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Synaptic mechanisms
of pattern completion in the
hippocampal CA3 network
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The hippocampal CA3 region plays a key role in learning and memory. Recurrent CA3–CA3
synapses are thought to be the subcellular substrate of pattern completion. However, the
synaptic mechanisms of this network computation remain enigmatic.To investigate these
mechanisms, we combined functional connectivity analysis with network modeling.
Simultaneous recording fromup to eight CA3 pyramidal neurons revealed that connectivity was
sparse, spatially uniform, and highly enriched in disynaptic motifs (reciprocal, convergence,
divergence, and chain motifs). Unitary connections were composed of one or two synaptic
contacts, suggesting efficient use of postsynaptic space. Real-sizemodeling indicated that CA3
networks with sparse connectivity, disynaptic motifs, and single-contact connections robustly
generated pattern completion.Thus, macro- and microconnectivity contribute to efficient
memory storage and retrieval in hippocampal networks.

T
he hippocampal CA3 region plays a key role
in learning and memory (1–5). A hallmark
property of the network is its ability to re-
trieve patterns from partial or noisy cues, a
process referred to as autoassociative recall,

attractor dynamics, or pattern completion (3–7).
However, the synaptic mechanisms underlying
pattern completion have remained enigmatic. Pre-
vious neuronal network models suggested that
recurrent CA3–CA3 pyramidal cell synapses play
a key role in this process (8–14). In the storage
phase, a stimulus patternwill activate an ensemble
of interconnected neurons and induce synaptic
potentiation in the corresponding recurrent syn-
apses. In the recall phase, a partial pattern will
initially activate only a fraction of the ensemble,
but subsequently recruit the remaining cells via
potentiated synapses. Successful pattern comple-
tion requires sufficient synaptic efficacy andnetwork
connectivity (12, 14). Whether the biological prop-
erties of the CA3 network are consistent with
these assumptions remains unclear.

Analysis of functional connectivity in
the CA3 network

The CA3 network is often envisaged as a network
of highly interconnected neurons (3–5, 8, 11). To
test this hypothesis, we analyzed functional con-
nectivity by simultaneous recordings from up to
eight CA3 pyramidal neurons in rat brain in vitro,
followed by selective biocytin labeling (Fig. 1, A
to D, and fig. S1). In comparison to recording from
sequential pairs, simultaneous recording from the
same number of neurons allowed us to test a

much larger number of potential synaptic con-
nections (56 in an octuple configuration versus 8
in four sequential pairs; Fig. 1A). In total, we
found 146 synaptic connections in 15,930 pairs
tested (in 72 octuple, 66 septuple, 118 sextuple,
120 quintuple, 135 quadruple, 96 triple, and
495 double recordings; 4164 CA3 pyramidal neu-
rons in 1102 slices). The huge majority of inter-
actions were chemical, as demonstrated by block
by the AMPA-type glutamate receptor antagonist
CNQX; evidence for electrical coupling was found
in only 1 out of 15,930 potential connections (fig.
S2). Unitary excitatory postsynaptic potentials
(EPSPs) had a mean latency of 2.3 ± 0.1 ms, a
peak amplitude of 0.56 ± 0.01 mV, and a decay
time constant of 80.1 ± 6.2 ms (40 connections;
Fig. 1, E and F, and table S1). Unitary excitatory
postsynaptic currents (EPSCs) had amean latency
of 2.2 ± 0.1 ms, a peak amplitude of 17.3 ± 2.0 pA,
and a decay time constant of 9.5 ± 0.6 ms (39
connections; Fig. 1, G and H, and table S1). These
results confirm and extend previous results in
guinea-pig slices (15, 16).

