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SUMMARY

The level of synchronization in distributed systems is
often controlled by the strength of the interactions
between individual elements. In brain circuits the
connection strengths between neurons are modified
under the influence of spike-timing-dependent plas-
ticity (STDP) rules. Here we show that when recurrent
networks with conduction delays exhibit population
bursts, STDP rules exert a strong decoupling force
that desynchronizes activity. Conversely, when ac-
tivity in the network is random, the same rules can
have a coupling and synchronizing influence. The
presence of these opposing forces promotes the
self-organization of spontaneously active neuronal
networks to a state at the border between random-
ness and synchrony. The decoupling force of STDP
may be engaged by the synchronous bursts occur-
ring in the hippocampus during slow-wave sleep,
leading to the selective erasure of information from
hippocampal circuits as memories are established
in neocortical areas.

INTRODUCTION

The study of the rules governing the efficacy of synaptic interac-

tions is central to neuroscience, since activity-dependent modi-

fications of synaptic strengths are believed to be critical for

processing and storing information in the brain (Hebb, 1949). Re-

cent experiments have shown that the direction and magnitude

of synaptic changes are highly dependent on the relative timing

of presynaptic inputs and postsynaptic spikes (Markram et al.,

1997). In most systems studied to date, presynaptic inputs arriv-

ing before postsynaptic spikes lead to synaptic strengthening,

while inputs arriving after postsynaptic spikes lead to weakening

(Hebbian STDP) (Markram et al., 1997; Bi and Poo, 1998; Feld-

man, 2000). Cases where presynaptic inputs preceding post-

synaptic spikes actually lead to weakening, while the opposite

timing leads to strengthening, have also been observed (anti-

Hebbian STDP; Bell et al., 1999). Hence, variations of only a

few milliseconds in the relative timing of presynaptic and post-

synaptic activity can have drastically different consequences

for the functional connectivity of neuronal networks. Axonal con-

duction delays directly affect this timing, and recent studies have
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shown that delays can greatly enhance the dynamical repertoire

of recurrent networks operating under STDP rules (Izhikevich

et al., 2004; Izhikevich, 2006). The functional consequences of

STDP have been intensively explored through computational

models (Abbott and Blum, 1996; Gerstner et al., 1996; Song

et al., 2000; Shon et al., 2004; Morrison et al., 2007; Abbott

and Nelson, 2000; Roberts and Bell, 2002), with recent studies

showing that Hebbian STDP promotes causal links and network

synchronization (Karbowski and Ermentrout, 2002; Nowotny

et al., 2003; Zhigulin et al., 2003).

Here we analyze and simulate the behavior of model recurrent

networks to show that in the presence of axonal conduction de-

lays, Hebbian STDP rules generate a powerful decoupling force

that is engaged whenever neurons fire in transient synchrony,

i.e., within population bursts. The resulting weakening of synap-

tic connections favors the desynchronization of network activity.

Conversely, when activity in the network is random, synaptic

weights disperse under the influence of the STDP rule, thus pro-

ducing a coupling and synchronizing effect. The presence of

these opposing forces promotes the self-organization of recur-

rent networks with conduction delays into mixture states at the

border between randomness and synchrony.

We further explore several specific consequences of these re-

sults. First, we demonstrate that it is possible to desynchronize an

oversynchronized (‘‘epileptic’’) circuit by stimulating tight popula-

tion bursts. Thus, figuratively speaking, one can fight synchrony

with synchrony, an observation that may be relevant for under-

standing the therapeutic effects of deep brain stimulation. Sec-

ond, we study the effects of the endogenous bursts generated

within the hippocampus during slow-wave sleep (SWS). In partic-

ular, we record the activity of multiple CA1 neurons from freely

behaving rats and, consistent with previous experimental studies

(Wilson and McNaughton, 1994; Kudrimoti et al., 1999), observe

decay in pairwise correlations during SWS. We argue and present

experimental evidence suggesting that this decay in correlations

results from bursts in CA3 engaging the decoupling force of

STDP. We discuss this as a candidate mechanism for the selec-

tive erasure of hippocampal memory traces as information is

consolidated into long-term cortical memory stores.

RESULTS

Decoupling Force of STDP under Synchronous Activity
The intuition behind the decoupling force of STDP is surprisingly

simple and general: neurons that spike within a population

burst receive inputs from the rest of the neurons participating in
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Figure 1. Decoupling Force of STDP

(A) The coincident spiking of two interconnected neurons produces reciprocal inputs that are received with some delays. The red vertical lines mark spike times

and the blue dots indicate the arrival times of inputs at the postsynaptic targets.

(B) Hebbian STDP rule shows the prescribed change in synaptic strength as a function of the time difference between the postsynaptic spike and the arrival of the

presynaptic spike. These time differences are both negative for the example in (A) and hence lead to weakening of both synapses. The black trace shows the time

difference distribution for two neurons from the network in Figure 4, joined through a connection with a 19 ms delay and participating in synchronous bursts. The

green curve is a Gaussian fit with m = �18:94 ms and s = 21:81 ms.

(C–E) Convolution of Gaussian kernels of different widths s with STDP rules with negative integral (C), zero integral (D), and positive integral (E). The pseudocolor

panels display the relative change in synaptic strength for connections with delay jmj between neurons participating in population bursts of width s. Since delays

are always positive, the m < 0 and m > 0 half-planes describe the synaptic changes for a given Hebbian rule and its corresponding anti-Hebbian rule, obtained by

reflecting the Hebbian rule about the y axis. All three Hebbian STDP rules have a decoupling effect because the relative synaptic changes for almost all connec-

tions are negative (with the exception of short latency connections under wide bursts in [E]). In contrast, anti-Hebbian STDP rules promote the strengthening of

almost all connections. This analysis applies when the interburst interval is longer than the time window of the STDP rule.
the burst with delays equal to the axonal conduction times (Fig-

ure 1A). Under Hebbian STDP (Figure 1B), this timing relationship

between the arrival of presynaptic inputs and postsynaptic firing

leads to the selective weakening of the connections between

neurons participating in the population burst. In contrast, anti-

Hebbian STDP, which is thought of as exerting a decoupling in-

fluence (Roberts and Bell, 2002), in fact has the opposite effect,

promoting coupling and coincident spiking in recurrent networks

with delays.

How does this intuition apply to the case when neurons fire

multiple spikes within each burst? How does the decoupling

force of STDP depend on the width of the burst, the conduction

delay, and the shape of the STDP window function? To address

these questions, for a pair of neurons participating in population

bursts we approximate the distribution of time differences

between postsynaptic spikes and the arrival of presynaptic in-

puts with a Gaussian. This distribution has mean m equal to the

negative of the axonal conduction delay of the corresponding

connection and variance s proportional to the width of the pop-

ulation bursts (Figure 1B). The cumulative change in synaptic

strength is approximated by the integral of the product of the

STDP rule and the above distribution of time differences. By

varying m and s we can thus obtain maps of the magnitude

and sign of synaptic changes predicted by a given STDP rule,
as shown in Figures 1C–1E. The maps for Hebbian STDP rules

demonstrate the following three important points (Figure S3,

available online).

First, population bursts lead to the consistent weakening

of synapses and hence to the decoupling of networks over a

wide parameter range. Second, the tighter the synchronization

(smaller s), the stronger the weakening of the synapses and

hence the more potent the decoupling force. Third, connections

with different latencies are differentially affected in any given

populationburst. Incontrast, anti-Hebbian rules produce strength-

ening of connections (m > 0 half-planes of Figures 1C–1E). Thus,

for circuits in which the level of synchronization grows with the

strength of synaptic coupling, Hebbian STDP rules provide a neg-

ative feedback mechanism that opposes highly synchronized

network activity, while anti-Hebbian STDP rules have the opposite

effect.

