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● Co-founded the Computation and Neural Systems 

option at Caltech in 1986.

● Best known for his proposal to use a neural 

network to understand brain function (associative 

memory).

● Revitalized interest into neural network research 

during the early 1980s.

● Still an active researcher, proposed a model uniting 

associative memory and deep learning networks at 

NIPS 2016.
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~8000 simple units Complex behavior

Organization

Neurons performing complex computational tasks in nature

Can associative memory be modeled by having 
many simple neurons work together?
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Short-term mean firing rate (neglect individual spikes)

“The essence of computation is nonlinear logical 

operations.”

s∈{0,1} or s∈{-1,1}
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4,096 neuron Hopfield network (8.3 million weights)

Memory Pattern completion

Add noise 
(50% bit flip)

(neuron update 
algorithm)

Unstable energy configurations can lead to 
“spurious” memories.
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• Let's consider the case where we have a five node Hopfield net made up of 0’s and 
1’s.

• We will use the model system described in the paper. 
• Each node has two states: 0 when “not firing” and 1 when “firing”.
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• Suppose we want to store two patterns V1 and V2.
V1 = (0 1 1 0 1)
V2 = (1 0 1 0 1) 



• Suppose we want to store two patterns V1 and V2.
V1 = (0 1 1 0 1)
V2 = (1 0 1 0 1) 

• We will use the prescribed information storage algorithm from Hopfield’s paper.
• Note: in this example we use 0’s and 1’s as did Hopfield in his paper.  If we 

were to use -1’s and 1’s, the information algorithm simplifies.
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•Begin by calculating the upper diagonal for the first pattern: 
V1 = (0 1 1 0 1)

• Let's look at T
12.
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• We know by the formula below, our weight matrix is symmetrical:
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• We know by the formula below, our weight matrix is symmetrical:

• Thus, we can reflect and fill in the rest of the matrix.
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• So now we have a weight matrix for a five neuron Hopfield network that's meant 
to recognize the memories/patterns (0 1 1 0 1) and (1 0 1 0 1).

• The next step is to choose a state, in this case we will select the state (1 1 1 1 1) 
and update the network until we reach a stable state.

• The Hamming distance between the two patterns is 2.  The smaller this distance, 
the harder it is to tell these patterns apart.

• As an analogy, consider how it might be more difficult to discriminate between 
an “O” and a “Q” as compared to two letters that are much different (i.e. have a 
greater hamming distance).



• Quite simply, to update the nodes of the Hopfield network you do a weighted 
sum of the inputs from the other nodes.

• If the value is less than your threshold (in this case U = 0), you output 0.
• Otherwise, the output is 1.  
• We will also make the stipulation that if the weighted sum = 0, the output is 

1.

• This is directly from [1] below:

Updating the nodes 
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• There are two ways to update the nodes:
• Asynchronous: one picks one neuron, calculates the weighted input sum and 

updates immediately. This can be done in a fixed order, or neurons can be 
picked at random, which is called asynchronous random updating

• Synchronous: the weighted input sums of all neurons are calculated without 
updating the neurons. Then all neurons are set to their new value, according 
to the value of their weighted input sum.

• The original network proposed by Hopfield involved asynchronous processing 
where the nodes were randomly updated. 

• Asynchronous processing is believed to better model how our neurons fire.

• Additionally, problems involving oscillatory states arise with synchronous 
updating.

• For the sake of simplicity, we will update the nodes one by one in order a fixed 
order 1, 5, 2, 4, 3. 
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= (-2*1) + (0*1) + (0*1) + (0*1)

= -2

-2 is less than threshold so V1 = 0 and our 
current state = (0 1 1 1 1)
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• We can stop when we cycle through all the nodes once and none of them change 
(thus the reason a fixed order was selected). 

• The network ends up at the pattern (0 1 1 0 1).   

• In saying this, in this case the network will end up at a pre-learned pattern using 
a different fixed order of updating or if the nodes are updated randomly.



• Energy function [7] is derived from two-state Ising model:

Energy Function

• [8] can be derived from [7] by simple subtraction:



• A simple proof shows that delta E in [8] is never > 0.

• Consider the weighted sum describing the input to unit i:

• CASE 1: The weighted sum is negative 
• Because the weighted sum is negative we know from [1] that Vi must be 0. 



• Either it changed from a one to a zero and thus Vi = -1, or it was zero and 
remained so and thus delta E = 0.

• In the former case, the weighted sum is negative, Vi is negative, and there is a 
negative term in [8] and thus delta E must be negative.

• CASE 2: The weighted sum is positive
• Because the weighted sum is positive, via [1] Vi must be +1
• Vi was either a one and remained so, and thus delta E =0, or it was 0 and 

changed to +1.  In the latter case,  delta Vi is positive, the weighted sum is 
positive, and we have a negative term in [8] and thus, delta E must be 
negative.



• Going back to our example, let's calculate the energy following each 
update.

• (-1/2)*[                                                   *                ]  =

(-1/2)[(-2*1)+(-2*1)+(-2*1)+(2*1)+(-2*1)+(-2*1)+(2*1)+(-2*1)] = 4

0 -2 0 0 0

-2 0 0 0 0

0 0 0 -2 2

0 0 -2 0 -2

0 0 2 -2 0

1

1

1

1

1



• Following this step, the state was (0 1 1 1 1).  For the sake of brevity:    
E = 2.0

• The final state was (0 1 1 0 1).  E = -2.0 <- Minimum



• Following this step, the state was (0 1 1 1 1).  For the sake of brevity:    
E = 2.0

• The final state was (0 1 1 0 1).  E = -2.0 <- Minimum



• Because our example was only five neurons (and thus 2^5 possible combinations), it is 
possible to represent the energy of all states.  

• In doing so, you can see that the trained patterns are lowest in energy. 

• Additionally, we have a spurious minima.  It is worth noting this spurious minima 
occurs when [0, 1, 1, 0, 1] changes from [0, 0, 1, 0, 1] and thus, delta E in this case is 0.



Local Minima 

•Because a Hopfield net always makes decisions that lead to lower and lower 
energy, it makes it impossible to escape true local minima.

•In the figure below, B and C are learned patterns where A is not.

•If the state starts near state A and falls into A, it will be impossible with 
asynchronous updating to escape A and reach a trained pattern.
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The memory capacity

11

● How many memories can a Hopfield 

network hold?

● Empirical evidence suggests 0.15 * # 

of neurons.

● The addition of new memories beyond 

the capacity overloads the network 

and makes all retrieval impossible.

● Clipping training weights to “forget” 

distant memories can prevent this 

from occurring.



Preventing “spurious” memories

● You can prevent two energy 

minima/memories from combining 

by “unlearning” spurious memories.

● Francis Crick proposed that this 

“unlearning” procedure could be 

what REM sleep is for; preventing 

spurious memory formation using 

random inputs from the thalamus.

12

JJ Hopfield. ‘Unlearning’ has a stabilizing effect in collective memories. Nature. 1983.

F Crick. The function of dream sleep. Nature. 1983.