Macroconnectivity in the CA3 network

Our results suggested that connectivity in the CA3
cell network was sparse, with a mean connection
probability of 0.92%. Both experimental data and
simulations using fully reconstructed CA3 neu-
rons labeled in vivo indicated that connectivity
was only moderately dependent on slice orienta-
tion (materials andmethods; fig. S3). However,
connectivity may decline with distance (17). Fur-
thermore, connectivitymight be nonrandom,with
ensembles of highly connected cells embedded
in a sparsely connected population (18, 19). To
test these hypotheses, we first examinedwhether
the connection probability was dependent on
intersomatic distance (Fig. 2A). The average con-

nection probability did not significantly change
with distance, for intersomatic distances of up
to 400 mm (Fig. 2A). Furthermore, both EPSP
and EPSC peak amplitudes were not signifi-
cantly dependent on distance (fig. S4, A and B).
Next, we examined whether synaptic connec-

tivity was random. To test this, we counted all
disynaptic connectivity motifs (reciprocal con-
nections, convergent triples, divergent triples, and
disynaptic chains) in our experimental data set
and compared motif numbers to those of a sim-
ulated data set assuming random connectivity
and a connection probability of 0.92% (i.e., the
experimental value; Fig. 2, B andC). All disynaptic
connectivity motifs occurred significantly more
frequently than expectedby chance. The frequency
of reciprocal connections, convergent triples, di-
vergent triples, and disynaptic chains was 6.5-,
2.9-, 6.3-, and 3.4-fold higher, respectively, than
the corresponding chance level (Fig. 2C; P ≤
0.002 in all cases). Furthermore, we found several
superconnectivity motifs (7 connections in one
octuple, 10 and 3 connections in two septuples,
and 3 connections in two quintuples), which were
highly unlikely in random networks (Fig. 2D).
As connection probability was not significantly
dependent on intersomatic distance (Fig. 2A),
the overabundance of motifs was not an epi-
phenomenon of distance dependence. Thus, con-
nectivity in the CA3 cell networkwas not random,
but highly enriched in connectivitymotifs (17–19),
reminiscent of a small-world network architecture
(20). Both connection probability and abundance
of motifs were similar in the range of ages tested
(fig. S4, C and D). Comparison of properties of
connections embedded in disynaptic motifs with
those of isolated connections revealed that the
EPSC peak amplitude was smaller and the pro-
portion of failures was higher for embedded
connections, whereas kinetic parameters were
not significantly different (fig. S4E).

Microconnectivity of unitary
CA3–CA3 connections

Next, we analyzed the microconnectivity between
pairs of synaptically connected neurons (Fig. 3).
Functionally connected cells were completely re-
constructed, and putative synaptic contacts be-
tweenpresynaptic axons andpostsynapticdendrites
were identified by light microscopy (Fig. 3A). In
hippocampal CA3–CA3 cell synapses, connections
were formed by only one or two putative synaptic
contacts. One putative contact per connectionwas
observed in 58% of functionally connected cells
(7 out of 12 connections), and two synaptic con-
tacts were observed in the remaining 42% of cases
(5 out of 12 connections; Fig. 3C). Synapses were
formed at equal proportions on the hilar (prox-
imal) and the fimbrial (distal) side of the pre-
synaptic neuron, suggesting uniformity along
the CA3a–c axis (70 and 70 out of 140 connec-
tions; Fig. 3C). Putative synaptic contacts were
located on basal dendrites in 53% of connec-
tions (9 out of 17 contacts) and on apical dendrites
of postsynaptic target cells in the remaining 47%
of cases (8 out of 17 contacts; Fig. 3C). On average,
the dendritic distance of the putative contacts
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from the center of the soma of the postsynaptic
target cell was 141 ± 15 mm (12 reconstructed
pairs; Fig. 3D). Thus, in contrast to the neocortex
(21–23), synaptically interconnected CA3 pyram-
idal neurons showed only one or two morpho-
logical contacts per connection.
To determine the number of functional release

sites and the corresponding release probability,
we recorded EPSPs and EPSCs in physiological
extracellular solution containing 2mMCa2+, and
in either reduced (1 mM) or elevated (4 mM)
extracellular Ca2+ concentration (Fig. 3, E and