A specific prediction of the above analysis is that the decou-

pling force of STDP must be engaged by the synchronous pop-

ulation bursts, known as sharp-wave (SPW) bursts, that are gen-

erated within the hippocampus during SWS. The axonal delays,

m, within the densely recurrent CA3 subfield range up to 10 ms

(Section S1 in the Supplemental Data, available online), while

the width of SPW bursts corresponds to s of approximately

25 ms (Figure 6C). The maps for Hebbian STDP indicate that
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Figure 2. Diffusion-like Dispersion of Synaptic Weights under Random Network Activity

The time evolution of synaptic weights s between 50,000 uncorrelated spike train pairs was studied over a minute for (A) negatively biased rule with

A + = 1, A� = �1:1; (B) unbiased rule with A+ = 1, A� = �1; and (C) positively biased rule with A+ = 1:1, A� = �1. All rules were all-to-all with t + = t� = 20 ms.

Connection weights were initialized to 0 and allowed to vary between 0 and 10. Each column in the pseudocolor plots displays the distribution of synaptic weights

at a point in time. These distributions were constructed every 10 ms and stacked to form the displayed matrices. Notice that although individual weights continued

to change throughout the shown period, their distributions converged approximately halfway through to stationary distributions PNðsÞ. The white curves show the

evolution of the mean synaptic weights hsi, which converged to values hsiN. Notice that each rule produces a different steady-state synaptic weight distribution

with a different mean hsiN. These distributions are controlled by the shape of the STDP rule and are independent of the initial conditions (data not shown). Notice

that hsiN> 0 even for the negatively biased rule in (A). Thus, an uncoupled system will evolve toward a more coupled state under random firing.
bursts with these parameter values should lead to decoupling of

the recurrent connections within CA3. We present experimental

evidence in support of this prediction further below.

Coupling Force of STDP under Random Activity
The decoupling force of STDP is engaged in the presence of

synchronous firing. In contrast, when activity in the network is

uncorrelated, synaptic weights undergo the equivalent of a ran-

dom walk, biased according to the sign of the STDP rule integral

and bounded by the range of allowed weights. If firing in the

network were to remain random indefinitely, the weights would

settle into an equilibrium distribution PNðsÞ with mean hsiN(Fig-

ure 2). This distribution can be computed by studying the evolu-

tion of synaptic weights when the STDP rule is driven by uncor-

related spike trains. Even in the presence of bias in the random

walk, not all weights end up at the extremes, but disperse ac-
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cording to PNðsÞ (Figure 2). Therefore, for as long as firing in

the network is random, the mean weight hsi will evolve toward

hsiN. When hsiN is sufficiently large to fall within the coupling

range associated with correlated network activity, the diffu-

sion-like dispersion of synaptic weights exerts a coupling and

synchronizing influence (Figure 3 and Figure S7).

Opposing Forces of STDP in a Model Network
The analysis above considers isolated pairs of neurons. To illus-

trate how the opposing forces of Hebbian STDP interact within

a circuit, we consider a randomly driven recurrent network of

excitatory regular spiking (RS) Izhikevich neurons with axonal

delays (Figure 4) (Izhikevich, 2003, 2006). In this simple case

the network dynamics are principally controlled by the recurrent

connections (see Experimental Procedures). To quantify the

level of network synchronization, we introduce a simple order
Figure 3. Coupling Force of Synaptic Weight Diffu-

sion

The evolution of synaptic weight distribution under weight

diffusion, (A1–A3), was compared with the actual evolution

of weights in the network from Figure 4, (B1–B3), under

three different STDP rules (Equations 1–3). The rules

were chosen so that hsiN was above (Equation 1), below

(Equation 3), or right at (Equation 2) the critical mean

weight hsic separating random firing from synchronous

activity for this network. The evolution of the mean weight

hsi is shown in black, and the order parameter j, scaled by

a factor of 10 in white. Notice that as long as the activity in

the network remained uncorrelated (jz0), the evolution of

the synaptic weight distribution matched closely the one

predicted under weight diffusion. Notice that mixture

states are reached only in (B1) and (B2), i.e., when

hsiNRhsic. Notice that as soon as activity in the network

becomes correlated (j > 0), the evolution of the synaptic

weight distribution diverges from the one predicted under

weight diffusion (B1 and B2).
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Figure 4. Illustration of the Desynchronizing and Synchronizing Effects of STDP

(A) Evolution of the mean synaptic weight hsi (red trace) and order parameter j (blue trace) in a recurrent network of 100 neurons with connection delays between

1 and 20 ms, driven by uncorrelated Poisson inputs. The order parameter quantifies the relative fraction of time spent in synchronized activity (left half of [B], jz1)

versus random activity (right half of [B], jz0).

(B–D) Five-second rasters of spikes illustrating the patterns of network activity corresponding to different values of the order parameter. Before plasticity is en-

abled, activity in the network is completely synchronized in a 3–4 Hz oscillation. Within a few seconds of enabling Hebbian STDP, hsi plummets and activity in the

network become completely asynchronous, reflecting the random pattern of external inputs (B). Over 1 min hsi stabilizes and the activity in the network becomes

a mixture of short synchronous bursts interleaved with asynchronous firing (C). This pattern of activity persists even when plasticity is disabled, suggesting that

plasticity is not necessary for the maintenance of this state, even though it is critical for its stability in the presence of strong external perturbations. (D) Soon after

anti-Hebbian STDP is enabled, the strength of synaptic coupling saturates and activity in the network becomes completely synchronized.
parameter j which is 0 when network activity is random and 1

when activity is highly synchronized (Experimental Procedures).

In the simulation shown in Figure 4, plasticity is disabled during

the first 2 min, during which the network exhibits regular 3–4

Hz oscillations (left half of Figure 4B, jz1). Within seconds after

plasticity is enabled, there is a rapid decoupling, as shown by

the sharp decrease of the mean synaptic weight hsi toward

zero, which results in the desynchronization of network activity

(jz0). Subsequently, synaptic weights begin redistributing in

accordance with the limiting weight distribution under random

firing PNðsÞ, which results in an increase of hsi toward hsiN (Fig-

ure 3). This coupling process persists until the network settles

into a mixture state characterized by random activity patterns

interspersed with synchronized population bursts and intermit-

tent oscillatory episodes (Figure 4C). Finally, as predicted by
our analysis, anti-Hebbian STDP promotes coincident spiking

and rapidly drives the system to excessive coupling and syn-

chrony (Figure 4D). This suggests that anti-Hebbian STDP is

likely to be present only in feedforward pathways. The same

qualitative behavior can be observed in more realistic networks

(Figure S4) and under different STDP implementations (Experi-

mental Procedures and Figure S5).

Self-Organization in Mixture States
The simultaneous existence of the synchronizing and desynch-

ronizing forces described above suggests that Hebbian STDP

promotes self-organization into mixture states at the border

between randomness and synchrony. In the case of randomly

driven networks, in which the level of synchrony is principally

controlled by the strength of the recurrent connections, the
Neuron 58, 118–131, April 10, 2008 ª2008 Elsevier Inc. 121
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reasoning behind this prediction is very intuitive. Activity in an

uncoupled network must be uncorrelated under random input,

as there are no interactions that can give rise to correlated firing.

