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Temporally Structured Replay of Awake
Hippocampal Ensemble Activity during
Rapid Eye Movement Sleep

In contrast, the role of rapid eye movement (REM)
sleep during memory consolidation is unclear. The
strong association between human dreaming and REM
sleep raises many questions about the information con-
tent of dream states as well as the physiological function
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Massachusetts Institute of Technology of REM sleep. Deprivation studies demonstrate the ne-

cessity of REM sleep for the acquisition of certain typesCambridge, Massachusetts 02139
of learning (Smith, 1995), but it has been argued that
REM sleep may serve a general homeostatic role rather
than a specific memory-processing function (Crick andSummary
Mitchison, 1983). Although general experience-depen-
dent changes in neural activity occur during REM sleepHuman dreaming occurs during rapid eye movement

(REM) sleep. To investigate the structure of neural (Pavlides and Winson, 1989; Poe et al., 2000), efforts
to detect short-timescale mnemonic activity like thatactivity during REM sleep, we simultaneously re-

corded the activity of multiple neurons in the rat hippo- observed during SWS have failed to detect such replay
(Kudrimoti et al., 1999). However, unlike SWS, REMcampus during both sleep and awake behavior. We

show that temporally sequenced ensemble firing rate sleep is dominated by the robust theta oscillations (6–10
Hz) and EEG desynchrony that characterize the awakepatterns reflecting tens of seconds to minutes of be-

havioral experience are reproduced during REM epi- exploratory state, raising the possibility that reactivation
during REM sleep may be temporally structured likesodes at an equivalent timescale. Furthermore, within

such REM episodes behavior-dependent modulation awake neural activity.
To investigate this, we employed a behavioral taskof the subcortically driven theta rhythm is also repro-

duced. These results demonstrate that long temporal that produces distinct hippocampal firing patterns over
extended durations and examined subsequent REM epi-sequences of patterned multineuronal activity sugges-

tive of episodic memory traces are reactivated during sodes for similar patterns of activity. Four male Long-
Evans rats were chronically implanted with microelec-REM sleep. Such reactivation may be important for

memory processing and provides a basis for the elec- trode arrays to record multiple single-cell activity from
the CA1 region of the hippocampus (Wilson and Mc-trophysiological examination of the content of dream

states. Naughton, 1993). Animals were trained to run along a
circular track for food reinforcement, traversing three
quarters of the track circumference in each trial of aIntroduction
four-trial sequence that was continuously repeated for
the duration of the task (Figure 1A). Following acquisitionThe hippocampus is a region of high-level sensory con-

vergence that is crucial to the formation and encoding of the task, electrophysiological activity was monitored
during task performance (RUN) and during periods ofof memories (Zola-Morgan and Squire, 1993). Extensive

work in rodents has demonstrated direct behavioral cor- sleep immediately before and after behavior.
relates of hippocampal neuronal activity, the most ro-
bust of which is the selective activation of CA1 pyramidal Results
cells at particular locations in space (place fields)
(O’Keefe and Dostrovsky, 1971). Consistent with a hip- The ability to simultaneously record the activity of multi-
pocampal role in memory encoding, these cells exhibit ple neurons enables the examination of complex pat-
experience-dependent reactivation during sleep that is terns of firing structure beyond pairwise firing biases.
representative of previous behavior (Pavlides and Win- CA1 pyramidal cells recorded during the behavioral task
son, 1989; Wilson and McNaughton, 1994; Skaggs and displayed spiking activity that was strongly dependent
McNaughton, 1996). Specifically, neurons with overlap- upon the animal’s position in space (Figure 1B). To ex-
ping place fields during spatial exploration show in- amine the influence of mnemonic coding on hippocam-
creased coactivity during subsequent sleep. Such short- pal activity, analysis was restricted to pyramidal cells
timescale mnemonic changes are associated with slow that were active and unambiguously isolated throughout
wave sleep (SWS), particularly the high-frequency ripple all sleep and behavioral epochs. Consistent with previ-
oscillations during which many hippocampal neurons ous observations of place cell activity within the hippo-
fire in close temporal synchrony. These oscillations pro- campus, in which z30% of cells are typically active in
vide ideal physiological conditions for the Hebbian mod- any given spatial environment (Wilson and McNaughton,
ification of synapses (Bliss and Collingridge, 1993), sug- 1993), cells with mean RUN firing rates exceeding 0.2
gesting that SWS reactivation can drive downstream Hz were identified as active, yielding ensembles con-
synaptic changes to encode memory representations sisting of between 8 and 13 simultaneously recorded
(Buzsaki, 1989). neurons per session (see Experimental Procedures).

While some cells were strongly modulated by location
alone, other cells fired in a conjunctive manner combin-* To whom correspondence should be addressed (e-mail: wilson@ai.

mit.edu). ing both location specificity and behavioral specificity
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Figure 1. Behavioral Task and Hippocampal Unit Activity

(A) Schematic of the four-trial sequence in the circular track task. A single trial consisted of travel from the start location to a removable food
well placed at the goal location, followed by food consumption; in any given trial the goal was located at a position 2708 clockwise from the
start. After completion of a trial, the goal location became the start location for the subsequent trial. After four trials the animal is at its original
starting location and the sequence begins again. A recording session consisted of a sleep epoch (conducted in a separate sleep enclosure),
a behavioral epoch (RUN) of 40 trials, and a subsequent sleep epoch.
(B) Spatial firing characteristics of three example CA1 cells. Each column represents activity grouped by trial type.
(C) Periodic repetition of characteristic ensemble spiking pattern. (Top) Ensemble activity over a representative 5 min window of RUN. Each
vertical tick mark represents a single action potential. Note the regular repetition of the spatiotemporal pattern that corresponds to a single
pass through the four-trial sequence. (Bottom) Expanded segment of RUN epoch ensemble activity. Horizontal bars represent the time course
of the four different trial types; black bars denote portions of the trial during which the animal is traversing from start to goal location.