F). The entire peak amplitude data set was fit
with a binomial release model in which quantal
size and number of functional release sites were
assumed to be the same for the two conditions,
whereas release probability was specified sep-
arately (see materials and methods). Multiple
probability binomial analysis revealed that the
mean number of functional release sites was 3.2
± 0.8 and that the corresponding release proba-
bility with a physiological extracellular Ca2+ con-
centration was 0.37 ± 0.04 (15 connections total;
Fig. 3, E and F, and table S2). Thus, synaptic

transmission at CA3–CA3 synapses wasmediated
by few functional release siteswith a relatively high
release probability (24, 25). Hence, in contrast to
the neocortex (21–23, 26), hippocampal CA3 py-
ramidal cells often communicatedwith each other
via a small number of functional release sites.

Efficacy and summation of unitary
synaptic events

The sparse connectivity in the CA3 cell network
raises the question of how few CA3 pyramidal
cells efficiently recruit their postsynaptic targets,
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Fig. 1. Octuple recording in the CA3 cell network. (A) Advantage of the
octuple recording configuration. In sequential paired recordings from eight cells
(left), 4 × 2 = 8 potential connections can be examined. In a simultaneous
octuple recording (right), 8 × 7 = 56 potential connections can be tested. (B) In-
frared differential interference contrast videomicrograph of the hippocampal
CA3b region in a thick-slice preparation, with eight recording electrodes at-
tached to the somata of putative pyramidal neurons. Red areas represent the
two-dimensional (2D) projections of cell bodies. (C) Functional connectomics
in the CA3 pyramidal neuron network. Each column represents single traces
from eight cells; number code as shown in (B). In each of the eight columns, a
different cell was stimulated by a series of five current pulses in current-clamp
(blue traces), while the other cells were recorded in the voltage-clamp con-
figuration (gray traces). In this octuple recording, cell 4 (dark blue trace) was
connected to cell 3 (red traces). Scale bars, 50 mVor 10 pA, 10 ms (bottom,
right). Brief transients in a subset of traces represent capacitive coupling
artifacts, as reported in previous publications [e.g., (47)]. (D) Light micrograph

of a biocytin-labeled octuple (maximal intensity projection stack; left panel, low
magnification; right panel, highmagnification). Eight CA3 pyramidal neurons in
area CA3b were filled with biocytin during whole-cell recording and labeled
with 3,3′-diaminobenzidine as chromogen. Data in (B) to (D) were obtained
from different octuples. For the octuple shown in (D), all eight cells were
labeled with biocytin for illustration purposes, i.e., selective labeling (fig. S1)
was not performed. (E and F) Properties of unitary EPSPs at CA3–CA3 syn-
apses. (E) Representative traces. Top, presynaptic action potential; center,
average EPSP; bottom, individual EPSPs. (F) Summary graphs of EPSPpeak
amplitude, latency, 20 to 80% rise time, and decay time constant. (G and
H) Similar graphs to those in (E) and (F), but for EPSCs. Asterisks in (E) and
(G) indicate failures. In box plots, horizontal lines represent median; boxes,
quartiles; whiskers, most extreme data points ≤1.5 interquartile range from
box edges; and single points, data from individual experiments. Throughout
this Article, presynaptic action potentials are shown in blue, EPSPs in black,
and EPSCs in red.
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as required for pattern completion. To address
this question, we explored the properties of uni-
tary postsynaptic conductance (Fig. 4). To esti-
mate peak amplitude and time course of the
postsynaptic conductance in the dendrite, we first
determined the location of putative synaptic con-
tacts in post-hoc labeled pairs. We then recon-
structed the somatodendritic morphology of the
postsynaptic CA3 pyramidal neuron and converted
it into a detailed cable model (Fig. 4A). Finally,
we simulated EPSCs, varying latency, rise time
constant, peak amplitude, and decay time con-
stant of the postsynaptic conductance until the
best fit of the experimentally recorded average
somatic EPSCs was obtained. Experimentally
constrained modeling revealed a rise time con-
stant of 0.26 ± 0.07 ms, a peak conductance of
0.54 ± 0.12 nS, and a decay time constant of 6.71
± 1.46 ms (10 connections; Fig. 4, B and C). Con-
sidering the single-channel conductance of den-
dritic AMPARs in CA3 pyramidal neurons (10 pS)
(27) and amean number of 3.2 functional release
sites (Fig. 3F), this peak conductance corresponded
to 17 AMPARs per site open at the peak of an
EPSC (28). Thus, a large number of postsynaptic

