonstrated that a CLAD sys-
tem using a computer-controlled infusion of propofol can 
reliably and accurately control burst suppression in a rodent 
model. Our work opens the possibility of implementing a 
CLAD system to control burst suppression for maintenance 
of medically induced coma in intensive care unit patients, 
and eventually, the anesthetic state of patients in the operat-
ing room.
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Appendix 

Closed-loop Anesthetic Delivery Theory
To construct a closed-loop anesthesia delivery system we 
specify four components: the state model, the state estima-
tion algorithm, the system identification procedure, and the 
controller. Here, we summarize the essential details.

A State Model of Burst Suppression 
We assume that two is the minimal dimension of a state 
model required to define the brain’s state of burst suppres-
sion in response to administration of an anesthetic. We 
construct our state model by adapting a two-compartment 
pharmacokinetics system for intravenous drug infusion. We 
let x(t) = (x1t, x2t) be the state of the system at time t where 
x1t is the amount of anesthetic in the peripheral compart-
ment, and x2t is the amount of the anesthetic in the brain or 
the effect-site compartment. We let I(t) denote the infusion 
rate of the anesthetic at time t. We assume that the anesthetic 
enters into the peripheral compartment; the anesthetic flows 
back and forth between the peripheral and the effect-site 
compartments; the anesthetic is eliminated from the body 
only through the peripheral compartment; and the amount 
of anesthetic in the effect-site compartment determines the 
electroencephalogram level of burst suppression.

The differential equation defining this state model (fig. 1) is
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Observation Model and the Definition of the  
Burst-suppression Probability 

The response of the brain to the anesthetic is monitored 
by the electroencephalogram. We assume that sufficient 
doses of an anesthetic are administered to a subject to induce 
burst suppression and that the effects of the anesthetic can 
be observed continuously in time by recording the electroen-
cephalogram. We further assume that the electroencephalo-
gram can be filtered and thresholded in real time to identify 
burst and suppression events at a resolution of ∆. To link the 
electroencephalogram to the state of burst suppression, we 
let nt be the binary time series constructed from the filtering 
and thresholding, where nt = 1 if there is a suppression at 
time t, and nt = 0 if there is a burst at time t (Eqs. 19–21). 
We define the burst-suppression probability (BSP) as

 p x xt t t= + − − −−[ exp( )] ( exp( )).1 12
1

2  (3)

Because pt defines the probability of a suppression event at 
time t given x2t it follows that nt obeys the Bernoulli process

 Pr( | ) ( ) .n x p pt t t
n

t
nt t

2
11= − −

 (4)

Equation (3) is a hyperbolic transformation that maps the 
amount of the anesthetic in the brain, defined on the inter-
val (0, ∞) into pt, a well-defined probability on the interval 
(0, 1). In this way, pt provides an instantaneous output of the 
probability of the brain being suppressed.

State Estimation: The BSP Algorithm 
To implement the CLAD system we require a way to esti-
mate pt or equivalently, the brain state x2t, from the binary 
time series nt. We develop a version of a binary filter algo-
rithm31,43 to compute estimates of pt and x2t in real time. We 
assume a simplified, stochastic version of the state model in 
equation 1 by taking

 z xt t= log( ),2  (5)

and assuming that zt obeys the Gaussian random walk model

 z z vt t t= +−1 , (6)

where the vt are independent, zero mean Gaussian random 
variables with variance σv

2. The transformation in equation 
5 ensures that x2t remains nonnegative. Given estimates of z0 
and σv

2, the following binary filter algorithm can be applied 
to the nt to compute pt and x2t.

31,43 It is

 z zt t t t| |− − −=1 1 1 (7)
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1 1
2 2 (8)

 z z c p p n pt t t t t t t t t t t t t t| | | | | |[ ( )] ( )= + − −− −
−

1 1
2 11σ  (9)

 σ σt t t t t t t t tc p p| | | |( ) [ ( )] ,2
1

2 1 2 1 1
1= + − −

− − −
 (10)

where

 c
x x

x
pt

t t t t

t t
t t=

+
−2 2

21
1| |

|
|

exp( )
exp( )

( ), (11)

for t = 1, ..., T and the notation zt|s denotes the estimate of 
zt, given the data up through time s. It follows from equa-
tions 3, 7, and 9 that at time t the estimates of x2t and pt are, 
respectively,

 x zt t t t2 | |exp( )=  (12)

 p x xt t t t t t| | |[ exp( )] [ exp( )].= + − − −−1 12
1

2  (13)

We term equations 8–13 the BSP filter algorithm.

System Identification for the BSP Algorithm and the  
State Model 
System identification for our CLAD entails estimating z0 
and σv

2, the parameters of the BSP filter algorithm and A, b, 
the parameters of the state model, in a two-step procedure. 
First, we assume that a preliminary experiment is conducted 
in which a bolus dose of the anesthetic sufficient to induce 
burst suppression is administered to the subject and the elec-
troencephalogram is converted into the binary time series 
by filtering and thresholding (see Electroencephalogram 
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Segmentation Algorithm below). We estimate z0 and σv
2 

from the binary times series derived from the bolus experi-
ment by applying an approximate expectation maximization 
algorithm31,43 to the state space model defined by equations 
4 and 6. The expectation maximization algorithm also pro-
vides zt|T the estimate of zt given all of the binary observa-
tions in the bolus experiment, and as a consequence, by 
equation 12, x2t|T the estimate of x2t. In the second step, we 
use the estimated state, x2t|T as data to estimate A and b by 
nonlinear least squares.

Design of a Proportional-integral Controller 
If ptarget is the target level of burst suppression, then it follows 
from equation 3 that the corresponding target effect-site 
concentration of the anesthetic is

 x p ptarget target target= −( ) +( )





−
log 1 1

1
, (14)

and hence, that the error signal for our controller at time t is

 e( )t x x t= −target 2 . (15)

Our objective is to construct a proportional-integral control-
ler of the form45

 u t a a e u dup i t

t
( ) ( ) ,= + ∫

0

 (16)

where is u(t) is the control signal at time t, t0 is the start time 
of the control interval and ap, ai are control parameters to 
be determined. If we take as our design criterion the imple-
mentation of a proportional-integral controller that achieves 
a fast rise time up to a specified level of burst suppression 
while minimizing the overshoot then it follows from stan-
dard control theory arguments that45 we take

 a
a a
bap =

max{ , }
,10 21

124
 (17)

and

 a a a ai p= min{ , },10 12  (18)

where the coefficients a10, a12, a21, and b are defined in equa-
tion 2. Equations 17 and 18 show that once we have esti-
mated the parameters of the pharmacokinetics model, the 
parameters for the controller are completely defined.

Electroencephalogram Segmentation Algorithm 
In this control problem we observe the effect-site concentra-
tions x2t through the binary time series nt. We convert the 
electroencephalogram signal yt into nt using the following 
algorithm. At each observation time we compute the fol-
lowing time-varying mean and variance, and evaluate the 
threshold criterion

 y y yt t t= + − −α α( ) ,1 1  (19)

 σ α α σt t t ty y2 2
1

21= −( ) + −( ) − , (20)
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where α is a forgetting factor between 0 and 1 and vthreshold is a 
threshold voltage we set to define a burst. A value of α closer 
to 0 (1) corresponds to less (more) forgetting. The algo-
rithm in equations 19–21 tracks yt and s2, the time-varying 
mean and variance, respectively. If the time-varying variance 
exceeds the threshold, then the electroencephalogram is in a 
burst and nt = 0, whereas if the time-varying variance does 
not exceed the threshold, then the electroencephalogram is 
in a suppression and nt = 1.
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