At the other extreme, when the coupling between neurons is very

strong, all elements behave as one, therefore producing highly

synchronous firing under any input. Such dependence of net-

work activity patterns on the level of coupling has been experi-

mentally demonstrated in area CA3 of the hippocampus (Bains

et al., 1999). So as long as STDP decouples neurons when net-

work activity is synchronous and couples them when activity is

random, the only allowed equilibrium state must be at the border

between randomness and synchrony.

To examine this hypothesis directly, we generated a family

of networks with varying connectivities and synaptic coupling

strengths and studied their activity with and without plasticity

(Figure 5). When plasticity is disabled, we find that for any given

level of connectivity the mean synaptic weight determines the

level of synchronization, and that there is a narrow range of

coupling strengths that are associated with mixture states

(Figure S6B). When Hebbian STDP is enabled, the mean synaptic

weight for the majority of the networks converges to the range

associated with mixed activity patterns. The only exceptions

are very sparse networks for which the upper limit for synaptic

coupling is not high enough to enable synchronization. Further-

more, the overall proportion of time spent in random activity ver-

sus transient synchronization as reflected by the mean value of

the order parameter converges as well. The mean order param-

eter to which networks converge is principally controlled by the

shape of the STDP rule. It is insensitive to the initial synaptic

weight distribution and varies only slightly as a function of con-

nectivity (Figure S6A).

Thus, Hebbian STDP promotes the self-organization of spon-

taneously active neuronal networks into mixture states whose

order parameter depends on the shape of the STDP rule (Fig-

ure S7). This is clearly the case for the family of networks we con-

sider, in which activity is principally patterned by the recurrent

connections. As we discuss in more detail below, this is also

likely to be true for the hippocampus during SWS. In other

networks and under different input conditions the same princi-

ples operate, but they interact with all other circuit elements

that shape network activity, i.e., sources of structured input, in-

hibitory and pacemaker populations, etc. Since STDP need not

have control over these additional influences, convergence to

mixture states under these conditions need not occur. For exam-

ple, during active exploratory behavior and REM sleep, the hip-

pocampus exhibits rhythmic theta activity driven by entorhinal

and septal inputs. This is in contrast to the mixture-like state

seen in SWS when the hippocampus is spontaneously active.

Mixture States and Hippocampal Activity in SWS
During SWS, activity in CA1 and CA3 comprises SPW bursts

occurring against a background of low-rate irregular firing (Fig-

ure 6A). This regime is qualitatively similar to the mixture states

observed in the model networks. Indeed, since the recurrent cir-

cuits in CA3 are spontaneously active during SWS, the opposing

forces of STDP described above should promote self-organiza-

tion into a state at the edge of synchrony. But are mixture states
122 Neuron 58, 118–131, April 10, 2008 ª2008 Elsevier Inc.
quantitatively compatible with the statistics of neuronal firing

observed during SWS?

To address this question we allowed the 1000 neuron network

(Figure S4) to converge to a mixture state when randomly driven

at 1 Hz or 0.5 Hz, and then compared the statistics of RS cells in

the model with CA1 pyramidal neurons recorded during SWS

(Table 1). Notice that the shape, width, and magnitude of cross-

correlation functions between pairs of neurons are in good agree-

ment with experimental observations (Figures 6C–6H).

There are two quantitative differences. First, background firing

rates are somewhat higher in the model. Second, a larger fraction

Figure 5. Recurrent Networks Self-Organize in Mixture States under

the Influence of Local STDP Rules

A fully connected recurrent network with 100 neurons was progressively

pruned to generate a set of ten networks with connection probabilities M be-

tween 5% and 95%. Each of the ten network topologies was initialized with 33

bimodal synaptic weight distributions such that the mean synaptic weight hsi
ranged between 10% and 90% of the maximum value. This resulted in a matrix

of 330 networks with constant connection probabilities along the rows and

constant mean synaptic weights along the columns. Activity was simulated

in each network with plasticity disabled, and the corresponding order param-

eter is displayed as the colored surface. Activity was also simulated in each

network under three different Hebbian STDP rules, and the colored dots dis-

play the corresponding mean weight and average order parameter after steady

state is reached. Different dots of the same color correspond to networks with

different initial hsi (33 for each M), while different colors represent the three dif-

ferent STDP rules (yellow, negative integral; blue, zero integral; red, positive in-

tegral). Notice that for M > 25 there is a sharp transition between random firing

(j = 0) and highly synchronized activity (j = 1) as a function of hsi. Thus, for

a given network topology, the mean synaptic weight can be viewed as a bifur-

cation parameter that controls the degree of synchronization in the network.

When Hebbian STDP is enabled, the mean synaptic weight hsi and order pa-

rameter j leave their initial position on the colored surface and evolve along

trajectories, such as the ones shown in black for two different networks

(M = 45, M = 25). For all networks capable of synchrony (M > 25), hsi settles

within the interval associated with intermediate j corresponding to mixture

network activity patterns. The time averaged value of the order parameter as-

sociated with the steady state does not depend on the initial mean weight (dots

of the same color cluster for each M), and depends only slightly on M (clusters

of the same color have similar j), but is instead controlled by the integral of the

STDP rule (clusters of different colors have different j).
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Figure 6. Synchronous Bursts and Correlations in the Hippocampus and in the Model

(A) Spike rasters of 101 simultaneously recorded CA1 pyramidal cells over a period of 15 s in SWS. (B) Spike rasters of 101 regular spiking neurons from the model

of Figure S4 over a period of 15 s after the network has converged to a mixture state. The model network is randomly driven at 0.5 Hz. The red curves above the

rasters in (A) and (B) are the instantaneous mean firing rates (Hz) of the average cell activity. Notice the prominent vertical striations, corresponding to population

bursts, and the low-rate firing during the interburst intervals. (C) Standardized cross-covariances Qij (Siapas et al., 2005) between a given pyramidal cell i and each

of the simultaneously recorded pyramidal cells j are displayed as a pseudocolor plot. Notice that all significant correlations, indicated by hot colors, occur within

a narrow window around zero (dotted lines are at ±50 ms). The two examples displayed in (D) and (E) are representative of the shape of the time difference dis-

tributions between the spiking of pairs of correlated neurons. The median m and s of the Gaussian fits over all interacting pairs from all eight data sets were 0 and

26 ms, respectively. (F) Same as in (C) but for cells from the model. Notice that the widths of the cross-covariances are very similar in the data and model. (G and H)