AMPARs contributed to synaptic efficacy at re-
current CA3–CA3 synapses.
Because a single unitary EPSP could not fire a

postsynaptic CA3 cell (Fig. 1, E and F), we next
examined the rules of temporal and spatial sum-
mation. To quantify temporal summation, we
measured EPSPs evoked by repetitive stimula-
tion of the presynaptic cell, using high-frequency
trains of five or ten stimuli (Fig. 4D),whichmimics
burst activity of CA3 pyramidal cells in vivo (29).
EPSPs showed substantial summation during re-
petitive stimulation. For 20-, 50-, and 100-Hz trains
of five presynaptic action potentials, the ratio of
EPSPmax/EPSP1 was 1.58 ± 0.28, 2.25 ± 0.49, and
5.17 ± 2.50, respectively (3, 10, and 4 connections).
Thus, for high-frequency stimulation, temporal
summation was nearly linear, with a maximal
depolarization proportional to the number of
spikes in the presynaptic neuron. Both the slow
decay time constant of EPSPs (Fig. 1, E and F,
and table S1) and theminimal synaptic depression
during repetitive stimulation (fig. S5) contributed
to efficient temporal summation.
To probe spatial summation, we stimulated

two presynaptic cells converging on the same

postsynaptic neuron. Costimulation of the pre-
synaptic cells with 50-Hz trains of stimuli led
to compound EPSPs almost indistinguishable
from the arithmetic sum of individual unitary
EPSPs (Fig. 4D). Thus, spatial summation had
approximately linear characteristics (30, 31). To
determine the number of convergent presynaptic
inputs necessary to drive the cell to firing thresh-
old, we plotted the depolarization evoked by train
stimulation against the number of stimulated
inputs, and determined the number of inputs
required for spiking from the intersection of a
regression line with the action potential thresh-
old (Fig. 4, E and F, and table S1). With a mean
resting potential of –68.2 ± 1.0 mV and a mean
actionpotential voltage thresholdof–36.1 ± 1.6mV,
we estimated that 7.3 ± 1.9 coactive convergent
inputs were required to initiate action potentials
in a postsynaptic CA3 cell for 50-Hz stimulation.
In the presence of ongoing synaptic activity in vivo,
we estimated that 3.3 inputs would be required
(29). Thus, the large number of postsynaptic
AMPARs and the efficient temporal and spatial
summation underlie the efficacy of synaptic sig-
naling at CA3–CA3 pyramidal neuron synapses.
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Fig. 2. Macroconnectivity of the CA3 cell net-
work: Sparse and spatially uniform connectiv-
ity with overabundance of connectivity motifs.
(A) Analysis of dependence of connection proba-
bility on intersomatic distance.Top, traces of ac-
tion potentials and average unitary EPSPs at two
different distances (214 and 310 mm). Center, his-
togram of number of connections tested (white
bars) and functional connections detected (gray
bars). Bottom, connection probability, determined
as the ratio of connections detected to connec-
tions tested, plotted versus distance. Error bars
represent 95%confidence intervals estimated from
a binomial distribution. Red dashed line indicates
themeanconnectionprobability (0.92%). (B)Num-
ber of unconnected and unidirectionally connected
pairs. Bar graphs show the number of a given motif
in the experimental sample (open bars) and the
predicted number in a network with random con-
nectivity andmean connection probability of 0.92%
(filled bars). Data from 10,000 simulations; error
bars indicate SD. (C) Overabundance of disynaptic
connectivity motifs: reciprocally connected pairs,
convergence motifs, divergencemotifs, and chains
(fromtop tobottom). Left, tracesofactionpotentials
and average unitary EPSCs. Right, summary bar
graphs. P values are indicated above the simula-
tion bar.The probability of experimentally observed
connectivity motifs was significantly higher than
expected by chance. (D) Detailed maps of super-
connectivity motifs in our data set (7 connections
in one octuple; 10 and 3 connections in two sep-
tuples; 3 connections in two quintuples).The pro-
bability that such connectivity motifs occur by
chance is negligibly small.
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Biologically constrained network models
of pattern completion
The present experimental findings challenged
several assumptions of previous pattern comple-
tion models (3–5, 9, 14). First, the low average
connectivity may compromise pattern comple-
tion. Second, the small number of synaptic con-
tacts per connectionwill introduce synaptic noise,
which may impair pattern completion (14). To
examine how the experimentally determined prop-
erties of CA3–CA3 cell synapses affect pattern
completion, we developed a real-sizemodel of the
hippocampal CA3 cell network (Fig. 5). The total
number of neuronswas 330,000, representing the

