
Luke Frankiw and Jonathan Kenny

Topics in Systems Neuroscience
California Institute of Technology

April 26th, 2017

1

John Hopfield

● Professor of Chemistry and Biology at Caltech from

1980 to 1997.

2

John Hopfield

● Professor of Chemistry and Biology at Caltech from

1980 to 1997.

● Co-founded the Computation and Neural Systems

option at Caltech in 1986.

2

John Hopfield

● Professor of Chemistry and Biology at Caltech from

1980 to 1997.

● Co-founded the Computation and Neural Systems

option at Caltech in 1986.

● Best known for his proposal to use a neural

network to understand brain function (associative

memory).

2

John Hopfield

● Professor of Chemistry and Biology at Caltech from

1980 to 1997.

● Co-founded the Computation and Neural Systems

option at Caltech in 1986.

● Best known for his proposal to use a neural

network to understand brain function (associative

memory).

● Revitalized interest into neural network research

during the early 1980s.

2

John Hopfield

● Professor of Chemistry and Biology at Caltech from

1980 to 1997.

● Co-founded the Computation and Neural Systems

option at Caltech in 1986.

● Best known for his proposal to use a neural

network to understand brain function (associative

memory).

● Revitalized interest into neural network research

during the early 1980s.

● Still an active researcher, proposed a model uniting

associative memory and deep learning networks at

NIPS 2016.

2

● Do collective phenomena simply result from having many simple units working

together?

● In Sea Slugs: “Few neurons to obtain elementary useful biological behavior.”

3

Neurons performing complex computational tasks in nature

Neurons performing complex computational tasks in nature

● Do collective phenomena simply result from having many simple units working

together?

● In Sea Slugs: “Few neurons to obtain elementary useful biological behavior.”

3

~8000 simple units

● Do collective phenomena simply result from having many simple units working

together?

● In Sea Slugs: “Few neurons to obtain elementary useful biological behavior.”

3

~8000 simple units

Organization

Neurons performing complex computational tasks in nature

● Do collective phenomena simply result from having many simple units working

together?

● In Sea Slugs: “Few neurons to obtain elementary useful biological behavior.”

3

~8000 simple units Complex behavior

Organization

Neurons performing complex computational tasks in nature

● Do collective phenomena simply result from having many simple units working

together?

● In Sea Slugs: “Few neurons to obtain elementary useful biological behavior.”

3

~8000 simple units Complex behavior

Organization

Neurons performing complex computational tasks in nature

Can associative memory be modeled by having
many simple neurons work together?

Associative memory

● Also known as content-addressable memory, associative memory is crucial for pattern

completion in the brain/hardware systems:

4

Item in memory

Hopfield JJ. Neural networks and physical
systems with emergent collective computational
abilities. PNAS. 1982 Apr 1;79(8):2554-8.

Associative memory

● Also known as content-addressable memory, associative memory is crucial for pattern

completion in the brain/hardware systems:

4

Item in memory

Hopfield JJ. Neural networks and physical
systems with emergent collective computational
abilities. PNAS. 1982 Apr 1;79(8):2554-8.

Access with partial inputs

Associative memory

● Also known as content-addressable memory, associative memory is crucial for pattern

completion in the brain/hardware systems:

4

Item in memory

Hopfield JJ. Neural networks and physical
systems with emergent collective computational
abilities. PNAS. 1982 Apr 1;79(8):2554-8.

Access with partial inputs

Neural networks and physical
systems... PNAS. 1982

Associative memory

● Also known as content-addressable memory, associative memory is crucial for pattern

completion in the brain/hardware systems:

4

Item in memory

Hopfield JJ. Neural networks and physical
systems with emergent collective computational
abilities. PNAS. 1982 Apr 1;79(8):2554-8.

Access with partial inputs

Neural networks and physical
systems... PNAS. 1982

Associative memory

● Also known as content-addressable memory, associative memory is crucial for pattern

completion in the brain/hardware systems:

4

Item in memory

Hopfield JJ. Neural networks and physical
systems with emergent collective computational
abilities. PNAS. 1982 Apr 1;79(8):2554-8.