(e.g., cell 10, Figure 1B), similar to behavioral depen- contrast to studies that investigated the recurrence of
multineuron spike sequences on the timescale of milli-dence reported in other tasks (Wiener et al., 1989; Dead-

wyler et al., 1996). Note that the combination of spatial seconds to seconds (Abeles and Gerstein, 1988; Abeles
et al., 1993; Nadasdy et al., 1999), we examined neuralreceptive fields and structured spatial behavior pro-

duces a characteristic ordered pattern of ensemble ac- activity at a lower temporal resolution but over much
longer durations on the order of tens of seconds totivity (Figure 1C). The temporal structure within this pat-

tern is determined by the sequence in which the animal’s minutes, with individual neuron spike train data binned
at 1 s resolution and Gaussian smoothed (s 5 1.5 s).behavior takes it through the task environment, provid-

ing within the ensemble pattern a unique signature of This degree of binning and smoothing preserves and
emphasizes modulation of neuron activity that occurs atthe behavioral experience. Due to the repetitive nature

of the task, such patterns of activity were consistently behavioral timescales, such as place field activation, while
eliminating millisecond-timescale temporal structure.repeated throughout a given session. The repeated acti-

vation of these robust patterns during a behaviorally To quantify the similarity between a RUN epoch and
a given REM episode, we defined a template correlationsalient task led us to hypothesize that such patterns

may be good candidates for subsequent reproduction coefficient (Ct) between two multiple-neuron spiking
patterns. If a spatiotemporal pattern of ensemble activityduring sleep.

REM episodes were identified as periods of sleep with is represented as a matrix with the dimensions of time
and cells, Ct between a given REM template and RUNsustained (.60 s) increases in the local field potential

theta power (quantified in the theta/delta power ratio window is analogous to the degree of overlap observed
when the two matrices are superimposed. To compareand confirmed by video monitoring of immobility and

sleep posture). The pattern of neuronal ensemble activ- the activity from individual REM episodes to the consid-
erably longer RUN epochs, each REM pattern was usedity over the entire duration of each identified REM win-

dow (the template) was then examined for correspon- as a sliding template to identify matching patterns within
the RUN epoch. As shown in Figure 2B, Ct was calcu-dence to patterns recorded during RUN (Figure 2). In
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Figure 2. Identification of REM Sleep Templates for Correlation Analysis

(A) Experimental design. REM episodes identified by increases in LFP theta power are used as templates in independent searches across
the RUN epoch. The template correlation coefficient (Ct) is calculated between the template and multiple RUN windows in a sliding window
fashion. The width of the RUN window is defined by the scaling factor (SF); SF 5 1 corresponds to equivalent REM and RUN window lengths,
while SF . 1 corresponds to relatively smaller RUN windows (i.e., slower REM activity). Scale bar, 4 min.
(B) Schematic of sliding window correlation analysis. For each time point ti in the RUN epoch, a window of RUN ensemble activity centered
at that time is extracted and compared to the REM template activity. The result is a correlation vector encompassing the entire RUN epoch
and signifying the strength of correspondence between the REM template and different points during RUN. Note that temporal scaling is
introduced into the correlation by varying the width of the RUN window taken around each time point (widthRUN 5 widthREM/SF). The correlation
depicted here represents Ct analysis with SF 5 1; correlation was repeated for SFs ranging from 0.3 to 3.0, and the collection of Ct vectors
at different SFs defines the Ct matrix.

lated between the REM episode pattern and RUN pat- Figure 3 (120 s REM template and corresponding 75 s
RUN window, Ct 5 0.32).terns from windows centered at successive time points

across the RUN epoch (step size, 1 s). In addition to To establish that observed correlations between REM
and RUN patterns could not have arisen by chanceidentifying proper temporal alignment, evaluation of cor-

respondence requires consideration of temporal scaling alone, the significance of Ct was assessed relative to a
sample distribution of shuffled-template correlationbecause reactivated activity during REM may be com-

pressed or expanded compared to RUN activity. To ac- data generated for each REM episode. Each REM tem-
plate was randomized to create a sample of possiblecount for this, the correlation analysis described above

was repeated at multiple temporal scaling factors (SF). templates specific to that REM episode (n 5 50). The
template correlation function Ct was then calculated forSFs . 1 signify a slower corresponding activity during

REM, while SFs , 1 signify faster activity. The result is every shuffled template to create a distribution of possi-
ble Ct values for every (t,SF) point. Shuffles were per-a two-dimensional correlation map of the RUN epoch,

with each point Ct(t,SF) signifying how strongly a seg- formed upon binned spike count data prior to Gaussian
smoothing. Because no single shuffle procedure is com-ment of RUN activity centered at time t corresponds to

the REM template at a given scaling factor SF. An exam- prehensive, we used four different shuffled Ct functions,
each designed to address nonspecific populationwideple of two correlated ensemble patterns is shown in
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Figure 3. Example Correspondence between a REM Template and RUN Activity