CA3 network of one hemisphere (32). Synaptic
plasticity was implemented according to a clipped
Hebbian rule (8), in agreement with recent ex-
perimental results at CA3–CA3 synapses (33).
The firing threshold was set according to the
observation that ≥3 synaptic inputs were neces-
sary to activate a postsynaptic neuron (Fig. 4F)
(29). An increasing number of random patterns
was stored in the network, and recall was tested
with degraded patterns (seematerials andmethods,
fig. S6, and table S3).We first examined a network
with a connection probability (p) of 3% and an
activity level ( f ) of 0.001 (i.e., 330 active neurons
per pattern). Such a network model produced

robust pattern completion (capacity ~45,000
patterns; Fig. 5B, left). Variation of the activity
level confirmed that f = 0.001 provided favor-
able conditions for recall (fig. S7), as previously
suggested (14).

Next, we examined how macroconnectiv-
ity affected pattern completion. When the con-
nection probability in a random network was
reduced, pattern completion was impaired (p =
1.5%; Fig. 5B, center) or completely abolished
(p= 1%; Fig. 5B, right). Increasing the activity level
( f=0.002) partially rescued pattern completion
(capacity ~8200 patterns; Fig. 5C, left), although
recall was only possible in a narrow range of
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Fig. 3. Microconnectivity of the CA3 cell net-
work: A small number of morphological con-
tacts and functional release sites per unitary
connection. (A) Digital reconstruction of a func-
tionally connected CA3–CA3 pair based on the
post-hoc biocytin labeling. Soma and dendrites of
presynaptic cell are shown inmagenta, axon of pre-
synaptic cell is in yellow, soma and dendrites of
postsynaptic cell are in cyan. Gray dot indicates
putative synaptic contact; inset shows light micro-
graph of the contact. (B) Unitary EPSPs and EPSCs
from the same morphologically reconstructed neu-
ron. Upper traces represent presynaptic action po-
tentials, center traces average unitary EPSPs, and
bottom traces average unitary EPSCs. (C) Summary
bar graphs of number of putative contacts per con-
nection (top), number of contacts on basal versus
apical dendrites (center), and number of contacts on
the fimbrial = distal versus hilar = proximal regions
(from the perspective of the presynaptic neuron).
(D) Dendritic distance of putative contacts on the
basal (left) and the apical (right) dendrites of the
postsynaptic cell. (E) A small number of functional
release sites revealed by changing the extracellular
Ca2+ concentration. Top left, single EPSP traces
during standard (2mMCa2+, black) and low–release
probability conditions (1 mM Ca2+, gray).Top right,
plot of EPSP peak amplitude against experimental
time at CA3–CA3 synapses during reduction of the
extracellular Ca2+ concentration (gray area).
Bottom, histogram of EPSP peak amplitude under
standard (2 mM Ca2+; left) and low–release
probability conditions (1 mM Ca2+; right). Red curve
shows the results of multiple probability binomial
analysis. Changing the extracellular Ca2+ concentra-
tionmarkedly altered the proportion of failures and
successes, but had relatively small effects on the
amplitude of successes, suggesting a small num-
ber of functional release sites. (F) Summary graph
of number of release sites (top, left), quantal EPSP
amplitude (top, right), quantal EPSC amplitude
(bottom, left), and coefficient of variation (bottom,
right). In box plots, horizontal lines representmedian;
boxes, quartiles; whiskers, most extreme data points
≤1.5 interquartile range from box edges; and single
points, data from individual experiments.
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inhibition. Incorporation of reciprocal, conver-
gence, divergence, and chain motifs (34) also res-
cued pattern completion (capacity ~3600 patterns;
Fig. 5C, center); recall was possible over a wide
range of inhibition. Addition of reciprocal, conver-
gence, and divergence motifs (i.e., all except chain
motifs) failed to rescue pattern completion, show-
ing that chainmotifs played a critical role (Fig. 5C,
right; fig. S8). Incorporation of all motifs also
rescued pattern completion for p = 1.5%, but re-
duced capacity for p = 3% (fig. S9), showing that
motifs selectively enhanced network performance
in combination with sparse connectivity. Similar
conclusionswere reached in networkmodelswith
limited projection along the longitudinal axis
(35, 36) (fig. S10) and in networkmodels with 2 ×
330,000 neurons and contralateral projections
(fig. S11, A and B). In contrast, pattern comple-
tion was impaired in network models with 1/3 ×
330,000 neurons, suggesting that isolated CA3b
subnetworks were insufficient for pattern com-
pletion (fig. S11, C and D).