Examples of correlated (G) and uncorrelated (H) pairs in the model. (I and J) The mean correlation coefficient as a function of time lag for CA1 cells (I) and for cells in

the model (J). (K) The peak correlation coefficients for each pair of CA1 cells (red) and cells in the model (black) in ascending order. The values of peak correlations

for CA1 and model cells are very similar. A larger fraction of cells in the model is highly correlated, which accounts for the differences in the peak values in (I) and (J).
of neurons participate in each burst in the model (Figure 6K). The

first discrepancy is due to the fact that the model is 300 times

smaller than CA3. Our analysis indicates that networks ap-

proaching the size of CA3 are expected to support mixture states

with synchronous bursts occurring against background rates as

low as the experimentally observed values (Section S3). The sec-

ond discrepancy may be due to a variety of factors, including

differences in network size, connectivity structure, inhibitory

interactions, etc. The understanding of the precise mechanisms

controlling the size of synchronous bursts in CA3 remains incom-

plete; therefore, further studies are required to resolve this issue.
Decoupling through Stimulation
One counterintuitive prediction of the above results is that it

should be possible to desynchronize recurrent networks exhibit-

ing persistent synchrony by oversynchronizing them. The reason

is that the strength of the decoupling force is inversely propor-

tional to the width of the population bursts, and therefore, tighter

bursts should engage the decoupling force more effectively. To

test this prediction we simulate the activity in the network of

Figure 4 under a Hebbian STDP rule with a large positive integral,

which corresponds to a high-order parameter equilibrium mixture

state. One minute into the simulation and after the equilibrium
Neuron 58, 118–131, April 10, 2008 ª2008 Elsevier Inc. 123
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mixture state is reached, a quarter of the neurons are driven

by external stimulation once a second. This stimulus is capable

of generating a very tight population burst that spreads to all neu-

rons in the network (Figure 7C) and thus effectively engages the

decoupling force of STDP. Soon after stimulation is turned on,

the mean synaptic weight and order parameter converge to lower

values (Figures 7A, 7C, and 7F) and network activity between

stimulation pulses becomes random, thus confirming our predic-

tion. Notice that after stimulation is turned back off, activity in the

network settles back to the original highly synchronous mixture

state (Figures 7A, 7D, and 7G). It is possible that the stimulation

itself reduces the amount of network synchrony by directly affect-

ing membrane dynamics. However, this is not the case, since the

same pattern of stimulation with plasticity disabled is incapable of

affecting the order parameter in the network (Figure 7). Thus, the

stimulated bursts must engage the decoupling force of STDP in

order to desynchronize activity. This observation suggests that

plasticity mechanisms may contribute to some of the therapeutic

effects of deep brain stimulation.

Decoupling in Hippocampal Networks
Given that SPW bursts produce cross-correlations with a narrow

peak around zero (Figure 6C), our analysis predicts that they

should lead to decoupling in the recurrent circuits of CA3. How

can such decoupling be experimentally detected, without the

ability to directly measure the strength of multiple synapses

in freely behaving and naturally sleeping animals? We examine

the behavior of two different proxies of synaptic coupling: the

mean pairwise firing-rate correlation and the slope of the field

excitatory postsynaptic potential (fEPSP) in stratum radiatum

of CA3 produced by electrical stimulation of the recurrent

connections.

In the mixture state the mean synaptic weight, hsi, is approx-

imately proportional to the pairwise firing-rate correlations aver-

aged over all cell pairs, hri (Figure 8A). Of course, correlations do

not in general reflect the level of synaptic coupling. For example,

in a network driven by structured external input, the correlations

will likely reflect the structure of the input more than anything

else. However, in the case of recurrent networks driven by ran-

dom activity, correlations do provide an experimentally accessi-

ble, albeit indirect, measure of coupling (Figure 8A). Furthermore,

Table 1. Comparison of the Activity of CA1 in SWS and Network

Models in the Mixture State

Firing

Rate

(Hz) CVisi

Burst

Rate

(Hz) CVibi

Cells per

Burst

(%) CC(0)

CA1 0.20 2.00 0.54 1.71 7.81 0.0008

Model at

0.5 Hz

0.97 0.94 0.78 0.88 46.82 0.0025

Model at

1.0 Hz

3.01 0.65 3.48 0.36 55.80 0.0045

The following values are reported in the columns: (1) number of spikes per

second; (2) coefficient of variation (CV) of interspike intervals; (3) number

of synchronous bursts per second; (4) CV of interburst intervals; (5) per-

cent of neurons active in each burst; and (6) cross-correlation coefficient

(CC) between cell pairs at zero lag (1 ms bins).
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this special case is the relevant one, as previous studies show

that SPW bursts are generated within the CA3 recurrent network

when external input to the network through the entorhinal cortex

is highly attenuated and CA3 is driven by random internal fluctu-

ations in activity (Buzsaki, 1986; Chrobak and Buzsaki, 1996;

Csicsvari et al., 2000). Furthermore, under these conditions the

firing of CA3 cells is the dominant cause of spiking in CA1 (Csics-

vari et al., 2000); hence, CA1 recordings can be used as a ‘‘read-

out’’ of CA3 activity during SPW bursts. Consequently, a testable

prediction of the model is that population bursts in the hippo-

campus should produce a decrease in the mean pairwise corre-

lation hri between CA3, as well as CA1, cells.

Two previous studies examining the reactivation of CA1 activity

patterns in sleep have reported such a decay in correlations

(Wilson and McNaughton, 1994; Kudrimoti et al., 1999), but

the reason behind the phenomenon has remained a mystery.

The present work not only offers a mechanistic hypothesis of

how this phenomenon occurs, but also extends the experimental

findings in light of decoupling. In particular, since the goal is

to make inferences about the level of coupling in CA3 from record-

ingsobtained in CA1, pairwisecorrelationswere computed based

on the firing of cells during ripples, when CA1 is almost exclusively

driven by inputs intrinsically generated within the recurrent cir-

cuits of CA3 (Csicsvari et al., 2000). We find that in all eight sleep

sessions from three animals, the mean correlation computed from

ripples occurring in the first halves of SWS epochs is always

higher than the corresponding mean computed from ripples oc-

curring in the second halves of SWS epochs (Figure 8B and Ex-

perimental Procedures). Furthermore, this decay in correlations

is statistically significant not only overall (p < 0.01, sign test over

eight data sets; p < 0.0005, paired t test, one comparison per

SWS epoch), but also can be demonstrated within five of the eight

individual sleep sessions (p < 0.05, nonparametric bootstrap;

Figure 8B). In contrast, pairwisecorrelationscomputed from inter-

ripple intervals need not reflect the level of coupling in CA3, be-

cause the identity of the inputs driving activity in CA1 during these

periods is less clear. Consistently we find no decay in correlations

based on interripple intervals (Figure S10C). To control for im-

perfect ripple identification, we also compared correlations com-

puted in the first versus second halves of SWS epochs without

ripple segmentation and confirmed the presence of decay both

overall (p < 0.01, sign test) and in all eight individual sleep sessions

(p < 0.05, nonparametric bootstrap; Figure S10A).

Can systematic changes in firing rates account for the ob-

served decay in correlations? To address this issue we used a

combination of two analytical approaches. First, we coded the

ripples of each SWS epoch in binary format, giving a matrix

whose ij entry is 1 if cell i fired one or more spikes in ripple j. Sec-

ond, before comparing the mean correlation computed from the

first half of this binary matrix to the corresponding mean from the

second half, for each row (cell) we equalized the number of 1’s

between the two halves by random insertion. This way neurons

are made equally likely to participate in ripples early and late

in SWS, and the only difference is in their tendency to do so

in a coordinated manner. Furthermore this analysis is insensitive

to firing rates within ripples and changes in firing rates across rip-

ples. We find that even after this manipulation, a highly significant

correlation decay is observed (p < 0.005, paired t test, one
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Figure 7. Decoupling through Stimulation in Recurrent Networks

The same network as in Figure 4 was simulated under the STDP rule shown in Figure 1E, which has a positive integral and hence a bias toward synaptic strength-

ening. Such an STDP rule can be considered abnormal in the sense that it poises network activity in a state that is highly synchronized, as can be seen from the

high value of j in the first minute of simulation (A). Stimulation consisting of 5 ms current injections every second given to neurons 1 through 25 (upper left square

marked by the white lines in [E]–[G]) is turned on 1 min into the simulation. Soon after, activity in the network becomes markedly desynchronized, as can be seen

by the drop in j (blue line). This is accompanied by a corresponding drop in the mean synaptic weight (red line). The stimulation is given for 3 min, and as long as it

is present, the activity in the network is desynchronized. Soon after the stimulation is turned off, the network returns to the synchronized state. If STDP is disabled

when the stimulation is turned on, the order parameter (light blue line) and mean synaptic weight (orange line) are not affected by the stimulation. Also shown are

two-second spike rasters (B–D) and snapshots of the synaptic weight matrix (E–G) right before stimulation is turned on (B and E), right before stimulation is turned

off (C and F), and at the end of the run (D and G). Notice that stimulation leads to strengthening of the connections from the stimulated subset to the rest of the

neurons (bottom left block in [F]), while interconnections within the stimulated subset are weakened (top left block in [F]).
comparison per SWS epoch; see Experimental Procedures).