Access with partial inputs

Hopfield JJ. PNAS.Neural networks and physical
systems... PNAS. 1982

Associative memory

● Also known as content-addressable memory, associative memory is crucial for pattern

completion in the brain/hardware systems:

4

Item in memory

Hopfield JJ. Neural networks and physical
systems with emergent collective computational
abilities. PNAS. 1982 Apr 1;79(8):2554-8.

Access with partial inputs

Hopfield JJ. PNAS.Neural networks and physical
systems... PNAS. 1982

Associative memory

● Also known as content-addressable memory, associative memory is crucial for pattern

completion in the brain/hardware systems:

4

Item in memory

Hopfield JJ. Neural networks and physical
systems with emergent collective computational
abilities. PNAS. 1982 Apr 1;79(8):2554-8.

Access with partial inputs

Hopfield JJ. PNAS.Neural networks and physical
systems... PNAS. 1982

field JJ. PBS.

Associative memory

● Also known as content-addressable memory, associative memory is crucial for pattern

completion in the brain/hardware systems:

4

Item in memory

Hopfield JJ. Neural networks and physical
systems with emergent collective computational
abilities. PNAS. 1982 Apr 1;79(8):2554-8.

Access with partial inputs

Hopfield JJ. PNAS.Neural networks and physical
systems... PNAS. 1982

field JJ. PBS.

Associative memory (Hopfield) network structure

5

Neuron/unit (s)

s
1

Short-term mean firing rate (neglect individual spikes)

Associative memory (Hopfield) network structure

5

Neuron/unit (s)

s
1

Short-term mean firing rate (neglect individual spikes)

Associative memory (Hopfield) network structure

5

Neuron/unit (s)

s
1

Short-term mean firing rate (neglect individual spikes)

Associative memory (Hopfield) network structure

5

Neuron/unit (s)

s
1

Short-term mean firing rate (neglect individual spikes)

“The essence of computation is nonlinear logical

operations.”

s∈{0,1} or s∈{-1,1}

Associative memory (Hopfield) network structure

5

s
1
∈{-1,1}

Neuron/unit (s)

Associative memory (Hopfield) network structure

5

s
1
∈{-1,1}

s
2
∈{-1,1}

Neuron/unit (s)

Associative memory (Hopfield) network structure

5

s
1
∈{-1,1}

s
2
∈{-1,1}

s
3
∈{-1,1}

Neuron/unit (s)

Associative memory (Hopfield) network structure

5

s
1
∈{-1,1}

s
2
∈{-1,1}

s
3
∈{-1,1}

Neuron/unit (s)

Associative memory (Hopfield) network structure

5

s
1
∈{-1,1}

s
2
∈{-1,1}

s
3
∈{-1,1}

w
1,1

w
2,2

w
3,3

w
1,2

w
2,1

w
2,3

w
3,2

w
3,1

w
1,3

Neuron/unit (s)
Synaptic weight (w)

Associative memory (Hopfield) network structure

5

s
1
∈{-1,1}

s
2
∈{-1,1}

s
3
∈{-1,1}

w
1,1

w
2,2

w
3,3

w
1,2

w
2,1

w
2,3

w
3,2

w
3,1

w
1,3

Some restrictions on weights (w) and neurons (s):

Neuron/unit (s)
Synaptic weight (w)

Associative memory (Hopfield) network structure

5

s
1
∈{-1,1}

s
2
∈{-1,1}

s
3
∈{-1,1}

w
1,2

w
2,1

w
2,3

w
3,2

w
3,1

w
1,3

Some restrictions on weights (w) and neurons (s):

● No recursive connections

Neuron/unit (s)
Synaptic weight (w)

Associative memory (Hopfield) network structure

5

s
1
∈{-1,1}

s
2
∈{-1,1}

s
3
∈{-1,1}

w
2,3

= w
3,2

w
3,1

= w
1,3

Some restrictions on weights (w) and neurons (s):