(Top) Rasters of 10 pyramidal cells during a 75 s window from RUN. The RUN time axis is scaled to maximize raster alignment with REM
(SF 5 1.6). (Bottom) Rasters of the same cells over the duration of a 120 s REM template.

effects that could contribute to measured REM-RUN score, equivalent to the minimum (least significant) z
score relative to the four shuffle distributions. Thus thecorrelation (Figure 4). First, to control for the possibility

that REM-RUN correlation was the result of consistent two-dimensional Ct matrix is converted into a two-dimen-
sional z score matrix describing the significance ofdifferences in firing rate between cells, spike count data

were independently shuffled within each cell, preserving correspondence between a given REM template and
patterns across the RUN epoch (Figure 5A). While it isoverall firing rate while disrupting longer timescale tem-

poral structure within and between cells (BIN shuffle). possible to characterize the significance of individual
peaks in the correlation function, we employed a moreSecond, binned spike counts were shuffled in time simi-

lar to the BIN shuffle but with relative spike count data stringent test incorporating the repetitive structure of
the behavioral task itself. Each RUN period was dividedacross cells held fixed (COLUMN shuffle). This would

preserve population vectors that are reactivated as dis- into behavioral epochs corresponding to repetitions of
the four-trial task sequence, producing a Ct significancecrete states, like those observed in SWS reactivation

(Wilson and McNaughton, 1994), but would disrupt long matrix for each behavioral segment (Figures 5A and 5B).
These matrices were averaged across all behavioral ep-timescale temporal ordering between states. Nonspe-

cific correlation could also arise due to broad modula- ochs, and the correlation significance of each REM tem-
plate was defined as the maximum value of the epoch-tion of overall activity in both RUN and REM. Temporally

intact spike count vectors were exchanged between averaged matrix.
We examined a total of 45 REM episodes from fourcells in the third shuffle (SWAP shuffle). Finally, to ensure

that REM-RUN correspondence depended upon the animals over eight different recording sessions. REM
episode durations ranged from 60 s to 250 s (mean,temporal alignment of activity across cells, spike count

data for each cell were randomly displaced in time rela- 114.0 6 50.2 s). There was a notable asymmetry between
prebehavior and postbehavior depth of sleep, as quanti-tive to activity in the other cells while maintaining within-

cell spike timing information (SHIFT shuffle). This pre- fied by REM episode incidence (prebehavior 3.0 epi-
sodes/hr, postbehavior 0.7 episodes/hr) and percentageserves the temporal structure of individual cell firing

patterns while disrupting the relative phase between of time spent in REM (prebehavior 9.3%, postbehavior
2.4%). This difference may be attributable to the ani-them. It is important to note that significant REM-RUN

correlation requires correspondence in both the firing mal’s behavioral state immediately following task perfor-
mance. Twenty of 45 (44.4%) REM episodes showedpatterns of individual neurons as well as the temporal

alignment of activity across all neurons. significant correlation to RUN activity (p , 0.05, 19/38
prebehavior, 1/7 postbehavior, Figure 5C). Peak correla-At each time point and SF during RUN, the observed

correlation function Ct was converted into four z scores tion significance occurred at temporal scaling factors
ranging from 0.55 to 2.49 (mean 1.4 6 0.6), with therelative to the individual shuffled-template distributions.

Each Ct value was then associated with an overall z majority (65%) of peak significance points correspond-
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RUN behavior, there should be no significant correlation
between REM episodes and novel RUN behaviors to
which the animal has never been exposed. We therefore
examined three additional experiments where the ani-
mal was exposed to both the familiar RUN task as well
as a novel spatial task (RUN*, Figure 6A). These novel
tasks were also spatial locomotor tasks with multiple
food reinforcement points and multiple repetitions (see
Experimental Procedures). When we compared prebe-
havioral REM episodes to these novel RUN epochs, we
detected no significant correlation between them (15
REM episodes, Figure 6B). Furthermore, the distribu-
tions of correlation significance scores were significantly
different in novel versus familiar environments (p ,
0.00005, Kolmogorov-Smirnov test, Figure 6C). Three
REM episodes identified during sleep following RUN*
were tested. While none were found to have significant
correlation with RUN* epochs, the small number of sam-
ples, consistent with earlier observations of limited post-
behavioral REM episodes, makes evaluation of this re-
sult difficult. This may reflect either a difference in quality
of postbehavioral sleep as previously indicated or a
slower incorporation of mnemonic information into
REM. It is important to note that the same REM episodes
that failed to match novel RUN* epochs did exhibit a
significant distribution of correlation scores to familiar
RUN epochs (identical to the distribution of all REM-
familiar RUN correlation scores), demonstrating that the
lack of novel RUN* correspondence was not due to a
bias in the sample of REM episodes. This suggests that
the observed correspondence of REM activity to RUNFigure 4. Ensemble Pattern Shuffle Analyses
patterns in the three-quarters circular task arises from(A) BIN shuffle. All shuffles performed on binned ensemble spike
the replay of previously learned, behavior-specific ac-train data, represented here as a two-dimensional matrix. In the BIN

shuffle, bins are pseudorandomly exchanged within each cell spike tivity.
train vector, with shuffling performed independently on each spike To investigate correspondence between REM sleep
train. and broader characteristics of awake behavior, we next
(B) COLUMN shuffle. Similar to the BIN shuffle, except temporal examined variations in the theta rhythm, a large ampli-alignment of spike train data is preserved across cells.

tude 6–10 Hz oscillation in hippocampal extracellular(C) SWAP shuffle. Entire spike train vectors are pseudorandomly
field potential regulated by medial septum cholinergicreassigned between cells. Note that the temporal order of spike
and GABAergic inputs (Vanderwolf, 1969; Stewart andactivity within each spike train is preserved.