Finally, we tested how microconnectivity af-
fected pattern completion. Two opposite predic-
tions can be made. First, increasing the number
of synaptic contacts per connection will reduce
the coefficient of variation (CV) of synaptic trans-
mission, which may enhance pattern completion
(14). Second, increasing the number of contacts
per connection would reduce the effective con-
nectivity, because presynaptic terminals have to
compete for space on dendritic spines of post-
synaptic target cells. This may decrease network
capacity (Fig. 5B). To assess the relative impor-
tance of these effects, we introduced synaptic
variability in our simulations. With a connection
probability of 3% and a CV of 1, pattern com-
pletionworked reliably (capacity ~7000 patterns;
Fig. 5D, center). Reducing the CV improved pat-
tern completion (capacity ~22,000 patterns; Fig.
5D, left). However, reducing CV and connectivity
in combination abolished pattern completion
(capacity close to 0; Fig. 5D, right). Therefore,
single-contact synapseswith high variability were

better suited for pattern completion than multi-
contact synapses with low variability.

Discussion

Previous theories of the hippocampal forma-
tion often depicted the CA3 region as a network
of highly interconnected cells, in which connec-
tivity is all-to-all, random, or distance dependent
(3–5, 8, 9, 11, 14, 37). Our experimental results
challenge this view in multiple ways. First, the
macroconnectivity in the CA3 cell network is
sparse, spatially uniform, and highly enriched in
disynaptic connectivity motifs. This is different
from the neocortex, where connection probability
is higher (~10%), more distance dependent, and
less enriched in disynapticmotifs (17, 18, 22, 38).
Second, the microconnectivity in individual CA3–
CA3 connections is characterized by a small num-
ber of synaptic contacts and functional release
sites per connection. Again, this is different from
theneocortex,where unitary synaptic interactions
involve a large number of contacts (up to eight in
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Fig. 4. Synaptic efficacy at recurrent CA3–CA3 synapses: Large post-
synaptic conductanceandefficient summation. (A) Analysis of postsynaptic
conductance. Digital reconstruction of soma and dendrites of the postsynaptic
cell in a synaptically connected CA3–CA3 pair based on the post-hoc biocytin
labeling. Red circle indicates the putative synaptic contact. (B) Unitary EPSCs
and estimated peak conductance. Latency, rise time constant, peak amplitude,
and decay time constant were fit as free parameters. Top, presynaptic action
potential and average EPSC (red trace), superimposed with the results of the
postsynaptic conductance fit (black curve). Bottom, summary graph of peak
conductance. (C) Rise time and decay time constant of the postsynaptic con-
ductance. (D) Efficient temporal and spatial summation at CA3–CA3 synapses.
Left, EPSPs evoked by repetitive stimulation of the presynaptic neuron (10 stimuli
applied at a frequency of 50 Hz). Center, EPSPs evoked by repetitive stimulation
of another presynaptic neuron converging on the same postsynaptic cell. Right,
EPSPs evokedbysimultaneous repetitive stimulationof bothpresynaptic neurons