● No recursive connections

● No directed connections (w
i,j

= w
j,i

)

Neuron/unit (s)
Synaptic weight (w)

w
1,2

= w
2,1

Associative memory (Hopfield) network example

6

25 neuron Hopfield network
s

2

5

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
1

0
s

1

1
s

1

2

s
1

3

s
1

4

s
1

5

s
1

6

s
1

7

s
1

8

s
1

9

s
2

0

s
2

1

s
2

2

s
2

3

s
2

4

Memory

Associative memory (Hopfield) network example

6

25 neuron Hopfield network
s

2

5

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
1

0
s

1

1
s

1

2

s
1

3

s
1

4

s
1

5

s
1

6

s
1

7

s
1

8

s
1

9

s
2

0

s
2

1

s
2

2

s
2

3

s
2

4

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

s
16

s
17

s
18

s
19

s
20

s
21

s
22

s
23

s
24

s
25

Memory

Associative memory (Hopfield) network example

6

25 neuron Hopfield network
s

2

5

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
1

0
s

1

1
s

1

2

s
1

3

s
1

4

s
1

5

s
1

6

s
1

7

s
1

8

s
1

9

s
2

0

s
2

1

s
2

2

s
2

3

s
2

4

1 1 1 1 1

-1 -1 -1 1 -1

-1 -1 -1 1 -1

1 -1 -1 1 -1

1 1 1 -1 -1

Memory

Associative memory (Hopfield) network example

6

25 neuron Hopfield network
s

2

5

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
1

0
s

1

1
s

1

2

s
1

3

s
1

4

s
1

5

s
1

6

s
1

7

s
1

8

s
1

9

s
2

0

s
2

1

s
2

2

s
2

3

s
2

4

1 1 1 1 1

-1 -1 -1 1 -1

-1 -1 -1 1 -1

1 -1 -1 1 -1

1 1 1 -1 -1

Memory

Train weights to include this memory,
with weight update algorithm.

Associative memory (Hopfield) network example

7

Partial/incorrect pattern Memory

1 1 1 1 1

-1 -1 -1 1 -1

-1 -1 -1 1 -1

1 -1 -1 1 -1

1 1 1 -1 -1

Associative memory (Hopfield) network example

7

Partial/incorrect pattern Memory

1 1 1 1 1

-1 -1 -1 1 -1

-1 1 -1 1 -1

-1 -1 -1 -1 -1

1 1 1 -1 -1

1 1 1 1 1

-1 -1 -1 1 -1

-1 -1 -1 1 -1

1 -1 -1 1 -1

1 1 1 -1 -1

Associative memory (Hopfield) network example

7

Partial/incorrect pattern Memory

= 1

= -1

Perform pattern completion using
neuron update algorithm.

Associative memory (Hopfield) network example

7

Partial/incorrect pattern Memory

= 1

= -1

Associative memory (Hopfield) network example

7

Partial/incorrect pattern Memory

= 1

= -1

Associative memory (Hopfield) network example

7

Partial/incorrect pattern Memory

= 1

= -1

Associative memory (Hopfield) network example

7

Partial/incorrect pattern Memory

= 1

= -1

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Weight trainingMemory encoding in the neurons

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Weight trainingMemory encoding in the neurons

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Weight trainingMemory encoding in the neurons

Store memory
in network

(weight update
algorithm)

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Weight trainingMemory encoding in the neurons

Store memory
in network

(weight update
algorithm)

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Weight trainingMemory encoding in the neurons

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Weight trainingMemory encoding in the neurons

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Weight trainingMemory encoding in the neurons

Store memory
in network

(weight update
algorithm)

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Weight trainingMemory encoding in the neurons

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Weight trainingMemory encoding in the neurons

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Weight trainingMemory encoding in the neurons

Store memory
in network

(weight update
algorithm)

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Memory Incomplete Memory

Add noise
(20% bit flip)

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Memory Pattern completion

Add noise
(20% bit flip)

(neuron update
algorithm)

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Memory Incomplete Memory

Add noise
(50% bit flip)

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Memory Pattern completion

Add noise
(50% bit flip)

(neuron update
algorithm)

Large Hopfield network

8

4,096 neuron Hopfield network (8.3 million weights)

Memory Pattern completion

Add noise
(50% bit flip)

(neuron update
algorithm)

Unstable energy configurations can lead to
“spurious” memories.