This strongly argues that firing rate changes are not the source

of the correlation decay.

In order to further investigate whether the observed decay in

correlations is indeed due to weakening of the CA3 recurrent

synapses, we studied the evolution of the fEPSP slope in stratum

radiatum of CA3 evoked by electrical stimulation of the fimbria

in a freely behaving, chronically implanted rat. At the beginning

of each experiment, the stimulus intensity was adjusted to evoke

a clear, low-latency unimodal fEPSP in CA3 (Figure 8D). Next,

probe pulses of fixed intensity were delivered every 30 s and

the corresponding fEPSP slope was computed while the rat slept

or ran on a linear track for reward (Figure 8C). We found that in

the sleep period following experience, there was a gradual and

highly significant decrease of fEPSP slope (r =�0.43, p < 10�10),

consistent with the prediction that SPW bursts in CA3 engage

the decoupling force of STDP and thus weaken the recurrent

synaptic connections.
DISCUSSION

Generality of the Decoupling Force
The main conclusion of our results is that synchronous bursts,

occurring within recurrent circuits with delays, should lead to

the selective decoupling of the coactivated neurons. We predict

that such a decoupling force is present in circuits that meet the

following common criteria: (1) presence of recurrent connec-

tions, (2) nonzero axonal conduction delays, (3) Hebbian STDP

in the recurrent connections, and (4) conditions, such as internal

dynamics or external input, producing synchronous population

bursts. Since many networks in the adult and developing brain

meet the above criteria, we expect the decoupling force of

STDP to be a very general and important phenomenon.

The convergence of networks to mixture states is a conse-

quence of the coupling and decoupling forces of STDP that

applies to randomly driven networks for which the level of syn-

chronous activity is principally controlled by the strength of the
Neuron 58, 118–131, April 10, 2008 ª2008 Elsevier Inc. 125
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Figure 8. Evidence for Decoupling through Synchrony in the Hippocampus

(A) Correlation coefficient between the mean pairwise correlation hri and the mean synaptic weight hsi as a function of time lag, computed from the activity in

a model network poised in a mixture state. Notice the significant positive correlation at zero lag, justifying the use of hri as a measure of coupling. The significant

negative correlation peaking at a negative lag is due to the decoupling force: intervals of high synchrony, marked by high correlations hri, lead to decoupling and

are thus followed by intervals of low hsi.
(B) Mean pairwise correlations based on activity during ripples from the first halves of SWS epochs, hriR1 (red), and the second halves, hriR2 (blue). Results from

eight sessions (A1–A4, B1 and B2, and C1 and C2) in three animals (A, B, and C) are shown. Notice that for all sessions hriR1 > hriR2, indicating a decay in pairwise

correlations. Boxplots show the sampling distributions of the mean pairwise correlations estimated for each session with a nonparametric bootstrap procedure

(Experimental Procedures). Significant decay in correlations within a session is indicated by an asterisk (five out of eight sessions, p < 0.05). In the sessions for

which the decay in correlations could not be demonstrated as significant, the actual mean correlations were low, suggesting an issue with detectability due to the

random sampling of a larger fraction of noninteracting cells. Across sessions the decay in correlations was significant both when all activity was considered and

when activity during ripples only was considered (p < 0.01, sign test; inset, left and middle bar pairs). There was no decay in correlations when activity during

interripple intervals only was considered (p > 0.25, sign test; inset, right bar pair).

(C) Time evolution of the slope of CA3 fEPSPs evoked by electrical stimulation of the ipsilateral fimbria (Experimental Procedures). Stimulation pulses are deliv-

ered once every 30 s and each point represents the average slope of ten fEPSP measurements normalized by the average fEPSP slope (1.12 mV/ms). During the

period marked by the gray rectangle, the rat runs back and forth on a linear track for liquid reward. Consistent with the hypothesis that experience leads to

strengthening of CA3 recurrent connections, fEPSP slopes increase throughout the run period. Consistent with the conjecture that SPW bursts in SWS lead

to decoupling of the CA3 network, fEPSP slopes progressively decay in the sleep period following experience.

(D) Mean fEPSPs in the first and second half of sleep 2 (black and red traces, respectively).
recurrent excitatory connections. Under these circumstances

STDP acts as a local rule that tunes the strength of synaptic

interactions to poise the global network dynamics at the border

between randomness and synchrony. The coupling and decou-

pling forces of STDP operate in more complex networks as well,

but convergence to mixture states need not occur in general,

as there may be a number of additional influences that pattern

network activity and affect the level of synchrony besides the

strength of synaptic coupling, such as structured input, pace-

maker neurons, excitatory-inhibitory interactions, etc.

A recent study has reported that synchronous bursts lead

to the selective strengthening of recurrent connections between

coactivated neurons, instead of exerting a decoupling force as

we observe (Morrison et al., 2007). The explanation for the dis-

crepancy is that for technical reasons there were only dendritic,
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and not axonal, delays implemented in Morrison et al. (2007).

As a result, when two reciprocally connected neurons fire simul-

taneously, spikes arrive at the presynaptic sites instantaneously

and before the action potentials have backpropagated to the

postsynaptic sites, thus producing input-output time differences

that lead to strengthening under Hebbian STDP. This is physio-

logically unrealistic because one generally expects axonal de-

lays to be larger than dendritic delays. Furthermore, consistent

with our prediction and contrary to Morrison et al. (2007), exper-

iments that were used to demonstrate STDP in CA3 synapses di-

rectly showed that making a pair of reciprocally connected cells

fire synchronously leads to weakening of the synapses between

them (Debanne et al., 1998). Using only dendritic delays corre-

sponds to using an anti-Hebbian STDP rule within our analysis

framework. Under these conditions synchronous bursts lead to
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synaptic coupling, thus engaging a positive feedback mecha-

nism that is the source of the reported ‘‘synfire explosions’’ (Mor-

rison et al., 2007). This is contradicted by the observation that

synchronous bursts in the hippocampus are associated with

a decorrelation of network activity, rather than lead to highly

synchronized states.

Role of Causality and Temporal Order
The intuition behind the decoupling force of STDP is very simple

when the synchronous burst in the network is driven by external

input (Figure 1A and Figure 7). When the synchronous burst

builds up internally within the network, however, some recurrent

synapses must causally contribute to the firing of each neuron,

and these synapses will be strengthened by Hebbian STDP.

But how can STDP then lead to desynchronization if it is not

weakening the synapses causally responsible for the generation

of the synchronous burst?