(D) SHIFT shuffle. Entire spike train vectors are temporally shifted Fox, 1990). The theta rhythm strongly modulates single-
relative to original alignment, with relative temporal order preserved cell firing rates and excitability and may be important
within each spike train. The shift distance is pseudorandomly chosen for the induction of synaptic plasticity. Theta frequency
and ranges between half the window length backward and half the

oscillation is prominent during awake behavior and REMwindow length forward. The shift is circular, such that data removed
sleep and is highly correlated with specific behaviors infrom the pattern at one end is reinserted at the opposite end.
different species, such as exploration and movement in
rodents (Buzsaki et al., 1983). Because of this behavioral

ing to SF . 1.0, suggesting that REM activity recapitu- dependence of theta rhythm strength, different seg-
lates RUN activity at approximately the same speed or ments within a behavioral task will elicit different
slower. amounts of theta activity. Hippocampal local field poten-

The reactivation of hippocampal patterns during SWS tial (LFP) traces recorded during RUN epochs exhibited
is strongest immediately following awake behavior, sug- phasic increases and decreases in theta rhythm strength
gesting the development of an experience-dependent that were tightly coupled to the repetition of single trials
memory trace (Wilson and McNaughton, 1994; Kudri- within the circular track task (Figure 7A).
moti et al., 1999). However, we observed significant RUN The strength of the theta oscillation (measured as
correlation within 19 of 38 REM episodes recorded be- power of the 6–10 Hz bandpass filtered LFP trace, see
fore familiar RUN behavior on any given recording day. Experimental Procedures) was calculated across all
Does this activity reflect persistent mnemonic activa- REM episodes (n 5 20) that exhibited significant RUN
tion? Because animals received repeated daily exposure correspondence in their ensemble unit activity. To ex-
to the task, RUN-correlated patterns during prebehav- amine similarities between REM and RUN patterns of
ioral REM sleep may be attributable to residual activity theta frequency modulation, each REM theta power
from previous behavioral sessions. trace was then aligned with its corresponding RUN theta

If structured REM activity represents the experience- power trace according to the temporal alignment and
scaling values determined by template correlation anal-dependent reactivation of patterns established during
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Figure 5. Template Correlation Analysis of REM-RUN Correspondence

(A) Example correlation z score analysis. False-color image represents correlation z score data between one REM episode (animal 3 REM 4)
and the entire RUN epoch. The Ct value at each (t,SF) point during RUN is converted to four z scores relative to the shuffled-template
distributions; significance of the template correlation coefficient at each point is designated by the minimum z score. The repetition of
behavioral trials during RUN are represented in the timeline at top.
(B) Behavioral epoch analysis of two example REM episodes. Each left-hand panel plots the minimum z score across a single repeat of the
four-trial behavioral sequence, calculated at temporal scaling factors from 0.5 to 2.5; plots have been normalized along the time axis within
each epoch. Data in the top row is from the analysis shown in Figure 4A. Only the first six behavioral epochs are shown. The general
correspondence of a REM episode to RUN was evaluated by averaging minimum significance values across repeated behavioral segments.
The result is an epoch-averaged z score function for each REM episode, as displayed in the right-most panels.
(C) Distribution of peak epoch-averaged z scores for all REM templates. Black portion of bars, prebehavior REM episodes; white portion of
bars, postbehavior REM episodes. Bars to the right of the dashed line denote REM episodes with significant template correlation (p , 0.05).

ysis. For example, Figure 7A shows LFP theta power RUN alignment (H, aligns with RUN peak; L, aligns with
RUN trough). Mean H and L REM theta power valuesfrom the correlated REM episode and RUN window de-

picted in Figure 3. Peaks and troughs were identified in were calculated for each REM episode and normalized
for comparison across all REM episodes. In 75% of REMthe RUN theta trace (red and blue dots, respectively,

Figure 7B); corresponding REM theta values were mea- episodes (16/20), the mean H theta power value was
greater than the mean L theta value; furthermore, meansured and divided into two groups depending on their
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Figure 6. REM Correspondence to Novel
Versus Familiar RUN Epochs