• Let's consider the case where we have a five node Hopfield net made up of 0’s and
1’s.

Five neuron example

• Let's consider the case where we have a five node Hopfield net made up of 0’s and
1’s.

• We will use the model system described in the paper.
• Each node has two states: 0 when “not firing” and 1 when “firing”.

Five neuron example

• Suppose we want to store two patterns V1 and V2.
V1 = (0 1 1 0 1)
V2 = (1 0 1 0 1)

• Suppose we want to store two patterns V1 and V2.
V1 = (0 1 1 0 1)
V2 = (1 0 1 0 1)

• We will use the prescribed information storage algorithm from Hopfield’s paper.
• Note: in this example we use 0’s and 1’s as did Hopfield in his paper. If we

were to use -1’s and 1’s, the information algorithm simplifies.

0 T
12

T
13

T
14

T
15

T
21

0 T
23

T
24

T
25

T
31

T
32

0 T
34

T
35

T
41

T
42

T
43

0 T
45

T
51

T
52

T
53

T
54

0

Weight Matrix

•Begin by calculating the upper diagonal for the first pattern:
V1 = (0 1 1 0 1)

• Let's look at T
12.

T
12

 = (2V
1
 - 1)(2V

2
 - 1)

T

12
= (2*0 - 1)(2*1 - 1)

T
12

= (-1)(1)

T
12

= -1

V
1
= 0 V

2
 = 1

T
1,2

= T
2,1

= -1

0 -1 T
13

T
14

T
15

-1 0 T
23

T
24

T
25

T
31

T
32

0 T
34

T
35

T
41

T
42

T
43

0 T
45

T
51

T
52

T
53

T
54

0

Weight Matrix

T
13

 = (2V
1
 - 1)(2V

3
 - 1) = (0 - 1)(2 - 1) = (-1)(1) =

-1

T
14

 = (2V
1
 - 1)(2V

4
 - 1) = (0 - 1)(0 - 1) = (-1)(-1) =

1

T
15

 = (2V
1
 - 1)(2V

5
 - 1) = (0 - 1)(2 - 1) = (-1)(1) =

-1

T
23

 = (2V
2
 - 1)(2V

3
 - 1) = (2 - 1)(2 - 1) = (1)(1) = 1

T
24

 = (2V
2
 - 1)(2V

4
 - 1) = (2 - 1)(0 - 1) = (1)(-1) =

-1

T
25

 = (2V
2
 - 1)(2V

5
 - 1) = (2 - 1)(2 - 1) = (1)(1) = 1

T
34

 = (2V
3
 - 1)(2V

4
 - 1) = (2 - 1)(0 - 1) = (1)(-1) =

-1

T
35

 = (2V
3
 - 1)(2V

5
 - 1) = (2 - 1)(2 - 1) = (1)(1) = 1

T
45

 = (2V
4
 - 1)(2V

5
 - 1) = (0 - 1)(2 - 1) = (-1)(1) =

-1

V1 = (0 ,1, 1 ,0 ,1)

V
1
= 0

V
2
= 1

V
3
= 1V

4
= 0

V
5
= 1

T
2,3

= 1

T
1,2

= -1

T
3,4

= -1

T
4,5

= -1

T
1,5

= -1

T
2,4

= -1 T
3,5

= 1

T
1,4

= 1 T
1,3

= -1

T
2,5

= 1

0 -1 -1 1 -1

T
21

0 1 -1 1

T
31

T
32

0 -1 1

T
41

T
42

T
43

0 -1

T
51

T
52

T
53

T
54

0

Weight Matrix

T
ij
 = (2V

i
 - 1)(2V

j
 - 1) = (2V

j
 - 1)(2V

i
 - 1) = T

ji

• We know by the formula below, our weight matrix is symmetrical:

T
ij
 = (2V

i
 - 1)(2V

j
 - 1) = (2V

j
 - 1)(2V

i
 - 1) = T

ji

0 -1 -1 1 -1

-1 0 1 -1 1

-1 1 0 -1 1

1 -1 -1 0 -1

-1 1 1 -1 0

• We know by the formula below, our weight matrix is symmetrical:

• Thus, we can reflect and fill in the rest of the matrix.

Now lets calculate the matrix for the second pattern:
V2 = (1 0 1 0 1)

T
12

 = (2V
1
 - 1)(2V

2
 - 1) = (2 - 1)(0 - 1) = (1)(-1) = -1

T
13

 = (2V
1
 - 1)(2V

3
 - 1) = (2 - 1)(2 - 1) = (1)(1) = 1

T
14

 = (2V
1
 - 1)(2V

4
 - 1) = (2 - 1)(0 - 1) = (1)(-1) = -1

T
15

 = (2V
1
 - 1)(2V

5
 - 1) = (2 - 1)(2 - 1) = (1)(1) = 1

T
23

 = (2V
2
 - 1)(2V

3
 - 1) = (0 - 1)(2 - 1) = (-1)(1) = -1

T
24

 = (2V
2
 - 1)(2V

4
 - 1) = (0 - 1)(0 - 1) = (-1)(-1) = 1

T
25

 = (2V
2
 - 1)(2V

5
 - 1) = (0 - 1)(2 - 1) = (-1)(1) = -1

T
34

 = (2V
3
 - 1)(2V

4
 - 1) = (2 - 1)(0 - 1) = (1)(-1) = -1

T
35

 = (2V
3
 - 1)(2V

5
 - 1) = (2 - 1)(2 - 1) = (1)(1) = 1

T
45

 = (2V
4
 - 1)(2V

5
 - 1) = (0 - 1)(2 - 1) = (-1)(1) = -1

0 -1 1 -1 1

-1 0 -1 1 -1

1 -1 0 -1 1

-1 1 -1 0 -1

1 -1 1 -1 0

Now, as in [2], we add the matrices together to get a final
weight matrix.

Now, as in [2], we add the matrices together to get a final
weight matrix.

0 -1 -1 1 -1

-1 0 1 -1 1

-1 1 0 -1 1

1 -1 -1 0 -1

-1 1 1 -1 0

0 -1 1 -1 1

-1 0 -1 1 -1

1 -1 0 -1 1

-1 1 -1 0 -1

1 -1 1 -1 0

+

0 -2 0 0 0

-2 0 0 0 0

0 0 0 -2 2

0 0 -2 0 -2

0 0 2 -2 0

Final Weight Matrix

• So now we have a weight matrix for a five neuron Hopfield network that's meant
to recognize the memories/patterns (0 1 1 0 1) and (1 0 1 0 1).

• So now we have a weight matrix for a five neuron Hopfield network that's meant
to recognize the memories/patterns (0 1 1 0 1) and (1 0 1 0 1).

• The next step is to choose a state, in this case we will select the state (1 1 1 1 1)
and update the network until we reach a stable state.

• So now we have a weight matrix for a five neuron Hopfield network that's meant
to recognize the memories/patterns (0 1 1 0 1) and (1 0 1 0 1).

• The next step is to choose a state, in this case we will select the state (1 1 1 1 1)
and update the network until we reach a stable state.

• The Hamming distance between the two patterns is 2. The smaller this distance,
the harder it is to tell these patterns apart.

• So now we have a weight matrix for a five neuron Hopfield network that's meant
to recognize the memories/patterns (0 1 1 0 1) and (1 0 1 0 1).

• The next step is to choose a state, in this case we will select the state (1 1 1 1 1)
and update the network until we reach a stable state.