(black), superimposed with the arithmetic sum of the individual responses (gray).
The two curves superimpose, indicating linear summation. In left and center
subpanels, the top trace shows the presynaptic action potential, and the bottom
trace represents the average EPSP. (E) Analysis of voltage threshold of action
potential initiation. A ramp protocol was used to determine the action potential
voltage threshold (criterion 20 Vs−1, small crosses). (F) Plot of summated EPSP
amplitude (50 Hz stimulation) against number of stimulated inputs (black circles).
Voltage threshold values are shown for comparison (gray circles). Continuous red
line indicates the results of linear regression of summation data. Dashed lines
indicatemeannumberof inputs required to fire a postsynapticCA3pyramidal cell
and the correspondingmean action potential threshold value. Histogram depicts
the distribution of the estimated number of inputs required to fire the post-
synaptic cell under in vitro conditions. In box plots, horizontal lines represent
median; boxes, quartiles; whiskers, most extreme data points ≤1.5 interquartile
range from box edges; and single points, data from individual experiments.
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layer 5–layer 5 pyramidal neuron pairs) (21–23, 26).
Finally, despite the small number of synaptic con-
tacts, the efficacy of unitary connections is high.
Therefore, coincident firing of a small number of
presynaptic cells is sufficient to initiate action
potentials in a postsynaptic cell. Thus, the prop-
erties of recurrent CA3–CA3 synapses allow
efficient encoding of information by small neu-
ronal ensembles.
Our results give important insights into the

synaptic mechanisms of pattern completion.
First, they provide a proof of principle that real-
size networks with a realistic connection pro-
bability of 1% can perform pattern completion.
Second, they demonstrate that connectivity motifs
increase the efficacy and robustness of recall
under conditions of sparse connectivity and sparse
activity. Intuitively, incorporation of motifs will
increase the variance in the number of inputs
and outputs of each cell, whichwill facilitate the
spread of activity in the network and thereby
enhance the robustness of recall (14). Finally, they

suggest that the design of CA3–CA3 synapses
with few synaptic contacts per connection is fav-
orable, because it enables maximally efficient
use of postsynaptic space. Thus, bothmacro- and
microconnectivity facilitate pattern completion
in the CA3 cell network. Similar conclusionswere
independently reached in a theoretical study,
which deduced sparse connectivity and high
motif abundance from the assumption of max-
imal storage capacity (39).
The mechanisms generating the motif struc-

ture are currently unknown. Anisotropy of axonal
connections may contribute, but it is unlikely
to be the only factor. One possibility is that con-
nectivity motifs are formed during development,
connecting clonally related groups of sister cells
(40, 41). Alternatively, the motifs may arise from
structural plasticity in synchronously active neu-
ronal ensembles (33, 42). Becausemossy fiber syn-
apses may “detonate” postsynaptic CA3 pyramidal
neurons (43, 44), CA3 neurons innervated by the
same mossy fiber axon might become preferen-

tially connected through activity-dependent syn-
aptic plasticity. This would provide a structured
connection between pattern separation circuits of
the dentate gyrus andpattern completionnetworks
of the CA3 region (37). Similarly, CA3 neurons
targeted by the same entorhinal inputs could
become connected. Finally, the CA3 connectome
may be altered during chronic inactivity (45) or
brain diseases (46). How this would affect pat-
tern completion in the network remains to be
determined.
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INHIBITORY SYNAPSES