This apparent paradox is resolved by noticing that when activ-

ity builds up randomly within the network, different synapses are

responsible for firing the postsynaptic neuron at different points in

the population burst and across bursts (Figure S11). Hence one

cannot speak of the set of synapses causally responsible for syn-

chrony because this set is not fixed—its membership changes

with time. Under such random buildup conditions, any given con-

nection contributes only occasionally, and therefore weakly, to

the firing of the postsynaptic neuron. As a result, pairwise firing-

rate cross-correlation functions are peaked around zero and

their width reflects the duration of population bursts (Figure 1).

Indeed, the decoupling force of STDP would be defunct if all

bursts progressed in a stereotyped, causal, chain-like fashion.

Under these circumstances the cross-correlation function be-

tween cell pairs would be narrowly peaked and centered at a

nonzero offset, reflecting axonal conduction delays and the con-

sistent ordering of cell firing. This is not the case for either the

model networks (Figure 1A) or the hippocampus (Figure 6C),

where cross-correlation functions are broader and centered

around zero. Furthermore, notice that the presence of temporal

order alone—cell A fires before cell B—need not interfere with

the decoupling force. A stronger condition is necessary: the tem-

poral order must be causal, i.e., cell B fires after it has received

the input from cell A.

Sequential Firing in the Hippocampus in SWS
Several studies have reported evidence for the sequential re-

activation of experience-specific activity patterns in the hippo-

campus within population bursts during SWS (Skaggs and

McNaughton, 1996; Nadasdy et al., 1999; Lee and Wilson, 2002;

O’Neil et al., 2006). Do the experimental observations in these

studies violate the temporal ordering condition necessary for

decoupling?

Each of the above studies takes one of the following two ana-

lytical approaches. In the first, pairwise cross-correlation asym-

metries from the awake state are compared with the correspond-

ing asymmetries from a subsequent sleep period (Skaggs and

McNaughton, 1996; O’Neil et al., 2006). The presence of a signif-

icant positive correlation between the awake and sleep asymme-

tries constitutes the evidence for sequence replay. However, as

discussed in O’Neil et al. (2006), the actual value of the correlation
coefficient is small (r < 0.1) and most asymmetries fall in a cloud

around the origin (Skaggs and McNaughton, 1996), indicating

that many pairs do not have a sequence bias. Furthermore, cell

pairs with no reactivated sequence bias and nearly symmetric

cross-correlation histograms still replay cofiring patterns during

sleep (O’Neil et al., 2006). This strongly argues that cells that

cofire in the awake state cofire within SWS bursts, but rarely

(yet above chance) in an order consistent with the awake state.

In the second approach, activity in the awake state is used to

define an order template, and subsequent sleep firing patterns

are searched for sequences matching the order template

(Nadasdy et al., 1999; Lee and Wilson, 2002). The fact that sleep

sequences contain more matches than expected by chance con-

stitutes the evidence for sequential reactivation. This is not con-

tradicted by the observation that the vast majority of sequences

are in an order that does not match the awake template. In par-

ticular, in Lee and Wilson (2002) there are 655 cell pair matches

and 600 nonmatches out of 1255 trials, a deviation which is not

significantly different from the 628 matches expected by chance.

For triplets and longer sequences, the deviations from chance

are significant, but small. The numbers are 57 observed matches

instead of 43 expected by chance out of 259 trials for triplets, and

35 observed matches instead of 11 expected by chance out of

270 trials for longer sequences. Finally, because these studies

encode bursts of spikes as single events occurring at the time

of the first spike in the burst, the order bias does not directly

translate into a cross-correlation asymmetry bias, which is the

relevant quantity as far as decoupling is concerned.

In summary, previous studies have demonstrated the presence

of a significant bias toward sequential reactivation of activity pat-

terns during population bursts in SWS. Yet the ordered patterns

constitute a small fraction of the total number of bursts, and there-

fore do not violate the ordering condition for decoupling.

Relevance for Hippocampal Function
It is believed that mnemonic information initially established

in hippocampal circuits is gradually transferred into neocortical

regions, and SPW bursts have been implicated in this process

(Buzsaki, 1989; Squire, 1992; Siapas and Wilson, 1998). It re-

mains unclear, however, how old information is selectively and

gradually erased from hippocampal circuits. Our findings sug-

gest that SPW bursts may not only establish strong connections

to and between target cortical areas, but simultaneously act to

gradually erase intrahippocampal associational connections

within the CA3 subfield as mnemonic information is transferred

outside the hippocampal formation.

In particular, because of the spatial selectivity of hippocampal

neurons and their precise firing with respect to theta oscillations,

awake experience results in consistent temporal patterning of

firing within the window of plasticity (Skaggs et al., 1996). This is

believed to lead to the formation of strongly connected subnet-

works in CA3, linking the subset of neurons active in the awake

state. The addition of these strong connections increases the level

of coupling above the equilibrium point. As a consequence, during

subsequent SWS, the CA3 network is more synchronized than

usual and its relaxation to the equilibrium mixture state is associ-

ated with the preferential expression of patterns biased in favor of

the neurons from the strongly connected subnetwork. Our results
Neuron 58, 118–131, April 10, 2008 ª2008 Elsevier Inc. 127
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argue that this burst re-expression of patterns decouples the

strongly connected CA3 subnetwork, thus effectively erasing

the experience-specific hippocampal memory trace and returning

the CA3 network to equilibrium. Notice that the decoupling force

of STDP will not completely erase the given memory trace, but

will weaken it until it matches the typical strength of older traces.

What regulates the identity of neuronal patterns expressed by

the hippocampus during sleep? As discussed above, awake

behavior increases the probability of expression of certain expe-

rience-specific neuronal patterns (memories) during subsequent

SWS. In contrast, because of the decoupling force of STDP, the

expression of any given pattern decreases the probability of

its future re-expression due to the weakened connections

between the participating neurons. Together these two mecha-

nisms ensure that the number of times a pattern is expressed

in sleep is proportional to how strongly it was embedded in the

hippocampal network. These mechanisms also play a homeo-

static role, preventing any given memory from permanently

taking over circuit resources.

EXPERIMENTAL PROCEDURES

Computational Model

We use a modified and extended version of the network simulator introduced

by Izhikevich (Izhikevich, 2003, 2006). All but one (Figure S4) of the networks

included in the text consisted of 100 RS neurons with dynamics given by

dv

dt
= 0:04v2 + 5v + 140� u + I (1)

du

dt
= aðbv � uÞ (2)

with spikes generated when vR30 and associated afterspike resetting

rules v)c, and u)u + d, where a = 0:02, b = 0:2, c = �65 and d = 8.

Synaptic interactions and external input were introduced via the I term. In

particular, consider neuron n in a network of size N, let the conduction delay

from neuron m to n be dnm and the synaptic strength at time t be snmðtÞ. Let

neuron m generate spikes at times tmi where individual spikes are indexed

by i, and let neuron n receive external input at times tnj via a synapse of strength

rn. Then

InðtÞ=
XN

m = 1

X
tmi %t

snmðtÞdðt � tmi � dnmÞ+
X
tnj %t

rndðt � tnjÞ: (3)

Thus, a spike fired by neuron m at time tmi causes the membrane voltage of

neuron n to instantaneously jump by snmðtÞ (mV) at time tmi + dnm. In this sense

snmðtÞ represents the peak amplitude of the EPSP seen in neuron n in response

to input from m. The EPSP peak is attained instantaneously upon input arrival

at n, and the EPSP decays according to the membrane dynamics (Equation 1).