• The Hamming distance between the two patterns is 2. The smaller this distance,
the harder it is to tell these patterns apart.

• As an analogy, consider how it might be more difficult to discriminate between
an “O” and a “Q” as compared to two letters that are much different (i.e. have a
greater hamming distance).

• Quite simply, to update the nodes of the Hopfield network you do a weighted
sum of the inputs from the other nodes.

• If the value is less than your threshold (in this case U = 0), you output 0.
• Otherwise, the output is 1.
• We will also make the stipulation that if the weighted sum = 0, the output is

1.

• This is directly from [1] below:

Updating the nodes

• There are two ways to update the nodes:
• Asynchronous: one picks one neuron, calculates the weighted input sum and

updates immediately. This can be done in a fixed order, or neurons can be
picked at random, which is called asynchronous random updating

•

• There are two ways to update the nodes:
• Asynchronous: one picks one neuron, calculates the weighted input sum and

updates immediately. This can be done in a fixed order, or neurons can be
picked at random, which is called asynchronous random updating

• Synchronous: the weighted input sums of all neurons are calculated without
updating the neurons. Then all neurons are set to their new value, according
to the value of their weighted input sum.

•

• There are two ways to update the nodes:
• Asynchronous: one picks one neuron, calculates the weighted input sum and

updates immediately. This can be done in a fixed order, or neurons can be
picked at random, which is called asynchronous random updating

• Synchronous: the weighted input sums of all neurons are calculated without
updating the neurons. Then all neurons are set to their new value, according
to the value of their weighted input sum.

• The original network proposed by Hopfield involved asynchronous processing
where the nodes were randomly updated.

•

• There are two ways to update the nodes:
• Asynchronous: one picks one neuron, calculates the weighted input sum and

updates immediately. This can be done in a fixed order, or neurons can be
picked at random, which is called asynchronous random updating

• Synchronous: the weighted input sums of all neurons are calculated without
updating the neurons. Then all neurons are set to their new value, according
to the value of their weighted input sum.

• The original network proposed by Hopfield involved asynchronous processing
where the nodes were randomly updated.

• Asynchronous processing is believed to better model how our neurons fire.
•

• There are two ways to update the nodes:
• Asynchronous: one picks one neuron, calculates the weighted input sum and

updates immediately. This can be done in a fixed order, or neurons can be
picked at random, which is called asynchronous random updating

• Synchronous: the weighted input sums of all neurons are calculated without
updating the neurons. Then all neurons are set to their new value, according
to the value of their weighted input sum.

• The original network proposed by Hopfield involved asynchronous processing
where the nodes were randomly updated.

• Asynchronous processing is believed to better model how our neurons fire.

• Additionally, problems involving oscillatory states arise with synchronous
updating.

• There are two ways to update the nodes:
• Asynchronous: one picks one neuron, calculates the weighted input sum and

updates immediately. This can be done in a fixed order, or neurons can be
picked at random, which is called asynchronous random updating

• Synchronous: the weighted input sums of all neurons are calculated without
updating the neurons. Then all neurons are set to their new value, according
to the value of their weighted input sum.

• The original network proposed by Hopfield involved asynchronous processing
where the nodes were randomly updated.

• Asynchronous processing is believed to better model how our neurons fire.

• Additionally, problems involving oscillatory states arise with synchronous
updating.

• For the sake of simplicity, we will update the nodes one by one in order a fixed
order 1, 5, 2, 4, 3.