(A) Schematic of recording session time
course. Black bars, familiar RUN epochs.
White bar, novel RUN* epochs. Gray bars,
REM episodes. Recording sessions are sepa-
rated by z24 hr, as indicated by the diagonal
lines. Note that REM episodes occurring be-
fore a familiar RUN epoch on any given day
actually follow the previous day’s RUN ep-
och. To investigate the experience depen-
dence of prebehavior REM correspondence
to familiar RUN behaviors, ensemble activity
from REM episodes were also compared to
neural patterns recorded during novel behav-
iors (RUN*). The extent of this novel RUN*-
REM correspondence (red arrow) can be
compared to familiar REM-RUN correspon-
dence, both for the same REM episodes used
in the novel analysis (blue arrow) and for all
other prebehavior REM episodes (black
arrow).
(B) Distributions of epoch-averaged correla-
tion z scores from REM episodes recorded
before novel RUN* versus familiar RUN be-
haviors. Scores greater than the dashed verti-
cal line indicate a significant correlation (p ,

0.05). (Top) Correlation scores between REM
episodes and familiar RUN epochs. White por-

tion of bars, all prebehavior REM episodes during novel condition; blue portion of bars, prebehavior REM episodes during familiar and novel
condition. (Bottom) Correlation scores between REM episodes and novel RUN* epochs.
(C) Cumulative distributions of correlation significance scores. Red line, significance of correlation to novel RUN* behaviors. Blue line,
significance of correlation to familiar RUN behaviors, same REM episodes as novel data. Black line, significance of correlation to familiar RUN
behaviors, all prebehavior REM episodes. The distribution of correspondence to novel RUN* behaviors differs significantly from the distributions
of correspondence to familiar RUN behaviors, both for the subset of REM episodes tested against novel behaviors as well as for all REM
episodes (p , 0.00005, Kolmogorov-Smirnov).

H and L theta power values averaged across all evalu- REM. This analysis employed a template correlation
measure (Ct) that quantified the strength of similarityated REM episodes are significantly different (p ,

0.0005, paired t test, Figure 7C). This significant differ- between two patterns of activity. The crucial question
that must be asked is whether REM-RUN correspon-ence between REM theta values that were divided ac-

cording to their alignment with RUN theta values sug- dence is a specific result of behavioral experience or
whether such similarity could arise due to nonspecificgests that aspects of theta oscillation modulation

generated during the awake behavioral task are also patterns of activity. In this paper we have addressed
this issue through the use of shuffled template variantsrepresented during REM sleep.
and the examination of REM correspondence with novel
patterns of RUN activity.Discussion

Shuffle procedures were selected to control for sev-
eral potential nonspecific sources of correspondenceThe gradual shift in the locus of memory storage from
(Figure 4). The BIN shuffle addresses the possibility thatthe hippocampus to other, presumably neocortical, sites
correspondence could have arisen from general equiva-suggests that previously stored memories can be subse-
lence of individual cell firing rates between REM andquently reactivated (Squire, 1992). Here, we demon-
RUN. Because both states are marked by increases instrate significant ensemble correlation between periods
theta rhythmicity, cells that systematically changed fir-of awake behavior and REM sleep, despite the absence
ing rate during theta modulated states could contributein REM of the explicit sensorimotor cues that drive dis-
to REM-RUN correspondence. This shuffle preservestinct neural patterns during RUN. The existence of deci-
relative firing rates between cells but disrupts the tem-pherable mnemonic structure during REM sleep raises
poral patterns that are a direct consequence of the inter-further questions regarding the neural mechanisms re-
action between behavior and place specificity of firing.sponsible for such temporally structured activity, as well
This type of nonspecific rate effect was also controlledas the possible role of such reactivation in processes
for by the novel RUN* analyses, since both the familiarsuch as memory consolidation and learning.
and novel behaviors generated prominent theta rhyth-
mic activity, but significant correspondence occurredSpecificity of REM-RUN Correspondence
only in the familiar condition.Analysis of REM-RUN correspondence demonstrated

A potential source of nonspecific match between RUNthat the temporal patterns of individual neuronal spiking
and REM is the presence of discrete episodes of charac-and the phase or timing of firing between different neu-

rons established during RUN are recapitulated during teristic activity that were not related to the specific RUN
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Figure 7. REM-RUN Correspondence in
Theta Rhythm Modulation

(A) Broad patterns of modulation in the theta
rhythm. (Top trace) LFP theta frequency
power during the 80 s RUN window displayed
in Figure 3, with theta power evaluated as the
squared amplitude of the 6–10 Hz bandpass
filtered LFP signal. Line above the RUN trace
denotes the starting and ending points of in-
dividual behavioral trials; note the regular
phasic modulation of RUN theta power by
behavior. (Bottom trace) LFP theta frequency
power during the 120 s REM episode dis-
played in Figure 3. Theta power traces are
aligned and scaled based on template corre-
lation analysis, i.e., at the time and scaling
factor corresponding to maximal ensemble
pattern correlation derived from unit rasters
(maximum Ct).
(B) Evaluation of REM-RUN theta power cor-
respondence. REM and RUN theta power
data are binned at 1 s intervals are aligned
and scaled to the optimal values derived from
template correlation analysis (Figure 4). REM
theta power values that aligned to either
peaks or troughs in the RUN theta trace (red
and blue dots, respectively) were identified
and grouped according to their alignment

with RUN (H, REM theta values that aligned with RUN theta peaks; L, REM theta values that aligned with RUN theta troughs). Example H and
L values depicted by red and blue arrows, respectively.
(C) REM-RUN theta power correspondence in all REM episodes with significant ensemble correspondence. Each point plots the H theta
power versus the L theta power for a single REM episode; values are normalized within REM episodes by the mean theta power amplitude
for comparison across episodes. Under the null hypothesis of independence between REM and RUN theta power modulation, there should
be no difference between H and L REM theta values calculated from template correlation-derived alignment to RUN data. (Inset) Mean H and
L theta power (6SEM) across all REM episodes. There is a significant difference between REM H and L values (p , 0.0005, paired t test),
suggesting that aspects of theta oscillation modulation generated during the awake behavioral task are represented during REM sleep.