No inhibitory interneurons were included in these simulations because it was

determined that their presence was not essential for the establishment of net-

work oscillations and synchronization. In particular, a model network of 1000

neurons that incorporated inhibition, diverse neuronal populations, connection

divergence, and distribution of delays mimicking the hippocampal CA3 field,

as well as ‘‘nearest-neighbor’’ STDP implementation, behaved in qualitatively

the same way (Figure S4) as the simpler systems we focused on. We also con-

firmed that the decoupling force was present in a larger network consisting of

10,000 neurons. Since the decoupling force of Hebbian STDP depends princi-

pally on the presence and structure of population bursts, irrespective of the

mechanisms that produce them, the main result is insensitive to the details

of the model. In the 100 neuron networks the number of postsynaptic targets

per neuron ranged between 5 and 95. Each connection was given a random

delay, dnm, between 1 and 20 ms. This range and distribution of delays is

consistent with experimental measurements of axonal conduction delays in
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cortico-cortical connections (Swadlow, 1994). The corresponding range for

the hippocampal CA3 field is 1 to 10 ms (Miles et al., 1988; Ishizuka et al.,

1990). Unless otherwise stated, neurons were driven by 10 Hz uncorrelated

Poisson trains of rn = 20 mV EPSPs that were capable of firing neurons roughly

50% of the time. The time and identity of all spikes were stored and used in the

calculation of the order parameter evolution. Similarly, the synaptic weight

matrix was stored every 1 ms for subsequent analysis.

STDP Implementation

Let presynaptic neuron m generate a total of M spikes at times tj, 1 % j % M,

and postsynaptic neuron n generate a total of N spikes at times ti , 1 % i % N.

Let the conduction delay from m to n be dnm and the synaptic strength at

time t be snmðtÞ. Let Dtk = ti � ðtj + dnmÞ, 1%k%NM be the time difference

between postsynaptic spike i and the arrival of presynaptic spike j at neuron

n. The total change in synaptic strength produced by the pairing Dtk is

FðDtkÞ, where

F(Dt) =

8><
>:

A+ e�
Dt

t + if DtRZ

0 if Dt ˛(� Z; + Z)

A�e
Dt
t� if Dt%� Z

(4)

The parameter Z can be used to nullify the effect of pairings in the interval

ð�Z;ZÞ and the familiar form of the rule is recovered by setting Z = 0. All

STDP variants we consider are additive in the sense that the total change in

synaptic strength results from adding the contributions of individual pairings.

Depending on which pairings Dtk contributes to the synaptic change, we dis-

tinguish two classes of implementations. In ‘‘all-to-all’’ implementations all NM

possible pairings contribute. In nearest-neighbor implementations, at most,

N + M pairings contribute; i.e., each presynaptic and postsynaptic spike is

paired only with its immediately preceding postsynaptic and presynaptic

spike, respectively.

Within each class two additional manipulations can be independently

enabled. First, presynaptic and postsynaptic spikes can be assigned effica-

cies when suppression is enabled, following the model in Froemke and Dan

(2002). Second, pairings falling in the interval ð�Z;ZÞ can be ignored by setting

Z > 0, thus nullifying FðDtÞ in the interval ð�Z;ZÞ.
The following general equations can be specialized for the implementations

discussed above. For every neuron k define a potentiation function Sk
+ ðtÞ and

a depression function Sk
�ðtÞ as follows:

Sk
+ ðtÞ=

X
ti %t

3k
preðtiÞA+ e�

t�ti
t + Iðt; ti ; ti + 1Þ (5)

Sk
�ðtÞ=

X
ti %t

3k
postðtiÞA�e�

t�ti
t� Iðt; ti ; ti + 1Þ (6)

where

3k
preðtiÞ= 1� e

� ti�ti�1
tpre

and

3k
postðtiÞ= 1� e

� ti�ti�1
tpost

are spike efficacies, and I takes on the values of 0 and 1 only and specifies the

time interval over which the preceding term is present. In particular, in all-to-all

implementations Iðt; ti ; ti + 1Þ= Hðt � ti � ZÞ, where HðtÞ is the Heaviside step

function, thus specifying the interval ½ ti + Z;NÞ. In nearest-neighbor

implementations Iðt; ti ; ti + 1Þ= Hðt � ti � ZÞHðti + 1 + Z � tÞ, thus specifying the

interval ½ ti + Z; ti + 1 + ZÞ. The instantaneously updating synaptic strength

s0nmðtÞ, where m is the presynaptic and n the postsynaptic neuron, is given

by:

s0nmðtÞ =
X
ti %t

3n
postðtiÞSm

+ ðti � dnmÞHðt � tiÞ

+
X

tj %t�dnm

3m
preðtjÞSn

�ðtj + dnmÞHðt � tj � dnmÞ ð7Þ

where the first term is the contribution of postsynaptic spike ti, and the second

term is the contribution of presynaptic spike tj .
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Finally, when no saturations occur, the actual synaptic strength snmðtÞ is

given by s0nmðtÞ smoothed with a kernel with exponential impulse response

hðtÞ, i.e.,

snmðtÞ= hðtÞ � s0nmðtÞ (8)

hðtÞ= 1

tSTDP

e
� t

tSTDP : (9)

If snmðtÞ reaches either boundary of the interval ½0; smax �, only updates

moving snmðtÞ away from the extremes and toward the range of admissible

strengths are applied.

Unless stated otherwise, all STDP rules were additive with t + = t� = 20 ms,

and connection weights, snmðtÞ, were allowed to vary between 0 and 10 mV.

For all simulations included in the main text, biases in the STDP rules were

introduced via the A + and A� parameters and were as follows: all unbiased

rules A + = 1, A� = �1; Figure 1C, A + = 1, A� = �1:4; Figure 1E, A+ = 1:4,

A� = �1; red dots in Figure 5, A+ = 1:1, A� = �1; blue dots in Figure 5,

A+ = 1, A� = �1; yellow dots in Figure 5, A + = 1, A� = �1:1. We used an

STDP time constant tSTDP = 1 s and suppression time constants tpre = 28 ms

and tpost = 88 ms. Suppression was disabled by default by setting all efficacy

terms to 1. Zeroing of the central region of the STDP rule was disabled by

default by setting Z = 0.

Mechanism of Network Oscillations in the Model

Buildup of excitation in recurrent networks occurs when the simultaneously

active fraction of neurons at a given point in time is capable of firing a larger

fraction at a subsequent point in time. This condition is satisfied when the

product of connection divergence and interaction strength exceeds some

threshold. Once a critical fraction of neurons, dependent on the above prod-

uct, becomes simultaneously active (for example, due to coincident inputs),

activity in the network avalanches into a population burst. In the networks

we study this population burst is terminated because of the dynamics of indi-

vidual neurons. In particular, the threshold for firing of RS neurons increases

with each spike fired and recovers slowly. Therefore, as neurons get recruited

in the avalanche of activity, their firing thresholds keep increasing with every

spike they fire, until ultimately they become completely refractory. Thus, the

avalanche of excitation leads to a population burst, which is followed by a net-

work refractory period in which no neuron fires. Under conditions when the

critical fraction of neurons needed to trigger a population burst is small, ran-

dom input drives the network into its next avalanche as soon as it has recov-

ered from the refractory period associated with the previous one. This leads to

the regular sequence of population bursts followed by silent refractory periods,

which together constitute the apparent network oscillation.