Asynchronous

Asynchronous

Asynchronous

Synchronous

V
1
in = W

j1
V

j

= T
21

V
1
 + T

31
V

2
 + T

41
V

4
 + T

51
V

5

= (-2*1) + (0*1) + (0*1) + (0*1)

= -2

-2 is less than threshold so V1 = 0 and our
current state = (0 1 1 1 1)

State = (0 1 1 1 1)
V

5
in = (0 0 2 -2 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
5
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

5
in = (0 0 2 -2 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
5
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

2
in = (-2 0 0 0 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
2
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

5
in = (0 0 2 -2 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
5
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

2
in = (-2 0 0 0 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
2
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

4
in = (0 0 -2 0 -2) * (0 1 1 1 1) = -4

since -4 < 0, V
4
 = 0 (it changed)

State = (0 1 1 1 1)
V

5
in = (0 0 2 -2 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
5
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

2
in = (-2 0 0 0 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
2
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

4
in = (0 0 -2 0 -2) * (0 1 1 1 1) = -4

since -4 < 0, V
4
 = 0 (it changed)

State = (0 1 1 0 1)
V

3
in = (0 0 0 -2 2) * (0 1 1 0 1) = 2

since 2 >= 0, V
3
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

5
in = (0 0 2 -2 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
5
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

2
in = (-2 0 0 0 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
2
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

4
in = (0 0 -2 0 -2) * (0 1 1 1 1) = -4

since -4 < 0, V
4
 = 0 (it changed)

State = (0 1 1 0 1)
V

3
in = (0 0 0 -2 2) * (0 1 1 0 1) = 2

since 2 >= 0, V
3
 = 1 (it didn't change)

State = (0 1 1 0 1)
V

1
in = (0 -2 0 0 0) * (0 1 1 0 1) = -2

since -2 < 0, V
1
 = 0 (it didn't change)

State = (0 1 1 1 1)
V

5
in = (0 0 2 -2 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
5
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

2
in = (-2 0 0 0 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
2
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

4
in = (0 0 -2 0 -2) * (0 1 1 1 1) = -4

since -4 < 0, V
4
 = 0 (it changed)

State = (0 1 1 0 1)
V

3
in = (0 0 0 -2 2) * (0 1 1 0 1) = 2

since 2 >= 0, V
3
 = 1 (it didn't change)

State = (0 1 1 0 1)
V

1
in = (0 -2 0 0 0) * (0 1 1 0 1) = -2

since -2 < 0, V
1
 = 0 (it didn't change)

State = (0 1 1 0 1)
V

5
in = (0 0 2 -2 0) * (0 1 1 0 1) = 2

since 2 >= 0, V
5
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

5
in = (0 0 2 -2 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
5
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

2
in = (-2 0 0 0 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
2
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

4
in = (0 0 -2 0 -2) * (0 1 1 1 1) = -4

since -4 < 0, V
4
 = 0 (it changed)

State = (0 1 1 0 1)
V

3
in = (0 0 0 -2 2) * (0 1 1 0 1) = 2

since 2 >= 0, V
3
 = 1 (it didn't change)

State = (0 1 1 0 1)
V

1
in = (0 -2 0 0 0) * (0 1 1 0 1) = -2

since -2 < 0, V
1
 = 0 (it didn't change)

State = (0 1 1 0 1)
V

5
in = (0 0 2 -2 0) * (0 1 1 0 1) = 2

since 2 >= 0, V
5
 = 1 (it didn't change)

State = (0 1 1 0 1)
V

2
in = (-2 0 0 0 0) * (0 1 1 0 1) = 0

since 0 >= 0, V
2
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

5
in = (0 0 2 -2 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
5
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

2
in = (-2 0 0 0 0) * (0 1 1 1 1) = 0

since 0 >= 0, V
2
 = 1 (it didn't change)

State = (0 1 1 1 1)
V

4
in = (0 0 -2 0 -2) * (0 1 1 1 1) = -4

since -4 < 0, V
4
 = 0 (it changed)

State = (0 1 1 0 1)
V

3
in = (0 0 0 -2 2) * (0 1 1 0 1) = 2

since 2 >= 0, V
3
 = 1 (it didn't change)

State = (0 1 1 0 1)
V

1
in = (0 -2 0 0 0) * (0 1 1 0 1) = -2

since -2 < 0, V
1
 = 0 (it didn't change)

State = (0 1 1 0 1)
V

5
in = (0 0 2 -2 0) * (0 1 1 0 1) = 2

since 2 >= 0, V
5
 = 1 (it didn't change)

State = (0 1 1 0 1)
V

2
in = (-2 0 0 0 0) * (0 1 1 0 1) = 0

since 0 >= 0, V
2
 = 1 (it didn't change)

State = (0 1 1 0 1)
V

4
in = (0 0 -2 0 -2) * (0 1 1 0 1) = -4

since -4 < 0, V
4
 = 0 (it didn't change)

• We can stop when we cycle through all the nodes once and none of them change
(thus the reason a fixed order was selected).