experience. For example, occasional bursts in synchro- patterns for several reasons. First and foremost, the
potential confound introduced by an underlying slownized activity across the hippocampus can occur due

to normal (large irregular activity) phenomena; the emer- rhythm is periodic activation of entire subpopulations
of cells, a result that is specifically controlled for withingence of such phenomena in both RUN and REM could

lead to apparent correspondence driven by synchro- the shuffle analysis by the COLUMN and SWAP analy-
ses. Second, place specificity of firing of individual cellsnous population activity. Several of the shuffling proce-

dures directly address this possibility. The SWAP shuffle clearly demonstrates that neurons were not firing in a
way that simply reflected behavioral state. Place-spe-exchanges the identity of individual cells but maintains

the time course of any populationwide modulation that cific cells fired at specific points within each trial, and
cells with different place fields fired at different times;might exist. If populationwide covariance in activity is

the source of apparent correspondence, the precise accordingly, RUN ensemble patterns are composed of
neuronal activity with specific temporal offsets ratheridentity of the cell is less significant than the proper

temporal alignment of all cells in the ensemble during than phasic activation of the entire ensemble (Figure
1). Template correspondence depends then on not justthese discrete events. The COLUMN shuffle preserves

the ensemble structure of activity within discrete win- periodic activation within the REM episode but periodic
activation with correct temporal offsets, a result that isdows but alters the temporal order of these windows.

Correspondence resulting from the appearance of dis- not easily explained by an underlying slow rhythm. While
existence of slow rhythms that also imposed consistentcrete events would be preserved in this shuffle while

patterns that are dependent upon the temporal ordering phase relationships between the firing patterns of differ-
ent neurons during both RUN and REM cannot be ruledof events across windows, such as patterns of place-

related firing, would be disrupted. out, such activity has never been demonstrated and
would be extremely difficult to reconcile with the ob-Slow rhythmic modulation of population neural activ-

ity, such as the cortical slow oscillation, is known to served spatial specificity (place fields) of individual
neurons.occur during sleep. Another possible nonspecific expla-

nation for the observed match between RUN and REM The examination of novel RUN* behaviors further dem-
onstrates the dependence of REM-RUN correspon-patterns is that such broad fluctuations in overall neural

activity during RUN could match nonspecific slow rhyth- dence on the specific patterns of ensemble activity
generated during experience in the familiar testing envi-micities expressed during REM. However, such slow

fluctuations are not likely to account for the observed ronment. We examined several tasks where similar peri-
odicities in behavior were produced due to the repetitivecorrespondence between specific ensemble spiking
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nature of the task. To explicitly control for the possibility and acquisition of certain memory paradigms requires
that changes in apparatus might produce subtle alter- REM sleep hours to days after learning (Smith, 1995).
ations in behavior that would impair REM match, we The apparent difference in the robustness of reactivation
examined a control task in which the animal simply al- between pre- and postbehavioral REM episodes may
tered the pattern of starting and stopping locations while either reflect a simple difference in the quality of REM
still remaining on the familiar apparatus (RUN*3). This between these periods that consequently limits the ex-
preserves the overall quality of behavior (circular, peri- pression of reactivation or may reflect differences in the
odic running) as well as the general periodicity (z15 s processing of mnemonic information within the sleep
per trial) but significantly alters the precise pattern of cycle. While present data suggests a difference in REM
neural activity by proceeding through a different se- reactivation during these periods, further study will be
quence of locations within the apparatus. The clear dif- required to evaluate the significance of this effect.
ference in the degree of correspondence between REM
patterns and any and all of these novel conditions (Fig- Neural Mechanisms
ure 6) indicates that ensemble match between familiar These results demonstrate that the relative temporal
RUN and REM was not a simple consequence of non- firing order within an assembly of neurons can be pre-
specific regularities in neural activity in the familiar RUN served and reproduced. It is critical to note that the
due to such factors as periodic fluctuations in behavior. timescale of these temporal patterns extended over tens

The robust spatial correlates of hippocampal neuronal of seconds to minutes. In contrast to previous studies
activity (place fields) indicate that the activity of these of temporal sequence activity that examined sequences
cells is a function of spatial location, but the apparent on the timescale of milliseconds to seconds (Abeles and
periodicity of firing across the RUN task raises the possi- Gerstein, 1988; Abeles et al., 1993; Nadasdy et al., 1999),
bility that these cells have simply been entrained into reactivation of temporal sequences at this timescale has
firing with a slow periodicity that leads to the appearance never been previously observed. Previous studies that
of spatially specific firing. If the consequence of RUN failed to identify behaviorally related ensemble activity
activity was to reinforce slow periodic firing patterns of during REM looked at short latency correlation but did
individual cells and the tendency to fire with similar slow not examine long timescale temporal structure (Kudri-
periodicity was reflected during REM, it could be argued moti et al., 1999). The surprising length of reactivated
that Ct correspondence was not due to a match with the sequences raises the question of how temporal informa-
behaviorally specific ensemble pattern of RUN-related tion at such a scale is encoded. Hippocampal CA1 place
firing but simply the periodicity of firing of individual fields develop a strong asymmetry with experience,
cells. This possibility was addressed through the use of which provides a synaptic mechanism capable of en-
the SHIFT shuffle. The signature ensemble activity that coding a sequence of locations (Mehta et al., 2000).
characterizes a specific RUN episode is dependent not Sequence information is crucial for generating neural
only upon the temporal pattern of firing of individual activity dependent upon temporal order, such as the
cells, but also upon the relative timing or phase of firing trajectory-dependent cell firing observed in the hippo-
between cells. The SHIFT shuffle preserves the temporal