Identification of an elaborate complex
mediating postsynaptic inhibition
Akiyoshi Uezu,1 Daniel J. Kanak,1* Tyler W. A. Bradshaw,1* Erik J. Soderblom,1,2

Christina M. Catavero,1 Alain C. Burette,3,4 Richard J. Weinberg,3,4 Scott H. Soderling1,5†

Inhibitory synapses dampen neuronal activity through postsynaptic hyperpolarization.The
composition of the inhibitory postsynapse and the mechanistic basis of its regulation, however,
remain poorly understood.We used an in vivo chemico-genetic proximity-labeling approach to
discover inhibitory postsynaptic proteins. Quantitative mass spectrometry not only recapitulated
known inhibitory postsynaptic proteins but also revealed a large network of new proteins, many of
which are either implicated in neurodevelopmental disorders or are of unknown function. Clustered
regularly interspaced short palindromic repeats (CRISPR) depletion of one of these previously
uncharacterized proteins, InSyn1, led to decreased postsynaptic inhibitory sites, reduced the
frequency of miniature inhibitory currents, and increased excitability in the hippocampus. Our
findings uncover a rich and functionally diverse assemblage of previously unknown proteins that
regulate postsynaptic inhibition andmight contribute to developmental brain disorders.

T
wo anatomically distinct classes of synapses
are present in the central nervous system:
excitatory synapses, predominantly localized
to postsynaptic spines, and inhibitory syn-
apses, in which the postsynapse is typically

embedded in the soma and dendritic shaft (1).
Purification and analysis of the protein complexes
of the excitatorypostsynapsehave led to fundamen-
tal insights in neurobiology. These insights in-
clude how receptor trafficking, synaptic adhesion,
cytoskeletal remodeling, and protein phosphoryl-
ation contribute to the synaptic plasticity underly-
ing learning and memory (2, 3). Moreover, genetic
perturbations of excitatory postsynaptic proteins
are strongly implicated in developmental brain
disorders and psychiatric conditions (4, 5).
In contrast, the biochemical purification and

analysis of the inhibitory postsynaptic density
(iPSD) has remained largely intractable. Accord-
ingly, the molecular basis of postsynaptic inhib-
itory synapse regulation and its contribution to
neurodevelopmental disorders is poorly under-
stood. Recently, an affinity purification approach,

BioID, has been developed that utilizes a pro-
miscuous Escherichia coli biotinylation enzyme
BirAR118G (here termed BirA, with Gly replacing
Arg 118) fused to a bait protein expressed in cells
(6). BirA-dependent covalent biotinylation occurs
within 10 to 50 nm of the bait protein and allows
for efficient isolation and analysis of proximal pro-
teins by streptavidin-based affinity purification and
mass spectrometry (MS) (7). Comparedwith affinity
purificationmethods, theBioID reaction is executed
in situ and thus enables the capture of protein
complexes, including transient interactions and
insoluble proteins fromsubcellular compartments
refractory to biochemical isolation (8).
We adapted the proximity-dependent biotin

identification (BioID) approach to enable in vivo
BioID (iBioID) of synaptic complexes in mouse
brain. We virally expressed inhibitory or excit-
atory PSD proteins fused to BirA to capture and
purify their associated proteins. The method
labels the corresponding postsynaptic structures
in vivo, and that enabled the identification of
virtually all of the known proteins of the iPSD.
It also revealed a large number of previously un-
known proteins, including a rich diversity of trans-
membrane and signaling proteins. These results
provide a molecular prospectus for the deeper
understanding of synaptic physiology that was,
until now, largely confined to the excitatory PSD.

In vivo capture of synaptic
protein complexes

Gephyrin is the major scaffolding protein orga-
nizing the iPSD structure, interacting directly with
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