Order Parameter

The order parameter j quantifies the fraction of small time bins for which the

instantaneous firing rate in the network is outside of the range expected under

random firing (Figure S1). By definition j can only detect significant deviations

in the level of simultaneous firing and is therefore insensitive to cross-correla-

tion structure at nonzero time lags. Despite its simplicity, j captures well the

level of synchronization in the network, and for a wide range of dynamic re-

gimes, including mixture states, it appears to provide nearly identical quantifi-

cation to the more complex and computationally expensive r2 measure of syn-

chrony introduced by Pinsky and Rinzel (1995) (Figure S2). An order parameter

can be similarly computed based on the activity in a subset of the network

(Figure S4).

Experimental Analysis

Using chronic multitetrode arrays we recorded the simultaneous activity of

CA1 neurons from three animals (A, B, and C) during eight 2-hr sleep sessions

(except for A3, which lasted 53 min). In particular, rats were implanted with

custom 24 tetrode microdrive arrays and data were collected using a 24-bit

data acquisition system developed in our lab. Only putative pyramidal cells

that met isolation criteria and had mean firing rates smaller than 1 Hz were

included in the analysis. The number of cells analyzed and the total number

of cells recorded in each session were as follows: A1, 59/104; A2, 97/156;
A3, 69/108; A4, 101/159; B1, 83/132; B2, 76/113; C1, 33/56; C2, 27/42. For

each session the spiking of N neurons was binned in T100 ms bins, yielding

an NxT matrix Q, with instantaneous firing rates in the rows, and ‘‘population

vectors’’ in the columns (Kudrimoti et al., 1999). SWS epochs were identified

based on the power content of local field potentials (LFPs) and video record-

ings of the sleep sessions. Columns falling outside of SWS epochs were

deleted from Q (on average 28% of all columns). All remaining columns were

labeled as occurring in the first ‘‘1’’ or second ‘‘2’’ halves of their corresponding

SWS epochs, and as overlapping a ripple ‘‘R’’ or falling within an interripple in-

terval ‘‘I.’’ By definition 50% of the bins were labeled ‘‘1’’, and on average,10%

of the bins were labeled ‘‘R’’.

The objective of the analysis was to compare the mean pairwise firing-rate

correlation in the first halves of SWS epochs to the corresponding mean in

the second halves. Pairwise correlations were computed in three different

ways: based on all activity (Figure S10A), based on activity during ripples

only (Figure S10B), and based on activity during interripple intervals only (Fig-

ure S10C). This was done by using different subsets of the columns of Q to

compute the mean correlation between all unique pairs of rows and then aver-

aging. In particular, when all activity was used, Q was split into Q1 and Q2,

according to the ‘‘1’’ or ‘‘2’’ label assigned to each column, and the mean pair-

wise correlation between the rows of each matrix was computed, giving hri1
and hri2 (Figure S10A). When activity during ripples only (interripple intervals

only) was used, the submatrix QR(QI) was formed first, based on the ‘‘R’’

(‘‘I’’) column labels. The rest of the analysis proceeded as above to give the

matrices QR1 and QR2(QI1 and QI2) and the corresponding mean correlations

hriR1 and hriR2 (hriI1 and hriI2) (Figures S10B and S10C). Finally, we repeated

the entire analysis starting with a binary version of the matrix Q, in which every

nonzero entry was set to 1.

The advantage of using all data when computing correlations is that the anal-

ysis does not depend on successful ripple identification and therefore provides

a control against improper segmentation. A major disadvantage, however, is

that correlations are sensitive to the firing rate nonstationarity introduced by

lumping together high-firing-rate ripples with low-firing-rate interripple inter-

vals. In this case factors that need not relate to coupling, such as the rate of

ripple occurrence, can influence the magnitude of pairwise correlations. In

contrast, analysis based on activity during ripples only depends on successful

ripple identification, yet correlations are more sensitive to the identity of neu-

rons participating in SPW bursts than to nonspecific factors. Furthermore,

since activity in CA1 during ripples is driven by inputs intrinsically generated

within the recurrent circuit of CA3, the mean correlation in CA1 during ripples

is more likely to reflect the level of coupling in CA3. Finally, correlations based

on interripple intervals need not relate to coupling in CA3, because the identity

of the inputs driving CA1 activity in these periods is less clear.

Estimating the significance of the difference between the correlations com-

puted in the first versus second halves of SWS epochs is difficult, because

a sample of all unique pairwise correlations is not composed of independent

measurements. For example, knowing that cell pairs ij and ik are strongly cor-

related implies that cells j and k are likely to be correlated as well. Thus, a t test

over all individual pairwise correlations greatly overestimates the significance

of the difference. We used two separate approaches instead. First, instead of

individual pairwise correlations (21,105 comparisons), we compared the

means of pairwise correlations from the first versus second halves of each

SWS epoch (31 comparisons, paired t test, p < 0.0005), or each data set (eight

comparisons, sign test, p < 0.01, insert of Figure 8B). Second, we used a non-

parametric bootstrap procedure to estimate the sampling distribution of the

mean correlation in each case. In particular, given a matrix QX (i.e., Q, QR, or

QI), we generated 10,000 random subsets QXi by drawing half of the columns

of QX at random, and computed the corresponding mean pairwise correlations

hriXi . The significance of the effect was determined based on the location of the

actual correlations with respect to the distribution of hriXi (Figure S10).

We found that when activity during ripples only was considered, the mean

correlations in the first halves of SWS were significantly higher than the corre-

sponding means in the second halves (Figure S10B). This decay in correlations

was present also when all activity was considered (Figure S10A), but was ab-

sent when activity during interripple intervals only was analyzed (Figure S10C).

The exact same results were obtained when we used the binary version of

the matrix Q, indicating that pairwise correlations reflected the patterns of
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coactive neurons, rather than global comodulation of firing rates across the

cell population. Overall these findings are in excellent qualitative and quantita-

tive agreement with previous work (Wilson and McNaughton, 1994; Kudrimoti

et al., 1999). They extend previous work by showing that the decay in correla-

tions is detectable in the mean that is taken over all unique cell pairs, without

consideration of activity patterns during previous periods of wakefulness, as

well as in the binary correlations. Furthermore, the decay is demonstrated

with a conservative statistical procedure within individual sleep sessions.

Finally, a statistically significant decay in correlations is demonstrated when

activity during ripples only is considered, whereas previous work has reported

a nonsignificant trend in the same direction (Kudrimoti et al., 1999).

Stimulation Experiments

For the stimulation experiments a rat was chronically implanted with a record-

ing tetrode (B = �4.3, L = 4) and a monopolar stimulating electrode (B = �3.3,

L = 4; stainless steel, 140 mm diameter, A-M Systems). After recovery from sur-

gery the recording tetrode was slowly lowered to stratum radiatum of CA3 and

the stimulating electrode was positioned in the ipsilateral fimbria (approxi-

mately 4 mm below the surface of the brain). During each experimental session

the rat was allowed to sleep for 125 min (PRE), then ran on a linear track for

water reward for 90 min (RUN), and was allowed to sleep again for 125 min

(POST). Throughout the recording sessions a probe stimulation pulse of fixed

intensity was delivered to the fimbria every 30 s (200 ms biphasic pulse) and the

slope of the resulting fEPSP was measured. The stimulus intensity was ad-

justed before the start of each session to produce a low-latency, half-maximal

unimodal fEPSP (current between 40 and 100 mA). The DC bias current of the

stimulus isolator was carefully monitored and maintained in the nA range

throughout the recordings.

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/58/1/118/DC1/.
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