campus and entorhinal cortex (Frank et al., 2000; Wood
firing patterns of individual cells but disrupts the phase

et al., 2000). Trajectories represent task-specific tempo-
information between cells. The demonstration that sig-

rally ordered spatial locations, and linkage of such tra-
nificant REM-RUN correspondence is only achieved

jectory representations either within the hippocampuswhen both the firing patterns of individual cells as well
or entorhinal cortex could provide a mechanism for re-as their phase relationship with other cells is preserved
constructing extended sequences of behavior.indicates that this correspondence is due to the explicit

The establishment of temporal order may involve ex-match with the behaviorally specific patterns of ensem-
trahippocampal brain areas such as neocortex. In partic-ble activity produced during RUN.
ular, the prefrontal cortex can play a role in maintainingIn contrast to experience-dependent changes ob-
information relating temporally adjacent states such asserved during SWS, significant RUN-correlated activity
the beginning and end of a trial. Neurons in the prefrontaloccurred during REM episodes prior to awake behavior.
cortex have broad behavioral correlates during spatialDoes this correspondence reflect previously encoded
behavioral tasks (Jung et al., 1998) and exhibit prospec-memories? Examination of neural activity during REM
tive activity that can encode temporal relationshipsepisodes preceding three different novel behaviors re-
across delay periods (Quintana and Fuster, 1992; Wata-vealed no RUN correspondence, despite the fact that
nabe, 1996; Asaad et al., 1998; Rainer et al., 1999). Coor-approximately half of the same REM episodes were sig-
dinated interactions between the hippocampus andnificantly correlated to patterns from the familiar task.
prefrontal areas during REM sleep could provide aThus, RUN-correlated REM patterns recorded before
mechanism for organizing temporal order of hippocam-task performance on any given day represent persistent
pal or entorhinal states representing behavioral se-experience-dependent activity from previous task ses-
quences.sions. This time course differs from that of mnemonic

Given the subcortical generation of the theta rhythm,changes in SWS, which are strongest immediately fol-
the recapitulation of patterns of theta modulation in ad-lowing awake behavior. However, some residual SWS
dition to ensemble patterns of pyramidal cell activityreactivation can be observed in prebehavioral sleep (Ku-
suggests a broad recapitulation of behavioral state. In-drimoti et al., 1999), and behavioral studies of experi-
terestingly, in accordance with the mild temporal expan-ence-dependent changes involving REM sleep mirror
sion of REM reactivation suggested by the occurrencethis longer time course. Increases in REM following

learning occur as much as 24 hr after the end of training, of optimal scaling factors between 1 and 2, the fre-
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became the start location for the subsequent trial. After four trialsquency of theta during REM sleep is z1.2 times slower
the original start location once again became a start position, andthan during RUN (data not shown). This approximate
the entire four-trial sequence was repeated. Note that because thetemporal concurrence between theta rhythm and REM-
animal was always traversing toward a location with a food well, no

RUN correspondence may reflect globally slower neural explicit behavioral criterion for task performance was necessary
processing during sleep. For example, the frequency other than steady, consistent locomotion without interruption be-

tween start and goal locations. A recording session consisted of aof the theta rhythm is sensitive to brain temperature
1–2 hr sleep epoch, a 10–15 min behavioral epoch (RUN) of z40(Whishaw and Vanderwolf, 1971) and brain temperature
trials, and a subsequent sleep epoch. All sleep sessions were con-is typically lower during sleep (Andersen and Moser,
ducted in a separate sleep enclosure within the recording room.1995), suggesting that the neural processes underlying
Recording sessions were conducted daily, always at the same time

REM reactivation may be similarly slowed. Alternatively, of day such that z18–20 hr separated the end of one session with
there may exist a specific link between the theta rhythm the beginning of the subsequent session.