• The network ends up at the pattern (0 1 1 0 1).

• In saying this, in this case the network will end up at a pre-learned pattern using
a different fixed order of updating or if the nodes are updated randomly.

• Energy function [7] is derived from two-state Ising model:

Energy Function

• [8] can be derived from [7] by simple subtraction:

• A simple proof shows that delta E in [8] is never > 0.

• Consider the weighted sum describing the input to unit i:

• CASE 1: The weighted sum is negative
• Because the weighted sum is negative we know from [1] that Vi must be 0.

• Either it changed from a one to a zero and thus Vi = -1, or it was zero and
remained so and thus delta E = 0.

• In the former case, the weighted sum is negative, Vi is negative, and there is a
negative term in [8] and thus delta E must be negative.

• CASE 2: The weighted sum is positive
• Because the weighted sum is positive, via [1] Vi must be +1
• Vi was either a one and remained so, and thus delta E =0, or it was 0 and

changed to +1. In the latter case, delta Vi is positive, the weighted sum is
positive, and we have a negative term in [8] and thus, delta E must be
negative.

• Going back to our example, let's calculate the energy following each
update.

• (-1/2)*[*] =

(-1/2)[(-2*1)+(-2*1)+(-2*1)+(2*1)+(-2*1)+(-2*1)+(2*1)+(-2*1)] = 4

0 -2 0 0 0

-2 0 0 0 0

0 0 0 -2 2

0 0 -2 0 -2

0 0 2 -2 0

1

1

1

1

1

• Following this step, the state was (0 1 1 1 1). For the sake of brevity:
E = 2.0

• The final state was (0 1 1 0 1). E = -2.0 <- Minimum

• Following this step, the state was (0 1 1 1 1). For the sake of brevity:
E = 2.0

• The final state was (0 1 1 0 1). E = -2.0 <- Minimum

• Because our example was only five neurons (and thus 2^5 possible combinations), it is
possible to represent the energy of all states.

• In doing so, you can see that the trained patterns are lowest in energy.

• Additionally, we have a spurious minima. It is worth noting this spurious minima
occurs when [0, 1, 1, 0, 1] changes from [0, 0, 1, 0, 1] and thus, delta E in this case is 0.

Local Minima

•Because a Hopfield net always makes decisions that lead to lower and lower
energy, it makes it impossible to escape true local minima.

•In the figure below, B and C are learned patterns where A is not.

•If the state starts near state A and falls into A, it will be impossible with
asynchronous updating to escape A and reach a trained pattern.

105

The memory capacity

11

● How many memories can a Hopfield

network hold?

The memory capacity

11

● How many memories can a Hopfield

network hold?

● Empirical evidence suggests 0.15 * #

of neurons.

The memory capacity

11

● How many memories can a Hopfield

network hold?

● Empirical evidence suggests 0.15 * #

of neurons.

● The addition of new memories beyond

the capacity overloads the network

and makes all retrieval impossible.

● Clipping training weights to “forget”

distant memories can prevent this

from occurring.

Preventing “spurious” memories

● You can prevent two energy

minima/memories from combining

by “unlearning” spurious memories.

● Francis Crick proposed that this

“unlearning” procedure could be

what REM sleep is for; preventing

spurious memory formation using

random inputs from the thalamus.

12

JJ Hopfield. ‘Unlearning’ has a stabilizing effect in collective memories. Nature. 1983.

F Crick. The function of dream sleep. Nature. 1983.