Three additional novel spatial locomotor tasks (RUN*) were con-and sequence reactivation, with the theta rhythm serving
ducted in the fourth experimental animal to directly address theas a pacing mechanism during temporal information
issue of experience-dependence. Novel RUN* behaviors were cho-storage and reactivation, perhaps to coordinate interac-
sen to be similar to the familiar RUN task, and each consisted of ations across multiple brain regions. Further experiments
spatial locomotion task between food reward sites with trials re-

will be required to explore the role of the theta rhythm peated throughout the RUN epoch. RUN*1 was performed on an
in temporal scaling. elevated T-shaped track (115 cm central arm, 60 cm choice arms),

and a behavioral trial consisted of food travel from the goal location
on the central arm to a goal location on one of the arms, foodFunctional Implications
consumption, and then return to the central goal location. The animalWhat could be the function of REM sleep replay of awake
tended to perform this task in a delayed alternation pattern, alternat-activity? One possible interpretation is that REM activity
ing between left and right arms in subsequent trials, and analysis

reflects neocortical activation of hippocampal circuits was restricted to behavioral segments where the animal reliably
in a later stage of the memory consolidation process visited one arm followed by the other arm. RUN*2 was performed

on an elevated U-shaped track (160 cm arms, 15 cm connector),(Hennevin et al., 1995; Stickgold et al., 2000). The reacti-
and a behavioral trial consisted of travel from one goal locationvation of short-timescale hippocampal patterns is en-
down one arm, across, and up the other arm to the opposite goalhanced during periods of SWS immediately following
location, food consumption, and return to the original goal location.behavior (Wilson and McNaughton, 1994; Kudrimoti et
RUN*3 was performed on the same circular track as the familiar

al., 1999). In particular, the synchronization of subsets RUN task, and the behavioral task was identical to RUN except the
of hippocampal neurons during oscillatory ripple events animal traveled 908 during each behavioral trial.
has been suggested as a strong mechanism for synaptic
modification (Buzsaki, 1989). Recently acquired infor-

Electrophysiology
mation within the hippocampus may activate neocorti- Following surgical implantation with a microdrive array of 12 inde-
cal circuits as the initial stage of consolidation, as sug- pendently adjustable tetrode wires (AP –3.6, L 2.2), tetrodes were

lowered to the CA1 layer over a period of days and individuallygested by the correlation between neocortical spindle
positioned to obtain maximal unit isolation. Electrical signals wereactivity and high-frequency hippocampal discharges
passed through two miniature 25-channel head-stage preamplifiersduring SWS (Siapas and Wilson, 1998). Neocortical cir-
to 8-channel differential amplifiers (Neuralynx), bandpass filteredcuits established via SWS hippocampal-neocortical in-
(300 Hz to 6 kHz), sampled (31.25 kHz/channel), and digitized; supra-

teractions could subsequently engage the hippocampus threshold events were stored for subsequent analysis. Continuous
during REM sleep in the form of long timescale se- LFP recordings were obtained from a subset of the tetrodes used

for unit recording (filtered at 0.1 Hz to 475 Hz, sampled at 1.5 kHz/quences that last for minutes. This reactivation of previ-
channel). Head position and direction during RUN epochs wereous behavioral episode representations may be impor-
monitored at 30 Hz with a spatial resolution of 0.5 cm via overheadtant for the learning and performance of procedural
camera tracking of a head-stage infrared diode array. A customtasks, which is dependent upon REM sleep (Karni et
software package (Xclust, M. A. W.) was used to identify clusters

al., 1994). Mnemonic information that may have shared of spike waveforms using spike width and peak amplitude on each
characteristics along a particular behavioral axis such as of the four tetrode channels as primary waveform parameters.

Putative pyramidal cells and interneurons were differentiatedemotion could be juxtaposed and evaluated for common
based on bursting (complex spiking) and waveform characteristics.causal links, allowing adaptive behavioral change based
To restrict our analysis to patterns of RUN activity composed ofon prior experience (Hobson et al., 1998). The ability to
actively firing units, only pyramidal cells with mean RUN epoch firingidentify specific mnemonic content within REM sleep
rates above 0.2 Hz were included for subsequent analysis. Cells

will allow explicit evaluation of such hypotheses and that were not cleanly isolated or with unstable waveforms over the
further the examination of the role of sleep and dreaming 4–6 hr recording period were excluded. The number of cells that

met these criteria in the eight recording sessions ranged betweenin memory formation and consolidation.
8 and 13 per session. While the number of cells in the ensembles
used in the present analysis is somewhat lower than those foundExperimental Procedures
in earlier studies using this technique (Wilson and McNaughton,
1993), it should be noted that the present study placed additionalBehavioral Paradigm

Following implantation, Long-Evans rats (5–7 months old) were constraint on unambiguous isolation over the extended recording
session and restricted sampling to cells active during RUN periods,trained to run from a start location to a goal location for a food

reward on an elevated circular track (95 cm diameter, 10 cm width). which typically make up z30% of available cells. No other selection
bias that might have influenced temporal sequence expression orThis task (RUN) was considered familiar because all animals were

trained daily on the task for at least 5 days prior to the first recording detection was used to identify cells.
To identify REM episodes, LFP traces were digitally bandpasssession. A trial consisted of travel from the start location to a remov-

able food well placed at the goal location, followed by food con- filtered in the delta (2–4 Hz) and theta (6–10 Hz) bands, and power
in each band was computed as the time-averaged squared ampli-sumption; in any given trial the goal was located at a position 2708

(clockwise) from the start. After completion of a trial the goal location tude of the filtered trace. REM episodes were identified as periods
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of elevated theta-delta power ratio (. 2.0). To examine correspon- calculated for each REM episode. To allow comparison across REM
episodes, REM theta power values were normalized by the meandence between long duration patterns and to reduce the detection

of false-positive correlations associated with short duration pat- theta power in each individual REM episode.
terns, we limited our analysis to REM episodes longer than 60 s in
duration. Sleep during these intervals was verified on videotape. Acknowledgments
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